id
int64
1.61k
3.1k
subfield
stringclasses
4 values
context
null
solution
sequencelengths
1
5
is_multiple_answer
bool
2 classes
unit
stringclasses
8 values
answer_type
stringclasses
4 values
error
stringclasses
1 value
problem
stringlengths
49
4.42k
answer
sequencelengths
1
1
2,720
Algebra
null
[ "Let $\\log _{T} 8=x$. Then $T^{x}=8$. Thus the given expression equals $2^{x}-\\left(T^{x}\\right)^{\\log _{T} 2}=2^{x}-T^{x \\log _{T} 2}=$ $2^{x}-T^{\\log _{T} 2^{x}}=2^{x}-2^{x}=\\mathbf{0}$ (independent of $T$ )." ]
false
null
Numerical
null
Let $T=T N Y W R$. Compute $2^{\log _{T} 8}-8^{\log _{T} 2}$.
[ "0" ]
2,721
Combinatorics
null
[ "The problem requests the value of $k$ such that $20+k+T+5=20(T+2)$, thus $k=19 T+15$. With $T=0$, it follows that $k=\\mathbf{1 5}$." ]
false
null
Numerical
null
Let $T=T N Y W R$. At some point during a given week, a law enforcement officer had issued $T+2$ traffic warnings, 20 tickets, and had made $T+5$ arrests. How many more tickets must the officer issue in order for the combined number of tickets and arrests to be 20 times the number of warnings issued that week?
[ "15" ]
2,722
Geometry
null
[ "Let $h$ be the distance between $\\overline{A R}$ and $\\overline{M L}$, and for simplicity, let $A R=M L=15 n$. Then $[A R M L]=15 n h$, and $[P Q W Z]=(1 / 2)(P Q+W Z) h$. Note that $P Q=15 n / 3=5 n$ and $W Z=15 n-3 n-3 n=9 n$. Thus $[P Q W Z]=7 n h=(7 / 15) \\cdot[A R M L]=7 T / 15$. With $T=15$, the answer is 7 ." ]
false
null
Numerical
null
$\quad$ Let $T=T N Y W R$. In parallelogram $A R M L$, points $P$ and $Q$ trisect $\overline{A R}$ and points $W, X, Y, Z$ divide $\overline{M L}$ into fifths (where $W$ is closest to $M$, and points $X$ and $Y$ are both between $W$ and $Z$ ). If $[A R M L]=T$, compute $[P Q W Z]$.
[ "7" ]
2,723
Number Theory
null
[ "Let $N=T+10$. In order for $k^{3}(k \\in \\mathbb{N})$ to be a divisor of $N$ !, the largest odd prime factor of $k$ (call it $p$ ) must be less than or equal to $N / 3$ so that there are at least three multiples of $p$ among the product of the first $N$ positive integers. If $p=3$, then the smallest possible value of $N$ is 9 , and the largest perfect cube factor of 9 ! is $2^{6} \\cdot 3^{3}$. Similarly, if $p=5$, then the smallest possible value of $N$ is 15 , and the largest perfect cube factor of 15 ! is $2^{9} \\cdot 3^{6} \\cdot 5^{3}$. With $T=7, N=17$, and the largest perfect cube factor of 17 ! is $2^{15} \\cdot 3^{6} \\cdot 5^{3}$. Thus $k^{3} \\mid 17$ ! if and only if $k \\mid 2^{5} \\cdot 3^{2} \\cdot 5^{1}$. Therefore $k=2^{x} 3^{y} 5^{z}$, where $x, y, z$ are nonnegative integers with $x \\leq 5, y \\leq 2, z \\leq 1$, yielding $6 \\cdot 3 \\cdot 2=\\mathbf{3 6}$ possible values of $k$." ]
false
null
Numerical
null
Let $T=T N Y W R$. Compute the number of positive perfect cubes that are divisors of $(T+10) !$.
[ "36" ]
2,724
Geometry
null
[ "Note that the $x$-coordinates of $A$ and $M$ correspond to the two roots $r_{1}, r_{2}$ of $x^{2}+2 x-T$. If $s$ is the side length of square $A R M L$, then $A M=s \\sqrt{2}=\\left|r_{1}-r_{2}\\right|=\\sqrt{\\left(r_{1}-r_{2}\\right)^{2}}=$ $\\sqrt{\\left(r_{1}+r_{2}\\right)^{2}-4 r_{1} r_{2}}=\\sqrt{(-2)^{2}-4(-T)}=2 \\sqrt{1+T}$. Thus $[A R M L]=s^{2}=2(1+T)$. With $T=36,[A R M L]=\\mathbf{7 4}$." ]
false
null
Numerical
null
Let $T=T N Y W R$. The graph of $y=x^{2}+2 x-T$ intersects the $x$-axis at points $A$ and $M$, which are diagonally opposite vertices of square $A R M L$. Compute $[A R M L]$.
[ "74" ]
2,725
Number Theory
null
[ "The given information implies that triangles $H E X, X A G$, and $G O H$ are congruent, hence triangle $H X G$ is equilateral. If $H X=s$, then the radius of the circle circumscribing $\\triangle H X G$ is $s / \\sqrt{3}$ so that the circle's area is $\\pi s^{2} / 3$. It remains to compute $s$. With $\\mathrm{m} \\angle H E X=120^{\\circ}$, use the Law of Cosines to find\n\n$$\n\\begin{aligned}\nH X^{2} & =H E^{2}+E X^{2}-2 H E \\cdot E X \\cdot \\cos 120^{\\circ} \\\\\n& =p^{2}+q^{2}-2 p q(-1 / 2) \\\\\n& =p^{2}+q^{2}+p q .\n\\end{aligned}\n$$\n\nUsing the answers 74 and 7 from positions 7 and 9 , respectively, conclude that $S=\\{2,7,37\\}$ and that $(p, q)=(2,7)$. Hence the foregoing yields $H X^{2}=4+49+14=67$. Thus the area of circle $\\omega$ is $\\frac{\\mathbf{6 7 \\pi}}{\\mathbf{3}}$." ]
false
null
Numerical
null
Let $S$ be the set of prime factors of the numbers you receive from positions 7 and 9 , and let $p$ and $q$ be the two least distinct elements of $S$, with $p<q$. Hexagon HEXAGO is inscribed in circle $\omega$, and every angle of $H E X A G O$ is $120^{\circ}$. If $H E=X A=G O=p$ and $E X=A G=O H=q$, compute the area of circle $\omega$.
[ "$\\frac{67 \\pi}{3}$" ]
2,726
Combinatorics
null
[ "There are $\\left(\\begin{array}{l}n \\\\ 2\\end{array}\\right)$ ways of choosing the two people to set up and $\\left(\\begin{array}{c}n-2 \\\\ 2\\end{array}\\right)$ ways of choosing the two people to take down the campsite, so there are $\\frac{n(n-1)}{2} \\cdot \\frac{(n-2)(n-3)}{2}$ ways of choosing the four people, or $\\frac{n(n-1)(n-2)(n-3)}{4}$ ways total; call this function $C(n)$. For the least $n$ such that $\\frac{n(n-1)(n-2)(n-3)}{4} \\geq T$, as a rough approximation, note that $n-3<\\sqrt[4]{4 T}<n$. With $T=184$, the approximation becomes $n-3<\\sqrt[4]{736}<n$. Now $5^{4}=625$ while $6^{4}=1296$, so $5<n<9$. Try values starting from $n=6$ :\n\n$$\n\\begin{aligned}\n& C(6)=\\frac{6 \\cdot 5 \\cdot 4 \\cdot 3}{4}=90 \\\\\n& C(7)=\\frac{7 \\cdot 6 \\cdot 5 \\cdot 4}{4}=210 .\n\\end{aligned}\n$$\n\nThus $n=7$." ]
false
null
Numerical
null
Let $T=T N Y W R$. A group of $n$ friends goes camping; two of them are selected to set up the campsite when they arrive and two others are selected to take down the campsite the next day. Compute the smallest possible value of $n$ such that there are at least $T$ ways of selecting the four helpers.
[ "7" ]
2,727
Geometry
null
[ "In this case, the two parabolas are tangent exactly when the system of equations has a unique solution. (Query: Is this the case for every pair of equations representing parabolas?) So set the right sides equal to each other: $x^{2}+T x=-(x-2 T)^{2}+b$. Then $x^{2}+T x=$ $-x^{2}+4 T x-4 T^{2}+b$, or equivalently, $2 x^{2}-3 T x+4 T^{2}-b=0$. The equation has a double root when the discriminant is 0 , so set $(-3 T)^{2}-4\\left(4 T^{2}-b\\right)(2)=0$ and solve: $9 T^{2}-32 T^{2}+8 b=0$ implies $-23 T^{2}+8 b=0$, or $b=23 T^{2} / 8$. Using $T=8$ yields $b=\\mathbf{1 8 4}$." ]
false
null
Numerical
null
Let $T=T N Y W R$. The parabola $y=x^{2}+T x$ is tangent to the parabola $y=-(x-2 T)^{2}+b$. Compute $b$.
[ "184" ]
2,728
Algebra
null
[ "Using the identity $\\left(x^{2}-y^{2}\\right)^{2}+(2 x y)^{2}=\\left(x^{2}+y^{2}\\right)^{2}$, notice that $a_{2 n+1}^{2}+a_{2 n+2}^{2}=\\left(a_{2 n}^{2}-a_{2 n-1}^{2}\\right)^{2}+$ $\\left(2 a_{2 n} a_{2 n-1}\\right)^{2}=\\left(a_{2 n}^{2}+a_{2 n-1}^{2}\\right)^{2}$. So surprisingly, for all $n \\in \\mathbb{N}, a_{2 n+1}^{2}+a_{2 n+2}^{2}=1$. Thus if $n$ is even, the sum of the squares of the first $n$ terms is $n / 2$. With $T=19, T-3=16$, and the sum is 8 ." ]
false
null
Numerical
null
Let $T=T N Y W R$. The first two terms of a sequence are $a_{1}=3 / 5$ and $a_{2}=4 / 5$. For $n>2$, if $n$ is odd, then $a_{n}=a_{n-1}^{2}-a_{n-2}^{2}$, while if $n$ is even, then $a_{n}=2 a_{n-2} a_{n-3}$. Compute the sum of the squares of the first $T-3$ terms of the sequence.
[ "8" ]
2,729
Geometry
null
[ "Using the formula $D(n)=\\frac{n(n-3)}{2}$ twice yields $D(n)-D(n-1)=\\frac{n^{2}-3 n}{2}-\\frac{n^{2}-5 n+4}{2}=\\frac{2 n-4}{2}=n-2$. So $T=n-2$, thus $n=T+2$, and with $T=17, n=19$." ]
false
null
Numerical
null
Let $T=T N Y W R$. A regular $n$-gon has exactly $T$ more diagonals than a regular $(n-1)$-gon. Compute the value of $n$.
[ "19" ]
2,730
Algebra
null
[ "If $d$ is the common difference of the sequence, then the $n^{\\text {th }}$ term of the sequence is $a_{n}=$ $a_{16}+d(n-16)$. The values $a_{16}=13$ and $a_{30}=20$ yield $d=(20-13) /(30-16)=1 / 2$, hence $a_{n}=13+(1 / 2)(n-16)$. If $a_{n}=T$, then $n=2(T-13)+16=2 T-10$. With $T=27 / 2$, it follows that $n=\\mathbf{1 7}$." ]
false
null
Numerical
null
Let $T=T N Y W R$. The sequence $a_{1}, a_{2}, a_{3}, \ldots$, is arithmetic with $a_{16}=13$ and $a_{30}=20$. Compute the value of $k$ for which $a_{k}=T$.
[ "17" ]
2,731
Geometry
null
[ "The surface area is given by the expression $2 \\cdot 1 \\cdot 3+2 \\cdot 1 \\cdot h+2 \\cdot 3 \\cdot h=6+8 h$. Because $6+8 h=T, h=\\frac{T-6}{8}$. With $T=114, h=108 / 8=\\mathbf{2 7} / \\mathbf{2}$." ]
false
null
Numerical
null
Let $T=T N Y W R$. A rectangular prism has a length of 1 , a width of 3 , a height of $h$, and has a total surface area of $T$. Compute the value of $h$.
[ "$\\frac{27}{2}$" ]
2,732
Algebra
null
[ "Use sums and products of roots formulas: the desired quantity $c=(r+1)(s+1)=r s+r+s+1$. From the first equation, $r s=93$, while from the second equation, $(r+1)+(s+1)=r+s+2=$ 22. So $r s+r+s+1=93+22-1=\\mathbf{1 1 4}$." ]
false
null
Numerical
null
The zeros of $x^{2}+b x+93$ are $r$ and $s$. If the zeros of $x^{2}-22 x+c$ are $r+1$ and $s+1$, compute $c$.
[ "114" ]
2,733
Number Theory
null
[ "Write $N$ as\n\n$$\n\\begin{aligned}\n& (10,000,000-1) \\cdot 888,888 \\\\\n= & 8,888,880,000,000-888,888 \\\\\n= & 8,888,879,111,112 .\n\\end{aligned}\n$$\n\nThe sum of the digits of $N$ is 63 ." ]
false
null
Numerical
null
Let $N=888,888 \times 9,999,999$. Compute the sum of the digits of $N$.
[ "63" ]
2,734
Combinatorics
null
[ "Any two of the triangles intersect in at most six points, because each side of one triangle can intersect the other triangle in at most two points. To count the total number of intersections among the five triangles, note that there are $\\left(\\begin{array}{l}5 \\\\ 2\\end{array}\\right)=10$ ways to select a pair of triangles, and each pair may result in 6 intersections. Thus $10 \\times 6=60$ is an upper bound.\n\nThis can be achieved, for example, by taking six equilateral triangles of equal size, centered at a single point, and rotating them different amounts so that no three sides intersect at a single point. Thus the answer is 60." ]
false
null
Numerical
null
Five equilateral triangles are drawn in the plane so that no two sides of any of the triangles are parallel. Compute the maximum number of points of intersection among all five triangles.
[ "60" ]
2,735
Combinatorics
null
[ "In order for the sums of the squares of four digits to be 17 , the digits must be either $0,2,2$, and 3 , or $0,0,1$, and 4 , in some order. If the leading digit is 2 , there are $3 !=6$ possible four-digit numbers. If the leading digit is 1,3 , or 4 , there are $\\frac{3 !}{2 !}=3$ possible four-digit numbers. In total, there are $6+3 \\cdot 3=15$ four-digit integers in $S$, and the median will be the eighth least. The least eight integers in $S$, from least to greatest, are: 1004, 1040, 1400, 2023, 2032, 2203, 2230, 2302. Thus the median of $S$ is 2302." ]
false
null
Numerical
null
$\quad$ Let $S$ be the set of four-digit positive integers for which the sum of the squares of their digits is 17 . For example, $2023 \in S$ because $2^{2}+0^{2}+2^{2}+3^{2}=17$. Compute the median of $S$.
[ "2302" ]
2,736
Geometry
null
[ "Let $C L=x$. Because the quadrilaterals $E U C L$ and $L I D E$ are congruent, $\\overline{E L}$ is a diameter of the circle in which the hexagon is inscribed, so $E L=10$. Furthermore, because $\\overline{E L}$ is a diameter of the circle, it follows that the inscribed $\\angle E U L$ is a right angle, hence $U L=8$.\n\n\n\n<img_3485>\n\nUsing Ptolemy's Theorem for cyclic quadrilaterals and the fact that $\\triangle E C L$ is also a right triangle,\n\n$$\n\\begin{aligned}\n& U C \\cdot E L+E U \\cdot C L=E C \\cdot U L \\\\\n\\Longrightarrow & 6(10+x)=8 \\sqrt{100-x^{2}} \\\\\n\\Longrightarrow & 36(10+x)^{2}=64(10+x)(10-x) \\\\\n\\Longrightarrow & 6 \\sqrt{10+x}=8 \\sqrt{10-x} \\\\\n\\Longrightarrow & 36(10+x)=64(10-x) \\\\\n\\Longrightarrow & 360+36 x=640-64 x \\\\\n\\Longrightarrow & 100 x=280 \\\\\n\\Longrightarrow & x=\\frac{\\mathbf{1 4}}{\\mathbf{5}} .\n\\end{aligned}\n$$" ]
false
null
Numerical
null
Let $E U C L I D$ be a hexagon inscribed in a circle of radius 5 . Given that $E U=U C=L I=I D=6$, and $C L=D E$, compute $C L$.
