id
stringlengths 14
15
| text
stringlengths 44
2.47k
| source
stringlengths 61
181
|
---|---|---|
4995e2b1589e-4 | to the model provider API call.
Returns
Top model prediction as a message.
async astream(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → AsyncIterator[str]¶
Default implementation of astream, which calls ainvoke.
Subclasses should override this method if they support streaming output.
async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Optional[Any]) → AsyncIterator[RunLogPatch]¶
Stream all output from a runnable, as reported to the callback system.
This includes all inner runs of LLMs, Retrievers, Tools, etc.
Output is streamed as Log objects, which include a list of
jsonpatch ops that describe how the state of the run has changed in each
step, and the final state of the run.
The jsonpatch ops can be applied in order to construct state.
async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶
Default implementation of atransform, which buffers input and calls astream.
Subclasses should override this method if they can start producing output while
input is still being generated. | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.self_hosted_hugging_face.SelfHostedHuggingFaceEmbeddings.html |
4995e2b1589e-5 | input is still being generated.
batch(inputs: List[Union[PromptValue, str, List[BaseMessage]]], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Any) → List[str]¶
Default implementation of batch, which calls invoke N times.
Subclasses should override this method if they can batch more efficiently.
bind(**kwargs: Any) → Runnable[Input, Output]¶
Bind arguments to a Runnable, returning a new Runnable.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(**kwargs: Any) → Dict¶
Return a dictionary of the LLM.
embed_documents(texts: List[str]) → List[List[float]]¶
Compute doc embeddings using a HuggingFace transformer model.
Parameters | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.self_hosted_hugging_face.SelfHostedHuggingFaceEmbeddings.html |
4995e2b1589e-6 | Compute doc embeddings using a HuggingFace transformer model.
Parameters
texts – The list of texts to embed.s
Returns
List of embeddings, one for each text.
embed_query(text: str) → List[float]¶
Compute query embeddings using a HuggingFace transformer model.
Parameters
text – The text to embed.
Returns
Embeddings for the text.
classmethod from_orm(obj: Any) → Model¶
classmethod from_pipeline(pipeline: Any, hardware: Any, model_reqs: Optional[List[str]] = None, device: int = 0, **kwargs: Any) → LLM¶
Init the SelfHostedPipeline from a pipeline object or string.
generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, *, tags: Optional[Union[List[str], List[List[str]]]] = None, metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, run_name: Optional[Union[str, List[str]]] = None, **kwargs: Any) → LLMResult¶
Run the LLM on the given prompt and input.
generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, **kwargs: Any) → LLMResult¶
Pass a sequence of prompts to the model and return model generations.
This method should make use of batched calls for models that expose a batched
API.
Use this method when you want to:
take advantage of batched calls, | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.self_hosted_hugging_face.SelfHostedHuggingFaceEmbeddings.html |
4995e2b1589e-7 | API.
Use this method when you want to:
take advantage of batched calls,
need more output from the model than just the top generated value,
are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models).
Parameters
prompts – List of PromptValues. A PromptValue is an object that can be
converted to match the format of any language model (string for pure
text generation models and BaseMessages for chat models).
stop – Stop words to use when generating. Model output is cut off at the
first occurrence of any of these substrings.
callbacks – Callbacks to pass through. Used for executing additional
functionality, such as logging or streaming, throughout generation.
**kwargs – Arbitrary additional keyword arguments. These are usually passed
to the model provider API call.
Returns
An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output.
classmethod get_lc_namespace() → List[str]¶
Get the namespace of the langchain object.
For example, if the class is langchain.llms.openai.OpenAI, then the
namespace is [“langchain”, “llms”, “openai”]
get_num_tokens(text: str) → int¶
Get the number of tokens present in the text.
Useful for checking if an input will fit in a model’s context window.
Parameters
text – The string input to tokenize.
Returns
The integer number of tokens in the text.
get_num_tokens_from_messages(messages: List[BaseMessage]) → int¶
Get the number of tokens in the messages.
Useful for checking if an input will fit in a model’s context window.
Parameters
messages – The message inputs to tokenize.
Returns
The sum of the number of tokens across the messages. | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.self_hosted_hugging_face.SelfHostedHuggingFaceEmbeddings.html |
4995e2b1589e-8 | Returns
The sum of the number of tokens across the messages.
get_token_ids(text: str) → List[int]¶
Return the ordered ids of the tokens in a text.
Parameters
text – The string input to tokenize.
Returns
A list of ids corresponding to the tokens in the text, in order they occurin the text.
invoke(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → str¶
classmethod is_lc_serializable() → bool¶
Is this class serializable?
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod lc_id() → List[str]¶
A unique identifier for this class for serialization purposes.
The unique identifier is a list of strings that describes the path
to the object.
map() → Runnable[List[Input], List[Output]]¶
Return a new Runnable that maps a list of inputs to a list of outputs,
by calling invoke() with each input. | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.self_hosted_hugging_face.SelfHostedHuggingFaceEmbeddings.html |
4995e2b1589e-9 | by calling invoke() with each input.
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶
Pass a single string input to the model and return a string prediction.
Use this method when passing in raw text. If you want to pass in specifictypes of chat messages, use predict_messages.
Parameters
text – String input to pass to the model.
stop – Stop words to use when generating. Model output is cut off at the
first occurrence of any of these substrings.
**kwargs – Arbitrary additional keyword arguments. These are usually passed
to the model provider API call.
Returns
Top model prediction as a string.
predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶
Pass a message sequence to the model and return a message prediction.
Use this method when passing in chat messages. If you want to pass in raw text,use predict.
Parameters
messages – A sequence of chat messages corresponding to a single model input.
stop – Stop words to use when generating. Model output is cut off at the
first occurrence of any of these substrings.
**kwargs – Arbitrary additional keyword arguments. These are usually passed
to the model provider API call.
Returns
Top model prediction as a message.
save(file_path: Union[Path, str]) → None¶ | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.self_hosted_hugging_face.SelfHostedHuggingFaceEmbeddings.html |
4995e2b1589e-10 | save(file_path: Union[Path, str]) → None¶
Save the LLM.
Parameters
file_path – Path to file to save the LLM to.
Example:
.. code-block:: python
llm.save(file_path=”path/llm.yaml”)
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
stream(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → Iterator[str]¶
Default implementation of stream, which calls invoke.
Subclasses should override this method if they support streaming output.
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶
Default implementation of transform, which buffers input and then calls stream.
Subclasses should override this method if they can start producing output while
input is still being generated.
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶
with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶
Bind config to a Runnable, returning a new Runnable. | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.self_hosted_hugging_face.SelfHostedHuggingFaceEmbeddings.html |
4995e2b1589e-11 | Bind config to a Runnable, returning a new Runnable.
with_fallbacks(fallbacks: ~typing.Sequence[~langchain.schema.runnable.base.Runnable[~langchain.schema.runnable.utils.Input, ~langchain.schema.runnable.utils.Output]], *, exceptions_to_handle: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,)) → RunnableWithFallbacks[Input, Output]¶
with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶
property InputType: TypeAlias¶
Get the input type for this runnable.
property OutputType: Type[str]¶
Get the input type for this runnable.
property input_schema: Type[pydantic.main.BaseModel]¶
property lc_attributes: Dict¶
List of attribute names that should be included in the serialized kwargs.
These attributes must be accepted by the constructor.
property lc_secrets: Dict[str, str]¶
A map of constructor argument names to secret ids.
For example,{“openai_api_key”: “OPENAI_API_KEY”}
property output_schema: Type[pydantic.main.BaseModel]¶
Examples using SelfHostedHuggingFaceEmbeddings¶
Self Hosted | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.self_hosted_hugging_face.SelfHostedHuggingFaceEmbeddings.html |
78dc822cc66f-0 | langchain.embeddings.elasticsearch.ElasticsearchEmbeddings¶
class langchain.embeddings.elasticsearch.ElasticsearchEmbeddings(client: MlClient, model_id: str, *, input_field: str = 'text_field')[source]¶
Elasticsearch embedding models.
This class provides an interface to generate embeddings using a model deployed
in an Elasticsearch cluster. It requires an Elasticsearch connection object
and the model_id of the model deployed in the cluster.
In Elasticsearch you need to have an embedding model loaded and deployed.
- https://www.elastic.co/guide/en/elasticsearch/reference/current/infer-trained-model.html
- https://www.elastic.co/guide/en/machine-learning/current/ml-nlp-deploy-models.html
Initialize the ElasticsearchEmbeddings instance.
Parameters
client (MlClient) – An Elasticsearch ML client object.
model_id (str) – The model_id of the model deployed in the Elasticsearch
cluster.
input_field (str) – The name of the key for the input text field in the
document. Defaults to ‘text_field’.
Methods
__init__(client, model_id, *[, input_field])
Initialize the ElasticsearchEmbeddings instance.
aembed_documents(texts)
Asynchronous Embed search docs.
aembed_query(text)
Asynchronous Embed query text.
embed_documents(texts)
Generate embeddings for a list of documents.
embed_query(text)
Generate an embedding for a single query text.
from_credentials(model_id, *[, es_cloud_id, ...])
Instantiate embeddings from Elasticsearch credentials.
from_es_connection(model_id, es_connection)
Instantiate embeddings from an existing Elasticsearch connection.
