Dataset Viewer
Full Screen Viewer
Full Screen
The dataset viewer is not available for this split.
Cannot extract the features (columns) for the split 'train' of the config 'default' of the dataset.
Error code: FeaturesError Exception: ArrowInvalid Message: JSON parse error: Invalid value. in row 0 Traceback: Traceback (most recent call last): File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/packaged_modules/json/json.py", line 160, in _generate_tables df = pandas_read_json(f) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/packaged_modules/json/json.py", line 38, in pandas_read_json return pd.read_json(path_or_buf, **kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/json/_json.py", line 791, in read_json json_reader = JsonReader( File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/json/_json.py", line 905, in __init__ self.data = self._preprocess_data(data) File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/json/_json.py", line 917, in _preprocess_data data = data.read() File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/utils/file_utils.py", line 826, in read_with_retries out = read(*args, **kwargs) File "/usr/local/lib/python3.9/codecs.py", line 322, in decode (result, consumed) = self._buffer_decode(data, self.errors, final) UnicodeDecodeError: 'utf-8' codec can't decode byte 0xce in position 4: invalid continuation byte During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/src/services/worker/src/worker/job_runners/split/first_rows.py", line 231, in compute_first_rows_from_streaming_response iterable_dataset = iterable_dataset._resolve_features() File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 2998, in _resolve_features features = _infer_features_from_batch(self.with_format(None)._head()) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 1918, in _head return _examples_to_batch(list(self.take(n))) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 2093, in __iter__ for key, example in ex_iterable: File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 1576, in __iter__ for key_example in islice(self.ex_iterable, self.n - ex_iterable_num_taken): File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 279, in __iter__ for key, pa_table in self.generate_tables_fn(**gen_kwags): File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/packaged_modules/json/json.py", line 163, in _generate_tables raise e File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/packaged_modules/json/json.py", line 137, in _generate_tables pa_table = paj.read_json( File "pyarrow/_json.pyx", line 308, in pyarrow._json.read_json File "pyarrow/error.pxi", line 154, in pyarrow.lib.pyarrow_internal_check_status File "pyarrow/error.pxi", line 91, in pyarrow.lib.check_status pyarrow.lib.ArrowInvalid: JSON parse error: Invalid value. in row 0
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
Malaysian STT Whisper format
Up to 15k hours annotated, we done heavy postprocessing and post-translation to improve pseudolabeled Whisper Large V3.
Also include word level timestamp.
Postprocessing
- Check repetitive trigrams.
- Verify Voice Activity using Silero-VAD.
- Verify scores using Force Alignment.
Post-translation
We use mesolitica/nanot5-base-malaysian-translation-v2.1.
Dataset involved
- Malaysian context v1
- Malaysian context v2
- Malay audiobook
- Singaporean context
- Indonesian context
- Mandarin audio
- Tamil audio
- Science context
- Malay sarawak
- Scripted Malay Daily Use Speech Corpus
- Malay Conversational Speech Corpus
- Iban
- Malay dialects
Word level timestamp
- Malaysian context v1, 658.54 hours.
{"audio_filename": "prepared-pseudolabel-malaya-chunks/2-0.mp3", "new_text": "<|startoftranscript|><|ms|><|transcribeprecise|><|0.00|> luar<|0.34|><|0.42|> kan<|0.60|><|1.78|> sebab<|2.06|><|2.24|> benda<|2.42|><|2.52|> ni<|2.58|><|2.70|> berlaku<|3.08|><|3.20|> contoh<|3.50|><|3.56|> kita<|3.72|><|3.80|> pergi<|3.98|><|4.10|> ke<|4.16|><|4.40|> ATM<|4.76|><|5.70|> yang<|5.80|><|5.84|> bukan<|6.02|><|6.10|> Islam,<|6.34|><|6.96|> siang<|7.12|><|7.18|> hari<|7.42|><|endoftext|>"}
- Malaysian context v2, 8058.17 hours.