[ "$\\frac{14}{5}$" ]
2,737
Combinatorics
null
[ "Any 15-letter palindrome is determined completely by its first 8 letters, because the last 7 letters must be the first 7 in reverse. Such a palindrome contains the string $A R M L$ if and only if its first 8 letters contain either $A R M L$ or $L M R A$. (The string $A R M L$ cannot cross the middle of the palindrome, because the 7th and 9th letters must be the same.) It therefore suffices to count the number of 8-letter strings consiting of letters in the ARMLLexicon that contain either ARML or LMRA.\n\nThere are 5 possible positions for $A R M L$, and likewise with $L M R A$. For each choice of position, there are four remaining letters, which can be any letter in the ARMLLexicon (here, $W, X, Y$, and $Z$ are used to denote arbitrary letters that need not be distinct). This leads to the following table:\n\n\n\n| Word | Num. Possibilities |\n| :---: | :---: |\n| ARMLWXYZ | $10^{4}$ |\n| WARMLXYZ | $10^{4}$ |\n| WXARMLYZ | $10^{4}$ |\n| WXYARMLZ | $10^{4}$ |\n| WXYZARML | $10^{4}$ |\n| LMRAWXYZ | $10^{4}$ |\n| WLMRAXYZ | $10^{4}$ |\n| WXLMRAYZ | $10^{4}$ |\n| WXYLMRAZ | $10^{4}$ |\n| WXYZLMRA | $10^{4}$ |\n\nThis gives $10 \\cdot 10^{4}$ possible words, but each word with two of ARML or LMRA (e.g., ARMLARML or $A A R M L M R A$ ) is counted twice. There are four words with two of $A R M L$ or $L M R A$ that use all 8 letters, and four possible types of words that use 7 of the 8 positions and leave one \"free space\". This leads to the following table:\n\n| Word | Num. Possibilities |\n| :---: | :---: |\n| ARMLARML | 1 |\n| LMRALMRA | 1 |\n| ARMLLMRA | 1 |\n| LMRAARML | 1 |\n| ARMLMRAW | 10 |\n| LMRARMLW | 10 |\n| WARMLMRA | 10 |\n| WLMRARML | 10 |\n\nThus the total number of desired words is $10 \\cdot 10^{4}-4 \\cdot 10-4 \\cdot 1=\\mathbf{9 9 9 5 6}$." ]
false
null
Numerical
null
The ARMLLexicon consists of 10 letters: $\{A, R, M, L, e, x, i, c, o, n\}$. A palindrome is an ordered list of letters that read the same backwards and forwards; for example, MALAM, n, oncecno, and MoM are palindromes. Compute the number of 15-letter palindromes that can be spelled using letters in the ARMLLexicon, among which there are four consecutive letters that spell out $A R M L$.
[ "99956" ]
2,738
Algebra
null
[ "First, note that\n\n$$\n\\left\\lfloor(\\log x)^{2}\\right\\rfloor \\leq(\\log x)^{2} \\Longrightarrow \\frac{3+\\left\\lfloor(\\log x)^{2}\\right\\rfloor}{4} \\leq \\frac{3+(\\log x)^{2}}{4}\n$$\n\nTherefore\n\n$$\n\\log x \\leq \\frac{(\\log x)^{2}+3}{4} \\Longrightarrow 0 \\leq(\\log x)^{2}-4 \\log x+3=(\\log x-1)(\\log x-3)\n$$\n\nThis implies either $\\log x \\leq 1$ or $\\log x \\geq 3$, so $0 \\leq(\\log x)^{2} \\leq 1$ or $(\\log x)^{2} \\geq 9$.\n\nIn the first case, $\\left\\lfloor(\\log x)^{2}\\right\\rfloor=0$ or $\\left\\lfloor(\\log x)^{2}\\right\\rfloor=1$, so $\\log x=\\frac{3}{4}$ or $\\log x=1$, hence $x=10^{3 / 4}$ or $x=10$.\n\nTo solve the second case, note that $\\left\\lfloor(\\log x)^{2}\\right\\rfloor \\geq(\\log x)^{2}-1$, so $0 \\geq(\\log x)^{2}-4 \\log x+2$. The solutions to $t^{2}-4 t+2=0$ are $t=\\frac{4 \\pm \\sqrt{16-8}}{2}=2 \\pm \\sqrt{2}$ by the Quadratic Formula, so $2-\\sqrt{2} \\leq \\log x \\leq 2+\\sqrt{2}$. This implies that $6-4 \\sqrt{2} \\leq(\\log x)^{2} \\leq 6+4 \\sqrt{2}$, so $0 \\leq\\left\\lfloor(\\log x)^{2}\\right\\rfloor \\leq 11$. However, this case is for $(\\log x)^{2} \\geq 9$, so the only possibilities that need to be considered are $9 \\leq\\left\\lfloor(\\log x)^{2}\\right\\rfloor \\leq 11$.\n\n- If $\\left\\lfloor(\\log x)^{2}\\right\\rfloor=9$, then $\\log x=3$, so $x=10^{3}$.\n- If $\\left\\lfloor(\\log x)^{2}\\right\\rfloor=10$, then $\\log x=\\frac{13}{4}$, so $x=10^{13 / 4}$.\n- Finally, if $\\left\\lfloor(\\log x)^{2}\\right\\rfloor=11$, then $\\log x=\\frac{7}{2}$, which yields $(\\log x)^{2}=\\frac{49}{4}>12$, so there are no solutions.\n\nThus the product of all possible values of $x$ is $y=10^{3 / 4} \\cdot 10 \\cdot 10^{13 / 4} \\cdot 10^{3}=10^{8}$, so $y=\\mathbf{8}$." ]
false
null
Numerical
null
Let $10^{y}$ be the product of all real numbers $x$ such that $\log x=\frac{3+\left\lfloor(\log x)^{2}\right\rfloor}{4}$. Compute $y$.
[ "8" ]
2,739
Algebra
null
[ "First note that the solutions of the given equation are real because the equation's discriminant is positive. By Vieta's Formulas, $r_{1}+r_{2}=180(*)$ and $r_{1} r_{2}=8(* *)$. The expression to be computed can be written with a common denominator as\n\n$$\n\\frac{\\sqrt[3]{r_{1}^{4}}+\\sqrt[3]{r_{2}^{4}}}{\\sqrt[3]{r_{1} r_{2}}}\n$$\n\nBy $(* *)$, the denominator is equal to $\\sqrt[3]{8}=2$. To compute the numerator, first let $S_{k}=\\sqrt[3]{r_{1}^{k}}+\\sqrt[3]{r_{2}^{k}}$, so that the numerator is $S_{4}$. Then note that\n\n$$\n\\begin{aligned}\n\\left(S_{1}\\right)^{3} & =r_{1}+3 \\sqrt[3]{r_{1}^{2} r_{2}}+3 \\sqrt[3]{r_{2}^{2} r_{1}}+r_{2} \\\\\n& =\\left(r_{1}+r_{2}\\right)+3 \\sqrt[3]{r_{1} r_{2}}\\left(\\sqrt[3]{r_{1}}+\\sqrt[3]{r_{2}}\\right) \\\\\n& =180+3 \\cdot 2 \\cdot S_{1}\n\\end{aligned}\n$$\n\nwhere $(*)$ and $(* *)$ are used to substitute values into the second equality. Next note that $S_{1}^{3}-6 S_{1}-180$ can be factored as $\\left(S_{1}-6\\right)\\left(S_{1}^{2}+6 S_{1}+30\\right)$. Because the polynomial $t^{2}+6 t+30$ has no real roots, the unique real solution to $(\\dagger)$ is $S_{1}=6$, so $\\sqrt[3]{r_{1}}+\\sqrt[3]{r_{2}}=6$. Square each side of the previous equation to obtain $S_{2}+2 \\sqrt[3]{r_{1} r_{2}}=36$, hence $S_{2}=36-2 \\cdot 2$; that is, $\\sqrt[3]{r_{1}^{2}}+\\sqrt[3]{r_{2}^{2}}=32$. Again, square both sides of this equation to obtain $\\sqrt[3]{r_{1}^{4}}+2 \\sqrt[3]{r_{1}^{2} r_{2}^{2}}+\\sqrt[3]{r_{2}^{4}}=1024$, so $S_{4}+2 \\sqrt[3]{r_{1}^{2} r_{2}^{2}}=1024$, from which $S_{4}=1024-2 \\cdot 4=1016$. Thus the desired expression equals $\\frac{S_{4}}{2}=\\frac{1016}{2}=\\mathbf{5 0 8}$." ]
false
null
Numerical
null
The solutions to the equation $x^{2}-180 x+8=0$ are $r_{1}$ and $r_{2}$. Compute $$ \frac{r_{1}}{\sqrt[3]{r_{2}}}+\frac{r_{2}}{\sqrt[3]{r_{1}}} $$
[ "508" ]
2,740
Geometry
null
[ "Let $O, O_{1}$ and $O_{2}$ be the centers, and let $r, r_{1}$ and $r_{2}$ be the radii of the circles $\\omega, \\omega_{1}$, and $\\omega_{2}$, respectively. Let $R$ be the point of tangency between $\\omega_{1}$ and $\\omega_{2}$.\n\nLet $H_{1}$ and $H_{2}$ be the projections of $O_{1}$ and $O_{2}$ onto $\\overline{A B}$. Also, let $H$ be the projection of $O_{1}$ onto $\\overline{O_{2} H_{2}}$. Note that $O H_{1}=r-r_{1}, O H_{2}=r-r_{2}, O O_{1}=r+r_{1}, O O_{2}=r+r_{2}$, and $O_{1} O_{2}=r_{1}+r_{2}$. From the Pythagorean Theorem, it follows that $O_{1} H_{1}=2 \\sqrt{r r_{1}}$ and $O_{2} H_{2}=2 \\sqrt{r r_{2}}$. Similarly, applying the Pythagorean Theorem to triangle $O_{1} H O_{2}$ yields $\\left(O_{1} H\\right)^{2}+\\left(O_{2} H\\right)^{2}=\\left(O_{1} O_{2}\\right)^{2}$, which is equivalent to\n\n$$\n\\left(2 \\sqrt{r r_{2}}-2 \\sqrt{r r_{1}}\\right)^{2}+\\left(2 r-r_{1}-r_{2}\\right)^{2}=\\left(r_{1}+r_{2}\\right)^{2}\n$$\n\nwhich yields $r^{2}=4 r_{1} r_{2}$ after simplifying.\n<img_4036>\n\n\n\nNote that $\\overline{A O} \\| \\overline{O_{2} D}$, hence $\\angle A O Q \\cong \\angle D O_{2} Q$, which implies that isosceles triangles $A O Q$ and $D O_{2} Q$ are similar. Thus $\\angle A Q O \\cong \\angle D Q O_{2}$ and therefore points $A, Q$, and $D$ are collinear. Analogously, it follows that the points $B, P$, and $C$ are collinear, as are the points $C, R$, and $D$.\n\nIn right triangle $A B D, \\overline{B Q}$ is the altitude to $\\overline{A D}$. By similarity of triangles, it follows that $D Q \\cdot D A=B D^{2}$ and $A Q \\cdot A D=A B^{2}$. Hence $B D=4 \\sqrt{10}, A B=4 \\sqrt{15}$, and $r=2 \\sqrt{15}$. Because $\\frac{D O_{2}}{A O}=\\frac{D Q}{A Q}=\\frac{2}{3}$, it follows that $r_{2}=\\frac{4}{3} \\sqrt{15}$ and $r_{1}=\\frac{3}{4} \\sqrt{15}$.\n\nNote that $A C=2 \\sqrt{r r_{1}}=3 \\sqrt{10}, B D=2 \\sqrt{r r_{2}}=4 \\sqrt{10}$, and\n\n$$\nC D^{2}=A B^{2}+(B D-A C)^{2}=(4 \\sqrt{15})^{2}+(4 \\sqrt{10}-3 \\sqrt{10})^{2}=240+10=250\n$$\n\nwhich implies that $C D=\\mathbf{5} \\sqrt{\\mathbf{1 0}}$.\n\nAlternate Solution: Conclude that $r^{2}=4 r_{1} r_{2}$, as explained above. Note that $\\angle C A Q \\cong \\angle Q D B \\cong \\angle Q R D$, using the fact that the two given lines are parallel and $\\omega_{2}$ is tangent one of them at $D$. Quadrilateral $C A Q R$ is cyclic, so apply Power of a Point to obtain $D Q \\cdot D A=D R \\cdot D C$. Because $\\frac{r_{2}}{r}=\\frac{Q D}{Q A}=\\frac{2}{3}$, conclude that $r_{2}=2 x, r=3 x$, and hence $r_{1}=\\frac{9}{8} x$. It follows that $\\frac{D R}{C R}=\\frac{r_{2}}{r_{1}}=\\frac{16}{9}$ and $D R=\\frac{16}{25} \\cdot C D$. Thus\n\n$$\nD R \\cdot D C=\\frac{16}{25} \\cdot C D^{2}=D Q \\cdot D A=8 \\cdot 20\n$$\n\nhence $C D=5 \\sqrt{10}$." ]
false
null
Numerical
null
Circle $\omega$ is tangent to parallel lines $\ell_{1}$ and $\ell_{2}$ at $A$ and $B$ respectively. Circle $\omega_{1}$ is tangent to $\ell_{1}$ at $C$ and to $\omega$ externally at $P$. Circle $\omega_{2}$ is tangent to $\ell_{2}$ at $D$ and to $\omega$ externally at $Q$. Circles $\omega_{1}$ and $\omega_{2}$ are also externally tangent to each other. Given that $A Q=12$ and $D Q=8$, compute $C D$.
[ "$5 \\sqrt{10}$" ]
2,741
Geometry
null
[ "Notice that $\\triangle A R M$ is fixed, so the number of integers that could be the perimeter of $A R M L$ is the same as the number of integers that could be the length $A L$ in $\\triangle A L M$. By the Triangle Inequality, $32-25<A L<32+25$, so $A L$ is at least 8 and no greater than 56 . The number of possible integer values for $A L$ is $56-8+1=49$." ]
false
null
Numerical
null
Given quadrilateral $A R M L$ with $A R=20, R M=23, M L=25$, and $A M=32$, compute the number of different integers that could be the perimeter of $A R M L$.
[ "49" ]
2,742
Algebra
null
[ "For brevity, $P$ will be used to represent the polynomial $P(x)$, and let $\\operatorname{deg}(P)$ represent the degree of $P$. Rewrite the given condition as follows:\n\n$$\n\\begin{aligned}\n\\frac{1}{A(x)}+\\frac{1}{B(x)}+\\frac{1}{x+10}=\\frac{1}{x} & \\Longrightarrow \\frac{A+B}{A B}=\\frac{10}{x(x+10)} \\\\\n& \\Longrightarrow A B-\\frac{x(x+10)}{10} A-\\frac{x(x+10)}{10} B=0 \\\\\n& \\Longrightarrow\\left(A-\\frac{x(x+10)}{10}\\right)\\left(B-\\frac{x(x+10)}{10}\\right)=\\frac{x^{2}(x+10)^{2}}{100} .\n\\end{aligned}\n$$\n\nBecause $A$ and $B$ are both polynomials, $A-\\frac{x(x+10)}{10}$ must be some factor $F$ of $\\frac{x^{2}(x+10)^{2}}{100}$. Furthermore, if $\\operatorname{deg}(F) \\leq 1$, then $A$ has leading coefficient $\\frac{1}{10}$, which violates the condition that $A$ has leading coefficient 1 . So\n\n\n\n$\\operatorname{deg}(F) \\geq 2$. Thus $F$ must be a nonzero constant times one of\n\n$$\n\\left\\{x^{2}, x(x+10),(x+10)^{2}, x^{2}(x+10), x(x+10)^{2}, x^{2}(x+10)^{2}\\right\\} .\n$$\n\nThe degree of $A$ determines what this constant must be.\n\n- If $\\operatorname{deg}(A) \\geq 3$, then $\\operatorname{deg}(F)=\\operatorname{deg}(A) \\geq 3$ and $F$ has leading coefficient 1 . Any such $F$ is valid.\n- If $\\operatorname{deg}(A)=2$, then $\\operatorname{deg}(F)=2$ and $F$ has leading coefficient $\\frac{9}{10}$. Again, any such $F$ is valid.\n- If $\\operatorname{deg}(A) \\leq 1$, then $\\operatorname{deg}(F)=2$ and $F$ has leading coefficient $-\\frac{1}{10}$. But not all $F$ are valid, because this does not guarantee that the leading coefficient of $A$ is 1 . Among $-\\frac{1}{10} x^{2},-\\frac{1}{10} x(x+10)$, and $-\\frac{1}{10}(x+10)^{2}$ as possible values of $F$, only $-\\frac{1}{10} x^{2}$ gives a valid $A$ with leading coefficient 1 .\n\nThus $F$ is one of\n\n$$\n\\left\\{-\\frac{1}{10} x^{2}, \\frac{9}{10} x^{2}, \\frac{9}{10} x(x+10), \\frac{9}{10}(x+10)^{2}, x^{2}(x+10), x(x+10)^{2}, x^{2}(x+10)^{2}\\right\\} .\n$$\n\nThen\n\n$$\n\\sum\\left(A(10)-\\frac{10 \\cdot 20}{10}\\right)=-\\frac{1}{10} \\cdot 10^{2}+\\frac{9}{10} \\cdot\\left(10^{2}+10 \\cdot 20+20^{2}\\right)+\\left(10^{2} \\cdot 20+10 \\cdot 20^{2}+10^{2} \\cdot 20^{2}\\right)=46620\n$$\n\nso $\\sum A(10)=7 \\cdot \\frac{10 \\cdot 20}{10}+46620=\\mathbf{4 6 7 6 0}$, as desired." ]
false
null
Numerical
null
Let $\mathcal{S}$ denote the set of all real polynomials $A(x)$ with leading coefficient 1 such that there exists a real polynomial $B(x)$ that satisfies $$ \frac{1}{A(x)}+\frac{1}{B(x)}+\frac{1}{x+10}=\frac{1}{x} $$ for all real numbers $x$ for which $A(x) \neq 0, B(x) \neq 0$, and $x \neq-10,0$. Compute $\sum_{A \in \mathcal{S}} A(10)$.
