Dataset Preview
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code: DatasetGenerationCastError Exception: DatasetGenerationCastError Message: An error occurred while generating the dataset All the data files must have the same columns, but at some point there are 18 new columns ({'public_training_code', 'public_training_data', 'framework', 'loader', 'license', 'open_weights', 'zero_shot_benchmarks', 'name', 'revision', 'n_parameters', 'embed_dim', 'max_tokens', 'release_date', 'reference', 'similarity_fn_name', 'use_instructions', 'memory_usage', 'languages'}) and 5 missing columns ({'evaluation_time', 'mteb_version', 'scores', 'dataset_revision', 'task_name'}). This happened while the json dataset builder was generating data using hf://datasets/morteza20/mteb_leaderboard/results/NLPArtisan__qwen-1.8b-retrieval-test/external/model_meta.json (at revision 3a7c664609bebabdbad5017611c533236c0adb2b) Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations) Traceback: Traceback (most recent call last): File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1870, in _prepare_split_single writer.write_table(table) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 622, in write_table pa_table = table_cast(pa_table, self._schema) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2292, in table_cast return cast_table_to_schema(table, schema) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2240, in cast_table_to_schema raise CastError( datasets.table.CastError: Couldn't cast name: string revision: string release_date: timestamp[s] languages: list<item: null> child 0, item: null loader: null n_parameters: null memory_usage: null max_tokens: null embed_dim: null license: null open_weights: bool public_training_data: null public_training_code: null framework: list<item: null> child 0, item: null reference: null similarity_fn_name: null use_instructions: null zero_shot_benchmarks: null to {'dataset_revision': Value(dtype='string', id=None), 'task_name': Value(dtype='string', id=None), 'evaluation_time': Value(dtype='null', id=None), 'mteb_version': Value(dtype='null', id=None), 'scores': {'dev': [{'hf_subset': Value(dtype='string', id=None), 'languages': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None), 'map_at_1': Value(dtype='float64', id=None), 'map_at_10': Value(dtype='float64', id=None), 'map_at_100': Value(dtype='float64', id=None), 'map_at_1000': Value(dtype='float64', id=None), 'map_at_3': Value(dtype='float64', id=None), 'map_at_5': Value(dtype='float64', id=None), 'mrr_at_1': Value(dtype='float64', id=None), 'mrr_at_10': Value(dtype='float64', id=None), 'mrr_at_100': Value(dtype='float64', id=None), 'mrr_at_1000': Value(dtype='float64', id=None), 'mrr_at_3': Value(dtype='float64', id=None), 'mrr_at_5': Value(dtype='float64', id=None), 'ndcg_at_1': Value(dtype='float64', id=None), 'ndcg_at_10': Value(dtype='float64', id=None), 'ndcg_at_100': Value(dtype='float64', id=None), 'ndcg_at_1000': Value(dtype='float64', id=None), 'ndcg_at_3': Value(dtype='float64', id=None), 'ndcg_at_5': Value(dtype='float64', id=None), 'precision_at_1': Value(dtype='float64', id=None), 'precision_at_10': Value(dtype='float64', id=None), 'precision_at_100': Value(dtype='float64', id=None), 'precision_at_1000': Value(dtype='float64', id=None), 