__init__(client: MlClient, model_id: str, *, input_field: str = 'text_field')[source]¶
Initialize the ElasticsearchEmbeddings instance.
Parameters | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.elasticsearch.ElasticsearchEmbeddings.html |
78dc822cc66f-1 | Initialize the ElasticsearchEmbeddings instance.
Parameters
client (MlClient) – An Elasticsearch ML client object.
model_id (str) – The model_id of the model deployed in the Elasticsearch
cluster.
input_field (str) – The name of the key for the input text field in the
document. Defaults to ‘text_field’.
async aembed_documents(texts: List[str]) → List[List[float]]¶
Asynchronous Embed search docs.
async aembed_query(text: str) → List[float]¶
Asynchronous Embed query text.
embed_documents(texts: List[str]) → List[List[float]][source]¶
Generate embeddings for a list of documents.
Parameters
texts (List[str]) – A list of document text strings to generate embeddings
for.
Returns
A list of embeddings, one for each document in the inputlist.
Return type
List[List[float]]
embed_query(text: str) → List[float][source]¶
Generate an embedding for a single query text.
Parameters
text (str) – The query text to generate an embedding for.
Returns
The embedding for the input query text.
Return type
List[float]
classmethod from_credentials(model_id: str, *, es_cloud_id: Optional[str] = None, es_user: Optional[str] = None, es_password: Optional[str] = None, input_field: str = 'text_field') → ElasticsearchEmbeddings[source]¶
Instantiate embeddings from Elasticsearch credentials.
Parameters
model_id (str) – The model_id of the model deployed in the Elasticsearch
cluster.
input_field (str) – The name of the key for the input text field in the
document. Defaults to ‘text_field’.
es_cloud_id – (str, optional): The Elasticsearch cloud ID to connect to.
es_user – (str, optional): Elasticsearch username. | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.elasticsearch.ElasticsearchEmbeddings.html |
78dc822cc66f-2 | es_user – (str, optional): Elasticsearch username.
es_password – (str, optional): Elasticsearch password.
Example
from langchain.embeddings import ElasticsearchEmbeddings
# Define the model ID and input field name (if different from default)
model_id = "your_model_id"
# Optional, only if different from 'text_field'
input_field = "your_input_field"
# Credentials can be passed in two ways. Either set the env vars
# ES_CLOUD_ID, ES_USER, ES_PASSWORD and they will be automatically
# pulled in, or pass them in directly as kwargs.
embeddings = ElasticsearchEmbeddings.from_credentials(
model_id,
input_field=input_field,
# es_cloud_id="foo",
# es_user="bar",
# es_password="baz",
)
documents = [
"This is an example document.",
"Another example document to generate embeddings for.",
]
embeddings_generator.embed_documents(documents)
classmethod from_es_connection(model_id: str, es_connection: Elasticsearch, input_field: str = 'text_field') → ElasticsearchEmbeddings[source]¶
Instantiate embeddings from an existing Elasticsearch connection.
This method provides a way to create an instance of the ElasticsearchEmbeddings
class using an existing Elasticsearch connection. The connection object is used
to create an MlClient, which is then used to initialize the
ElasticsearchEmbeddings instance.
Args:
model_id (str): The model_id of the model deployed in the Elasticsearch cluster.
es_connection (elasticsearch.Elasticsearch): An existing Elasticsearch
connection object. input_field (str, optional): The name of the key for the
input text field in the document. Defaults to ‘text_field’.
Returns:
ElasticsearchEmbeddings: An instance of the ElasticsearchEmbeddings class.
Example
from elasticsearch import Elasticsearch | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.elasticsearch.ElasticsearchEmbeddings.html |
78dc822cc66f-3 | Example
from elasticsearch import Elasticsearch
from langchain.embeddings import ElasticsearchEmbeddings
# Define the model ID and input field name (if different from default)
model_id = "your_model_id"
# Optional, only if different from 'text_field'
input_field = "your_input_field"
# Create Elasticsearch connection
es_connection = Elasticsearch(
hosts=["localhost:9200"], http_auth=("user", "password")
)
# Instantiate ElasticsearchEmbeddings using the existing connection
embeddings = ElasticsearchEmbeddings.from_es_connection(
model_id,
es_connection,
input_field=input_field,
)
documents = [
"This is an example document.",
"Another example document to generate embeddings for.",
]
embeddings_generator.embed_documents(documents)
Examples using ElasticsearchEmbeddings¶
Elasticsearch | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.elasticsearch.ElasticsearchEmbeddings.html |
5f64b52f5f07-0 | langchain.embeddings.xinference.XinferenceEmbeddings¶
class langchain.embeddings.xinference.XinferenceEmbeddings(server_url: Optional[str] = None, model_uid: Optional[str] = None)[source]¶
Wrapper around xinference embedding models.
To use, you should have the xinference library installed:
pip install xinference
Check out: https://github.com/xorbitsai/inference
To run, you need to start a Xinference supervisor on one server and Xinference workers on the other servers.
Example
To start a local instance of Xinference, run
$ xinference
You can also deploy Xinference in a distributed cluster. Here are the steps:
Starting the supervisor:
$ xinference-supervisor
Starting the worker:
$ xinference-worker
Then, launch a model using command line interface (CLI).
Example:
$ xinference launch -n orca -s 3 -q q4_0
It will return a model UID. Then you can use Xinference Embedding with LangChain.
Example:
from langchain.embeddings import XinferenceEmbeddings
xinference = XinferenceEmbeddings(
server_url="http://0.0.0.0:9997",
model_uid = {model_uid} # replace model_uid with the model UID return from launching the model
)
Attributes
client
server_url
URL of the xinference server
model_uid
UID of the launched model
Methods
__init__([server_url, model_uid])
aembed_documents(texts)
Asynchronous Embed search docs.
aembed_query(text)
Asynchronous Embed query text.
embed_documents(texts)
Embed a list of documents using Xinference.
embed_query(text)
Embed a query of documents using Xinference. | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.xinference.XinferenceEmbeddings.html |
5f64b52f5f07-1 | embed_query(text)
Embed a query of documents using Xinference.
__init__(server_url: Optional[str] = None, model_uid: Optional[str] = None)[source]¶
async aembed_documents(texts: List[str]) → List[List[float]]¶
Asynchronous Embed search docs.
async aembed_query(text: str) → List[float]¶
Asynchronous Embed query text.
embed_documents(texts: List[str]) → List[List[float]][source]¶
Embed a list of documents using Xinference.
:param texts: The list of texts to embed.
Returns
List of embeddings, one for each text.
embed_query(text: str) → List[float][source]¶
Embed a query of documents using Xinference.
:param text: The text to embed.
Returns
Embeddings for the text.
Examples using XinferenceEmbeddings¶
Xorbits inference (Xinference) | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.xinference.XinferenceEmbeddings.html |
84067d4357eb-0 | langchain.embeddings.aleph_alpha.AlephAlphaSymmetricSemanticEmbedding¶
class langchain.embeddings.aleph_alpha.AlephAlphaSymmetricSemanticEmbedding[source]¶
Bases: AlephAlphaAsymmetricSemanticEmbedding
The symmetric version of the Aleph Alpha’s semantic embeddings.
The main difference is that here, both the documents and
queries are embedded with a SemanticRepresentation.Symmetric
.. rubric:: Example
from aleph_alpha import AlephAlphaSymmetricSemanticEmbedding
embeddings = AlephAlphaAsymmetricSemanticEmbedding(
normalize=True, compress_to_size=128
)
text = "This is a test text"
doc_result = embeddings.embed_documents([text])
query_result = embeddings.embed_query(text)
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param aleph_alpha_api_key: Optional[str] = None¶
API key for Aleph Alpha API.
param compress_to_size: Optional[int] = None¶
Should the returned embeddings come back as an original 5120-dim vector,
or should it be compressed to 128-dim.
param contextual_control_threshold: Optional[int] = None¶
Attention control parameters only apply to those tokens that have
explicitly been set in the request.
param control_log_additive: bool = True¶
Apply controls on prompt items by adding the log(control_factor)
to attention scores.
param host: str = 'https://api.aleph-alpha.com'¶
The hostname of the API host.
The default one is “https://api.aleph-alpha.com”)
param hosting: Optional[str] = None¶
Determines in which datacenters the request may be processed. | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.aleph_alpha.AlephAlphaSymmetricSemanticEmbedding.html |
84067d4357eb-1 | Determines in which datacenters the request may be processed.
You can either set the parameter to “aleph-alpha” or omit it (defaulting to None).
Not setting this value, or setting it to None, gives us maximal flexibility
in processing your request in our
own datacenters and on servers hosted with other providers.
Choose this option for maximal availability.
Setting it to “aleph-alpha” allows us to only process the request
in our own datacenters.
Choose this option for maximal data privacy.
param model: str = 'luminous-base'¶
Model name to use.
param nice: bool = False¶
Setting this to True, will signal to the API that you intend to be
nice to other users
by de-prioritizing your request below concurrent ones.
param normalize: Optional[bool] = None¶
Should returned embeddings be normalized
param request_timeout_seconds: int = 305¶
Client timeout that will be set for HTTP requests in the
requests library’s API calls.