[ "46760" ]
2,744
Number Theory
null
[ "Let $r$ and $Q$ denote the respective radius and center of the circle whose radius is concerned. Let this circle be tangent to arc $\\widehat{P_{1} P_{2}}$ at point $P$, and let it be tangent to sides $\\overline{M N}$ and $\\overline{M R}$ at points $T_{1}$ and $T_{2}$, respectively.\n\n<img_3571>\n\nNote that $Q$ lies on diagonal $\\overline{M O}$ because it is equidistant to $\\overline{M N}$ and $\\overline{M R}$. Points $Q, P$, and $O$ must be collinear because the circles centered at $Q$ and $O$ are mutually tangent at point $P$. It therefore follows that $P$ also lies on diagonal $\\overline{M O}$. Because triangles $Q T_{1} M$ and $Q T_{2} M$ are isosceles right triangles, it follows that $M Q=r \\sqrt{2}$. Thus\n\n$$\nb \\sqrt{2}=M O=M Q+Q P+P O=r \\sqrt{2}+r+a\n$$\n\nSolving this equation yields $r=a+2 b-(a+b) \\sqrt{2}$. With $T=688, a=6$ and $b=8$, so $r=22-14 \\sqrt{2}$, hence $x+y=22+14=\\mathbf{3 6}$." ]
false
null
Numerical
null
Let $T=688$. Let $a$ be the least nonzero digit in $T$, and let $b$ be the greatest digit in $T$. In square $N O R M, N O=b$, and points $P_{1}$ and $P_{2}$ lie on $\overline{N O}$ and $\overline{O R}$, respectively, so that $O P_{1}=O P_{2}=a$. A circle centered at $O$ has radius $a$, and quarter-circular arc $\widehat{P_{1} P_{2}}$ is drawn. There is a circle that is tangent to $\widehat{P_{1} P_{2}}$ and to sides $\overline{M N}$ and $\overline{M R}$. The radius of this circle can be written in the form $x-y \sqrt{2}$, where $x$ and $y$ are positive integers. Compute $x+y$.
[ "36" ]
2,745
Geometry
null
[ "Let $A M=a$ and $A P=b$, and let $s=\\sqrt{T}$ be the side length of square $A B C D$. Then $M B=s-a$ and $D P=s-b$. Using the right angles of $M N O P$ and complementary acute angles in triangles $A M P, B N M$, $C O N$, and $D P O$, note that\n\n$$\n\\angle A M P \\cong \\angle B N M \\cong \\angle C O N \\cong D P O\n$$\n\nAlso note that $\\mathrm{m} \\angle B M N=180^{\\circ}-\\left(90^{\\circ}+\\mathrm{m} \\angle A M P\\right)$, so it also follows that\n\n$$\n\\angle B M N \\cong \\angle C N O \\cong \\angle D O P \\cong A P M\n$$\n\n<img_3526>\n\nThus, by side-angle-side congruence, it follows that $\\triangle A M P \\cong \\triangle C O N$ and $\\triangle B N M \\cong \\triangle D P O$. Moreover, by side-angle-side similarity, it follows that $\\triangle A M P \\sim \\triangle B N M \\sim \\triangle C O N \\sim \\triangle D P O$. Thus $B N=s-b, N C=b$, $C O=a$, and $O D=s-a$. The similarity relation implies $\\frac{A M}{B N}=\\frac{A P}{B M}$, so $\\frac{a}{s-b}=\\frac{b}{s-a}$. Cross-multiplying, rearranging, and simplifying yields $s(a-b)=(a+b)(a-b)$. Thus either $a=b$ or $s=a+b$. In the case where $a=b, A M=A P=\\frac{2}{\\sqrt{2}}=\\sqrt{2}$, so $M N=(s-\\sqrt{2}) \\sqrt{2}=s \\sqrt{2}-2$. With $T=36, s=6$, and the answer is thus $6 \\sqrt{\\mathbf{2}}-\\mathbf{2}$. For completeness, it remains to verify that for this particular value of $s$, the case where $s=a+b$ is impossible. Applying the Pythagorean Theorem in $\\triangle M A P$ yields $a^{2}+b^{2}=4$. Now if $s=6=a+b$, then by squaring, it would follow that $a^{2}+b^{2}+2 a b=36 \\Longrightarrow 4+2 a b=36 \\Longrightarrow a b=16$. But the equation $a+b=a+\\frac{16}{a}=6$ has no real solutions, thus $a+b \\neq 6$. (Alternatively, note that by the Arithmetic Mean-Geometric Mean Inequality, $a+\\frac{16}{a} \\geq 2 \\sqrt{a \\cdot \\frac{16}{a}}=8>6$.)" ]
false
null
Numerical
null
Let $T=36$. Square $A B C D$ has area $T$. Points $M, N, O$, and $P$ lie on $\overline{A B}$, $\overline{B C}, \overline{C D}$, and $\overline{D A}$, respectively, so that quadrilateral $M N O P$ is a rectangle with $M P=2$. Compute $M N$.
[ "$6 \\sqrt{2}-2$" ]
2,746
Combinatorics
null
[ "The number of ways to choose 2 distinct letters out of 13 is $\\frac{13 \\cdot 12}{2}=78$. The probability of matching on both halves is therefore $\\frac{1}{78^{2}}=\\frac{1}{6084}$." ]
false
null
Numerical
null
In a game, a player chooses 2 of the 13 letters from the first half of the alphabet (i.e., A-M) and 2 of the 13 letters from the second half of the alphabet (i.e., N-Z). Aditya plays the game, and then Ayesha plays the game. Compute the probability that Aditya and Ayesha choose the same set of four letters.
[ "$\\frac{1}{6084}$" ]
2,747
Combinatorics
null
[ "The problem is equivalent to finding the least integer $n$ such that $\\frac{1}{2^{n}}<T$, or $2^{n}>\\frac{1}{T}=6084$. Because $2^{12}=4096$ and $2^{13}=8192$, the answer is $\\mathbf{1 3}$." ]
false
null
Numerical
null
Let $T=\frac{1}{6084}$. Compute the least positive integer $n$ such that when a fair coin is flipped $n$ times, the probability of it landing heads on all $n$ flips is less than $T$.
[ "13" ]
2,748
Number Theory
null
[ "The discriminant of the quadratic, $T^{2}+4 n$, must be a perfect square. Because $T$ and the discriminant have the same parity, and the leading coefficient of the quadratic is 1 , by the quadratic formula, the discriminant being a perfect square is sufficient to guarantee integer solutions. Before knowing $T$, note that $\\sqrt{4 \\cdot 2024}=$ $\\sqrt{8096}$ is slightly less than 90 because $90^{2}=8100$, and the square root must have the same parity as $T$. Because\n\n\n\n$T=13$, the square root must be greater than $\\sqrt{13^{2}+4 \\cdot 2023}=\\sqrt{8261}$, which is between 90 and 91 , so the desired square root is 91 . Hence $13^{2}+4 n=91^{2}$, so $n=\\mathbf{2 0 2 8}$." ]
false
null
Numerical
null
Let $T=13$. Compute the least integer $n>2023$ such that the equation $x^{2}-T x-n=0$ has integer solutions.
[ "2028" ]
2,753
Algebra
null
[ "First we prove that every sequence of five consecutive positive integers contains a cromulent element.\n\nProof: Consider a sequence of five consecutive integers. Exactly one number in such a sequence will be a multiple of 5 , but that number could also be a multiple of 2 and hence share a common factor with at least one other number in the sequence. There are several cases to consider, namely whether the sequence starts with an even number or an odd number.\n\nIf the sequence starts with an even number, then the second and fourth numbers are both odd, and at least one of them is not a multiple of 3 and hence is relatively prime to all other numbers in the sequence because it is neither a multiple of 2 nor 3 and hence is at least 5 away from the nearest integer with a common factor. Thus the sequence contains a cromulent element.\n\nIf the sequence starts with an odd number, then again, it contains an odd number that is not a multiple of 3 and hence is relatively prime to all other numbers in the sequence, thus the sequence contains a cromulent element. In fact, it contains two such numbers if the first or last number is a multiple of 3 , and if the middle number is a multiple of 3 , then all three odd elements are cromulent.\n\n\nThe minimum number is 1 and the maximum number is 2 . One example of a sequence of length 6 with one cromulent element is $5,6,7,8,9$, 10, where 7 is the cromulent element. To show that it is not possible for\n\n\na sequence of six consecutive elements to have zero cromulent elements, consider two cases. If the sequence begins with an even number, that number is not cromulent, and one of the other five elements must be cromulent by the argument in the proof above. A similar argument establishes that one element must be cromulent if the sequence of length 6 begins with an odd number (and thus ends in an even number).\n\nOne example of a sequence of length 6 with two cromulent elements is $1,2,3,4,5,6$, where 1 and 5 are both cromulent.\n\nTo prove that a sequence of length 6 cannot have three cromulent elements, consider that the cromulent elements would all have to be odd, and one of those three would be a multiple of 3 . Because one of the even elements must also be a multiple of 3 , it is not possible for all three odd elements to be cromulent." ]
true
null
Numerical
null
In a sequence of $n$ consecutive positive integers, where $n>1$, an element of the sequence is said to be cromulent if it is relatively prime to all other numbers in the sequence. Every element of a sequence with $n=2$ is cromulent because any two consecutive integers are relatively prime to each other. Find the maximum and minimum possible number of cromulent elements in a sequence of $n$ consecutive positive integers with $n=6$;
[ "1,2" ]
2,754
Algebra
null
[ "The minimum number is 1 and the maximum number is 3 . One example of a sequence of length 7 with one cromulent element is $4,5,6,7,8,9,10$, where 7 is the cromulent element. To show that it is not possible for such a sequence to have zero cromulent elements, consider two cases. If the sequence begins with an even number, then it contains three odd numbers. At most one of these is divisible by 3 , and at most one is divisible by 5 , so one of the odd numbers must be divisible by neither 3 nor 5 . This odd number differs by at most 6 from each other element of the sequence, so the only prime factors it can share with another element of the sequence are 2, 3, and 5 . Because it is divisible by none of these primes, it follows that the odd number in question is cromulent. Similarly, if the sequence begins with an odd number, then it contains four odd numbers; at most two of these are divisible by 3 , and at most one is divisible by 5 , so again, one odd number in the sequence must be divisible by neither 3 nor 5 . By the same argument, this element is cromulent.\n\nOne example of a sequence of length 7 with three cromulent elements is $1,2,3,4,5,6$, 7 , where 1,5 , and 7 are all cromulent.\n\nTo prove that a sequence of length 7 cannot have four cromulent elements, consider that the cromulent elements would all have to be odd. At least one of these four odd elements must be a multiple of 3 . Because one of the even elements must also be a multiple of 3 , it is thus not possible for all four odd elements to be cromulent." ]
true
null
Numerical
null
In a sequence of $n$ consecutive positive integers, where $n>1$, an element of the sequence is said to be cromulent if it is relatively prime to all other numbers in the sequence. Every element of a sequence with $n=2$ is cromulent because any two consecutive integers are relatively prime to each other. Find the maximum and minimum possible number of cromulent elements in a sequence of $n$ consecutive positive integers with $n=7$.
[ "1,3" ]
2,759
Number Theory
null
[ "For an integer $n \\geq 4$, let $S_{n}$ denote the set of real numbers $x$ that are roots to at least one quadratic polynomial whose coefficients are positive integers that sum to $n$. (Note that $S_{n}$ is nonempty, as the polynomial $x^{2}+(n-2) x+1$ has a discriminant of $(n-2)^{2}-4$, which is nonnegative for $n \\geq 4$.) Then $a_{n}=\\prod_{x \\in S_{n}} x$.\n\nSuppose that $a, b$, and $c$ are positive integers and $x$ is a real solution to $a x^{2}+b x+c=0$. Then $x$ must be nonzero. (In fact, $x$ must be negative.) Dividing the above equation by $x^{2}$ yields $a+\\frac{b}{x}+\\frac{c}{x^{2}}=0$, thus $r=\\frac{1}{x}$ is a solution to the quadratic equation $c r^{2}+b r+a=0$. This shows that $x \\in S_{n}$ if and only if $\\frac{1}{x} \\in S_{n}$.\n\nOne might then think that $a_{n}$ must equal 1, because one can presumably pair up all elements in a given $S_{n}$ into $\\left\\{x, \\frac{1}{x}\\right\\}$ pairs. But there is a (negative) value of $x$ for which $x=\\frac{1}{x}$, namely $x=-1$. Therefore the value of $a_{n}$ depends only on whether $-1 \\in S_{n}$. It is readily seen via a parity argument that $-1 \\in S_{n}$ if and only if $n$ is even. If $n=2 k$, then the polynomial $x^{2}+k x+(k-1)$ has -1 as a root. (In fact, any quadratic polynomial whose middle coefficient is $k$ and whose coefficients sum to $2 k$ will work.) But if $n=2 k+1$, then $a(-1)^{2}+b(-1)+c=a-b+c=(a+b+c)-2 b=(2 k+1)-2 b$ will be odd, and so $-1 \\notin S_{n}$.\n\nThus $a_{n}=-1$ when $n$ is even, $a_{n}=1$ when $n$ is odd, and finally,\n\n$$\n\\frac{a_{4}}{a_{5}}+\\frac{a_{5}}{a_{6}}+\\frac{a_{6}}{a_{7}}+\\cdots+\\frac{a_{2022}}{a_{2023}}=\\underbrace{(-1)+(-1)+(-1)+\\cdots+(-1)}_{2019(-1) \\mathrm{s}}=-\\mathbf{2 0 1 9} .\n$$" ]
false
null
Numerical
null
For an integer $n \geq 4$, define $a_{n}$ to be the product of all real numbers that are roots to at least one quadratic polynomial whose coefficients are positive integers that sum to $n$. Compute $$ \frac{a_{4}}{a_{5}}+\frac{a_{5}}{a_{6}}+\frac{a_{6}}{a_{7}}+\cdots+\frac{a_{2022}}{a_{2023}} . $$
[ "-2019" ]
2,760
Combinatorics
null
[ "Assume without loss of generality that $u>v$. The condition that $(x+u)(x+v)+4$ has integer roots is equivalent to the discriminant $(u+v)^{2}-4(u v+4)=(u-v)^{2}-16$ being a perfect square. This is possible if and only if $u-v=4$ or $u-v=5$. There are $(30-4)+(30-5)=26+25=51$ such ordered pairs $(u, v)$, so the answer is\n\n$$\n\\frac{51}{\\left(\\begin{array}{c}\n30 \\\\\n2\n\\end{array}\\right)}=\\frac{\\mathbf{1 7}}{\\mathbf{1 4 5}}\n$$" ]
false
null
Numerical
null
Suppose that $u$ and $v$ are distinct numbers chosen at random from the set $\{1,2,3, \ldots, 30\}$. Compute the probability that the roots of the polynomial $(x+u)(x+v)+4$ are integers.
[ "$\\frac{17}{145}$" ]
2,761
Geometry
null
[ "The sum of the measures of the interior angles of a convex hexagon is $(6-2)\\left(180^{\\circ}\\right)=720^{\\circ}$. Let the measures of the angles be $a, a+d, \\ldots, a+5 d$. This implies that $6 a+15 d=720 \\rightarrow 2 a+5 d=240 \\rightarrow 5 d=240-2 a$. Note that $a+5 d<180 \\rightarrow 240-a<180 \\rightarrow a>60$. By inspection, note that the least $a$ greater than 60 that produces an integer $d$ is $a=65 \\rightarrow d=22$. Thus the least possible degree-measure of the smallest angle is $65^{\\circ}$, and the hexagon has angles with degree-measures $65^{\\circ}, 87^{\\circ}, 109^{\\circ}, 131^{\\circ}, 153^{\\circ}$, and $175^{\\circ}$." ]
false
null
Numerical
null
The degree-measures of the interior angles of convex hexagon TIEBRK are all integers in arithmetic progression. Compute the least possible degree-measure of the smallest interior angle in hexagon TIEBRK.
[ "65" ]
2,762
Combinatorics
null
[ "If three distinct digits are chosen from the set of digits $\\{0,1,2, \\ldots, 9\\}$, then there is exactly one way to arrange them in decreasing order. There are $\\left(\\begin{array}{c}10 \\\\ 3\\end{array}\\right)=120$ ways to choose the first three digits and 120 ways to choose the last three digits. Thus the answer is $120 \\cdot 120=\\mathbf{1 4 4 0 0}$." ]
false
null
Numerical
null
A six-digit natural number is "sort-of-decreasing" if its first three digits are in strictly decreasing order and its last three digits are in strictly decreasing order. For example, 821950 and 631631 are sort-of-decreasing but 853791 and 911411 are not. Compute the number of sort-of-decreasing six-digit natural numbers.
