Dataset Preview
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code:   DatasetGenerationCastError
Exception:    DatasetGenerationCastError
Message:      An error occurred while generating the dataset

All the data files must have the same columns, but at some point there are 18 new columns ({'public_training_code', 'public_training_data', 'framework', 'loader', 'license', 'open_weights', 'zero_shot_benchmarks', 'name', 'revision', 'n_parameters', 'embed_dim', 'max_tokens', 'release_date', 'reference', 'similarity_fn_name', 'use_instructions', 'memory_usage', 'languages'}) and 5 missing columns ({'evaluation_time', 'mteb_version', 'scores', 'dataset_revision', 'task_name'}).

This happened while the json dataset builder was generating data using

hf://datasets/morteza20/mteb_leaderboard/results/NLPArtisan__qwen-1.8b-retrieval-test/external/model_meta.json (at revision 3a7c664609bebabdbad5017611c533236c0adb2b)

Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1870, in _prepare_split_single
                  writer.write_table(table)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 622, in write_table
                  pa_table = table_cast(pa_table, self._schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2292, in table_cast
                  return cast_table_to_schema(table, schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2240, in cast_table_to_schema
                  raise CastError(
              datasets.table.CastError: Couldn't cast
              name: string
              revision: string
              release_date: timestamp[s]
              languages: list<item: null>
                child 0, item: null
              loader: null
              n_parameters: null
              memory_usage: null
              max_tokens: null
              embed_dim: null
              license: null
              open_weights: bool
              public_training_data: null
              public_training_code: null
              framework: list<item: null>
                child 0, item: null
              reference: null
              similarity_fn_name: null
              use_instructions: null
              zero_shot_benchmarks: null
              to
              {'dataset_revision': Value(dtype='string', id=None), 'task_name': Value(dtype='string', id=None), 'evaluation_time': Value(dtype='null', id=None), 'mteb_version': Value(dtype='null', id=None), 'scores': {'dev': [{'hf_subset': Value(dtype='string', id=None), 'languages': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None), 'map_at_1': Value(dtype='float64', id=None), 'map_at_10': Value(dtype='float64', id=None), 'map_at_100': Value(dtype='float64', id=None), 'map_at_1000': Value(dtype='float64', id=None), 'map_at_3': Value(dtype='float64', id=None), 'map_at_5': Value(dtype='float64', id=None), 'mrr_at_1': Value(dtype='float64', id=None), 'mrr_at_10': Value(dtype='float64', id=None), 'mrr_at_100': Value(dtype='float64', id=None), 'mrr_at_1000': Value(dtype='float64', id=None), 'mrr_at_3': Value(dtype='float64', id=None), 'mrr_at_5': Value(dtype='float64', id=None), 'ndcg_at_1': Value(dtype='float64', id=None), 'ndcg_at_10': Value(dtype='float64', id=None), 'ndcg_at_100': Value(dtype='float64', id=None), 'ndcg_at_1000': Value(dtype='float64', id=None), 'ndcg_at_3': Value(dtype='float64', id=None), 'ndcg_at_5': Value(dtype='float64', id=None), 'precision_at_1': Value(dtype='float64', id=None), 'precision_at_10': Value(dtype='float64', id=None), 'precision_at_100': Value(dtype='float64', id=None), 'precision_at_1000': Value(dtype='float64', id=None), 'precision_at_3': Value(dtype='float64', id=None), 'precision_at_5': Value(dtype='float64', id=None), 'recall_at_1': Value(dtype='float64', id=None), 'recall_at_10': Value(dtype='float64', id=None), 'recall_at_100': Value(dtype='float64', id=None), 'recall_at_1000': Value(dtype='float64', id=None), 'recall_at_3': Value(dtype='float64', id=None), 'recall_at_5': Value(dtype='float64', id=None), 'main_score': Value(dtype='float64', id=None)}]}}
              because column names don't match
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1417, in compute_config_parquet_and_info_response
                  parquet_operations = convert_to_parquet(builder)
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1049, in convert_to_parquet
                  builder.download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 924, in download_and_prepare
                  self._download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1000, in _download_and_prepare
                  self._prepare_split(split_generator, **prepare_split_kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1741, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1872, in _prepare_split_single
                  raise DatasetGenerationCastError.from_cast_error(
              datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
              