Server will close all requests after 300 seconds with an internal server error.
param total_retries: int = 8¶
The number of retries made in case requests fail with certain retryable
status codes. If the last
retry fails a corresponding exception is raised. Note, that between retries
an exponential backoff
is applied, starting with 0.5 s after the first retry and doubling for each
retry made. So with the
default setting of 8 retries a total wait time of 63.5 s is added between
the retries.
async aembed_documents(texts: List[str]) → List[List[float]]¶
Asynchronous Embed search docs.
async aembed_query(text: str) → List[float]¶
Asynchronous Embed query text. | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.aleph_alpha.AlephAlphaSymmetricSemanticEmbedding.html |
84067d4357eb-2 | Asynchronous Embed query text.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
embed_documents(texts: List[str]) → List[List[float]][source]¶
Call out to Aleph Alpha’s Document endpoint.
Parameters
texts – The list of texts to embed.
Returns
List of embeddings, one for each text. | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.aleph_alpha.AlephAlphaSymmetricSemanticEmbedding.html |
84067d4357eb-3 | Returns
List of embeddings, one for each text.
embed_query(text: str) → List[float][source]¶
Call out to Aleph Alpha’s asymmetric, query embedding endpoint
:param text: The text to embed.
Returns
Embeddings for the text.
classmethod from_orm(obj: Any) → Model¶
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
classmethod update_forward_refs(**localns: Any) → None¶ | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.aleph_alpha.AlephAlphaSymmetricSemanticEmbedding.html |
84067d4357eb-4 | classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶
Examples using AlephAlphaSymmetricSemanticEmbedding¶
Aleph Alpha | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.aleph_alpha.AlephAlphaSymmetricSemanticEmbedding.html |
9f0dc2e0d219-0 | langchain.embeddings.embaas.EmbaasEmbeddingsPayload¶
class langchain.embeddings.embaas.EmbaasEmbeddingsPayload[source]¶
Payload for the Embaas embeddings API.
Attributes
model
texts
instruction
Methods
__init__(*args, **kwargs)
clear()
copy()
fromkeys([value])
Create a new dictionary with keys from iterable and values set to value.
get(key[, default])
Return the value for key if key is in the dictionary, else default.
items()
keys()
pop(k[,d])
If the key is not found, return the default if given; otherwise, raise a KeyError.
popitem()
Remove and return a (key, value) pair as a 2-tuple.
setdefault(key[, default])
Insert key with a value of default if key is not in the dictionary.
update([E, ]**F)
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]
values()
__init__(*args, **kwargs)¶
clear() → None. Remove all items from D.¶
copy() → a shallow copy of D¶
fromkeys(value=None, /)¶
Create a new dictionary with keys from iterable and values set to value.
get(key, default=None, /)¶
Return the value for key if key is in the dictionary, else default.
items() → a set-like object providing a view on D's items¶
keys() → a set-like object providing a view on D's keys¶ | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.embaas.EmbaasEmbeddingsPayload.html |
9f0dc2e0d219-1 | keys() → a set-like object providing a view on D's keys¶
pop(k[, d]) → v, remove specified key and return the corresponding value.¶
If the key is not found, return the default if given; otherwise,
raise a KeyError.
popitem()¶
Remove and return a (key, value) pair as a 2-tuple.
Pairs are returned in LIFO (last-in, first-out) order.
Raises KeyError if the dict is empty.
setdefault(key, default=None, /)¶
Insert key with a value of default if key is not in the dictionary.
Return the value for key if key is in the dictionary, else default.
update([E, ]**F) → None. Update D from dict/iterable E and F.¶
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k]
If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v
In either case, this is followed by: for k in F: D[k] = F[k]
values() → an object providing a view on D's values¶ | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.embaas.EmbaasEmbeddingsPayload.html |
89b2fac68429-0 | langchain.embeddings.awa.AwaEmbeddings¶
class langchain.embeddings.awa.AwaEmbeddings[source]¶
Bases: BaseModel, Embeddings
Embedding documents and queries with Awa DB.
client¶
The AwaEmbedding client.
model¶
The name of the model used for embedding.
Default is “all-mpnet-base-v2”.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param model: str = 'all-mpnet-base-v2'¶
async aembed_documents(texts: List[str]) → List[List[float]]¶
Asynchronous Embed search docs.
async aembed_query(text: str) → List[float]¶
Asynchronous Embed query text.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.awa.AwaEmbeddings.html |
89b2fac68429-1 | the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
embed_documents(texts: List[str]) → List[List[float]][source]¶
Embed a list of documents using AwaEmbedding.
Parameters
texts – The list of texts need to be embedded
Returns
List of embeddings, one for each text.
embed_query(text: str) → List[float][source]¶
Compute query embeddings using AwaEmbedding.
Parameters
text – The text to embed.
Returns
Embeddings for the text.
classmethod from_orm(obj: Any) → Model¶
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.awa.AwaEmbeddings.html |
89b2fac68429-2 | classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
set_model(model_name: str) → None[source]¶
Set the model used for embedding.
The default model used is all-mpnet-base-v2
Parameters
model_name – A string which represents the name of model.
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶
Examples using AwaEmbeddings¶
AwaDB | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.awa.AwaEmbeddings.html |
2f2c7876ec56-0 | langchain.embeddings.gpt4all.GPT4AllEmbeddings¶
class langchain.embeddings.gpt4all.GPT4AllEmbeddings[source]¶
Bases: BaseModel, Embeddings
GPT4All embedding models.
To use, you should have the gpt4all python package installed
Example
from langchain.embeddings import GPT4AllEmbeddings
embeddings = GPT4AllEmbeddings()
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
async aembed_documents(texts: List[str]) → List[List[float]]¶
Asynchronous Embed search docs.
async aembed_query(text: str) → List[float]¶
Asynchronous Embed query text.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.gpt4all.GPT4AllEmbeddings.html |
2f2c7876ec56-1 | deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
embed_documents(texts: List[str]) → List[List[float]][source]¶
Embed a list of documents using GPT4All.
Parameters
texts – The list of texts to embed.
Returns
List of embeddings, one for each text.
embed_query(text: str) → List[float][source]¶
Embed a query using GPT4All.
Parameters
text – The text to embed.
Returns
Embeddings for the text.
classmethod from_orm(obj: Any) → Model¶
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.gpt4all.GPT4AllEmbeddings.html |
2f2c7876ec56-2 | classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶
Examples using GPT4AllEmbeddings¶
GPT4All
Ollama
Use local LLMs
WebResearchRetriever | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.gpt4all.GPT4AllEmbeddings.html |
2b1e6332ddc2-0 | langchain.embeddings.gradient_ai.TinyAsyncGradientEmbeddingClient¶
class langchain.embeddings.gradient_ai.TinyAsyncGradientEmbeddingClient(access_token: Optional[str] = None, workspace_id: Optional[str] = None, host: str = 'https://api.gradient.ai/api', aiosession: Optional[ClientSession] = None)[source]¶
A helper tool to embed Gradient. Not part of Langchain’s or Gradients stable API.
To use, set the environment variable GRADIENT_ACCESS_TOKEN with your
API token and GRADIENT_WORKSPACE_ID for your gradient workspace,
or alternatively provide them as keywords to the constructor of this class.
Example
mini_client = TinyAsyncGradientEmbeddingClient(
workspace_id="12345614fc0_workspace",
access_token="gradientai-access_token",
)
embeds = mini_client.embed(
model="bge-large",
text=["doc1", "doc2"]
)
# or
embeds = await mini_client.aembed(
model="bge-large",
text=["doc1", "doc2"]
)
Methods
__init__([access_token, workspace_id, host, ...])
aembed(model, texts)
call the embedding of model, async method
embed(model, texts)
call the embedding of model
__init__(access_token: Optional[str] = None, workspace_id: Optional[str] = None, host: str = 'https://api.gradient.ai/api', aiosession: Optional[ClientSession] = None) → None[source]¶
async aembed(model: str, texts: List[str]) → List[List[float]][source]¶
call the embedding of model, async method
Parameters
model (str) – to embedding model
texts (List[str]) – List of sentences to embed.
Returns | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.gradient_ai.TinyAsyncGradientEmbeddingClient.html |
2b1e6332ddc2-1 | texts (List[str]) – List of sentences to embed.
Returns
List of vectors for each sentence
Return type
List[List[float]]
embed(model: str, texts: List[str]) → List[List[float]][source]¶
call the embedding of model
Parameters
model (str) – to embedding model
texts (List[str]) – List of sentences to embed.
Returns
List of vectors for each sentence
Return type
List[List[float]] | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.gradient_ai.TinyAsyncGradientEmbeddingClient.html |
ffcd5d250fc2-0 | langchain.embeddings.llm_rails.LLMRailsEmbeddings¶
class langchain.embeddings.llm_rails.LLMRailsEmbeddings[source]¶
Bases: BaseModel, Embeddings
LLMRails embedding models.
To use, you should have the environment
variable LLM_RAILS_API_KEY set with your API key or pass it
as a named parameter to the constructor.
Model can be one of [“embedding-english-v1”,”embedding-multi-v1”]
Example
from langchain.embeddings import LLMRailsEmbeddings
cohere = LLMRailsEmbeddings(
model="embedding-english-v1", api_key="my-api-key"
)
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param api_key: Optional[str] = None¶
LLMRails API key.
param model: str = 'embedding-english-v1'¶
Model name to use.
async aembed_documents(texts: List[str]) → List[List[float]]¶
Asynchronous Embed search docs.
async aembed_query(text: str) → List[float]¶
Asynchronous Embed query text.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.llm_rails.LLMRailsEmbeddings.html |
ffcd5d250fc2-1 | Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
embed_documents(texts: List[str]) → List[List[float]][source]¶
Call out to Cohere’s embedding endpoint.