[ "14400" ]
2,763
Number Theory
null
[ "One can verify that no single-digit positive integer $n$ satisfies the conditions of the problem.\n\nIf $n$ has two digits, then $n+23$ cannot be a three-digit number; this can be verified by checking the numbers $n \\geq 88$, because if $n<88$, then one of the digits of $n+23$ is 0 . Therefore both $n$ and $n+23$ must be two-digit numbers, so the only possible carry for $n+23$ will occur in the tens place. If there is a carry for $n+23$, then $n=\\underline{a} \\underline{8}$ or $n=\\underline{a} \\underline{9}$, while $n+23=(a+3) 1$ or $n+23=(a+3) 2$, respectively (the case $n=\\underline{a} \\underline{7}$ is omitted because then $P(n+23)=0)$. In either case, $P(n+23)<P(n)$ because $a \\geq 1$. Otherwise, assume $n=\\underline{a} \\underline{b}$ and $n+23=(a+2)(b+3)$ is a solution to the given equation, which implies\n\n$$\n23=P(n+23)-P(n)=(a+2)(b+3)-a b=3 a+2 b+6 \\text {. }\n$$\n\nThis means $3 a+2 b=17$, which has solutions $(a, b)=(5,1),(3,4)$ as $a, b$ are digits and $b<7$. The two-digit solutions are $n=34$ or $n=51$; thus the least $n$ such that $P(n+23)=P(n)+23$ is $n=34$." ]
false
null
Numerical
null
For each positive integer $N$, let $P(N)$ denote the product of the digits of $N$. For example, $P(8)=8$, $P(451)=20$, and $P(2023)=0$. Compute the least positive integer $n$ such that $P(n+23)=P(n)+23$.
[ "34" ]
2,764
Number Theory
null
[ "$\\quad$ Use polynomial long division to rewrite $f(x)$ as\n\n$$\nf(x)=x^{2}-6 x+1+\\frac{1}{x^{2}+1}\n$$\n\nThe quadratic function $x^{2}-6 x+1=(x-3)^{2}-8$ has a minimum of -8 , achieved at $x=3$. The \"remainder term\" $\\frac{1}{x^{2}+1}$ is always positive. Thus $f(x)>-8$ for all $x$, so any integer value of $f(x)$ must be at least -7 .\n\nWhen $x=3$, the remainder term is less than 1 , so $f(3)$ is less than -7 . But $f(4)=-\\frac{34}{5}>-7$, so there must be some value of $x$ between 3 and 4 for which $f(x)=-7$, so the least integer value of $f(x)$ is $\\mathbf{- 7}$. The reader may note that $f(x)=-7$ when $x \\approx 2.097$ and $x \\approx 3.970$." ]
false
null
Numerical
null
Compute the least integer value of the function $$ f(x)=\frac{x^{4}-6 x^{3}+2 x^{2}-6 x+2}{x^{2}+1} $$ whose domain is the set of all real numbers.
[ "-7" ]
2,765
Geometry
null
[ "Because triangles $A B C$ and $X Y Z$ are noncongruent yet have two adjacent sides and an angle in common, the two triangles are the two possibilities in the ambiguous case of the Law of Sines. Without loss of generality, let triangle $A B C$ have obtuse angle $C$ and triangle $X Y Z$ have acute angle $Z$ so that $\\mathrm{m} \\angle C+\\mathrm{m} \\angle Z=$ $180^{\\circ}$. Place triangle $A B C$ so that $B$ and $Y$ coincide, and $C$ and $Z$ coincide. Because $\\mathrm{m} \\angle C$ and $\\mathrm{m} \\angle Z$ add up to $180^{\\circ}$, it follows that points $X, Z$, and $A$ all lie on the same line. The two triangles together then form $\\triangle A B X$, where $\\mathrm{m} \\angle B A X=\\mathrm{m} \\angle B X A=30^{\\circ}$ and $B X=A B=10$. Therefore the sum of the areas of the two triangles is equal to the area of triangle $A B X$, which is $\\frac{1}{2} \\cdot 10 \\cdot 10 \\cdot \\sin \\left(120^{\\circ}\\right)=\\frac{5 \\cdot 10 \\cdot \\sqrt{3}}{2}=\\mathbf{2 5} \\sqrt{\\mathbf{3}}$.\n\n<img_3887>\n\nFigure not drawn to scale.", "As explained above, let $\\triangle A B C$ have obtuse angle $C$ and $\\triangle X Y Z$ have acute angle $Z$. By the Law of Sines, $\\sin (\\angle C)=\\sin (\\angle Z)=\\frac{5}{9}$. This implies $\\mathrm{m} \\angle X Y Z=\\frac{5 \\pi}{6}-\\arcsin \\left(\\frac{5}{9}\\right)$ and $\\mathrm{m} \\angle A B C=$ $\\arcsin \\left(\\frac{5}{9}\\right)-\\frac{\\pi}{6}$. The areas of the triangles are $[X Y Z]=\\frac{1}{2} \\cdot 10 \\cdot 9 \\cdot \\sin \\left(\\frac{5 \\pi}{6}-\\arcsin \\left(\\frac{5}{9}\\right)\\right)$ and $[A B C]=\\frac{1}{2} \\cdot 10 \\cdot 9$. $\\sin \\left(\\arcsin \\left(\\frac{5}{9}\\right)-\\frac{\\pi}{6}\\right)$. By the angle subtraction rule, it follows that\n\n$$\n\\begin{aligned}\n\\sin \\left(\\frac{5 \\pi}{6}-\\arcsin \\left(\\frac{5}{9}\\right)\\right) & =\\sin \\left(\\frac{5 \\pi}{6}\\right) \\cos \\left(\\arcsin \\left(\\frac{5}{9}\\right)\\right)-\\cos \\left(\\frac{5 \\pi}{6}\\right) \\sin \\left(\\arcsin \\left(\\frac{5}{9}\\right)\\right) \\text { and } \\\\\n\\sin \\left(\\arcsin \\left(\\frac{5}{9}\\right)-\\frac{\\pi}{6}\\right) & =\\sin \\left(\\arcsin \\left(\\frac{5}{9}\\right)\\right) \\cos \\left(\\frac{\\pi}{6}\\right)-\\cos \\left(\\arcsin \\left(\\frac{5}{9}\\right)\\right) \\sin \\left(\\frac{\\pi}{6}\\right) .\n\\end{aligned}\n$$\n\nThe sum of the two sines is $\\sin \\left(\\arcsin \\left(\\frac{5}{9}\\right)\\right)\\left(\\cos \\left(\\frac{\\pi}{6}\\right)-\\cos \\left(\\frac{5 \\pi}{6}\\right)\\right)=\\frac{5}{9} \\cdot \\sqrt{3}$ because $\\sin \\left(\\frac{\\pi}{6}\\right)=\\sin \\left(\\frac{5 \\pi}{6}\\right)$. Finally, the sum of the areas of the two triangles is $\\frac{1}{2} \\cdot 10 \\cdot 9 \\cdot \\frac{5}{9} \\cdot \\sqrt{3}=25 \\sqrt{3}$." ]
false
null
Numerical
null
Suppose that noncongruent triangles $A B C$ and $X Y Z$ are given such that $A B=X Y=10, B C=$ $Y Z=9$, and $\mathrm{m} \angle C A B=\mathrm{m} \angle Z X Y=30^{\circ}$. Compute $[A B C]+[X Y Z]$.
[ "$25 \\sqrt{3}$" ]
2,766
Combinatorics
null
[ "One possible list is $1,1,3,7$, which has mode 1 , median 2 , and mean 3 . The sum is $1+1+3+7=12$. A list with fewer than four numbers cannot produce a median and unique mode that are distinct from each other. To see this, first note that a list with one number has the same median and mode. In a list with two numbers, the mode is not unique if the numbers are different, and if the numbers are the same, the median and mode are equal. In a list of three numbers with a unique mode, the mode must occur twice. Hence the\n\n\n\nmode is equal to the middle number of the three, which is the median. Thus a list with a median and unique mode that are different from each other must contain at least four numbers.\n\nNow suppose that a list satisfying the given conditions sums to less than 12 . The mean must be greater than 1, and because the list contains at least four numbers, the mean must be exactly 2 . The median must also be greater than 1 , and if the mode is 4 , then the sum must be greater than 12 . Thus it remains to determine if a mean of 2 with mode 1 and median 3 can be achieved with a list of four or five positive integers. However, having two 1s in the list and a median of 3 forces the remaining numbers in each case to have a sum too large for a mean of 2 . The least possible sum is therefore $\\mathbf{1 2}$." ]
false
null
Numerical
null
The mean, median, and unique mode of a list of positive integers are three consecutive integers in some order. Compute the least possible sum of the integers in the original list.
[ "12" ]
2,767
Combinatorics
null
[ "The problem calls for the number of ordered partitions of 17 , where two partitions are considered the same if they are cyclic permutations of each other. Because 17 is prime, each ordered partition of 17 into $n$ parts will be a cyclic permutation of exactly $n$ such partitions (including itself), unless $n=17$. (If $n=17$, then all the numbers are 1s, and there is exactly one table David can make.) By the sticks and stones method, the number of ordered partitions of 17 into $n$ nonzero parts is $\\left(\\begin{array}{c}16 \\\\ n-1\\end{array}\\right)$, and this overcounts the number of tables by a factor of $n$, except when $n=17$. Thus the number of possible tables is\n\n$$\n1+\\sum_{n=1}^{16}\\left(\\begin{array}{c}\n16 \\\\\nn-1\n\\end{array}\\right) \\cdot \\frac{1}{n}=1+\\sum_{n=1}^{16}\\left(\\begin{array}{c}\n17 \\\\\nn\n\\end{array}\\right) \\cdot \\frac{1}{17}=1+\\frac{2^{17}-2}{17}=\\mathbf{7 7 1 1}\n$$" ]
false
null
Numerical
null
David builds a circular table; he then carves one or more positive integers into the table at points equally spaced around its circumference. He considers two tables to be the same if one can be rotated so that it has the same numbers in the same positions as the other. For example, a table with the numbers $8,4,5$ (in clockwise order) is considered the same as a table with the numbers 4, 5,8 (in clockwise order), but both tables are different from a table with the numbers 8, 5, 4 (in clockwise order). Given that the numbers he carves sum to 17 , compute the number of different tables he can make.
[ "7711" ]
2,768
Geometry
null
[ "Note that $\\mathrm{m} \\angle A+\\mathrm{m} \\angle C=90^{\\circ}$ in quadrilateral $A B C D$. Because quadrilateral $A B E D$ is cyclic, it follows that $\\mathrm{m} \\angle A D E+\\mathrm{m} \\angle A B E=180^{\\circ}$. Moreover, because $\\mathrm{m} \\angle A B E+\\mathrm{m} \\angle E B C+\\mathrm{m} \\angle A D E=270^{\\circ}$, it follows that $\\angle E B C$ is a right angle. Thus $B E=\\sqrt{C E^{2}-B C^{2}}=\\sqrt{5^{2}-4^{2}}=3$. Let $\\mathrm{m} \\angle B E C=\\theta$; then $\\cos \\theta=\\frac{3}{5}$ and $\\sin \\theta=\\frac{4}{5}$.\n\n<img_3458>\n\nApplying the Law of Cosines to $\\triangle B E D$ yields\n\n$$\nB D^{2}=3^{2}+7^{2}-2 \\cdot 3 \\cdot 7 \\cos \\left(180^{\\circ}-\\theta\\right)=3^{2}+7^{2}+2 \\cdot 3 \\cdot 7 \\cos \\theta=\\frac{416}{5}\n$$\n\nThus $B D=\\frac{4 \\sqrt{26}}{\\sqrt{5}}$. Let $R$ be the circumradius of $\\triangle A B D$ and $\\triangle B E D$. Then the requested diameter is $2 R$, and\n\n\n\napplying the Law of Sines to $\\triangle B E D$ yields\n\n$$\n2 R=\\frac{B D}{\\sin \\left(180^{\\circ}-\\theta\\right)}=\\frac{B D}{\\sin \\theta}=\\frac{4 \\sqrt{26}}{\\sqrt{5}} \\cdot \\frac{5}{4}=\\sqrt{\\mathbf{1 3 0}}\n$$" ]
false
null
Numerical
null
In quadrilateral $A B C D, \mathrm{~m} \angle B+\mathrm{m} \angle D=270^{\circ}$. The circumcircle of $\triangle A B D$ intersects $\overline{C D}$ at point $E$, distinct from $D$. Given that $B C=4, C E=5$, and $D E=7$, compute the diameter of the circumcircle of $\triangle A B D$.
[ "$\\sqrt{130}$" ]
2,770
Algebra
null
[ "Multiply each of the given parenthesized expressions by its complex conjugate to obtain\n\n$$\n\\begin{aligned}\n142^{2}+5 \\cdot 333^{2} & =\\left(57^{2}+5 \\cdot 8^{2}\\right)\\left(6^{2}+5 \\cdot 5^{2}\\right) \\\\\n& =\\left(24^{2}+5 \\cdot 1^{2}\\right)\\left(3^{2}+5 \\cdot 14^{2}\\right) \\\\\n& =\\left(a^{2}+5 b^{2}\\right)\\left(c^{2}+5 d^{2}\\right) .\n\\end{aligned}\n$$\n\nThe expression on the second line is equal to $581 \\cdot 989=7 \\cdot 83 \\cdot 23 \\cdot 43$ (one can perhaps factor 989 a little faster by noting that 23 divides $6^{2}+5 \\cdot 5^{2}=7 \\cdot 23$ but not 581 , so it must divide 989 ). Thus $a^{2}+5 b^{2}$ and $c^{2}+5 d^{2}$ must be a factor pair of this number. It is not possible to express $1,7,23,43$, or 83 in the form $x^{2}+5 y^{2}$ for integers $x, y$.\n\nLet $N=a^{2}+5 b^{2}$, and without loss of generality, assume that 7 divides $N$. From the above analysis, $N$ must be $7 \\cdot 23,7 \\cdot 43$, or $7 \\cdot 83$. By direct computation of checking all positive integers $b$ less than $\\sqrt{\\frac{N}{5}}$, the only possibilities for $(a, b)$ are:\n\n- when $N=7 \\cdot 23$, either $(9,4)$ or $(6,5)$;\n- when $N=7 \\cdot 43$, either $(16,3)$ or $(11,6)$; and\n- when $N=7 \\cdot 83$, either $(24,1)$ or $(9,10)$.\n\nNext, observe that\n\n$$\n\\frac{-142+333 \\sqrt{5} i}{a+b \\sqrt{5} i}=\\frac{(-142 a+1665 b)+(333 a+142 b) \\sqrt{5} i}{N}\n$$\n\nmust equal $c+d \\sqrt{5} i$, so $N$ must divide $-142 a+1665 b$ and $333 a+142 b$. But\n\n- 7 does not divide $333 \\cdot 9+142 \\cdot 4$ or $333 \\cdot 6+142 \\cdot 5$;\n- 43 does not divide $333 \\cdot 16+142 \\cdot 3$; and\n- 83 does not divide $333 \\cdot 9+142 \\cdot 10$.\n\nThus the only candidates are $(a, b)=(11,6)$ and $(a, b)=(24,1)$. Note that $(24,1)$ yields the second factorization given in the problem statement, which has a negative real part in one of its factors. Thus the only remaining candidate for $(a, b)$ is $(11,6)$, which yields $(c, d)=(28,15)$, thus the answer is $11+6=\\mathbf{1 7}$." ]
false
null
Numerical
null
Let $i=\sqrt{-1}$. The complex number $z=-142+333 \sqrt{5} i$ can be expressed as a product of two complex numbers in multiple different ways, two of which are $(57-8 \sqrt{5} i)(-6+5 \sqrt{5} i)$ and $(24+\sqrt{5} i)(-3+14 \sqrt{5} i)$. Given that $z=-142+333 \sqrt{5} i$ can be written as $(a+b \sqrt{5} i)(c+d \sqrt{5} i)$, where $a, b, c$, and $d$ are positive integers, compute the lesser of $a+b$ and $c+d$.