'precision_at_3': Value(dtype='float64', id=None), 'precision_at_5': Value(dtype='float64', id=None), 'recall_at_1': Value(dtype='float64', id=None), 'recall_at_10': Value(dtype='float64', id=None), 'recall_at_100': Value(dtype='float64', id=None), 'recall_at_1000': Value(dtype='float64', id=None), 'recall_at_3': Value(dtype='float64', id=None), 'recall_at_5': Value(dtype='float64', id=None), 'main_score': Value(dtype='float64', id=None)}]}} because column names don't match During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1417, in compute_config_parquet_and_info_response parquet_operations = convert_to_parquet(builder) File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1049, in convert_to_parquet builder.download_and_prepare( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 924, in download_and_prepare self._download_and_prepare( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1000, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1741, in _prepare_split for job_id, done, content in self._prepare_split_single( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1872, in _prepare_split_single raise DatasetGenerationCastError.from_cast_error( datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset All the data files must have the same columns, but at some point there are 18 new columns ({'public_training_code', 'public_training_data', 'framework', 'loader', 'license', 'open_weights', 'zero_shot_benchmarks', 'name', 'revision', 'n_parameters', 'embed_dim', 'max_tokens', 'release_date', 'reference', 'similarity_fn_name', 'use_instructions', 'memory_usage', 'languages'}) and 5 missing columns ({'evaluation_time', 'mteb_version', 'scores', 'dataset_revision', 'task_name'}). This happened while the json dataset builder was generating data using hf://datasets/morteza20/mteb_leaderboard/results/NLPArtisan__qwen-1.8b-retrieval-test/external/model_meta.json (at revision 3a7c664609bebabdbad5017611c533236c0adb2b) Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
dataset_revision
string | task_name
string | evaluation_time
null | mteb_version
null | scores
dict |
---|---|---|---|---|
None | CmedqaRetrieval | null | null | {
"dev": [
{
"hf_subset": "default",
"languages": [
"cmn-Hans"
],
"map_at_1": 0.23190999999999998,
"map_at_10": 0.34273,
"map_at_100": 0.36101,
"map_at_1000": 0.36231,
"map_at_3": 0.30495,
"map_at_5": 0.32539999999999997,
"mrr_at_1": 0.35434,
"mrr_at_10": 0.4315,
"mrr_at_100": 0.44155,
"mrr_at_1000": 0.44211,
"mrr_at_3": 0.40735,
"mrr_at_5": 0.42052,
"ndcg_at_1": 0.35434,
"ndcg_at_10": 0.40572,
"ndcg_at_100": 0.47920999999999997,
"ndcg_at_1000": 0.50314,
"ndcg_at_3": 0.35670999999999997,
"ndcg_at_5": 0.3763500000000001,
"precision_at_1": 0.35434,
"precision_at_10": 0.09067,
"precision_at_100": 0.01506,
"precision_at_1000": 0.00181,
"precision_at_3": 0.20163,
"precision_at_5": 0.14624,
"recall_at_1": 0.23190999999999998,
"recall_at_10": 0.50318,
"recall_at_100": 0.80958,
"recall_at_1000": 0.9716799999999999,
"recall_at_3": 0.3557,
"recall_at_5": 0.41776,
"main_score": 0.40572
}
]
} |
None | CovidRetrieval | null | null | {
"dev": [
{
"hf_subset": "default",
"languages": [
"cmn-Hans"
],
"map_at_1": 0.64015,
"map_at_10": 0.7198300000000001,
"map_at_100": 0.7243200000000001,
"map_at_1000": 0.72441,
"map_at_3": 0.69924,
"map_at_5": 0.71177,