Parameters
texts – The list of texts to embed.
Returns
List of embeddings, one for each text.
embed_query(text: str) → List[float][source]¶
Call out to Cohere’s embedding endpoint.
Parameters
text – The text to embed.
Returns
Embeddings for the text.
classmethod from_orm(obj: Any) → Model¶ | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.llm_rails.LLMRailsEmbeddings.html |
ffcd5d250fc2-2 | Embeddings for the text.
classmethod from_orm(obj: Any) → Model¶
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶ | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.llm_rails.LLMRailsEmbeddings.html |
fffe2a704c4a-0 | langchain.embeddings.self_hosted_hugging_face.load_embedding_model¶
langchain.embeddings.self_hosted_hugging_face.load_embedding_model(model_id: str, instruct: bool = False, device: int = 0) → Any[source]¶
Load the embedding model. | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.self_hosted_hugging_face.load_embedding_model.html |
58306b51abdc-0 | langchain.embeddings.fake.DeterministicFakeEmbedding¶
class langchain.embeddings.fake.DeterministicFakeEmbedding[source]¶
Bases: Embeddings, BaseModel
Fake embedding model that always returns
the same embedding vector for the same text.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param size: int [Required]¶
The size of the embedding vector.
async aembed_documents(texts: List[str]) → List[List[float]]¶
Asynchronous Embed search docs.
async aembed_query(text: str) → List[float]¶
Asynchronous Embed query text.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.fake.DeterministicFakeEmbedding.html |
58306b51abdc-1 | deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
embed_documents(texts: List[str]) → List[List[float]][source]¶
Embed search docs.
embed_query(text: str) → List[float][source]¶
Embed query text.
classmethod from_orm(obj: Any) → Model¶
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶ | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.fake.DeterministicFakeEmbedding.html |
58306b51abdc-2 | classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶ | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.fake.DeterministicFakeEmbedding.html |
c99b4d909432-0 | langchain.embeddings.minimax.MiniMaxEmbeddings¶
class langchain.embeddings.minimax.MiniMaxEmbeddings[source]¶
Bases: BaseModel, Embeddings
MiniMax’s embedding service.
To use, you should have the environment variable MINIMAX_GROUP_ID and
MINIMAX_API_KEY set with your API token, or pass it as a named parameter to
the constructor.
Example
from langchain.embeddings import MiniMaxEmbeddings
embeddings = MiniMaxEmbeddings()
query_text = "This is a test query."
query_result = embeddings.embed_query(query_text)
document_text = "This is a test document."
document_result = embeddings.embed_documents([document_text])
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param embed_type_db: str = 'db'¶
For embed_documents
param embed_type_query: str = 'query'¶
For embed_query
param endpoint_url: str = 'https://api.minimax.chat/v1/embeddings'¶
Endpoint URL to use.
param minimax_api_key: Optional[str] = None¶
API Key for MiniMax API.
param minimax_group_id: Optional[str] = None¶
Group ID for MiniMax API.
param model: str = 'embo-01'¶
Embeddings model name to use.
async aembed_documents(texts: List[str]) → List[List[float]]¶
Asynchronous Embed search docs.
async aembed_query(text: str) → List[float]¶
Asynchronous Embed query text.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.minimax.MiniMaxEmbeddings.html |
c99b4d909432-1 | Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
embed(texts: List[str], embed_type: str) → List[List[float]][source]¶
embed_documents(texts: List[str]) → List[List[float]][source]¶
Embed documents using a MiniMax embedding endpoint.
Parameters
texts – The list of texts to embed.
Returns
List of embeddings, one for each text.
embed_query(text: str) → List[float][source]¶
Embed a query using a MiniMax embedding endpoint.
Parameters
text – The text to embed. | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.minimax.MiniMaxEmbeddings.html |
c99b4d909432-2 | Parameters
text – The text to embed.
Returns
Embeddings for the text.
classmethod from_orm(obj: Any) → Model¶
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶
Examples using MiniMaxEmbeddings¶
MiniMax
Minimax | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.minimax.MiniMaxEmbeddings.html |
e9d0b894747d-0 | langchain.embeddings.openai.OpenAIEmbeddings¶
class langchain.embeddings.openai.OpenAIEmbeddings[source]¶
Bases: BaseModel, Embeddings
OpenAI embedding models.
To use, you should have the openai python package installed, and the
environment variable OPENAI_API_KEY set with your API key or pass it
as a named parameter to the constructor.
Example
from langchain.embeddings import OpenAIEmbeddings
openai = OpenAIEmbeddings(openai_api_key="my-api-key")
In order to use the library with Microsoft Azure endpoints, you need to set
the OPENAI_API_TYPE, OPENAI_API_BASE, OPENAI_API_KEY and OPENAI_API_VERSION.
The OPENAI_API_TYPE must be set to ‘azure’ and the others correspond to
the properties of your endpoint.
In addition, the deployment name must be passed as the model parameter.
Example
import os
os.environ["OPENAI_API_TYPE"] = "azure"
os.environ["OPENAI_API_BASE"] = "https://<your-endpoint.openai.azure.com/"
os.environ["OPENAI_API_KEY"] = "your AzureOpenAI key"
os.environ["OPENAI_API_VERSION"] = "2023-05-15"
os.environ["OPENAI_PROXY"] = "http://your-corporate-proxy:8080"
from langchain.embeddings.openai import OpenAIEmbeddings
embeddings = OpenAIEmbeddings(
deployment="your-embeddings-deployment-name",
model="your-embeddings-model-name",
openai_api_base="https://your-endpoint.openai.azure.com/",
openai_api_type="azure",
)
text = "This is a test query."
query_result = embeddings.embed_query(text)
Create a new model by parsing and validating input data from keyword arguments. | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.openai.OpenAIEmbeddings.html |
e9d0b894747d-1 | Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param allowed_special: Union[Literal['all'], Set[str]] = {}¶
param chunk_size: int = 1000¶
Maximum number of texts to embed in each batch
param deployment: str = 'text-embedding-ada-002'¶
param disallowed_special: Union[Literal['all'], Set[str], Sequence[str]] = 'all'¶
param embedding_ctx_length: int = 8191¶
The maximum number of tokens to embed at once.
param headers: Any = None¶
param max_retries: int = 6¶
Maximum number of retries to make when generating.
param model: str = 'text-embedding-ada-002'¶
param model_kwargs: Dict[str, Any] [Optional]¶
Holds any model parameters valid for create call not explicitly specified.
param openai_api_base: Optional[str] = None¶
param openai_api_key: Optional[str] = None¶
param openai_api_type: Optional[str] = None¶
param openai_api_version: Optional[str] = None¶
param openai_organization: Optional[str] = None¶
param openai_proxy: Optional[str] = None¶
param request_timeout: Optional[Union[float, Tuple[float, float]]] = None¶
Timeout in seconds for the OpenAPI request.
param show_progress_bar: bool = False¶
Whether to show a progress bar when embedding.
param skip_empty: bool = False¶
Whether to skip empty strings when embedding or raise an error.
Defaults to not skipping.
param tiktoken_model_name: Optional[str] = None¶
The model name to pass to tiktoken when using this class.
Tiktoken is used to count the number of tokens in documents to constrain | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.openai.OpenAIEmbeddings.html |
e9d0b894747d-2 | Tiktoken is used to count the number of tokens in documents to constrain
them to be under a certain limit. By default, when set to None, this will
be the same as the embedding model name. However, there are some cases
where you may want to use this Embedding class with a model name not
supported by tiktoken. This can include when using Azure embeddings or
when using one of the many model providers that expose an OpenAI-like
API but with different models. In those cases, in order to avoid erroring
when tiktoken is called, you can specify a model name to use here.
async aembed_documents(texts: List[str], chunk_size: Optional[int] = 0) → List[List[float]][source]¶
Call out to OpenAI’s embedding endpoint async for embedding search docs.
Parameters
texts – The list of texts to embed.
chunk_size – The chunk size of embeddings. If None, will use the chunk size
specified by the class.
Returns
List of embeddings, one for each text.
async aembed_query(text: str) → List[float][source]¶
Call out to OpenAI’s embedding endpoint async for embedding query text.
Parameters
text – The text to embed.
Returns
Embedding for the text.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.openai.OpenAIEmbeddings.html |
e9d0b894747d-3 | Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
embed_documents(texts: List[str], chunk_size: Optional[int] = 0) → List[List[float]][source]¶
Call out to OpenAI’s embedding endpoint for embedding search docs.
Parameters
texts – The list of texts to embed.
chunk_size – The chunk size of embeddings. If None, will use the chunk size
specified by the class.
Returns
List of embeddings, one for each text.
embed_query(text: str) → List[float][source]¶
Call out to OpenAI’s embedding endpoint for embedding query text.
Parameters | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.openai.OpenAIEmbeddings.html |
e9d0b894747d-4 | Call out to OpenAI’s embedding endpoint for embedding query text.
Parameters
text – The text to embed.