[ "17" ]
2,771
Geometry
null
[ "Editor's Note: It was pointed out that the conditions of the problem determine two possible values of $\\tan \\angle A B D$ : one based on $\\mathrm{m} \\angle A<90^{\\circ}$, and the other based on $\\mathrm{m} \\angle A>90^{\\circ}$. A complete solution is provided below. We thank Matthew Babbitt and Silas Johnson for their contributions to this solution.\n\n\n\nLet $A B=x, B C=y$, and $\\mathrm{m} \\angle A=\\alpha$.\n\n<img_3267>\n\nIt then follows that\n\n<img_3933>\n\n$$\n\\left[A B D^{\\prime}\\right]=\\left\\{\\begin{array}{ll}\n\\frac{x y \\sin 2 \\alpha}{2} & \\text { if } \\alpha<90^{\\circ} \\\\\n\\frac{-x y \\sin 2 \\alpha}{2} & \\text { if } \\alpha>90^{\\circ}\n\\end{array} \\quad \\text { and } \\quad\\left[B^{\\prime} C D\\right]=\\frac{x(x-y) \\sin \\alpha}{2}\\right.\n$$\n\nBecause $\\overline{B C}, \\overline{A B^{\\prime}}$, and $\\overline{D^{\\prime} C^{\\prime}}$ are all parallel, it follows that $\\triangle B C C^{\\prime}$ and $\\triangle B C D^{\\prime}$ have the same height with respect to base $\\overline{B C}$, and thus $\\left[B C C^{\\prime}\\right]=\\left[B C D^{\\prime}\\right]$. Therefore $\\left[B C D^{\\prime}\\right]=\\left[A B D^{\\prime}\\right]$, and it follows that triangles $B C D^{\\prime}$ and $A B D^{\\prime}$ have the same height with respect to base $\\overline{B D^{\\prime}}$. Thus $A$ and $C$ are equidistant from $\\overleftrightarrow{B D^{\\prime}}$. Let $M$ be the midpoint of $\\overline{A C}$. Consider the following two cases.\n\nCase 1: Suppose that $\\alpha<90^{\\circ}$. Because $A$ and $C$ are equidistant from $\\overleftrightarrow{B D^{\\prime}}$, it follows that $M$ lies on $\\overleftrightarrow{B D^{\\prime}}$. But $\\overleftrightarrow{B D}$ also passes through the midpoint of $\\overline{A C}$ by parallelogram properties, so it follows that $D$ must lie on $\\overline{B D^{\\prime}}$. This implies that $\\left[A B D^{\\prime}\\right]$ must also equal $\\frac{y^{2} \\sin \\alpha}{2}+\\frac{x y \\sin \\alpha}{2}=\\frac{\\left(x y+y^{2}\\right) \\sin \\alpha}{2}$.\n\nThus $x(x-y) \\sin \\alpha=x y \\sin 2 \\alpha=\\left(x y+y^{2}\\right) \\sin \\alpha$, which implies $x: y=\\sqrt{2}+1$ and $\\sin \\alpha=\\cos \\alpha=\\frac{\\sqrt{2}}{2}$. Finally, from right triangle $D^{\\prime} A B$ with legs in the ratio $1: \\sqrt{2}+1$, it follows that $\\tan (\\angle A B D)=\\tan \\left(\\angle A B D^{\\prime}\\right)=$ $\\sqrt{2}-1$.\n\nCase 2: Suppose that $\\alpha>90^{\\circ}$. The points $D$ and $D^{\\prime}$ lie on opposite sides of $\\overleftrightarrow{A B}$. Because $B C=A D^{\\prime}$ and points $A$ and $C$ are equidistant from $\\overleftrightarrow{B D^{\\prime}}$, it follows that $A C B D^{\\prime}$ is either a parallelogram or an isosceles trapezoid. It cannot be the former because that would imply that $\\overleftrightarrow{D^{\\prime} A}\\|\\overleftrightarrow{B C}\\| \\overleftrightarrow{A D}$. Thus $A C B D^{\\prime}$ is an isosceles trapezoid. Then $\\left[B A D^{\\prime}\\right]=\\left[B M D^{\\prime}\\right]$. Because $B, M$, and $D$ are collinear and $B D: B M=2$, it follows that $\\left[B D D^{\\prime}\\right]=2 \\cdot\\left[B M D^{\\prime}\\right]$. Moreover, $\\left[B D D^{\\prime}\\right]=\\left[B A D^{\\prime}\\right]+[B A D]+\\left[D A D^{\\prime}\\right]$, so $\\left[B A D^{\\prime}\\right]=[B A D]+\\left[D A D^{\\prime}\\right]$. Thus $\\left[B A D^{\\prime}\\right]=\\frac{x y \\sin \\alpha}{2}+\\frac{y^{2} \\sin \\alpha}{2}=\\frac{\\left(x y+y^{2}\\right) \\sin \\alpha}{2}$.\n\nThus $x(x-y) \\sin \\alpha=-x y \\sin 2 \\alpha=\\left(x y+y^{2}\\right) \\sin \\alpha$, which implies $x: y=\\sqrt{2}+1, \\sin \\alpha=\\frac{\\sqrt{2}}{2}$, and $\\cos \\alpha=-\\frac{\\sqrt{2}}{2}$, so $\\alpha=135^{\\circ}$. Let $H$ be the foot of the perpendicular from $D$ to $\\overleftrightarrow{A B}$. Then $A D H$ is a $45^{\\circ}-45^{\\circ}-90^{\\circ}$ triangle with $H A=H D=\\frac{y}{\\sqrt{2}}$. Thus\n\n$$\n\\begin{aligned}\n\\tan \\angle A B D & =\\frac{D H}{B H}=\\frac{D H}{B A+A H} \\\\\n& =\\frac{y / \\sqrt{2}}{x+y / \\sqrt{2}}=\\frac{y}{x \\sqrt{2}+y} \\\\\n& =\\frac{y}{y(\\sqrt{2}+1)(\\sqrt{2})+y} \\\\\n& =\\frac{1}{(\\sqrt{2}+1)(\\sqrt{2})+1} \\\\\n& =\\frac{\\mathbf{3}-\\sqrt{\\mathbf{2}}}{\\mathbf{7}}\n\\end{aligned}\n$$", "Let $x, y$, and $\\alpha$ be as defined in the first solution. Then $C D=x$ because $A B C D$ is a parallelogram. Also note that $A B^{\\prime}=x, B^{\\prime} C^{\\prime}=y$, and $A D^{\\prime}=y$ because $A B C D$ and $A B^{\\prime} C^{\\prime} D^{\\prime}$ are congruent. Thus $D B^{\\prime}=A B^{\\prime}-A D=x-y$. Let $E$ be the intersection of $\\overleftrightarrow{A B}$ and $\\overleftrightarrow{C^{\\prime} D^{\\prime}}$, as shown in both configurations below.\n<img_3701>\n\nBecause $E$ lies on $\\overleftrightarrow{A B}$, it follows that $\\angle B^{\\prime} A E=180^{\\circ}-\\angle B A D=180^{\\circ}-\\alpha$. Thus, in quadrilateral $A B^{\\prime} C^{\\prime} E$, $\\overline{A B^{\\prime}} \\| \\overline{C^{\\prime} E}$ and $\\angle A B^{\\prime} C^{\\prime}=\\angle B^{\\prime} A E=180^{\\circ}-\\alpha$. Therefore quadrilateral $A B^{\\prime} C^{\\prime} E$ is an isosceles trapezoid. Hence $A E=B^{\\prime} C^{\\prime}=y$. It follows that $B E=B A+A E=x+y$. Therefore, from the sine area formula with respect to $\\angle C B E$,\n\n$$\n[B C E]=\\frac{1}{2} x(x+y) \\sin \\left(180^{\\circ}-\\alpha\\right)=\\frac{1}{2} x(x+y) \\sin \\alpha .\n$$\n\nBecause $\\overline{E C^{\\prime}} \\| \\overline{B C}$, it follows that $\\left[B C C^{\\prime}\\right]=[B C E]=\\frac{1}{2} x(x+y) \\sin \\alpha$. From the sine area formula with respect to $\\angle B A D^{\\prime}$ and $\\angle B^{\\prime} D C$, respectively,\n\n$$\n\\left[B A D^{\\prime}\\right]=\\frac{1}{2} x y|\\sin (2 \\alpha)|, \\quad\\left[B^{\\prime} D C\\right]=\\frac{1}{2} x(x-y) \\sin \\alpha\n$$\n\nThus\n\n$$\n\\frac{1}{2} x(x+y) \\sin \\alpha=\\frac{1}{2} x y|\\sin (2 \\alpha)|=\\frac{1}{2} x(x-y) \\sin \\alpha .\n$$\n\n\nBecause $\\overline{B C}, \\overline{A B^{\\prime}}$, and $\\overline{D^{\\prime} C^{\\prime}}$ are all parallel, it follows that $\\triangle B C C^{\\prime}$ and $\\triangle B C D^{\\prime}$ have the same height with respect to base $\\overline{B C}$, and thus $\\left[B C C^{\\prime}\\right]=\\left[B C D^{\\prime}\\right]$. Therefore $\\left[B C D^{\\prime}\\right]=\\left[A B D^{\\prime}\\right]$, and it follows that triangles $B C D^{\\prime}$ and $A B D^{\\prime}$ have the same height with respect to base $\\overline{B D^{\\prime}}$. Thus $A$ and $C$ are equidistant from $\\overleftrightarrow{B D^{\\prime}}$. Let $M$ be the midpoint of $\\overline{A C}$. Consider the following two cases.\n\nCase 1: Suppose that $\\alpha<90^{\\circ}$. Because $A$ and $C$ are equidistant from $\\overleftrightarrow{B D^{\\prime}}$, it follows that $M$ lies on $\\overleftrightarrow{B D^{\\prime}}$. But $\\overleftrightarrow{B D}$ also passes through the midpoint of $\\overline{A C}$ by parallelogram properties, so it follows that $D$ must lie on $\\overline{B D^{\\prime}}$. This implies that $\\left[A B D^{\\prime}\\right]$ must also equal $\\frac{y^{2} \\sin \\alpha}{2}+\\frac{x y \\sin \\alpha}{2}=\\frac{\\left(x y+y^{2}\\right) \\sin \\alpha}{2}$.\n\nThus $x(x-y) \\sin \\alpha=x y \\sin 2 \\alpha=\\left(x y+y^{2}\\right) \\sin \\alpha$, which implies $x: y=\\sqrt{2}+1$ and $\\sin \\alpha=\\cos \\alpha=\\frac{\\sqrt{2}}{2}$. Finally, from right triangle $D^{\\prime} A B$ with legs in the ratio $1: \\sqrt{2}+1$, it follows that $\\tan (\\angle A B D)=\\tan \\left(\\angle A B D^{\\prime}\\right)=$ $\\sqrt{2}-1$.\n\nCase 2: Suppose that $\\alpha>90^{\\circ}$. The points $D$ and $D^{\\prime}$ lie on opposite sides of $\\overleftrightarrow{A B}$. Because $B C=A D^{\\prime}$ and points $A$ and $C$ are equidistant from $\\overleftrightarrow{B D^{\\prime}}$, it follows that $A C B D^{\\prime}$ is either a parallelogram or an isosceles trapezoid. It cannot be the former because that would imply that $\\overleftrightarrow{D^{\\prime} A}\\|\\overleftrightarrow{B C}\\| \\overleftrightarrow{A D}$. Thus $A C B D^{\\prime}$ is an isosceles trapezoid. Then $\\left[B A D^{\\prime}\\right]=\\left[B M D^{\\prime}\\right]$. Because $B, M$, and $D$ are collinear and $B D: B M=2$, it follows that $\\left[B D D^{\\prime}\\right]=2 \\cdot\\left[B M D^{\\prime}\\right]$. Moreover, $\\left[B D D^{\\prime}\\right]=\\left[B A D^{\\prime}\\right]+[B A D]+\\left[D A D^{\\prime}\\right]$, so $\\left[B A D^{\\prime}\\right]=[B A D]+\\left[D A D^{\\prime}\\right]$. Thus $\\left[B A D^{\\prime}\\right]=\\frac{x y \\sin \\alpha}{2}+\\frac{y^{2} \\sin \\alpha}{2}=\\frac{\\left(x y+y^{2}\\right) \\sin \\alpha}{2}$.\n\nThus $x(x-y) \\sin \\alpha=-x y \\sin 2 \\alpha=\\left(x y+y^{2}\\right) \\sin \\alpha$, which implies $x: y=\\sqrt{2}+1, \\sin \\alpha=\\frac{\\sqrt{2}}{2}$, and $\\cos \\alpha=-\\frac{\\sqrt{2}}{2}$, so $\\alpha=135^{\\circ}$. Let $H$ be the foot of the perpendicular from $D$ to $\\overleftrightarrow{A B}$. Then $A D H$ is a $45^{\\circ}-45^{\\circ}-90^{\\circ}$ triangle with $H A=H D=\\frac{y}{\\sqrt{2}}$. Thus\n\n$$\n\\begin{aligned}\n\\tan \\angle A B D & =\\frac{D H}{B H}=\\frac{D H}{B A+A H} \\\\\n& =\\frac{y / \\sqrt{2}}{x+y / \\sqrt{2}}=\\frac{y}{x \\sqrt{2}+y} \\\\\n& =\\frac{y}{y(\\sqrt{2}+1)(\\sqrt{2})+y} \\\\\n& =\\frac{1}{(\\sqrt{2}+1)(\\sqrt{2})+1} \\\\\n& =\\frac{\\mathbf{3}-\\sqrt{\\mathbf{2}}}{\\mathbf{7}}\n\\end{aligned}\n$$" ]
true
null
Numerical
null
Parallelogram $A B C D$ is rotated about $A$ in the plane, resulting in $A B^{\prime} C^{\prime} D^{\prime}$, with $D$ on $\overline{A B^{\prime}}$. Suppose that $\left[B^{\prime} C D\right]=\left[A B D^{\prime}\right]=\left[B C C^{\prime}\right]$. Compute $\tan \angle A B D$.
[ "$\\sqrt{2}-1$,$\\frac{3-\\sqrt{2}}{7}$" ]
2,772
Number Theory
null
[ "A candidate for desired number is $\\underline{2} \\underline{0} \\underline{X} \\underline{Y}$, where $X$ and $Y$ are digits and $X+Y=15$. To minimize this number, take $Y=9$. Then $X=6$, and the desired number is 2069 ." ]
false
null
Numerical
null
Compute the least integer greater than 2023 , the sum of whose digits is 17 .
[ "2069" ]
2,773
Algebra
null
[ "Note that $|r-s|=\\sqrt{r^{2}-2 r s+s^{2}}=\\sqrt{(r+s)^{2}-4 r s}$. By Vieta's Formulas, $r+s=-(-18)$ and $r s=K$, so $|r-s|=\\sqrt{18^{2}-4 K}$. With $T=2069, K=17$, and the answer is $\\sqrt{324-68}=\\sqrt{256}=16$." ]
false
null
Numerical
null
Let $T$ = 2069, and let $K$ be the sum of the digits of $T$. Let $r$ and $s$ be the two roots of the polynomial $x^{2}-18 x+K$. Compute $|r-s|$.
[ "16" ]
2,775
Algebra
null
[ "Let $\\lfloor\\sqrt{n}\\rfloor=x$. Then $n$ can be written as $x^{2}+y$, where $y$ is an integer such that $0 \\leq y<2 x+1$. Let $m$ be the greatest perfect square less than or equal to $9 T$. Then the definition of the sequence and the previous observation imply that $A_{K}=A_{9 T}=\\sqrt{m}+(9 T-m)=\\lfloor\\sqrt{9 T}\\rfloor+\\left(9 T-\\lfloor\\sqrt{9 T}\\rfloor^{2}\\right)$. With $T=7, K=9 T=63$, $\\lfloor\\sqrt{9 T}\\rfloor=7$, and the answer is therefore $7+\\left(63-7^{2}\\right)=\\mathbf{2 1}$." ]
false
null
Numerical
null
Let $T=$ 7, and let $K=9 T$. Let $A_{1}=2$, and for $n \geq 2$, let $$ A_{n}= \begin{cases}A_{n-1}+1 & \text { if } n \text { is not a perfect square } \\ \sqrt{n} & \text { if } n \text { is a perfect square. }\end{cases} $$ Compute $A_{K}$.
[ "21" ]
2,776
Number Theory
null
[ "Write $20^{T} \\cdot 23^{T}$ as $2^{2 T} \\cdot 5^{T} \\cdot 23^{T}$. This number has $K=(2 T+1)(T+1)^{2}$ positive divisors. With $T=21, K=43 \\cdot 22^{2}$. The greatest prime factor of $K$ is $\\mathbf{4 3}$." ]
false
null
Numerical
null
Let $T=$ 21. The number $20^{T} \cdot 23^{T}$ has $K$ positive divisors. Compute the greatest prime factor of $K$.
[ "43" ]
2,777
Number Theory
null
[ "Using the symmetry property of binomial coefficients, the desired value of $n$ is $T-3-17=T-20$. With $T=43$, the answer is $\\mathbf{2 3}$." ]
false
null
Numerical
null
Let $T=43$. Compute the positive integer $n \neq 17$ for which $\left(\begin{array}{c}T-3 \\ 17\end{array}\right)=\left(\begin{array}{c}T-3 \\ n\end{array}\right)$.
[ "23" ]
2,778
Number Theory
null
[ "Assuming that $T$ is a positive integer, because units digits of powers of $T$ cycle in groups of at most 4, the numbers $T^{2023}$ and $T^{23}$ have the same units digit, hence the number $T^{2023}-T^{23}$ has a units digit of 0 , and the answer is thus the units digit of $T^{20}$. With $T=23$, the units digit of $23^{20}$ is the same as the units digit of $3^{20}$, which is the same as the units digit of $3^{4}=81$, so the answer is $\\mathbf{1}$." ]
false
null
Numerical
null
Let $T=23$ . Compute the units digit of $T^{2023}+T^{20}-T^{23}$.
[ "1" ]
2,780
Combinatorics
null
[ "The probability of flipping all heads is $\\left(\\frac{1}{2}\\right)^{T}$, so the probability of flipping at least one tails is $1-\\frac{1}{2^{T}}$. With $T=3$, the desired probability is $1-\\frac{1}{8}=\\frac{7}{8}$." ]
false
null
Numerical
null
Let $T=$ 3. Suppose that $T$ fair coins are flipped. Compute the probability that at least one tails is flipped.
[ "$\\frac{7}{8}$" ]
2,781
Algebra
null
[ "The left-hand side of the given equation can be factored as $(x+m)(x+n)$. The two solutions are therefore $-m$ and $-n$, so the answer is $\\min \\{-m,-n\\}$. With $T=\\frac{7}{8}, m=7, n=8$, and $\\min \\{-7,-8\\}$ is $\\mathbf{- 8}$." ]
false
null
Numerical
null
Let $T=$ $\frac{7}{8}$. The number $T$ can be expressed as a reduced fraction $\frac{m}{n}$, where $m$ and $n$ are positive integers whose greatest common divisor is 1 . The equation $x^{2}+(m+n) x+m n=0$ has two distinct real solutions. Compute the lesser of these two solutions.