{"audio_filename": "prepared-pseudolabel-chunks/0-0.mp3", "new_text": "<|startoftranscript|><|ms|><|transcribeprecise|><|0.00|> tu<|0.04|><|0.20|> So<|0.26|><|0.70|> gaji<|0.96|><|1.06|> berbeza<|1.42|><|2.46|> Gaji<|2.86|><|endoftext|>"}
- Singaporean context, 1829.21 hours.
{"audio_filename": "prepared-imda-chunks/0-0.mp3", "new_text": "<|startoftranscript|><|en|><|transcribeprecise|><|0.00|> Households<|0.58|><|0.64|> with<|0.76|><|0.86|> target<|1.16|><|1.24|> sets<|1.50|><|1.70|> were<|1.82|><|1.90|> encouraged<|2.40|><|2.44|> to<|2.48|><|2.62|> try<|2.80|><|2.90|> keeping<|3.24|><|endoftext|>"}
- Science context, 4992.42 hours.
{"audio_filename": "prepared-science-chunks/0-0.mp3", "new_text": "<|startoftranscript|><|en|><|transcribeprecise|><|0.00|> Visual<|0.24|><|0.30|> Studio<|0.60|><|0.76|> Code<|1.00|><|1.06|> integration.<|1.68|><|3.46|> Here's<|3.70|><|3.76|> what<|3.88|><|3.94|> will<|4.06|><|4.10|> be<|4.14|><|4.28|> new.<|4.44|><|5.36|> You<|5.42|><|5.46|> will<|5.58|><|5.62|> have<|5.74|><|5.82|> more<|5.96|><|6.08|> choice<|6.40|><|6.48|> on<|6.52|><|6.60|> runtime<|6.96|><|7.02|> experiences.<|7.82|><|8.78|> Java<|9.06|><|9.16|> interoperability<|10.04|><|10.22|> will<|10.32|><|10.36|> be<|10.40|><|10.48|> available<|10.90|><|10.96|> on<|11.00|><|11.08|> all<|11.14|><|11.22|> platforms.<|11.78|><|12.22|> Objective<|12.68|><|12.78|> C<|12.78|><|13.00|> and<|13.06|><|13.16|> Swift<|13.42|><|13.48|> interoperability<|14.38|><|14.92|> will<|15.04|><|15.08|> be<|15.12|><|15.26|> supported<|15.70|><|15.78|> on<|15.82|><|15.90|> multiple<|16.26|><|16.34|> operating<|16.78|><|16.86|> systems.<|17.28|><|18.28|> Core<|18.62|><|18.74|> FX<|18.98|><|19.20|> will<|19.30|><|19.34|> be<|19.38|><|19.46|> extended<|19.96|><|20.30|> to<|20.34|><|20.42|> support<|20.74|><|20.84|> static<|21.16|><|21.22|> compilation<|22.04|><|endoftext|>"}
- IMDA Part 2, 931 hours.
{"text": "<|startoftranscript|><|en|><|transcribeprecise|><|0.54|> Mimosa<|1.00|><|1.14|> Walk<|1.36|><|1.72|> Mount<|2.00|><|2.06|> Sophia<|2.42|><|2.90|> and<|3.00|><|3.08|> Jalan<|3.38|><|3.50|> Ilmu.<|4.38|><|endoftext|>", "audio_filename": "filter-imda-part2/train-00387-of-00727-6.mp3"}
how to prepare the dataset
wget https://www.7-zip.org/a/7z2301-linux-x64.tar.xz
tar -xf 7z2301-linux-x64.tar.xz
# Malaysian context
wget https://huggingface.co/datasets/mesolitica/Malaysian-STT-Whisper/resolve/main/malaysian-stt.jsonl
huggingface-cli download --repo-type dataset \
--include 'output-audio-malaya.z*' \
--local-dir './' \
mesolitica/pseudolabel-malaya-speech-stt-train-whisper-large-v3-timestamp
./7zz x output-audio-malaya.zip -y -mmt40
huggingface-cli download --repo-type dataset \
--include 'output-audio.z*' \
--local-dir './' \
mesolitica/pseudolabel-malaysian-youtube-whisper-large-v3-timestamp
./7zz x output-audio.zip -y -mmt40
# Malay audiobook
wget https://huggingface.co/datasets/mesolitica/pseudolabel-nusantara-large-v3-timestamp/resolve/main/split-nusantara.zip
wget https://huggingface.co/datasets/mesolitica/pseudolabel-nusantara-large-v3-timestamp/resolve/main/prepared-nusantara.jsonl