              All the data files must have the same columns, but at some point there are 18 new columns ({'public_training_code', 'public_training_data', 'framework', 'loader', 'license', 'open_weights', 'zero_shot_benchmarks', 'name', 'revision', 'n_parameters', 'embed_dim', 'max_tokens', 'release_date', 'reference', 'similarity_fn_name', 'use_instructions', 'memory_usage', 'languages'}) and 5 missing columns ({'evaluation_time', 'mteb_version', 'scores', 'dataset_revision', 'task_name'}).
              
              This happened while the json dataset builder was generating data using
              
              hf://datasets/morteza20/mteb_leaderboard/results/NLPArtisan__qwen-1.8b-retrieval-test/external/model_meta.json (at revision 3a7c664609bebabdbad5017611c533236c0adb2b)
              
              Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

dataset_revision
string
task_name
string
evaluation_time
null
mteb_version
null
scores
dict
None
CmedqaRetrieval
null
null
{ "dev": [ { "hf_subset": "default", "languages": [ "cmn-Hans" ], "map_at_1": 0.23190999999999998, "map_at_10": 0.34273, "map_at_100": 0.36101, "map_at_1000": 0.36231, "map_at_3": 0.30495, "map_at_5": 0.32539999999999997, "mrr_at_1": 0.35434, "mrr_at_10": 0.4315, "mrr_at_100": 0.44155, "mrr_at_1000": 0.44211, "mrr_at_3": 0.40735, "mrr_at_5": 0.42052, "ndcg_at_1": 0.35434, "ndcg_at_10": 0.40572, "ndcg_at_100": 0.47920999999999997, "ndcg_at_1000": 0.50314, "ndcg_at_3": 0.35670999999999997, "ndcg_at_5": 0.3763500000000001, "precision_at_1": 0.35434, "precision_at_10": 0.09067, "precision_at_100": 0.01506, "precision_at_1000": 0.00181, "precision_at_3": 0.20163, "precision_at_5": 0.14624, "recall_at_1": 0.23190999999999998, "recall_at_10": 0.50318, "recall_at_100": 0.80958, "recall_at_1000": 0.9716799999999999, "recall_at_3": 0.3557, "recall_at_5": 0.41776, "main_score": 0.40572 } ] }
None
CovidRetrieval
null
null
{ "dev": [ { "hf_subset": "default", "languages": [ "cmn-Hans" ], "map_at_1": 0.64015, "map_at_10": 0.7198300000000001, "map_at_100": 0.7243200000000001, "map_at_1000": 0.72441, "map_at_3": 0.69924, "map_at_5": 0.71177, "mrr_at_1": 0.64173, "mrr_at_10": 0.71985, "mrr_at_100": 0.72425, "mrr_at_1000": 0.72434, "mrr_at_3": 0.6996800000000001, "mrr_at_5": 0.71222, "ndcg_at_1": 0.64173, "ndcg_at_10": 0.75929, "ndcg_at_100": 0.77961, "ndcg_at_1000": 0.78223, "ndcg_at_3": 0.71828, "ndcg_at_5": 0.74066, "precision_at_1": 0.64173, "precision_at_10": 0.08925, "precision_at_100": 0.00985, "precision_at_1000": 0.00101, "precision_at_3": 0.25887, "precision_at_5": 0.1667, "recall_at_1": 0.64015, "recall_at_10": 0.88251, "recall_at_100": 0.9747100000000001, "recall_at_1000": 0.99579, "recall_at_3": 0.77292, "recall_at_5": 0.82666, "main_score": 0.75929 } ] }
None
DuRetrieval
null
null