[ "-8" ]
2,782
Algebra
null
[ "Note that $(-1+i)^{2}=1+2 i-1=2 i$. Thus $(-1+i)^{4}=(2 i)^{2}=-4$, and $(-1+i)^{8}=(-4)^{2}=16$. The expression $\\frac{1}{2^{T}}$ is a power of 16 if $T$ is a negative multiple of 4 . With $T=-8, \\frac{1}{2^{-8}}=2^{8}=16^{2}=\\left((-1+i)^{8}\\right)^{2}=$ $(-1+i)^{16}$, so the desired value of $k$ is $\\mathbf{1 6}$." ]
false
null
Numerical
null
Let $T=$ -8, and let $i=\sqrt{-1}$. Compute the positive integer $k$ for which $(-1+i)^{k}=\frac{1}{2^{T}}$.
[ "16" ]
2,783
Algebra
null
[ "By the change of base rule and a property of $\\operatorname{logs}, \\log _{4} T=\\frac{\\log _{2} T}{\\log _{2} 4}=\\frac{\\log _{2} T}{2}=\\log _{2} \\sqrt{T}$. Thus $x=\\sqrt{T}$, and with $T=16, x=4$." ]
false
null
Numerical
null
Let $T=$ 16. Compute the value of $x$ that satisfies $\log _{4} T=\log _{2} x$.
[ "4" ]
2,784
Geometry
null
[ "Let the side length of square base $E O J S$ be $2 x$, and let $M$ be the midpoint of $\\overline{E O}$. Then $\\overline{L M} \\perp \\overline{E O}$, and $L M=\\sqrt{(5 \\sqrt{2})^{2}-x^{2}}$ by the Pythagorean Theorem. Thus $[L E O]=\\frac{1}{2} \\cdot 2 x \\sqrt{(5 \\sqrt{2})^{2}-x^{2}}=$\n\n\n\n$x \\sqrt{(5 \\sqrt{2})^{2}-x^{2}}$. With $T=4, x=1$, and the answer is $1 \\cdot \\sqrt{50-1}=\\mathbf{7}$." ]
false
null
Numerical
null
Let $T=$ 4. Pyramid $L E O J S$ is a right square pyramid with base $E O J S$, whose area is $T$. Given that $L E=5 \sqrt{2}$, compute $[L E O]$.
[ "7" ]
2,785
Number Theory
null
[ "Note that $T$ and $T+10$ have the same units digit. Because units digits of powers of $T$ cycle in groups of at most 4 , the numbers $T^{2023}$ and $(T+10)^{23}$ have the same units digit, hence the number $T^{2023}-(T+10)^{23}$ has a units digit of 0 , and the answer is thus the units digit of $(T-2)^{20}$. With $T=7$, the units digit of $5^{20}$ is 5 ." ]
false
null
Numerical
null
Let $T=$ 7. Compute the units digit of $T^{2023}+(T-2)^{20}-(T+10)^{23}$.
[ "5" ]
2,786
Geometry
null
[ "Draw radius $A P$ and note that $A P B$ is a right triangle with $\\mathrm{m} \\angle A P B=90^{\\circ}$. Note that $A B=R-r$ and $A P=r$, so by the Pythagorean Theorem, $B P=\\sqrt{(R-r)^{2}-r^{2}}=\\sqrt{R^{2}-2 R r}$. With $r=1$ and $R=5$, it follows that $B P=\\sqrt{\\mathbf{1 5}}$." ]
false
null
Numerical
null
Let $r=1$ and $R=5$. A circle with radius $r$ is centered at $A$, and a circle with radius $R$ is centered at $B$. The two circles are internally tangent. Point $P$ lies on the smaller circle so that $\overline{B P}$ is tangent to the smaller circle. Compute $B P$.
[ "$\\sqrt{15}$" ]
2,787
Number Theory
null
[ "Factor 15 ! -13 ! to obtain $13 !(15 \\cdot 14-1)=13$ ! $\\cdot 209$. The largest prime divisor of 13 ! is 13 , so continue by factoring $209=11 \\cdot 19$. Thus the largest prime divisor of 15 ! - 13 ! is 19 ." ]
false
null
Numerical
null
Compute the largest prime divisor of $15 !-13$ !.
[ "19" ]
2,788
Geometry
null
[ "Proceed in two steps: first, determine the possible sets of side lengths for the squares; then determine which arrangement of squares produces the largest perimeter. Let the side lengths of the squares be positive integers $m \\geq n \\geq p$. Then $m^{2}+n^{2}+p^{2}=41$, so $m \\leq 6$, and because $3^{2}+3^{2}+3^{2}<41$, it follows that $m>3$. If $m=6$, then $n^{2}+p^{2}=5$, so $n=2$ and $p=1$. If $m=5$, then $n^{2}+p^{2}=16$, which has no positive integral solutions. If $m=4$, then $n^{2}+p^{2}=25$, which is possible if $n=4$ and $p=3$. So the two possible sets of values are $m=6, n=2, p=1$ or $m=4, n=4, p=3$.\n\nFirst consider $m=6, n=2, p=1$. Moving counterclockwise around the origin, one square is between the other two; by symmetry, it suffices to consider only the three possibilities for this \"middle\" square. If the middle square is the 6-square, then each of the other two squares has a side that is a subset of a side of the 6 -square. To compute the total perimeter, add the perimeters of the three squares and subtract twice the lengths of the shared segments (because they contribute 0 to the perimeter). Thus the total perimeter is $4 \\cdot 6+4 \\cdot 2+4 \\cdot 1-2 \\cdot 2-2 \\cdot 1=30$. If the middle square is the 2 -square, then one of its sides is a subset of the 6 -square's side, and one of its sides is a superset of the 1 -square's side, for a total perimeter of $4 \\cdot 6+4 \\cdot 2+4 \\cdot 1-2 \\cdot 2-2 \\cdot 1=$ 30. But if the middle square is the 1-square, then two of its sides are subsets of the other squares' sides, and the total perimeter is $4 \\cdot 6+4 \\cdot 2+4 \\cdot 1-2 \\cdot 1-2 \\cdot 1=32$.\n\nIf $m=4, n=4$, and $p=3$, similar logic to the foregoing suggests that the maximal perimeter is obtained when the smallest square is between the other two, yielding a total perimeter of $4 \\cdot 4+4 \\cdot 4+4 \\cdot 3-2 \\cdot 3-2 \\cdot 3=32$. Either of the other two arrangements yields a total perimeter of $4 \\cdot 4+4 \\cdot 4+4 \\cdot 3-2 \\cdot 3-2 \\cdot 4=30$. So the maximum perimeter is $\\mathbf{3 2}$.", "Let the side lengths be $a, b$, and $c$, and let $P$ be the perimeter. If the $a \\times a$ square is placed in between the other two (going either clockwise or counterclockwise around the origin), then\n\n$$\nP=3 b+|b-a|+2 a+|c-a|+3 c \\text {. }\n$$\n\nTo obtain a more symmetric expression, note that for any real numbers $x$ and $y$,\n\n$$\n|x-y|=\\max \\{x, y\\}-\\min \\{x, y\\}=x+y-2 \\min \\{x, y\\}\n$$\n\nUsing this identity,\n\n$$\nP=4 a+4 b+4 c-2 \\min \\{a, b\\}-2 \\min \\{a, c\\} .\n$$\n\nThus $P$ is the sum of the perimeters of the three, less twice the overlaps. To maximize $P$, choose $a$ to be the smallest of the three, which leads to $P=4 b+4 c$.\n\n\n\nAs in the first solution, the two possible sets of values are $c=6, b=2, a=1$ and $c=b=4$, $a=3$.\n\nIn the first case, the maximum length of the boundary is $P=4 \\cdot 2+4 \\cdot 6=32$, and in the second case it is $P=4 \\cdot 4+4 \\cdot 4=32$. So the maximum perimeter is $\\mathbf{3 2}$." ]
false
null
Numerical
null
Three non-overlapping squares of positive integer side lengths each have one vertex at the origin and sides parallel to the coordinate axes. Together, the three squares enclose a region whose area is 41 . Compute the largest possible perimeter of the region.
[ "32" ]
2,789
Geometry
null
[ "Draw auxiliary segment $\\overline{O B}$, as shown in the diagram below.\n\n<img_4031>\n\nTriangle $O A B$ is equilateral, so $\\mathrm{m} \\angle O A B=60^{\\circ}$. Then $\\triangle M A P$ is a $30^{\\circ}-60^{\\circ}-90^{\\circ}$ triangle with hypotenuse $A M=1 / 2$. Thus $A P=1 / 4$ and $M P=\\sqrt{3} / 4$, so\n\n$$\n\\begin{aligned}\n{[M A P] } & =\\frac{1}{2}\\left(\\frac{1}{4}\\right)\\left(\\frac{\\sqrt{3}}{4}\\right) \\\\\n& =\\frac{\\sqrt{3}}{\\mathbf{3 2}} .\n\\end{aligned}\n$$" ]
false
null
Numerical
null
A circle with center $O$ and radius 1 contains chord $\overline{A B}$ of length 1 , and point $M$ is the midpoint of $\overline{A B}$. If the perpendicular to $\overline{A O}$ through $M$ intersects $\overline{A O}$ at $P$, compute $[M A P]$.
[ "$\\frac{\\sqrt{3}}{32}$" ]
2,790
Number Theory
null
[ "Subtract from both sides and regroup to obtain $p^{2}-2 p-\\left(q^{2}+6 q\\right)=8$. Completing both squares yields $(p-1)^{2}-(q+3)^{2}=0$. The left side is a difference of two squares; factor to obtain $((p-1)+(q+3))((p-1)-(q+3))=0$, whence $(p+q+2)(p-q-4)=0$. For positive primes $p$ and $q$, the first factor $p+q+2$ must also be positive. Therefore the second factor $p-q-4$ must be zero, hence $p-4=q$. Now look for primes starting with 97 and working downward. If $p=97$, then $q=93$, which is not prime; if $p=89$, then $q=85$, which is also not prime. But if $p=83$, then $q=79$, which is prime. Thus the largest possible value of $p+q$ is $83+79=\\mathbf{1 6 2}$." ]
false
null
Numerical
null
$\quad$ Suppose that $p$ and $q$ are two-digit prime numbers such that $p^{2}-q^{2}=2 p+6 q+8$. Compute the largest possible value of $p+q$.
[ "162" ]
2,791
Algebra
null
[ "Let the four zeros be $p \\leq q \\leq r \\leq s$. The coefficient of $x^{3}$ is 0 , so $p+q+r+s=0$. The mean of four numbers in arithmetic progression is the mean of the middle two numbers, so $q=-r$. Then the common difference is $r-q=r-(-r)=2 r$, so $s=r+2 r=3 r$ and $p=q-2 r=-3 r$. Therefore the four zeros are $-3 r,-r, r, 3 r$. The product of\n\n\n\nthe zeros is $9 r^{4}$; referring to the original polynomial and using the product of roots formula gives $9 r^{4}=225$. Thus $r=\\sqrt{5}$, the zeros are $-3 \\sqrt{5},-\\sqrt{5}, \\sqrt{5}, 3 \\sqrt{5}$, and the polynomial can be factored as $(x-\\sqrt{5})(x+\\sqrt{5})(x-3 \\sqrt{5})(x+3 \\sqrt{5})$. Expanding this product yields $\\left(x^{2}-5\\right)\\left(x^{2}-45\\right)=x^{4}-50 x^{2}+225$, so $j=-50$.", "Proceed as in the original solution, finding the values $-3 \\sqrt{5},-\\sqrt{5}, \\sqrt{5}$, and $3 \\sqrt{5}$ for the zeros. By the sums and products of roots formulas, the coefficient of $x^{2}$ is the sum of all six possible products of pairs of roots:\n\n$$\n(-3 \\sqrt{5})(-\\sqrt{5})+(-3 \\sqrt{5})(\\sqrt{5})+(-3 \\sqrt{5})(3 \\sqrt{5})+(-\\sqrt{5})(\\sqrt{5})+(-\\sqrt{5})(3 \\sqrt{5})+(\\sqrt{5})(3 \\sqrt{5})\n$$\n\nObserving that some of these terms will cancel yields the simpler expression\n\n$$\n(-3 \\sqrt{5})(3 \\sqrt{5})+(-\\sqrt{5})(\\sqrt{5})=-45+-5=-50\n$$" ]
false
null
Numerical
null
The four zeros of the polynomial $x^{4}+j x^{2}+k x+225$ are distinct real numbers in arithmetic progression. Compute the value of $j$.
[ "-50" ]
2,792
Algebra
null
[ "Inverting the problem, the goal is to find seven positive integers $a<b<c<d<e<f<g$ and a positive integer $n$ such that $a^{8}, b^{7}, c^{6}, \\ldots, g^{2} \\leq n$ and $n<(a+1)^{8},(b+1)^{7}, \\ldots,(g+1)^{2}$. Proceed by cases starting with small values of $a$.\n\nIf $a=1$, then because $n<(a+1)^{8}, n<256$. But because $n \\geq(a+3)^{5}, n \\geq 4^{5}=1024$. So it is impossible for $a$ to be 1 .\n\nIf $a=2$, then $a^{8}=256$ and $(a+1)^{8}=6561$, so $256 \\leq n<6561$. Then $b \\geq 3 \\Rightarrow b^{7} \\geq 2187$ and $c \\geq 4 \\Rightarrow c^{6} \\geq 4096$. So $n \\geq 4096$. Because $(3+1)^{7}=16384$ and $(4+1)^{6}=15625$, the condition $n<6561$ found previously guarantees that $\\lfloor\\sqrt[7]{n}\\rfloor=3$ and $\\lfloor\\sqrt[6]{n}\\rfloor=4$. Notice that if $4096 \\leq n<6561$, then $\\lfloor\\sqrt[5]{n}\\rfloor=5,\\lfloor\\sqrt[4]{n}\\rfloor=8$, and $\\lfloor\\sqrt[3]{n}\\rfloor \\geq 16$. In fact, $\\lfloor\\sqrt[3]{4096}\\rfloor=2^{4}=16$ and $\\lfloor\\sqrt{4096}\\rfloor=2^{6}=64$. So the desired value of $n$ is 4096 ." ]
false
null
Numerical
null
Compute the smallest positive integer $n$ such that $$ n,\lfloor\sqrt{n}\rfloor,\lfloor\sqrt[3]{n}\rfloor,\lfloor\sqrt[4]{n}\rfloor,\lfloor\sqrt[5]{n}\rfloor,\lfloor\sqrt[6]{n}\rfloor,\lfloor\sqrt[7]{n}\rfloor, \text { and }\lfloor\sqrt[8]{n}\rfloor $$ are distinct.
[ "4096" ]
2,793
Number Theory
null
[ "If $n$ is even and $n \\leq 2012$, then $n$ !! $\\mid 2012$ !! trivially, while if $n>2012,2012$ !! $<n$ !!, so $n$ !! cannot divide 2012!!. Thus there are a total of 1006 even values of $n$ such that $n$ !! | 2012!!. If $n$ is odd and $n<1006$, then $n$ !! | 2012!!. To show this, rearrange the terms of 2012!! and factor:\n\n$$\n\\begin{aligned}\n2012 ! ! & =2 \\cdot 4 \\cdot 6 \\cdots 2010 \\cdot 2012 \\\\\n& =(2 \\cdot 6 \\cdot 10 \\cdots 2010)(4 \\cdot 8 \\cdot 12 \\cdots 2012) \\\\\n& =2^{503}(1 \\cdot 3 \\cdot 5 \\cdots 1005)(4 \\cdot 8 \\cdot 12 \\cdots 2012)\n\\end{aligned}\n$$\n\nHowever, the condition $n<1006$ is not necessary, only sufficient, because $n$ !! also divides 2012 if $1007 \\cdot 1009 \\cdots n \\mid(4 \\cdot 8 \\cdot 12 \\cdots 2012)$. (The factor of $2^{503}$ is irrelevant because all the factors on the left side are odd.) The expression $(4 \\cdot 8 \\cdot 12 \\cdots 2012)$ can be factored as $4^{503}(1 \\cdot 2 \\cdot 3 \\cdot \\cdots 503)=4^{503} \\cdot 503$ !. Examining the numbers $1007,1009, \\ldots$ in sequence shows that 1007 is satisfactory, because $1007=19 \\cdot 53$. On the other hand, 1009 is prime, so it cannot be a factor of $4^{503} \\cdot 503$ !. Thus the largest possible odd value of $n$ is 1007 , and there are 504 odd values of $n$ altogether. The total is $1006+504=\\mathbf{1 5 1 0}$." ]
false
null
Numerical
null
If $n$ is a positive integer, then $n$ !! is defined to be $n(n-2)(n-4) \cdots 2$ if $n$ is even and $n(n-2)(n-4) \cdots 1$ if $n$ is odd. For example, $8 ! !=8 \cdot 6 \cdot 4 \cdot 2=384$ and $9 ! !=9 \cdot 7 \cdot 5 \cdot 3 \cdot 1=945$. Compute the number of positive integers $n$ such that $n !$ ! divides 2012!!.