"mrr_at_1": 0.64173,
"mrr_at_10": 0.71985,
"mrr_at_100": 0.72425,
"mrr_at_1000": 0.72434,
"mrr_at_3": 0.6996800000000001,
"mrr_at_5": 0.71222,
"ndcg_at_1": 0.64173,
"ndcg_at_10": 0.75929,
"ndcg_at_100": 0.77961,
"ndcg_at_1000": 0.78223,
"ndcg_at_3": 0.71828,
"ndcg_at_5": 0.74066,
"precision_at_1": 0.64173,
"precision_at_10": 0.08925,
"precision_at_100": 0.00985,
"precision_at_1000": 0.00101,
"precision_at_3": 0.25887,
"precision_at_5": 0.1667,
"recall_at_1": 0.64015,
"recall_at_10": 0.88251,
"recall_at_100": 0.9747100000000001,
"recall_at_1000": 0.99579,
"recall_at_3": 0.77292,
"recall_at_5": 0.82666,
"main_score": 0.75929
}
]
} |
None | DuRetrieval | null | null | {
"dev": [
{
"hf_subset": "default",
"languages": [
"cmn-Hans"
],
"map_at_1": 0.23983999999999997,
"map_at_10": 0.7517499999999999,
"map_at_100": 0.7827300000000001,
"map_at_1000": 0.78322,
"map_at_3": 0.51215,
"map_at_5": 0.64892,
"mrr_at_1": 0.839,
"mrr_at_10": 0.89563,
"mrr_at_100": 0.8965,
"mrr_at_1000": 0.89654,
"mrr_at_3": 0.89167,
"mrr_at_5": 0.89492,
"ndcg_at_1": 0.839,
"ndcg_at_10": 0.8372800000000001,
"ndcg_at_100": 0.87064,
"ndcg_at_1000": 0.87504,
"ndcg_at_3": 0.81318,
"ndcg_at_5": 0.80667,
"precision_at_1": 0.839,
"precision_at_10": 0.407,
"precision_at_100": 0.04778,
"precision_at_1000": 0.00488,
"precision_at_3": 0.7331699999999999,
"precision_at_5": 0.6213,
"recall_at_1": 0.23983999999999997,
"recall_at_10": 0.8641200000000001,
"recall_at_100": 0.96882,
"recall_at_1000": 0.9922,
"recall_at_3": 0.5477,
"recall_at_5": 0.71663,
"main_score": 0.8372800000000001
}
]
} |
None | EcomRetrieval | null | null | {
"dev": [
{
"hf_subset": "default",
"languages": [
"cmn-Hans"
],
"map_at_1": 0.516,
"map_at_10": 0.61209,
"map_at_100": 0.61734,
"map_at_1000": 0.6175,
"map_at_3": 0.588,
"map_at_5": 0.60165,
"mrr_at_1": 0.516,
"mrr_at_10": 0.61209,
"mrr_at_100": 0.61734,
"mrr_at_1000": 0.6175,
"mrr_at_3": 0.588,
"mrr_at_5": 0.60165,
"ndcg_at_1": 0.516,
"ndcg_at_10": 0.6613900000000001,
"ndcg_at_100": 0.6865400000000002,
"ndcg_at_1000": 0.69057,
"ndcg_at_3": 0.61185,
"ndcg_at_5": 0.63651,
"precision_at_1": 0.516,
"precision_at_10": 0.0817,
"precision_at_100": 0.00934,
"precision_at_1000": 0.00097,
"precision_at_3": 0.22699999999999998,
"precision_at_5": 0.1482,
"recall_at_1": 0.516,
"recall_at_10": 0.8169999999999998,
"recall_at_100": 0.934,
"recall_at_1000": 0.966,
"recall_at_3": 0.681,
"recall_at_5": 0.741,
"main_score": 0.6613900000000001
}
]
} |
None | MMarcoRetrieval | null | null | {
"dev": [
{
"hf_subset": "default",
"languages": [
"cmn-Hans"
],
"map_at_1": 0.69546,
"map_at_10": 0.7847700000000001,
"map_at_100": 0.78743,
"map_at_1000": 0.78751,
"map_at_3": 0.7676900000000001,
"map_at_5": 0.77854,
"mrr_at_1": 0.71819,
"mrr_at_10": 0.79008,
"mrr_at_100": 0.7924,
"mrr_at_1000": 0.79247,
"mrr_at_3": 0.7755300000000002,
"mrr_at_5": 0.7847700000000001,
"ndcg_at_1": 0.71819,
"ndcg_at_10": 0.81947,
"ndcg_at_100": 0.83112,
"ndcg_at_1000": 0.83325,
"ndcg_at_3": 0.78758,
"ndcg_at_5": 0.8056300000000001,
"precision_at_1": 0.71819,
"precision_at_10": 0.09792,
"precision_at_100": 0.01037,
"precision_at_1000": 0.00105,
"precision_at_3": 0.29479,
"precision_at_5": 0.18658999999999998,
"recall_at_1": 0.69546,
"recall_at_10": 0.92053,
"recall_at_100": 0.97254,
"recall_at_1000": 0.98926,
"recall_at_3": 0.83682,