unzip split-nusantara.zip
# Singaporean context
wget https://huggingface.co/datasets/mesolitica/pseudolabel-imda-large-v3-timestamp/resolve/main/prepared-imda.jsonl
wget https://huggingface.co/datasets/mesolitica/pseudolabel-imda-large-v3-timestamp/resolve/main/prepared-imda-ms.jsonl
huggingface-cli download --repo-type dataset \
--include '*.7z*' \
--local-dir './' \
mesolitica/IMDA-STT
./7zz x part1-mp3.7z.001 -y -mmt40
./7zz x part2-mp3.7z.001 -y -mmt40
./7zz x part3-same-audio-mp3.7z.001 -y -mmt40
./7zz x part3-separate-audio-mp3.7z.001 -y -mmt40
./7zz x part4-same-audio-mp3.7z.001 -y -mmt40
./7zz x part4-separate-audio-mp3.7z.001 -y -mmt40
./7zz x part5-same-audio-mp3.7z.001 -y -mmt40
./7zz x part5-separate-audio-mp3.7z.001 -y -mmt40
./7zz x part6-1-audio-mp3.7z.001 -y -mmt40
./7zz x part6-2-audio-mp3.7z.001 -y -mmt40
./7zz x part6-3-audio-mp3.7z.001 -y -mmt40
# Indonesian context
huggingface-cli download --repo-type dataset \
--include 'split-indonesian.z*' \
--local-dir './' \
mesolitica/pseudolabel-indonesian-large-v3-timestamp
./7zz x split-indonesian.zip -y -mmt40
# Science context
wget https://huggingface.co/datasets/mesolitica/Malaysian-STT-Whisper/resolve/main/science-en-stt.jsonl
wget https://huggingface.co/datasets/mesolitica/Malaysian-STT-Whisper/resolve/main/science-ms-stt.jsonl
huggingface-cli download --repo-type dataset \
--include 'audio-chunk.z*' \
--local-dir './' \
mesolitica/pseudolabel-science-large-v3-timestamp
./7zz x audio-chunk.zip -y -mmt40
# Malay sarawak
wget https://huggingface.co/datasets/malaysia-ai/sarawakmalay-whisper-format/resolve/main/sarawakmalay.zip
wget https://huggingface.co/datasets/malaysia-ai/sarawakmalay-whisper-format/resolve/main/dataset.json -O sarawakmalay.json
unzip sarawakmalay.zip
# for Scripted Malay Daily Use Speech Corpus
wget https://huggingface.co/datasets/malaysia-ai/scripted-malay-daily-use-speech-corpus-whisper-format/resolve/main/scripted-malay-daily-use-speech-corpus-whisper-format.zip
wget https://huggingface.co/datasets/malaysia-ai/scripted-malay-daily-use-speech-corpus-whisper-format/resolve/main/scripted-malay-daily-use-speech-corpus-whisper-format.json
unzip scripted-malay-daily-use-speech-corpus-whisper-format.zip
# Malay Conversational Speech Corpus
wget https://huggingface.co/datasets/malaysia-ai/malay-conversational-speech-corpus-whisper-format/resolve/main/malay-conversational-speech-corpus-whisper-format.zip
wget https://huggingface.co/datasets/malaysia-ai/malay-conversational-speech-corpus-whisper-format/resolve/main/malay-conversational-speech-corpus-whisper-format.json
unzip malay-conversational-speech-corpus-whisper-format.zip
# Iban
wget https://huggingface.co/datasets/malaysia-ai/iban-whisper-format/resolve/main/iban-wav.zip
wget https://huggingface.co/datasets/malaysia-ai/iban-whisper-format/resolve/main/iban-dataset.json
unzip iban-wav.zip
Source code
Source code at https://github.com/mesolitica/malaysian-dataset/tree/master/speech-to-text-semisupervised/distilled-malaysian-whisper
- Downloads last month
- 305