[ "1510" ]
2,794
Geometry
null
[ "As is usual, let $\\arg z$ refer to measure of the directed angle whose vertex is the origin, whose initial ray passes through 1 (i.e., the point $(1,0)$ ), and whose terminal ray passes through $z$. Then $\\arg 1 / z=-\\arg z$. Using the formula $a b \\sin \\gamma$ for the area of the parallelogram with sides $a$ and $b$ and included angle $\\gamma$ yields the equation\n\n$$\n\\frac{35}{37}=|z| \\cdot\\left|\\frac{1}{z}\\right| \\cdot \\sin (2 \\arg z)\n$$\n\nHowever, $|1 / z|=1 /|z|$, so the right side simplifies to $\\sin (2 \\arg z)$.\n\nTo compute the length $c$ of the diagonal from 0 to $z+1 / z$, use the Law of Cosines and the fact that consecutive angles of a parallelogram are supplementary:\n\n$$\n\\begin{aligned}\nc^{2} & =|z|^{2}+\\left|\\frac{1}{z}\\right|^{2}-2|z| \\cdot\\left|\\frac{1}{z}\\right| \\cos (\\pi-2 \\arg z) \\\\\n& =|z|^{2}+\\left|\\frac{1}{z}\\right|^{2}-2 \\cos (\\pi-2 \\arg z) \\\\\n& =|z|^{2}+\\left|\\frac{1}{z}\\right|^{2}+2 \\cos (2 \\arg z) .\n\\end{aligned}\n$$\n\nThis expression separates into two parts: the first, $|z|^{2}+|1 / z|^{2}$, is independent of the argument (angle) of $z$, while the second, $2 \\cos (2 \\arg z)$, is determined by the condition that $\\sin (2 \\arg z)=$ 35/37. The minimum value of $|z|^{2}+|1 / z|^{2}$ is 2 , as can be shown by the Arithmetic MeanGeometric Mean inequality applied to $|z|^{2}$ and $|1 / z|^{2}$ :\n\n$$\n|z|^{2}+|1 / z|^{2} \\geq 2 \\sqrt{|z|^{2} \\cdot|1 / z|^{2}}=2\n$$\n\nThe value of $\\cos (2 \\arg z)$ is given by the Pythagorean Identity:\n\n$$\n\\cos (2 \\arg z)= \\pm \\sqrt{1-\\left(\\frac{35}{37}\\right)^{2}}= \\pm \\sqrt{1-\\frac{1225}{1369}}= \\pm \\sqrt{\\frac{144}{1369}}= \\pm \\frac{12}{37}\n$$\n\nBecause the goal is to minimize the diagonal's length, choose the negative value to obtain\n\n$$\nd^{2}=2-2 \\cdot \\frac{12}{37}=\\frac{50}{37}\n$$", "Using polar coordinates, write\n\n$$\nz=r(\\cos \\theta+i \\sin \\theta)\n$$\n\nso that\n\n$$\n\\frac{1}{z}=r^{-1}(\\cos \\theta-i \\sin \\theta)\n$$\n\nWithout loss of generality, assume that $z$ is in the first quadrant, so that $\\theta>0$. Then the angle between the sides $\\overline{0 z}$ and $\\overline{0 z^{-1}}$ is $2 \\theta$, and the side lengths are $r$ and $r^{-1}$, so the area of the parallelogram is\n\n$$\n\\frac{35}{37}=r \\cdot r^{-1} \\cdot \\sin (2 \\theta)=\\sin 2 \\theta\n$$\n\nNote that $0<\\theta<\\pi / 2$, so $0<2 \\theta<\\pi$, and there are two values of $\\theta$ that satisfy this equation. Adding the expressions for $z$ and $z^{-1}$ and calculating the absolute value yields\n\n$$\n\\begin{aligned}\n\\left|z+\\frac{1}{z}\\right|^{2} & =\\left(r+r^{-1}\\right)^{2} \\cos ^{2} \\theta+\\left(r-r^{-1}\\right)^{2} \\sin ^{2} \\theta \\\\\n& =\\left(r^{2}+r^{-2}\\right)\\left(\\cos ^{2} \\theta+\\sin ^{2} \\theta\\right)+2 r \\cdot r^{-1}\\left(\\cos ^{2} \\theta-\\sin ^{2} \\theta\\right) \\\\\n& =r^{2}+r^{-2}+2 \\cos 2 \\theta .\n\\end{aligned}\n$$\n\nMinimize the terms involving $r$ using the Arithmetic-Geometric Mean inequality:\n\n$$\nr^{2}+r^{-2} \\geq 2 \\sqrt{r^{2} \\cdot r^{-2}}=2\n$$\n\nwith equality when $r^{2}=r^{-2}$, that is, when $r=1$. For the term involving $\\theta$, recall that there are two possible values:\n\n$$\n\\cos 2 \\theta= \\pm \\sqrt{1-\\sin ^{2} 2 \\theta}= \\pm \\sqrt{\\frac{37^{2}-35^{2}}{37^{2}}}= \\pm \\frac{\\sqrt{(37+35)(37-35)}}{37}= \\pm \\frac{12}{37}\n$$\n\nTo minimize this term, take the negative value, yielding\n\n$$\nd^{2}=2-2 \\cdot \\frac{12}{37}=\\frac{\\mathbf{5 0}}{\\mathbf{3 7}}\n$$", "If $z=x+y i$, then compute $1 / z$ by rationalizing the denominator:\n\n$$\n\\frac{1}{z}=\\frac{x-y i}{x^{2}+y^{2}}=\\frac{x}{x^{2}+y^{2}}+\\frac{-y}{x^{2}+y^{2}} i\n$$\n\nThe area of the parallelogram is given by the absolute value of the $2 \\times 2$ determinant\n\n$$\n\\left|\\begin{array}{cc}\nx & y \\\\\nx /\\left(x^{2}+y^{2}\\right) & -y /\\left(x^{2}+y^{2}\\right)\n\\end{array}\\right|=\\frac{1}{x^{2}+y^{2}}\\left|\\begin{array}{cc}\nx & y \\\\\nx & -y\n\\end{array}\\right|=\\frac{-2 x y}{x^{2}+y^{2}}\n$$\n\n\n\nThat is,\n\n$$\n\\frac{2 x y}{x^{2}+y^{2}}=\\frac{35}{37}\n$$\n\nCalculation shows that\n\n$$\n\\left|z+\\frac{1}{z}\\right|^{2}=\\left(x+\\frac{x}{x^{2}+y^{2}}\\right)^{2}+\\left(y-\\frac{y}{x^{2}+y^{2}}\\right)^{2}=\\left(x^{2}+y^{2}\\right)+\\frac{1}{x^{2}+y^{2}}+2\\left(\\frac{x^{2}-y^{2}}{x^{2}+y^{2}}\\right) .\n$$\n\nAs in the previous solution, the sum of the first two terms is at least 2 , when $x^{2}+y^{2}=1$. The trick for relating the third term to the area is to express both the third term and the area in terms of the ratio\n\n$$\nt=\\frac{y}{x} .\n$$\n\nIndeed,\n\n$$\n\\frac{2 x y}{x^{2}+y^{2}}=\\frac{2 t}{1+t^{2}} \\quad \\text { and } \\quad \\frac{x^{2}-y^{2}}{x^{2}+y^{2}}=\\frac{1-t^{2}}{1+t^{2}}=\\frac{(1+t)(1-t)}{1+t^{2}}\n$$\n\nAs in the previous solution, assume without loss of generality that $z$ is in the first quadrant, so that $t>0$. As found above,\n\n$$\n\\frac{2 t}{1+t^{2}}=\\frac{35}{37}\n$$\n\nIt is not difficult to solve for $t$ using the quadratic formula, but the value of $t$ is not needed to solve the problem. Observe that\n\n$$\n\\frac{(1 \\pm t)^{2}}{1+t^{2}}=1 \\pm \\frac{2 t}{1+t^{2}}=1 \\pm \\frac{35}{37},\n$$\n\nso that\n\n$$\n\\left(\\frac{1-t^{2}}{1+t^{2}}\\right)^{2}=\\frac{(1+t)^{2}}{1+t^{2}} \\cdot \\frac{(1-t)^{2}}{1+t^{2}}=\\frac{72}{37} \\cdot \\frac{2}{37}=\\left(\\frac{12}{37}\\right)^{2}\n$$\n\nIn order to minimize $d$, take the negative square root, leading to\n\n$$\nd^{2}=2+2 \\cdot \\frac{1-t^{2}}{1+t^{2}}=2-\\frac{24}{37}=\\frac{\\mathbf{5 0}}{\\mathbf{3 7}}\n$$" ]
false
null
Numerical
null
On the complex plane, the parallelogram formed by the points $0, z, \frac{1}{z}$, and $z+\frac{1}{z}$ has area $\frac{35}{37}$, and the real part of $z$ is positive. If $d$ is the smallest possible value of $\left|z+\frac{1}{z}\right|$, compute $d^{2}$.
[ "$\\frac{50}{37}$" ]
2,795
Combinatorics
null
[ "Call each $1 \\times 1 \\times 1$ cube a cubelet. Then four cubelets are each painted on one face, and the other four cubelets are completely unpainted and can be ignored. For each painted cubelet, the painted face can occur in six positions, of which three are hidden from the outside, so the probability that a particular painted cubelet has no paint showing is $3 / 6=1 / 2$. Thus the probability that all four painted cubelets have no paint showing is $(1 / 2)^{4}=\\frac{1}{\\mathbf{1 6}}$." ]
false
null
Numerical
null
One face of a $2 \times 2 \times 2$ cube is painted (not the entire cube), and the cube is cut into eight $1 \times 1 \times 1$ cubes. The small cubes are reassembled randomly into a $2 \times 2 \times 2$ cube. Compute the probability that no paint is showing.
[ "$\\frac{1}{16}$" ]
2,796
Geometry
null
[ "Let $E$ be the point where the other trisector of $\\angle B$ intersects side $\\overline{A C}$. Let $A B=B C=a$, and let $B D=B E=d$. Draw $X$ on $\\overline{B C}$ so that $B X=d$. Then $C X=7$.\n\n<img_3688>\n\nThe placement of point $X$ guarantees that $\\triangle B E X \\cong \\triangle B D E$ by Side-Angle-Side. Therefore $\\angle B X E \\cong \\angle B E X \\cong \\angle B D E$, and so $\\angle C X E \\cong \\angle A D B \\cong \\angle C E B$. By Angle-Angle, $\\triangle C E X \\sim \\triangle C B E$. Let $E X=c$ and $E C=x$. Then comparing ratios of corresponding sides yields\n\n$$\n\\frac{c}{d}=\\frac{7}{x}=\\frac{x}{d+7}\n$$\n\nUsing the right proportion, $x^{2}=7(d+7)$. Because $d$ is an integer, $x^{2}$ is an integer, so either $x$ is an integer or irrational. The following argument shows that $x$ cannot be irrational. Applying the Angle Bisector Theorem to $\\triangle B C D$ yields $D E=c=\\frac{d}{d+7} \\cdot x$. Then $A C=2 x+c=$ $x\\left(2+\\frac{d}{d+7}\\right)$. Because the expression $\\left(2+\\frac{d}{d+7}\\right)$ is rational, $A C$ will not be an integer if $x$ is irrational.\n\nHence $x$ is an integer, and because $x^{2}$ is divisible by $7, x$ must also be divisible by 7 . Let $x=7 k$ so that $d=c k$. Rewrite the original proportion using $7 k$ for $x$ and $c k$ for $d$ :\n\n$$\n\\begin{aligned}\n\\frac{c}{d} & =\\frac{x}{d+7} \\\\\n\\frac{c}{c k} & =\\frac{7 k}{c k+7} \\\\\n7 k^{2} & =c k+7 \\\\\n7 k & =c+\\frac{7}{k} .\n\\end{aligned}\n$$\n\n\n\nBecause the left side of this last equation represents an integer, $7 / k$ must be an integer, so either $k=1$ or $k=7$. The value $k=1$ gives the extraneous solution $c=0$. So $k=7$, from which $c=48$. Then $d=336$ and $A C=2 x+c=2 \\cdot 49+48=\\mathbf{1 4 6}$." ]
false
null
Numerical
null
In triangle $A B C, A B=B C$. A trisector of $\angle B$ intersects $\overline{A C}$ at $D$. If $A B, A C$, and $B D$ are integers and $A B-B D=7$, compute $A C$.
[ "146" ]
2,797
Algebra
null
[ "In base 7, the value of $r$ must be $0.656565 \\ldots=0 . \\overline{65}_{7}$. Then $100_{7} \\cdot r=65 . \\overline{65}_{7}$, and $\\left(100_{7}-1\\right) r=$ $65_{7}$. In base $10,65_{7}=6 \\cdot 7+5=47_{10}$ and $100_{7}-1=7^{2}-1=48_{10}$. Thus $r=47 / 48$, and $p+q=95$." ]
false
null
Numerical
null
The rational number $r$ is the largest number less than 1 whose base-7 expansion consists of two distinct repeating digits, $r=0 . \underline{A} \underline{B} \underline{A} \underline{B} \underline{A} \underline{B} \ldots$ Written as a reduced fraction, $r=\frac{p}{q}$. Compute $p+q$ (in base 10).
[ "95" ]
2,798
Geometry
null
[ "Because $\\triangle A B C$ is isosceles with $A B=A C, \\mathrm{~m} \\angle A B C=U^{\\circ}$ and $\\mathrm{m} \\angle B A C=(180-2 U)^{\\circ}$. Therefore $\\mathrm{m} \\angle M A C=\\left(\\frac{180-2 U}{3}\\right)^{\\circ}=\\left(60-\\frac{2}{3} U\\right)^{\\circ}$. Then $\\left(60-\\frac{2}{3} U\\right)+U+T=180$, so $\\frac{1}{3} U=$ $120-T$ and $U=3(120-T)$. Substituting $T=95$ yields $U=\\mathbf{7 5}$." ]
false
null
Numerical
null
Let $T=95$. Triangle $A B C$ has $A B=A C$. Points $M$ and $N$ lie on $\overline{B C}$ such that $\overline{A M}$ and $\overline{A N}$ trisect $\angle B A C$, with $M$ closer to $C$. If $\mathrm{m} \angle A M C=T^{\circ}$, then $\mathrm{m} \angle A C B=U^{\circ}$. Compute $U$.
[ "75" ]
2,799
Combinatorics
null
[ "With $n$ students, Wash Ed. can choose slide-rule oilers in $\\left(\\begin{array}{l}n \\\\ 2\\end{array}\\right)=\\frac{n(n-1)}{2}$ ways. With $n+2$ students, there would be $\\left(\\begin{array}{c}n+2 \\\\ 2\\end{array}\\right)=\\frac{(n+2)(n+1)}{2}$ ways of choosing the oilers. The difference is $\\frac{(n+2)(n+1)}{2}-\\frac{n(n-1)}{2}=T$. Simplifying yields $\\frac{\\left(n^{2}+3 n+2\\right)-\\left(n^{2}-n\\right)}{2}=2 n+1=T$, so $n=\\frac{T-1}{2}$. Because $T=75, n=37$." ]
false
null
Numerical
null
Let $T=75$. At Wash College of Higher Education (Wash Ed.), the entering class has $n$ students. Each day, two of these students are selected to oil the slide rules. If the entering class had two more students, there would be $T$ more ways of selecting the two slide rule oilers. Compute $n$.
[ "37" ]
2,800
Number Theory
null
[ "The first angle is $123^{\\circ}$, which is in Quadrant II, the second $\\left(246^{\\circ}\\right)$ is in Quadrant III, and the third is in Quadrant I, because $3 \\cdot 123^{\\circ}=369^{\\circ} \\equiv 9^{\\circ} \\bmod 360^{\\circ}$. The missing quadrant is IV, which is $270^{\\circ}-246^{\\circ}=24^{\\circ}$ away from the second angle in the sequence. Because $3 \\cdot 123^{\\circ} \\equiv 9^{\\circ} \\bmod 360^{\\circ}$, the terminal ray of the $(n+3)^{\\mathrm{rd}}$ angle is rotated $9^{\\circ}$ counterclockwise from the $n^{\\text {th }}$ angle. Thus three full cycles are needed to reach Quadrant IV starting from the second angle: the fifth angle is $255^{\\circ}$, the eighth angle is $264^{\\circ}$, and the eleventh angle is $273^{\\circ}$. So $n=11$." ]
false
null
Numerical
null
Compute the least positive integer $n$ such that the set of angles $$ \left\{123^{\circ}, 246^{\circ}, \ldots, n \cdot 123^{\circ}\right\} $$ contains at least one angle in each of the four quadrants.
[ "11" ]
2,801
Number Theory
null
[ "There are 9 valid one-digit plates. For a two-digit plate to be valid, it has to be of the form $\\underline{A} \\underline{B}$, where $B \\in\\{2, \\ldots, 9\\}$, and either $A \\in\\{2, \\ldots, 9\\}$ with $A \\neq B$ or $A=1$. So there are 8 ways to choose $B$ and $8-1+1=8$ ways to choose $A$, for a total of $8 \\cdot 8=64$ plates. In general, moving from the last digit to the first, if there are $k$ ways to choose digit $n$, then there are $k-1$ ways to choose digit $n-1$ from the same set of possibilities as digit $n$ had, plus one additional way, for a total of $k-1+1=k$ choices for digit $n-1$. So if a license plate has $d$ digits, there are $10-d$ choices for the last digit and for each digit before it, yielding $(10-d)^{d}$ possible $d$-digit plates. Using $d=T-3=8$, there are $2^{8}=\\mathbf{2 5 6}$ plates." ]
false
null
Numerical
null
Let $T=11$. In ARMLvania, license plates use only the digits 1-9, and each license plate contains exactly $T-3$ digits. On each plate, all digits are distinct, and for all $k \leq T-3$, the $k^{\text {th }}$ digit is at least $k$. Compute the number of valid ARMLvanian license plates.