Returns
Embedding for the text.
classmethod from_orm(obj: Any) → Model¶
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶ | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.openai.OpenAIEmbeddings.html |
e9d0b894747d-5 | classmethod validate(value: Any) → Model¶
Examples using OpenAIEmbeddings¶
OpenAI
AzureOpenAI
RePhraseQueryRetriever
Cohere Reranker
kNN
DocArray Retriever
SVM
Pinecone Hybrid Search
LOTR (Merger Retriever)
Xata chat memory
Confident
Azure OpenAI
Document Comparison
Vectorstore
LanceDB
Weaviate
Xata
Redis
PGVector
Rockset
Dingo
Zilliz
SingleStoreDB
Typesense
Atlas
Activeloop Deep Lake
Neo4j Vector Index
Chroma
Alibaba Cloud OpenSearch
StarRocks
scikit-learn
DocArray HnswSearch
MyScale
ClickHouse
Qdrant
Tigris
Supabase (Postgres)
OpenSearch
Pinecone
Azure Cognitive Search
Cassandra
USearch
Milvus
Elasticsearch
DocArray InMemorySearch
Postgres Embedding
Faiss
Epsilla
AnalyticDB
Hologres
MongoDB Atlas
Meilisearch
Loading documents from a YouTube url
Psychic
Docugami
LLM Caching integrations
Set env var OPENAI_API_KEY or load from a .env file:
Set env var OPENAI_API_KEY or load from a .env file
Question Answering
Perform context-aware text splitting
Conversational Retrieval Agent
Retrieve from vector stores directly
Retrieve as you generate with FLARE
Improve document indexing with HyDE
Analysis of Twitter the-algorithm source code with LangChain, GPT4 and Activeloop’s Deep Lake
Use LangChain, GPT and Activeloop’s Deep Lake to work with code base
Structure answers with OpenAI functions
QA using Activeloop’s DeepLake
Agents
AutoGPT
BabyAGI User Guide | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.openai.OpenAIEmbeddings.html |
e9d0b894747d-6 | Agents
AutoGPT
BabyAGI User Guide
BabyAGI with Tools
!pip install bs4
Plug-and-Plai
SalesGPT - Your Context-Aware AI Sales Assistant With Knowledge Base
Custom Agent with PlugIn Retrieval
Generative Agents in LangChain
SQL
Indexing
Caching
MultiVector Retriever
MultiQueryRetriever
Parent Document Retriever
WebResearchRetriever
Supabase
Deep Lake
Memory in the Multi-Input Chain
Combine agents and vector stores
Custom agent with tool retrieval
Select by maximal marginal relevance (MMR)
Few-shot examples for chat models
Loading from LangChainHub
First we add a step to load memory | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.openai.OpenAIEmbeddings.html |
348895ac858f-0 | langchain.embeddings.mosaicml.MosaicMLInstructorEmbeddings¶
class langchain.embeddings.mosaicml.MosaicMLInstructorEmbeddings[source]¶
Bases: BaseModel, Embeddings
MosaicML embedding service.
To use, you should have the
environment variable MOSAICML_API_TOKEN set with your API token, or pass
it as a named parameter to the constructor.
Example
from langchain.llms import MosaicMLInstructorEmbeddings
endpoint_url = (
"https://models.hosted-on.mosaicml.hosting/instructor-large/v1/predict"
)
mosaic_llm = MosaicMLInstructorEmbeddings(
endpoint_url=endpoint_url,
mosaicml_api_token="my-api-key"
)
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param embed_instruction: str = 'Represent the document for retrieval: '¶
Instruction used to embed documents.
param endpoint_url: str = 'https://models.hosted-on.mosaicml.hosting/instructor-xl/v1/predict'¶
Endpoint URL to use.
param mosaicml_api_token: Optional[str] = None¶
param query_instruction: str = 'Represent the question for retrieving supporting documents: '¶
Instruction used to embed the query.
param retry_sleep: float = 1.0¶
How long to try sleeping for if a rate limit is encountered
async aembed_documents(texts: List[str]) → List[List[float]]¶
Asynchronous Embed search docs.
async aembed_query(text: str) → List[float]¶
Asynchronous Embed query text.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.mosaicml.MosaicMLInstructorEmbeddings.html |
348895ac858f-1 | Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
embed_documents(texts: List[str]) → List[List[float]][source]¶
Embed documents using a MosaicML deployed instructor embedding model.
Parameters
texts – The list of texts to embed.
Returns
List of embeddings, one for each text.
embed_query(text: str) → List[float][source]¶
Embed a query using a MosaicML deployed instructor embedding model.
Parameters | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.mosaicml.MosaicMLInstructorEmbeddings.html |
348895ac858f-2 | Embed a query using a MosaicML deployed instructor embedding model.
Parameters
text – The text to embed.
Returns
Embeddings for the text.
classmethod from_orm(obj: Any) → Model¶
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶ | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.mosaicml.MosaicMLInstructorEmbeddings.html |
348895ac858f-3 | classmethod validate(value: Any) → Model¶
Examples using MosaicMLInstructorEmbeddings¶
MosaicML | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.mosaicml.MosaicMLInstructorEmbeddings.html |
34057f9bd487-0 | langchain.embeddings.huggingface.HuggingFaceInferenceAPIEmbeddings¶
class langchain.embeddings.huggingface.HuggingFaceInferenceAPIEmbeddings[source]¶
Bases: BaseModel, Embeddings
Embed texts using the HuggingFace API.
Requires a HuggingFace Inference API key and a model name.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param api_key: str [Required]¶
Your API key for the HuggingFace Inference API.
param model_name: str = 'sentence-transformers/all-MiniLM-L6-v2'¶
The name of the model to use for text embeddings.
async aembed_documents(texts: List[str]) → List[List[float]]¶
Asynchronous Embed search docs.
async aembed_query(text: str) → List[float]¶
Asynchronous Embed query text.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.huggingface.HuggingFaceInferenceAPIEmbeddings.html |
34057f9bd487-1 | exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
embed_documents(texts: List[str]) → List[List[float]][source]¶
Get the embeddings for a list of texts.
Parameters
texts (Documents) – A list of texts to get embeddings for.
Returns
Embedded texts as List[List[float]], where each inner List[float]corresponds to a single input text.
Example
from langchain.embeddings import HuggingFaceInferenceAPIEmbeddings
hf_embeddings = HuggingFaceInferenceAPIEmbeddings(
api_key="your_api_key",
model_name="sentence-transformers/all-MiniLM-l6-v2"
)
texts = ["Hello, world!", "How are you?"]
hf_embeddings.embed_documents(texts)
embed_query(text: str) → List[float][source]¶
Compute query embeddings using a HuggingFace transformer model.
Parameters
text – The text to embed.
Returns
Embeddings for the text.
classmethod from_orm(obj: Any) → Model¶ | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.huggingface.HuggingFaceInferenceAPIEmbeddings.html |
34057f9bd487-2 | Embeddings for the text.
classmethod from_orm(obj: Any) → Model¶
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶
Examples using HuggingFaceInferenceAPIEmbeddings¶
Hugging Face | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.huggingface.HuggingFaceInferenceAPIEmbeddings.html |
4f13b353d16c-0 | langchain.embeddings.google_palm.GooglePalmEmbeddings¶
class langchain.embeddings.google_palm.GooglePalmEmbeddings[source]¶
Bases: BaseModel, Embeddings
Google’s PaLM Embeddings APIs.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param client: Any = None¶
param google_api_key: Optional[str] = None¶
param model_name: str = 'models/embedding-gecko-001'¶
Model name to use.
async aembed_documents(texts: List[str]) → List[List[float]]¶
Asynchronous Embed search docs.
async aembed_query(text: str) → List[float]¶
Asynchronous Embed query text.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.google_palm.GooglePalmEmbeddings.html |
4f13b353d16c-1 | deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
embed_documents(texts: List[str]) → List[List[float]][source]¶
Embed search docs.
embed_query(text: str) → List[float][source]¶
Embed query text.
classmethod from_orm(obj: Any) → Model¶
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶ | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.google_palm.GooglePalmEmbeddings.html |
4f13b353d16c-2 | classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶ | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.google_palm.GooglePalmEmbeddings.html |
e939d27658c6-0 | langchain.embeddings.localai.embed_with_retry¶
langchain.embeddings.localai.embed_with_retry(embeddings: LocalAIEmbeddings, **kwargs: Any) → Any[source]¶
Use tenacity to retry the embedding call. | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.localai.embed_with_retry.html |
30f7a1bc626b-0 | langchain.embeddings.fake.FakeEmbeddings¶
class langchain.embeddings.fake.FakeEmbeddings[source]¶
Bases: Embeddings, BaseModel
Fake embedding model.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param size: int [Required]¶
The size of the embedding vector.
async aembed_documents(texts: List[str]) → List[List[float]]¶
Asynchronous Embed search docs.
async aembed_query(text: str) → List[float]¶
Asynchronous Embed query text.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.fake.FakeEmbeddings.html |
30f7a1bc626b-1 | deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
embed_documents(texts: List[str]) → List[List[float]][source]¶
Embed search docs.
embed_query(text: str) → List[float][source]¶
Embed query text.
classmethod from_orm(obj: Any) → Model¶
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶ | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.fake.FakeEmbeddings.html |
30f7a1bc626b-2 | classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶
Examples using FakeEmbeddings¶
Fake Embeddings
DocArray Retriever
Vectara
Tair
Tencent Cloud VectorDB | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.fake.FakeEmbeddings.html |
e165387b68a9-0 | langchain.embeddings.huggingface.HuggingFaceEmbeddings¶
class langchain.embeddings.huggingface.HuggingFaceEmbeddings[source]¶
Bases: BaseModel, Embeddings
HuggingFace sentence_transformers embedding models.
