|
import datasets |
|
from datasets.download.download_manager import DownloadManager |
|
import pyarrow.parquet as pq |
|
import json |
|
|
|
_DESCRIPTION = """\ |
|
The Weibo NER dataset is a Chinese Named Entity Recognition dataset |
|
drawn from the social media website Sina Weibo. |
|
""" |
|
|
|
_CITATION = """\ |
|
@inproceedings{peng-dredze-2015-named, |
|
title = "Named Entity Recognition for {C}hinese |
|
Social Media with Jointly Trained Embeddings", |
|
author = "Peng, Nanyun and Dredze, Mark", |
|
booktitle = "Proceedings of the 2015 Conference on |
|
Empirical Methods in Natural Language Processing", |
|
month = sep, |
|
year = "2015", |
|
address = "Lisbon, Portugal", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://aclanthology.org/D15-1064", |
|
doi = "10.18653/v1/D15-1064", |
|
pages = "548--554", |
|
} |
|
""" |
|
|
|
_URL = "https://huggingface.co/datasets/minskiter/weibo/resolve/main/" |
|
_URLS = { |
|
"train": _URL + "data/train.parquet", |
|
"validation": _URL + "data/validation.parquet", |
|
"test": _URL + "data/test.parquet", |
|
} |
|
|
|
class WeiboNamedEntities(datasets.GeneratorBasedBuilder): |
|
VERSION = datasets.Version("1.0.0") |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"text": datasets.Sequence(datasets.Value("string")), |
|
"labels": datasets.Sequence( |
|
datasets.features.ClassLabel( |
|
names=[ |
|
'O', |
|
'B-PER.NAM', |
|
'I-PER.NAM', |
|
'E-PER.NAM', |
|
'S-PER.NAM', |
|
'B-ORG.NAM', |
|
'I-ORG.NAM', |
|
'E-ORG.NAM', |
|
'S-ORG.NAM', |
|
'B-LOC.NAM', |
|
'I-LOC.NAM', |
|
'E-LOC.NAM', |
|
'S-LOC.NAM', |
|
'B-GPE.NAM', |
|
'I-GPE.NAM', |
|
'E-GPE.NAM', |
|
'S-GPE.NAM', |
|
'B-PER.NOM', |
|
'I-PER.NOM', |
|
'E-PER.NOM', |
|
'S-PER.NOM', |
|
'B-ORG.NOM', |
|
'I-ORG.NOM', |
|
'E-ORG.NOM', |
|
'S-ORG.NOM', |
|
'B-LOC.NOM', |
|
'I-LOC.NOM', |
|
'E-LOC.NOM', |
|
'S-LOC.NOM', |
|
'B-GPE.NOM', |
|
'I-GPE.NOM', |
|
'E-GPE.NOM', |
|
'S-GPE.NOM', |
|
] |
|
) |
|
), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage="https://aclanthology.org/D15-1064/", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: DownloadManager): |
|
urls_to_download = _URLS |
|
download_files = dl_manager.download_and_extract(urls_to_download) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"filepath": download_files["train"]}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={"filepath": download_files["validation"]}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"filepath": download_files["test"]}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
|
|
with open(filepath, "rb") as f: |
|
with pq.ParquetFile(f) as file: |
|
_id = -1 |
|
for i in file.iter_batches(batch_size=64): |
|
rows = i.to_pylist() |
|
for row in rows: |
|
_id+=1 |
|
yield _id, row |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|