{ "dev": [ { "hf_subset": "default", "languages": [ "cmn-Hans" ], "map_at_1": 0.23983999999999997, "map_at_10": 0.7517499999999999, "map_at_100": 0.7827300000000001, "map_at_1000": 0.78322, "map_at_3": 0.51215, "map_at_5": 0.64892, "mrr_at_1": 0.839, "mrr_at_10": 0.89563, "mrr_at_100": 0.8965, "mrr_at_1000": 0.89654, "mrr_at_3": 0.89167, "mrr_at_5": 0.89492, "ndcg_at_1": 0.839, "ndcg_at_10": 0.8372800000000001, "ndcg_at_100": 0.87064, "ndcg_at_1000": 0.87504, "ndcg_at_3": 0.81318, "ndcg_at_5": 0.80667, "precision_at_1": 0.839, "precision_at_10": 0.407, "precision_at_100": 0.04778, "precision_at_1000": 0.00488, "precision_at_3": 0.7331699999999999, "precision_at_5": 0.6213, "recall_at_1": 0.23983999999999997, "recall_at_10": 0.8641200000000001, "recall_at_100": 0.96882, "recall_at_1000": 0.9922, "recall_at_3": 0.5477, "recall_at_5": 0.71663, "main_score": 0.8372800000000001 } ] }
None
EcomRetrieval
null
null
{ "dev": [ { "hf_subset": "default", "languages": [ "cmn-Hans" ], "map_at_1": 0.516, "map_at_10": 0.61209, "map_at_100": 0.61734, "map_at_1000": 0.6175, "map_at_3": 0.588, "map_at_5": 0.60165, "mrr_at_1": 0.516, "mrr_at_10": 0.61209, "mrr_at_100": 0.61734, "mrr_at_1000": 0.6175, "mrr_at_3": 0.588, "mrr_at_5": 0.60165, "ndcg_at_1": 0.516, "ndcg_at_10": 0.6613900000000001, "ndcg_at_100": 0.6865400000000002, "ndcg_at_1000": 0.69057, "ndcg_at_3": 0.61185, "ndcg_at_5": 0.63651, "precision_at_1": 0.516, "precision_at_10": 0.0817, "precision_at_100": 0.00934, "precision_at_1000": 0.00097, "precision_at_3": 0.22699999999999998, "precision_at_5": 0.1482, "recall_at_1": 0.516, "recall_at_10": 0.8169999999999998, "recall_at_100": 0.934, "recall_at_1000": 0.966, "recall_at_3": 0.681, "recall_at_5": 0.741, "main_score": 0.6613900000000001 } ] }
None
MMarcoRetrieval
null
null
{ "dev": [ { "hf_subset": "default", "languages": [ "cmn-Hans" ], "map_at_1": 0.69546, "map_at_10": 0.7847700000000001, "map_at_100": 0.78743, "map_at_1000": 0.78751, "map_at_3": 0.7676900000000001, "map_at_5": 0.77854, "mrr_at_1": 0.71819, "mrr_at_10": 0.79008, "mrr_at_100": 0.7924, "mrr_at_1000": 0.79247, "mrr_at_3": 0.7755300000000002, "mrr_at_5": 0.7847700000000001, "ndcg_at_1": 0.71819, "ndcg_at_10": 0.81947, "ndcg_at_100": 0.83112, "ndcg_at_1000": 0.83325, "ndcg_at_3": 0.78758, "ndcg_at_5": 0.8056300000000001, "precision_at_1": 0.71819, "precision_at_10": 0.09792, "precision_at_100": 0.01037, "precision_at_1000": 0.00105, "precision_at_3": 0.29479, "precision_at_5": 0.18658999999999998, "recall_at_1": 0.69546, "recall_at_10": 0.92053, "recall_at_100": 0.97254, "recall_at_1000": 0.98926, "recall_at_3": 0.83682, "recall_at_5": 0.87944, "main_score": 0.81947 } ] }
None
MedicalRetrieval
null
null