To use, you should have the sentence_transformers python package installed.
Example
from langchain.embeddings import HuggingFaceEmbeddings
model_name = "sentence-transformers/all-mpnet-base-v2"
model_kwargs = {'device': 'cpu'}
encode_kwargs = {'normalize_embeddings': False}
hf = HuggingFaceEmbeddings(
model_name=model_name,
model_kwargs=model_kwargs,
encode_kwargs=encode_kwargs
)
Initialize the sentence_transformer.
param cache_folder: Optional[str] = None¶
Path to store models.
Can be also set by SENTENCE_TRANSFORMERS_HOME environment variable.
param encode_kwargs: Dict[str, Any] [Optional]¶
Key word arguments to pass when calling the encode method of the model.
param model_kwargs: Dict[str, Any] [Optional]¶
Key word arguments to pass to the model.
param model_name: str = 'sentence-transformers/all-mpnet-base-v2'¶
Model name to use.
param multi_process: bool = False¶
Run encode() on multiple GPUs.
async aembed_documents(texts: List[str]) → List[List[float]]¶
Asynchronous Embed search docs.
async aembed_query(text: str) → List[float]¶
Asynchronous Embed query text.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed. | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.huggingface.HuggingFaceEmbeddings.html |
e165387b68a9-1 | Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
embed_documents(texts: List[str]) → List[List[float]][source]¶
Compute doc embeddings using a HuggingFace transformer model.
Parameters
texts – The list of texts to embed.
Returns
List of embeddings, one for each text.
embed_query(text: str) → List[float][source]¶
Compute query embeddings using a HuggingFace transformer model.
Parameters
text – The text to embed.
Returns
Embeddings for the text. | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.huggingface.HuggingFaceEmbeddings.html |
e165387b68a9-2 | Parameters
text – The text to embed.
Returns
Embeddings for the text.
classmethod from_orm(obj: Any) → Model¶
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶
Examples using HuggingFaceEmbeddings¶
Hugging Face
Sentence Transformers | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.huggingface.HuggingFaceEmbeddings.html |
e165387b68a9-3 | Examples using HuggingFaceEmbeddings¶
Hugging Face
Sentence Transformers
LOTR (Merger Retriever)
ScaNN
Annoy
your local model path
Pairwise Embedding Distance
Embedding Distance
Lost in the middle: The problem with long contexts | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.huggingface.HuggingFaceEmbeddings.html |
cfbbd69be6fc-0 | langchain.embeddings.openai.async_embed_with_retry¶
async langchain.embeddings.openai.async_embed_with_retry(embeddings: OpenAIEmbeddings, **kwargs: Any) → Any[source]¶
Use tenacity to retry the embedding call. | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.openai.async_embed_with_retry.html |
4d4a4e586eba-0 | langchain.embeddings.llamacpp.LlamaCppEmbeddings¶
class langchain.embeddings.llamacpp.LlamaCppEmbeddings[source]¶
Bases: BaseModel, Embeddings
llama.cpp embedding models.
To use, you should have the llama-cpp-python library installed, and provide the
path to the Llama model as a named parameter to the constructor.
Check out: https://github.com/abetlen/llama-cpp-python
Example
from langchain.embeddings import LlamaCppEmbeddings
llama = LlamaCppEmbeddings(model_path="/path/to/model.bin")
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param f16_kv: bool = False¶
Use half-precision for key/value cache.
param logits_all: bool = False¶
Return logits for all tokens, not just the last token.
param model_path: str [Required]¶
param n_batch: Optional[int] = 8¶
Number of tokens to process in parallel.
Should be a number between 1 and n_ctx.
param n_ctx: int = 512¶
Token context window.
param n_gpu_layers: Optional[int] = None¶
Number of layers to be loaded into gpu memory. Default None.
param n_parts: int = -1¶
Number of parts to split the model into.
If -1, the number of parts is automatically determined.
param n_threads: Optional[int] = None¶
Number of threads to use. If None, the number
of threads is automatically determined.
param seed: int = -1¶
Seed. If -1, a random seed is used.
param use_mlock: bool = False¶
Force system to keep model in RAM.
param verbose: bool = True¶ | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.llamacpp.LlamaCppEmbeddings.html |
4d4a4e586eba-1 | Force system to keep model in RAM.
param verbose: bool = True¶
Print verbose output to stderr.
param vocab_only: bool = False¶
Only load the vocabulary, no weights.
async aembed_documents(texts: List[str]) → List[List[float]]¶
Asynchronous Embed search docs.
async aembed_query(text: str) → List[float]¶
Asynchronous Embed query text.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.llamacpp.LlamaCppEmbeddings.html |
4d4a4e586eba-2 | deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
embed_documents(texts: List[str]) → List[List[float]][source]¶
Embed a list of documents using the Llama model.
Parameters
texts – The list of texts to embed.
Returns
List of embeddings, one for each text.
embed_query(text: str) → List[float][source]¶
Embed a query using the Llama model.
Parameters
text – The text to embed.
Returns
Embeddings for the text.
classmethod from_orm(obj: Any) → Model¶
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.llamacpp.LlamaCppEmbeddings.html |
4d4a4e586eba-3 | classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶
Examples using LlamaCppEmbeddings¶
Llama-cpp
Llama.cpp | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.llamacpp.LlamaCppEmbeddings.html |
87e382cef5d5-0 | langchain.embeddings.deepinfra.DeepInfraEmbeddings¶
class langchain.embeddings.deepinfra.DeepInfraEmbeddings[source]¶
Bases: BaseModel, Embeddings
Deep Infra’s embedding inference service.
To use, you should have the
environment variable DEEPINFRA_API_TOKEN set with your API token, or pass
it as a named parameter to the constructor.
There are multiple embeddings models available,
see https://deepinfra.com/models?type=embeddings.
Example
from langchain.embeddings import DeepInfraEmbeddings
deepinfra_emb = DeepInfraEmbeddings(
model_id="sentence-transformers/clip-ViT-B-32",
deepinfra_api_token="my-api-key"
)
r1 = deepinfra_emb.embed_documents(
[
"Alpha is the first letter of Greek alphabet",
"Beta is the second letter of Greek alphabet",
]
)
r2 = deepinfra_emb.embed_query(
"What is the second letter of Greek alphabet"
)
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param deepinfra_api_token: Optional[str] = None¶
param embed_instruction: str = 'passage: '¶
Instruction used to embed documents.
param model_id: str = 'sentence-transformers/clip-ViT-B-32'¶
Embeddings model to use.
param model_kwargs: Optional[dict] = None¶
Other model keyword args
param normalize: bool = False¶
whether to normalize the computed embeddings
param query_instruction: str = 'query: '¶
Instruction used to embed the query.
async aembed_documents(texts: List[str]) → List[List[float]]¶
Asynchronous Embed search docs. | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.deepinfra.DeepInfraEmbeddings.html |
87e382cef5d5-1 | Asynchronous Embed search docs.
async aembed_query(text: str) → List[float]¶
Asynchronous Embed query text.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
embed_documents(texts: List[str]) → List[List[float]][source]¶
Embed documents using a Deep Infra deployed embedding model.
Parameters | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.deepinfra.DeepInfraEmbeddings.html |
87e382cef5d5-2 | Embed documents using a Deep Infra deployed embedding model.
Parameters
texts – The list of texts to embed.
Returns
List of embeddings, one for each text.
embed_query(text: str) → List[float][source]¶
Embed a query using a Deep Infra deployed embedding model.
Parameters
text – The text to embed.
Returns
Embeddings for the text.
classmethod from_orm(obj: Any) → Model¶
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.deepinfra.DeepInfraEmbeddings.html |
87e382cef5d5-3 | classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶
Examples using DeepInfraEmbeddings¶
DeepInfra | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.deepinfra.DeepInfraEmbeddings.html |
74bed98a95f0-0 | langchain.embeddings.huggingface_hub.HuggingFaceHubEmbeddings¶
class langchain.embeddings.huggingface_hub.HuggingFaceHubEmbeddings[source]¶
Bases: BaseModel, Embeddings
HuggingFaceHub embedding models.
To use, you should have the huggingface_hub python package installed, and the
environment variable HUGGINGFACEHUB_API_TOKEN set with your API token, or pass
it as a named parameter to the constructor.
Example
from langchain.embeddings import HuggingFaceHubEmbeddings
repo_id = "sentence-transformers/all-mpnet-base-v2"
hf = HuggingFaceHubEmbeddings(
repo_id=repo_id,
task="feature-extraction",
huggingfacehub_api_token="my-api-key",
)
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param huggingfacehub_api_token: Optional[str] = None¶
param model_kwargs: Optional[dict] = None¶
Key word arguments to pass to the model.
param repo_id: str = 'sentence-transformers/all-mpnet-base-v2'¶
Model name to use.
param task: Optional[str] = 'feature-extraction'¶
Task to call the model with.
async aembed_documents(texts: List[str]) → List[List[float]]¶
Asynchronous Embed search docs.
async aembed_query(text: str) → List[float]¶
Asynchronous Embed query text.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed. | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.huggingface_hub.HuggingFaceHubEmbeddings.html |
74bed98a95f0-1 | Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
embed_documents(texts: List[str]) → List[List[float]][source]¶
Call out to HuggingFaceHub’s embedding endpoint for embedding search docs.