"recall_at_5": 0.87944,
"main_score": 0.81947
}
]
} |
None | MedicalRetrieval | null | null | {
"dev": [
{
"hf_subset": "default",
"languages": [
"cmn-Hans"
],
"map_at_1": 0.503,
"map_at_10": 0.55824,
"map_at_100": 0.5638,
"map_at_1000": 0.56441,
"map_at_3": 0.544,
"map_at_5": 0.55235,
"mrr_at_1": 0.504,
"mrr_at_10": 0.5589,
"mrr_at_100": 0.56447,
"mrr_at_1000": 0.56508,
"mrr_at_3": 0.54467,
"mrr_at_5": 0.55302,
"ndcg_at_1": 0.503,
"ndcg_at_10": 0.58578,
"ndcg_at_100": 0.61491,
"ndcg_at_1000": 0.63161,
"ndcg_at_3": 0.5564,
"ndcg_at_5": 0.57134,
"precision_at_1": 0.503,
"precision_at_10": 0.0673,
"precision_at_100": 0.00814,
"precision_at_1000": 0.00095,
"precision_at_3": 0.19733,
"precision_at_5": 0.1256,
"recall_at_1": 0.503,
"recall_at_10": 0.6730000000000002,
"recall_at_100": 0.814,
"recall_at_1000": 0.9469999999999998,
"recall_at_3": 0.592,
"recall_at_5": 0.628,
"main_score": 0.58578
}
]
} |
None | T2Retrieval | null | null | {
"dev": [
{
"hf_subset": "default",
"languages": [
"cmn-Hans"
],
"map_at_1": 0.27293,
"map_at_10": 0.76618,
"map_at_100": 0.8022500000000001,
"map_at_1000": 0.80292,
"map_at_3": 0.53856,
"map_at_5": 0.6615800000000001,
"mrr_at_1": 0.8965900000000001,
"mrr_at_10": 0.92121,
"mrr_at_100": 0.92214,
"mrr_at_1000": 0.92218,
"mrr_at_3": 0.9167000000000001,
"mrr_at_5": 0.91955,
"ndcg_at_1": 0.8965900000000001,
"ndcg_at_10": 0.84172,
"ndcg_at_100": 0.87767,
"ndcg_at_1000": 0.8841899999999999,
"ndcg_at_3": 0.85628,
"ndcg_at_5": 0.84155,
"precision_at_1": 0.8965900000000001,
"precision_at_10": 0.41914,
"precision_at_100": 0.04996,
"precision_at_1000": 0.00515,
"precision_at_3": 0.7495499999999999,
"precision_at_5": 0.62771,
"recall_at_1": 0.27293,
"recall_at_10": 0.83004,
"recall_at_100": 0.9482300000000001,
"recall_at_1000": 0.9815,
"recall_at_3": 0.55455,
"recall_at_5": 0.69422,
"main_score": 0.84172
}
]
} |
None | VideoRetrieval | null | null | {
"dev": [
{
"hf_subset": "default",
"languages": [
"cmn-Hans"
],
"map_at_1": 0.596,
"map_at_10": 0.6944399999999998,
"map_at_100": 0.69798,
"map_at_1000": 0.6981,
"map_at_3": 0.67467,
"map_at_5": 0.68692,
"mrr_at_1": 0.596,
"mrr_at_10": 0.6944399999999998,
"mrr_at_100": 0.69798,
"mrr_at_1000": 0.6981,
"mrr_at_3": 0.67467,
"mrr_at_5": 0.68692,
"ndcg_at_1": 0.596,
"ndcg_at_10": 0.73936,
"ndcg_at_100": 0.75688,
"ndcg_at_1000": 0.75942,
"ndcg_at_3": 0.69924,
"ndcg_at_5": 0.7214,
"precision_at_1": 0.596,
"precision_at_10": 0.0879,
"precision_at_100": 0.00961,
"precision_at_1000": 0.00098,
"precision_at_3": 0.25667,
"precision_at_5": 0.1648,
"recall_at_1": 0.596,
"recall_at_10": 0.879,
"recall_at_100": 0.961,
"recall_at_1000": 0.98,
"recall_at_3": 0.77,
"recall_at_5": 0.824,
"main_score": 0.73936
}
]
} |
null | null | null | null | null |
Previously it was possible to submit models results to MTEB by adding the results to the model metadata. This is no longer an option as we want to ensure high quality metadata.
This repository contain the results of the embedding benchmark evaluated using the package mteb
.
Reference | |
---|---|
🦾 Leaderboard | An up to date leaderboard of embedding models |
📚 mteb | Guides and instructions on how to use mteb , including running, submitting scores, etc. |
🙋 Questions | Questions about the results |
🙋 Issues | Issues or bugs you have found |
- Downloads last month
- 43