{ "dev": [ { "hf_subset": "default", "languages": [ "cmn-Hans" ], "map_at_1": 0.503, "map_at_10": 0.55824, "map_at_100": 0.5638, "map_at_1000": 0.56441, "map_at_3": 0.544, "map_at_5": 0.55235, "mrr_at_1": 0.504, "mrr_at_10": 0.5589, "mrr_at_100": 0.56447, "mrr_at_1000": 0.56508, "mrr_at_3": 0.54467, "mrr_at_5": 0.55302, "ndcg_at_1": 0.503, "ndcg_at_10": 0.58578, "ndcg_at_100": 0.61491, "ndcg_at_1000": 0.63161, "ndcg_at_3": 0.5564, "ndcg_at_5": 0.57134, "precision_at_1": 0.503, "precision_at_10": 0.0673, "precision_at_100": 0.00814, "precision_at_1000": 0.00095, "precision_at_3": 0.19733, "precision_at_5": 0.1256, "recall_at_1": 0.503, "recall_at_10": 0.6730000000000002, "recall_at_100": 0.814, "recall_at_1000": 0.9469999999999998, "recall_at_3": 0.592, "recall_at_5": 0.628, "main_score": 0.58578 } ] }
None
T2Retrieval
null
null
{ "dev": [ { "hf_subset": "default", "languages": [ "cmn-Hans" ], "map_at_1": 0.27293, "map_at_10": 0.76618, "map_at_100": 0.8022500000000001, "map_at_1000": 0.80292, "map_at_3": 0.53856, "map_at_5": 0.6615800000000001, "mrr_at_1": 0.8965900000000001, "mrr_at_10": 0.92121, "mrr_at_100": 0.92214, "mrr_at_1000": 0.92218, "mrr_at_3": 0.9167000000000001, "mrr_at_5": 0.91955, "ndcg_at_1": 0.8965900000000001, "ndcg_at_10": 0.84172, "ndcg_at_100": 0.87767, "ndcg_at_1000": 0.8841899999999999, "ndcg_at_3": 0.85628, "ndcg_at_5": 0.84155, "precision_at_1": 0.8965900000000001, "precision_at_10": 0.41914, "precision_at_100": 0.04996, "precision_at_1000": 0.00515, "precision_at_3": 0.7495499999999999, "precision_at_5": 0.62771, "recall_at_1": 0.27293, "recall_at_10": 0.83004, "recall_at_100": 0.9482300000000001, "recall_at_1000": 0.9815, "recall_at_3": 0.55455, "recall_at_5": 0.69422, "main_score": 0.84172 } ] }
None
VideoRetrieval
null
null
{ "dev": [ { "hf_subset": "default", "languages": [ "cmn-Hans" ], "map_at_1": 0.596, "map_at_10": 0.6944399999999998, "map_at_100": 0.69798, "map_at_1000": 0.6981, "map_at_3": 0.67467, "map_at_5": 0.68692, "mrr_at_1": 0.596, "mrr_at_10": 0.6944399999999998, "mrr_at_100": 0.69798, "mrr_at_1000": 0.6981, "mrr_at_3": 0.67467, "mrr_at_5": 0.68692, "ndcg_at_1": 0.596, "ndcg_at_10": 0.73936, "ndcg_at_100": 0.75688, "ndcg_at_1000": 0.75942, "ndcg_at_3": 0.69924, "ndcg_at_5": 0.7214, "precision_at_1": 0.596, "precision_at_10": 0.0879, "precision_at_100": 0.00961, "precision_at_1000": 0.00098, "precision_at_3": 0.25667, "precision_at_5": 0.1648, "recall_at_1": 0.596, "recall_at_10": 0.879, "recall_at_100": 0.961, "recall_at_1000": 0.98, "recall_at_3": 0.77, "recall_at_5": 0.824, "main_score": 0.73936 } ] }
null
null
null
null
null

Previously it was possible to submit models results to MTEB by adding the results to the model metadata. This is no longer an option as we want to ensure high quality metadata.

This repository contain the results of the embedding benchmark evaluated using the package mteb.

Reference
🦾 Leaderboard An up to date leaderboard of embedding models
📚 mteb Guides and instructions on how to use mteb, including running, submitting scores, etc.
🙋 Questions Questions about the results
🙋 Issues Issues or bugs you have found
Downloads last month
43