Parameters
texts – The list of texts to embed.
Returns
List of embeddings, one for each text.
embed_query(text: str) → List[float][source]¶
Call out to HuggingFaceHub’s embedding endpoint for embedding query text.
Parameters
text – The text to embed.
Returns
Embeddings for the text. | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.huggingface_hub.HuggingFaceHubEmbeddings.html |
74bed98a95f0-2 | Parameters
text – The text to embed.
Returns
Embeddings for the text.
classmethod from_orm(obj: Any) → Model¶
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶
Examples using HuggingFaceHubEmbeddings¶
Hugging Face | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.huggingface_hub.HuggingFaceHubEmbeddings.html |
7d7f2bdb759a-0 | langchain.embeddings.javelin_ai_gateway.JavelinAIGatewayEmbeddings¶
class langchain.embeddings.javelin_ai_gateway.JavelinAIGatewayEmbeddings[source]¶
Bases: Embeddings, BaseModel
Wrapper around embeddings LLMs in the Javelin AI Gateway.
To use, you should have the javelin_sdk python package installed.
For more information, see https://docs.getjavelin.io
Example
from langchain.embeddings import JavelinAIGatewayEmbeddings
embeddings = JavelinAIGatewayEmbeddings(
gateway_uri="<javelin-ai-gateway-uri>",
route="<your-javelin-gateway-embeddings-route>"
)
param client: Any = None¶
javelin client.
param gateway_uri: Optional[str] = None¶
The URI for the Javelin AI Gateway API.
param javelin_api_key: Optional[str] = None¶
The API key for the Javelin AI Gateway API.
param route: str [Required]¶
The route to use for the Javelin AI Gateway API.
async aembed_documents(texts: List[str]) → List[List[float]][source]¶
Asynchronous Embed search docs.
async aembed_query(text: str) → List[float][source]¶
Asynchronous Embed query text.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.javelin_ai_gateway.JavelinAIGatewayEmbeddings.html |
7d7f2bdb759a-1 | Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
embed_documents(texts: List[str]) → List[List[float]][source]¶
Embed search docs.
embed_query(text: str) → List[float][source]¶
Embed query text.
classmethod from_orm(obj: Any) → Model¶ | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.javelin_ai_gateway.JavelinAIGatewayEmbeddings.html |
7d7f2bdb759a-2 | Embed query text.
classmethod from_orm(obj: Any) → Model¶
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶ | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.javelin_ai_gateway.JavelinAIGatewayEmbeddings.html |
91f76d6c9ec0-0 | langchain.embeddings.ollama.OllamaEmbeddings¶
class langchain.embeddings.ollama.OllamaEmbeddings[source]¶
Bases: BaseModel, Embeddings
Ollama locally runs large language models.
To use, follow the instructions at https://ollama.ai/.
Example
from langchain.embeddings import OllamaEmbeddings
ollama_emb = OllamaEmbeddings(
model="llama:7b",
)
r1 = ollama_emb.embed_documents(
[
"Alpha is the first letter of Greek alphabet",
"Beta is the second letter of Greek alphabet",
]
)
r2 = ollama_emb.embed_query(
"What is the second letter of Greek alphabet"
)
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param base_url: str = 'http://localhost:11434'¶
Base url the model is hosted under.
param embed_instruction: str = 'passage: '¶
Instruction used to embed documents.
param mirostat: Optional[int] = None¶
Enable Mirostat sampling for controlling perplexity.
(default: 0, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)
param mirostat_eta: Optional[float] = None¶
Influences how quickly the algorithm responds to feedback
from the generated text. A lower learning rate will result in
slower adjustments, while a higher learning rate will make
the algorithm more responsive. (Default: 0.1)
param mirostat_tau: Optional[float] = None¶
Controls the balance between coherence and diversity
of the output. A lower value will result in more focused and | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.ollama.OllamaEmbeddings.html |
91f76d6c9ec0-1 | of the output. A lower value will result in more focused and
coherent text. (Default: 5.0)
param model: str = 'llama2'¶
Model name to use.
param model_kwargs: Optional[dict] = None¶
Other model keyword args
param num_ctx: Optional[int] = None¶
Sets the size of the context window used to generate the
next token. (Default: 2048)
param num_gpu: Optional[int] = None¶
The number of GPUs to use. On macOS it defaults to 1 to
enable metal support, 0 to disable.
param num_thread: Optional[int] = None¶
Sets the number of threads to use during computation.
By default, Ollama will detect this for optimal performance.
It is recommended to set this value to the number of physical
CPU cores your system has (as opposed to the logical number of cores).
param query_instruction: str = 'query: '¶
Instruction used to embed the query.
param repeat_last_n: Optional[int] = None¶
Sets how far back for the model to look back to prevent
repetition. (Default: 64, 0 = disabled, -1 = num_ctx)
param repeat_penalty: Optional[float] = None¶
Sets how strongly to penalize repetitions. A higher value (e.g., 1.5)
will penalize repetitions more strongly, while a lower value (e.g., 0.9)
will be more lenient. (Default: 1.1)
param stop: Optional[List[str]] = None¶
Sets the stop tokens to use.
param temperature: Optional[float] = None¶
The temperature of the model. Increasing the temperature will
make the model answer more creatively. (Default: 0.8)
param tfs_z: Optional[float] = None¶ | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.ollama.OllamaEmbeddings.html |
91f76d6c9ec0-2 | param tfs_z: Optional[float] = None¶
Tail free sampling is used to reduce the impact of less probable
tokens from the output. A higher value (e.g., 2.0) will reduce the
impact more, while a value of 1.0 disables this setting. (default: 1)
param top_k: Optional[int] = None¶
Reduces the probability of generating nonsense. A higher value (e.g. 100)
will give more diverse answers, while a lower value (e.g. 10)
will be more conservative. (Default: 40)
param top_p: Optional[int] = None¶
Works together with top-k. A higher value (e.g., 0.95) will lead
to more diverse text, while a lower value (e.g., 0.5) will
generate more focused and conservative text. (Default: 0.9)
async aembed_documents(texts: List[str]) → List[List[float]]¶
Asynchronous Embed search docs.
async aembed_query(text: str) → List[float]¶
Asynchronous Embed query text.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.ollama.OllamaEmbeddings.html |
91f76d6c9ec0-3 | Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
embed_documents(texts: List[str]) → List[List[float]][source]¶
Embed documents using a Ollama deployed embedding model.
Parameters
texts – The list of texts to embed.
Returns
List of embeddings, one for each text.
embed_query(text: str) → List[float][source]¶
Embed a query using a Ollama deployed embedding model.
Parameters
text – The text to embed.
Returns
Embeddings for the text.
classmethod from_orm(obj: Any) → Model¶ | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.ollama.OllamaEmbeddings.html |
91f76d6c9ec0-4 | Embeddings for the text.
classmethod from_orm(obj: Any) → Model¶
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶ | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.ollama.OllamaEmbeddings.html |
79ff0c64bb6a-0 | langchain.embeddings.cache.CacheBackedEmbeddings¶
class langchain.embeddings.cache.CacheBackedEmbeddings(underlying_embeddings: Embeddings, document_embedding_store: BaseStore[str, List[float]])[source]¶
Interface for caching results from embedding models.
The interface allows works with any store that implements
the abstract store interface accepting keys of type str and values of list of
floats.
If need be, the interface can be extended to accept other implementations
of the value serializer and deserializer, as well as the key encoder.
Examples
Initialize the embedder.
Parameters
underlying_embeddings – the embedder to use for computing embeddings.
document_embedding_store – The store to use for caching document embeddings.
Methods
__init__(underlying_embeddings, ...)
Initialize the embedder.
aembed_documents(texts)
Asynchronous Embed search docs.
aembed_query(text)
Asynchronous Embed query text.
embed_documents(texts)
Embed a list of texts.
embed_query(text)
Embed query text.
from_bytes_store(underlying_embeddings, ...)
On-ramp that adds the necessary serialization and encoding to the store.
__init__(underlying_embeddings: Embeddings, document_embedding_store: BaseStore[str, List[float]]) → None[source]¶
Initialize the embedder.
Parameters
underlying_embeddings – the embedder to use for computing embeddings.
document_embedding_store – The store to use for caching document embeddings.
async aembed_documents(texts: List[str]) → List[List[float]]¶
Asynchronous Embed search docs.
async aembed_query(text: str) → List[float]¶
Asynchronous Embed query text.
embed_documents(texts: List[str]) → List[List[float]][source]¶
Embed a list of texts.
The method first checks the cache for the embeddings. | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.cache.CacheBackedEmbeddings.html |
79ff0c64bb6a-1 | Embed a list of texts.
The method first checks the cache for the embeddings.
If the embeddings are not found, the method uses the underlying embedder
to embed the documents and stores the results in the cache.
Parameters
texts – A list of texts to embed.
Returns
A list of embeddings for the given texts.
embed_query(text: str) → List[float][source]¶
Embed query text.
This method does not support caching at the moment.
Support for caching queries is easily to implement, but might make
sense to hold off to see the most common patterns.
If the cache has an eviction policy, we may need to be a bit more careful
about sharing the cache between documents and queries. Generally,
one is OK evicting query caches, but document caches should be kept.
Parameters
text – The text to embed.
Returns
The embedding for the given text.
classmethod from_bytes_store(underlying_embeddings: Embeddings, document_embedding_cache: BaseStore[str, bytes], *, namespace: str = '') → CacheBackedEmbeddings[source]¶
On-ramp that adds the necessary serialization and encoding to the store.
Parameters
underlying_embeddings – The embedder to use for embedding.
document_embedding_cache – The cache to use for storing document embeddings.
* –
:param :
:param namespace: The namespace to use for document cache.
This namespace is used to avoid collisions with other caches.
For example, set it to the name of the embedding model used.
Examples using CacheBackedEmbeddings¶
Caching | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.cache.CacheBackedEmbeddings.html |
51b0da2d7865-0 | langchain.embeddings.huggingface.HuggingFaceInstructEmbeddings¶
class langchain.embeddings.huggingface.HuggingFaceInstructEmbeddings[source]¶
Bases: BaseModel, Embeddings
Wrapper around sentence_transformers embedding models.
To use, you should have the sentence_transformers
and InstructorEmbedding python packages installed.
Example
from langchain.embeddings import HuggingFaceInstructEmbeddings
model_name = "hkunlp/instructor-large"
model_kwargs = {'device': 'cpu'}
encode_kwargs = {'normalize_embeddings': True}
hf = HuggingFaceInstructEmbeddings(
model_name=model_name,
model_kwargs=model_kwargs,
encode_kwargs=encode_kwargs
)
Initialize the sentence_transformer.
param cache_folder: Optional[str] = None¶
Path to store models.
Can be also set by SENTENCE_TRANSFORMERS_HOME environment variable.
param embed_instruction: str = 'Represent the document for retrieval: '¶
Instruction to use for embedding documents.
param encode_kwargs: Dict[str, Any] [Optional]¶
Key word arguments to pass when calling the encode method of the model.
param model_kwargs: Dict[str, Any] [Optional]¶
Key word arguments to pass to the model.
param model_name: str = 'hkunlp/instructor-large'¶
Model name to use.
param query_instruction: str = 'Represent the question for retrieving supporting documents: '¶
Instruction to use for embedding query.
async aembed_documents(texts: List[str]) → List[List[float]]¶
Asynchronous Embed search docs.
async aembed_query(text: str) → List[float]¶
Asynchronous Embed query text.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.huggingface.HuggingFaceInstructEmbeddings.html |
51b0da2d7865-1 | Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
embed_documents(texts: List[str]) → List[List[float]][source]¶
Compute doc embeddings using a HuggingFace instruct model.
Parameters
texts – The list of texts to embed.
Returns
List of embeddings, one for each text.
embed_query(text: str) → List[float][source]¶
Compute query embeddings using a HuggingFace instruct model.
Parameters | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.huggingface.HuggingFaceInstructEmbeddings.html |
51b0da2d7865-2 | Compute query embeddings using a HuggingFace instruct model.
Parameters
text – The text to embed.
Returns
Embeddings for the text.
classmethod from_orm(obj: Any) → Model¶
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶ | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.huggingface.HuggingFaceInstructEmbeddings.html |
51b0da2d7865-3 | classmethod validate(value: Any) → Model¶
Examples using HuggingFaceInstructEmbeddings¶
InstructEmbeddings
Vector SQL Retriever with MyScale | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.huggingface.HuggingFaceInstructEmbeddings.html |
5f1ae2e6600a-0 | langchain.embeddings.gradient_ai.GradientEmbeddings¶
class langchain.embeddings.gradient_ai.GradientEmbeddings[source]¶
Bases: BaseModel, Embeddings
Gradient.ai Embedding models.
GradientLLM is a class to interact with Embedding Models on gradient.ai
To use, set the environment variable GRADIENT_ACCESS_TOKEN with your
API token and GRADIENT_WORKSPACE_ID for your gradient workspace,
or alternatively provide them as keywords to the constructor of this class.
Example
from langchain.embeddings import GradientEmbeddings
GradientEmbeddings(
model="bge-large",
gradient_workspace_id="12345614fc0_workspace",
gradient_access_token="gradientai-access_token",
)
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param client: Any = None¶
Gradient client.
param gradient_access_token: Optional[str] = None¶
gradient.ai API Token, which can be generated by going to
https://auth.gradient.ai/select-workspace
and selecting “Access tokens” under the profile drop-down.
param gradient_api_url: str = 'https://api.gradient.ai/api'¶
Endpoint URL to use.
param gradient_workspace_id: Optional[str] = None¶
Underlying gradient.ai workspace_id.
param model: str [Required]¶
Underlying gradient.ai model id.
async aembed_documents(texts: List[str]) → List[List[float]][source]¶
Async call out to Gradient’s embedding endpoint.
Parameters
texts – The list of texts to embed.
Returns
List of embeddings, one for each text.
async aembed_query(text: str) → List[float][source]¶
Async call out to Gradient’s embedding endpoint.
Parameters
text – The text to embed.
Returns
Embeddings for the text. | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.gradient_ai.GradientEmbeddings.html |
5f1ae2e6600a-1 | Parameters
text – The text to embed.
Returns
Embeddings for the text.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
embed_documents(texts: List[str]) → List[List[float]][source]¶
Call out to Gradient’s embedding endpoint.
Parameters
texts – The list of texts to embed.
Returns | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.gradient_ai.GradientEmbeddings.html |
5f1ae2e6600a-2 | Parameters
texts – The list of texts to embed.
Returns
List of embeddings, one for each text.
embed_query(text: str) → List[float][source]¶
Call out to Gradient’s embedding endpoint.
Parameters
text – The text to embed.
Returns
Embeddings for the text.
classmethod from_orm(obj: Any) → Model¶
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
classmethod update_forward_refs(**localns: Any) → None¶ | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.gradient_ai.GradientEmbeddings.html |
5f1ae2e6600a-3 | classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶ | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.gradient_ai.GradientEmbeddings.html |
451d39d7f0bb-0 | langchain.embeddings.ernie.ErnieEmbeddings¶
class langchain.embeddings.ernie.ErnieEmbeddings[source]¶
Bases: BaseModel, Embeddings
Ernie Embeddings V1 embedding models.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param access_token: Optional[str] = None¶
param chunk_size: int = 16¶
param ernie_api_base: Optional[str] = None¶
param ernie_client_id: Optional[str] = None¶
param ernie_client_secret: Optional[str] = None¶
async aembed_documents(texts: List[str]) → List[List[float]][source]¶
Asynchronous Embed search docs.
Parameters
texts – The list of texts to embed
Returns
List of embeddings, one for each text.
Return type
List[List[float]]
async aembed_query(text: str) → List[float][source]¶
Asynchronous Embed query text.
Parameters
text – The text to embed.
Returns
Embeddings for the text.
Return type
List[float]
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change. | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.ernie.ErnieEmbeddings.html |
451d39d7f0bb-1 | Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
embed_documents(texts: List[str]) → List[List[float]][source]¶
Embed search docs.
Parameters
texts – The list of texts to embed
Returns
List of embeddings, one for each text.
Return type
List[List[float]]
embed_query(text: str) → List[float][source]¶
Embed query text.
Parameters
text – The text to embed.
Returns
Embeddings for the text.
Return type
List[float]
classmethod from_orm(obj: Any) → Model¶ | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.ernie.ErnieEmbeddings.html |
451d39d7f0bb-2 | Return type
List[float]
classmethod from_orm(obj: Any) → Model¶
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶ | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.ernie.ErnieEmbeddings.html |
b70ce8806b1b-0 | langchain.embeddings.openai.embed_with_retry¶
langchain.embeddings.openai.embed_with_retry(embeddings: OpenAIEmbeddings, **kwargs: Any) → Any[source]¶
Use tenacity to retry the embedding call. | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.openai.embed_with_retry.html |
a12ed1aaed73-0 | langchain.embeddings.edenai.EdenAiEmbeddings¶
class langchain.embeddings.edenai.EdenAiEmbeddings[source]¶
Bases: BaseModel, Embeddings
EdenAI embedding.
environment variable EDENAI_API_KEY set with your API key, or pass
it as a named parameter.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param edenai_api_key: Optional[str] = None¶
EdenAI API Token
param model: Optional[str] = None¶
model name for above provider (eg: ‘text-davinci-003’ for openai)
available models are shown on https://docs.edenai.co/ under ‘available providers’
param provider: str = 'openai'¶
embedding provider to use (eg: openai,google etc.)
async aembed_documents(texts: List[str]) → List[List[float]]¶
Asynchronous Embed search docs.
async aembed_query(text: str) → List[float]¶
Asynchronous Embed query text.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.edenai.EdenAiEmbeddings.html |
a12ed1aaed73-1 | Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
embed_documents(texts: List[str]) → List[List[float]][source]¶
Embed a list of documents using EdenAI.
Parameters
texts – The list of texts to embed.
Returns
List of embeddings, one for each text.
embed_query(text: str) → List[float][source]¶
Embed a query using EdenAI.
Parameters
text – The text to embed.
Returns
Embeddings for the text.
classmethod from_orm(obj: Any) → Model¶
static get_user_agent() → str[source]¶ | https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.edenai.EdenAiEmbeddings.html |
Subsets and Splits