[ "256" ]
2,802
Algebra
null
[ "The first inequality states that the point $(x, y)$ is outside the circle centered at the origin with radius $\\sqrt{T}$, while the second inequality states that $(x, y)$ is inside the tilted square centered at the origin with diagonal $2 \\sqrt{2 T}$. The area of the square is $4 \\cdot \\frac{1}{2}(\\sqrt{2 T})^{2}=4 T$, while the area of the circle is simply $\\pi T$, so the area of $\\mathcal{R}$ is $4 T-\\pi T=\\mathbf{1 0 2 4}-\\mathbf{2 5 6 \\pi}$." ]
false
null
Numerical
null
Let $T=256$. Let $\mathcal{R}$ be the region in the plane defined by the inequalities $x^{2}+y^{2} \geq T$ and $|x|+|y| \leq \sqrt{2 T}$. Compute the area of region $\mathcal{R}$.
[ "$1024-256 \\pi$" ]
2,817
Geometry
null
[ "Let the feet of the altitudes from $A$ and $B$ be $E$ and $D$, respectively, and let $F$ and $G$ be the intersection points of the angle bisectors with $\\overline{A C}$ and $\\overline{B C}$, respectively, as shown below.\n\n<img_3386>\n\nThen $\\mathrm{m} \\angle G A E=6^{\\circ}$ and $\\mathrm{m} \\angle D B F=18^{\\circ}$. Suppose $\\mathrm{m} \\angle F B C=x^{\\circ}$ and $\\mathrm{m} \\angle C A G=y^{\\circ}$. So $\\mathrm{m} \\angle C A E=(y+6)^{\\circ}$ and $\\mathrm{m} \\angle C B D=(x+18)^{\\circ}$. Considering right triangle $B D C$, $\\mathrm{m} \\angle C=90^{\\circ}-(x+18)^{\\circ}=(72-x)^{\\circ}$, while considering right triangle $A E C, \\mathrm{~m} \\angle C=$ $90^{\\circ}-(y+6)^{\\circ}=(84-y)^{\\circ}$. Thus $84-y=72-x$ and $y-x=12$. Considering $\\triangle A B E$, $\\mathrm{m} \\angle E A B=(y-6)^{\\circ}$ and $\\mathrm{m} \\angle E B A=2 x^{\\circ}$, so $(y-6)+2 x=90$, or $2 x+y=96$. Solving the system yields $x=28, y=40$. Therefore $\\mathrm{m} \\angle A=80^{\\circ}$ and $\\mathrm{m} \\angle B=56^{\\circ}$, so $\\mathrm{m} \\angle C=44^{\\circ}$.", "From right triangle $A B E, 90^{\\circ}=\\left(\\frac{1}{2} A-6^{\\circ}\\right)+B$, and from right triangle $A B D, 90^{\\circ}=\\left(\\frac{1}{2} B-18^{\\circ}\\right)+A$. Adding the two equations gives $180^{\\circ}=\\frac{3}{2}(A+B)-24^{\\circ}$, so $A+B=\\frac{2}{3} \\cdot 204^{\\circ}=136^{\\circ}$ and $C=180^{\\circ}-(A+B)=44^{\\circ}$." ]
false
null
Numerical
null
Triangle $A B C$ has $\mathrm{m} \angle A>\mathrm{m} \angle B>\mathrm{m} \angle C$. The angle between the altitude and the angle bisector at vertex $A$ is $6^{\circ}$. The angle between the altitude and the angle bisector at vertex $B$ is $18^{\circ}$. Compute the degree measure of angle $C$.
[ "$44^{\\circ}$" ]
2,818
Algebra
null
[ "Let $r$ be the common root. Then $r^{2}+b r+c=r^{2}+c r+b \\Rightarrow b r-c r=b-c$. So either $b=c$ or $r=1$. In the latter case, $1+b+c=0$, so $c=-1-b$.\n\nThere are 41 ordered pairs where $b=c$. If $c=-1-b$ and $-20 \\leq b \\leq 20$, then $-21 \\leq c \\leq 19$. Therefore there are 40 ordered pairs $(b,-1-b)$ where both terms are in the required intervals. Thus there are $41+40=\\mathbf{8 1}$ solutions." ]
false
null
Numerical
null
Compute the number of ordered pairs of integers $(b, c)$, with $-20 \leq b \leq 20,-20 \leq c \leq 20$, such that the equations $x^{2}+b x+c=0$ and $x^{2}+c x+b=0$ share at least one root.
[ "81" ]
2,819
Combinatorics
null
[ "The rolls that add up to 20 are $17+3,16+4,15+5,14+6,13+7,12+8,11+9$, and $10+10$. Accounting for order, the probability of $17+3$ is $\\frac{1}{2} \\cdot \\frac{1}{32}+\\frac{1}{32} \\cdot \\frac{1}{2}=2 \\cdot \\frac{1}{2} \\cdot \\frac{1}{32}=\\frac{32}{1024}$. The combination $10+10$ has probability $\\frac{1}{32} \\cdot \\frac{1}{32}=\\frac{1}{1024}$; the other six combinations have probability $2 \\cdot \\frac{1}{32} \\cdot \\frac{1}{32}=\\frac{2}{1024}$, for a total of $\\frac{32+1+6 \\cdot 2}{1024}=\\frac{45}{1024}$ (again, accounting for two possible orders per combination). The rolls that add up to 12 are $1+11,2+10,3+9,4+8,5+7,6+6$, all\n\n\n\nof which have probability $2 \\cdot \\frac{1}{32} \\cdot \\frac{1}{32}=\\frac{2}{1024}$ except the last, which has probability $\\left(\\frac{1}{32}\\right)^{2}$, for a total of $\\frac{11}{1024}$. Thus the probability of either sum appearing is $\\frac{45}{1024}+\\frac{11}{1024}=\\frac{56}{1024}=\\frac{\\mathbf{7}}{\\mathbf{1 2 8}}$." ]
false
null
Numerical
null
A seventeen-sided die has faces numbered 1 through 17, but it is not fair: 17 comes up with probability $1 / 2$, and each of the numbers 1 through 16 comes up with probability $1 / 32$. Compute the probability that the sum of two rolls is either 20 or 12.
[ "$\\frac{7}{128}$" ]
2,821
Number Theory
null
[ "Begin by partitioning $\\{2,3, \\ldots, 50\\}$ into the subsets\n\n$$\n\\begin{aligned}\nA & =\\{2,4,8,16,32\\} \\\\\nB & =\\{3,9,27\\} \\\\\nC & =\\{5,25\\} \\\\\nD & =\\{6,36\\} \\\\\nE & =\\{7,49\\} \\\\\nF & =\\text { all other integers between } 2 \\text { and } 50, \\text { inclusive. }\n\\end{aligned}\n$$\n\nIf $\\log _{b} a$ is rational, then either $a$ and $b$ are both members of one of the sets $A, B, C, D$, or $E$, or $a=b \\in F$ (see note below for proof). Then the number of possible ordered pairs is\n\n$$\n\\begin{aligned}\n|A|^{2}+|B|^{2}+|C|^{2}+|D|^{2}+|E|^{2}+|F| & =25+9+4+4+4+35 \\\\\n& =\\mathbf{8 1}\n\\end{aligned}\n$$" ]
false
null
Numerical
null
Compute the number of ordered pairs of integers $(a, b)$ such that $1<a \leq 50,1<b \leq 50$, and $\log _{b} a$ is rational.
[ "81" ]
2,822
Combinatorics
null
[ "Condition on the number $n$ of A's that appear in the word; $n$ is at least two, because of the requirement that $\\mathbf{A}$ occur more often than any other letter, and $n$ is at most 4 , because of the requirement that there be at least two distinct letters. In the case $n=4$, there are 3 choices for the other letter, and 5 choices for where to place it, for a total of 15 possibilities. In the case $n=3$, there are two possibilities to consider: either a second letter occurs twice, or there are two distinct letters besides A. If a second letter occurs twice, there are 3 choices\n\n\n\nfor the other letter, and $\\frac{5 !}{3 ! \\cdot 2 !}=10$ ways to arrange the three A's and two non-A's, for their locations, for a total of 30 choices. If there are two distinct letters besides $A$, then there are $\\left(\\begin{array}{l}3 \\\\ 2\\end{array}\\right)=3$ ways to pick the two letters, and $\\frac{5 !}{3 ! \\cdot 1 ! \\cdot 1 !}=20$ ways to arrange them, for a total of 60 words. Thus there are a combined total of 90 words when $n=3$. In the case $n=2$, no other letter can occur twice, so all the letters R, M, L, must appear in the word; they can be arranged in $\\frac{5 !}{2 ! \\cdot 1 ! \\cdot 1 ! \\cdot 1 !}=60$ ways. The total number of words satisfying the conditions is therefore $15+90+60=\\mathbf{1 6 5}$." ]
false
null
Numerical
null
Suppose that 5-letter "words" are formed using only the letters A, R, M, and L. Each letter need not be used in a word, but each word must contain at least two distinct letters. Compute the number of such words that use the letter A more than any other letter.
[ "165" ]
2,823
Algebra
null
[ "Let $d$ be the common difference of the sequence. Then $a_{a_{2}}=a_{1}+\\left(a_{2}-1\\right) d=100 \\Rightarrow\\left(a_{2}-1\\right) d=$ 90. But $a_{2}=a_{1}+d=10+d$, so $(9+d) d=90$. Solving the quadratic yields $d=-15$ or $d=6$, but the requirement that $a_{i}$ be positive for all $i$ rules out the negative value, so $d=6$ and $a_{n}=10+(n-1) \\cdot 6$. Thus $a_{3}=10+2(6)=22$, and $a_{a_{3}}=a_{22}=10+21(6)=136$. Finally, $a_{a_{a_{3}}}=a_{136}=10+135(6)=\\mathbf{8 2 0}$." ]
false
null
Numerical
null
Positive integers $a_{1}, a_{2}, a_{3}, \ldots$ form an arithmetic sequence. If $a_{1}=10$ and $a_{a_{2}}=100$, compute $a_{a_{a_{3}}}$.
[ "820" ]
2,824
Geometry
null
[ "First, note that both graphs are symmetric about the $y$-axis, so $C$ and $D$ must be reflections of $B$ and $A$, respectively, across the $y$-axis. Thus $x_{C}=-x_{B}$ and $y_{C}=y_{B}$, so $B C=2 x_{C}$. For $x<0$, the equations become $y=x^{2}+x-12$ and $y=-x-k$; setting the $x$-expressions equal to each other yields the equation $x^{2}+2 x+(k-12)=0$, from which $x=-1 \\pm \\sqrt{13-k}$. Therefore $x_{B}=-1+\\sqrt{13-k}$ and $B C=2-2 \\sqrt{13-k}$. (Note that the existence of two distinct negative values of $-1 \\pm \\sqrt{13-k}$ forces $12<k \\leq 13$.)\n\nThus the $x$-coordinates of the four points are\n\n$$\n\\begin{aligned}\n& x_{A}=-1-\\sqrt{13-k} \\\\\n& x_{B}=-1+\\sqrt{13-k} \\\\\n& x_{C}=1-\\sqrt{13-k} \\\\\n& x_{D}=1+\\sqrt{13-k} .\n\\end{aligned}\n$$\n\nTo compute $y_{A}$, use the second equation $y=|x|-k$ to obtain $y_{A}=1+\\sqrt{13-k}-k=$ $(1-k)+\\sqrt{13-k}$; similarly, $y_{B}=(1-k)-\\sqrt{13-k}$. Therefore\n\n$$\n\\begin{aligned}\nA B & =\\sqrt{\\left(x_{B}-x_{A}\\right)^{2}+\\left(y_{B}-y_{A}\\right)^{2}} \\\\\n& =\\sqrt{(2 \\sqrt{13-k})^{2}+(-2 \\sqrt{13-k})^{2}} \\\\\n& =2 \\sqrt{2(13-k)}\n\\end{aligned}\n$$\n\nBecause $A B=B C, 2 \\sqrt{2(13-k)}=2-2 \\sqrt{13-k}$. Let $u=\\sqrt{13-k}$; then $2 \\sqrt{2} u=2-2 u$, from which $u=\\frac{2}{2+2 \\sqrt{2}}=\\frac{1}{1+\\sqrt{2}}$, which equals $\\sqrt{2}-1$ by rationalizing the denominator. Thus\n\n$$\n13-k=(\\sqrt{2}-1)^{2}=3-2 \\sqrt{2}, \\text { so } k=\\mathbf{1 0}+\\mathbf{2} \\sqrt{\\mathbf{2}} \\text {. }\n$$\n\nBecause $10+2 \\sqrt{2} \\approx 12.8$, the value of $k$ determined algebraically satisfies the inequality $12<k \\leq 13$ observed above.", "Let $C=(a, b)$. Because $C$ and $D$ lie on a line with slope 1 , $D=(a+h, b+h)$ for some $h>0$. Because both graphs are symmetric about the $y$-axis, the other two points of intersection are $A=(-a-h, b+h)$ and $B=(-a, b)$, and $a>0$.\n\nIn terms of these coordinates, the distances are $A B=C D=\\sqrt{2} h$ and $B C=2 a$. Thus the condition $A B=B C=C D$ holds if and only if $\\sqrt{2} h=2 a$, or $h=\\sqrt{2} a$.\n\nThe foregoing uses the condition that $C$ and $D$ lie on a line of slope 1 , so now use the remaining equation and subtract:\n\n$$\n\\begin{aligned}\nb & =a^{2}-a-12 \\\\\nb+h & =(a+h)^{2}-(a+h)-12 \\\\\nh & =2 a h+h^{2}-h\n\\end{aligned}\n$$\n\nBecause the points are distinct, $h \\neq 0$. Dividing by $h$ yields $2-2 a=h=\\sqrt{2} a$. Thus $a=\\frac{2}{2+\\sqrt{2}}=2-\\sqrt{2}$.\n\nFinally, because $C$ lies on the two graphs, $b=a^{2}-a-12=-8-3 \\sqrt{2}$ and $k=a-b=$ $10+2 \\sqrt{2}$." ]
false
null
Numerical
null
The graphs of $y=x^{2}-|x|-12$ and $y=|x|-k$ intersect at distinct points $A, B, C$, and $D$, in order of increasing $x$-coordinates. If $A B=B C=C D$, compute $k$.
[ "$10+2 \\sqrt{2}$" ]
2,825
Combinatorics
null
[ "There are $6 !=720$ permutations of the zeros, so the average value is the sum, $S$, divided by 720. Setting any particular zero as $A$ leaves $5 !=120$ ways to permute the other five zeros, so over the 720 permutations, each zero occupies the $A$ position 120 times. Similarly, fixing any ordered pair $(B, C)$ of zeros allows $4 !=24$ permutations of the other four zeros, and $B C=C B$ means that each value of $B C$ occurs 48 times. Finally, fixing any ordered triple $(D, E, F)$ allows $3 !=6$ permutations of the other variables, and there are $3 !=6$ equivalent arrangements within each product $D E F$, so that the product of any three zeros occurs 36 times within the sum. Let $S_{1}=A+B+C+D+E+F$ (i.e., the sum of the zeros taken singly), $S_{2}=A B+A C+\\cdots+A F+B C+\\cdots+E F$ (i.e., the sum of the zeros taken two at a time), and $S_{3}=A B C+A B D+\\cdots+D E F$ be the sum of the zeros three at a time. Then $S=120 S_{1}+48 S_{2}+36 S_{3}$. Using the sums and products of roots formulas, $S_{1}=-2 / 1=-2$, $S_{2}=3 / 1=3$, and $S_{3}=-5 / 1=-5$. Thus $S=120(-2)+48(3)+36(-5)=-276$. The average value is thus $-\\frac{276}{720}=-\\frac{\\mathbf{2 3}}{\\mathbf{6 0}}$." ]
false
null
Numerical
null
The zeros of $f(x)=x^{6}+2 x^{5}+3 x^{4}+5 x^{3}+8 x^{2}+13 x+21$ are distinct complex numbers. Compute the average value of $A+B C+D E F$ over all possible permutations $(A, B, C, D, E, F)$ of these six numbers.
[ "$-\\frac{23}{60}$" ]
2,827
Algebra
null
[ "Let $\\alpha=3+\\sqrt{5}$ and $\\beta=3-\\sqrt{5}$, so that $N=\\left\\lfloor\\alpha^{34}\\right\\rfloor$, and let $M=\\alpha^{34}+\\beta^{34}$. When the binomials in $M$ are expanded, terms in which $\\sqrt{5}$ is raised to an odd power have opposite signs, and so cancel each other out. Therefore $M$ is an integer. Because $0<\\beta<1,0<\\beta^{34}<1$, and so $M-1<\\alpha^{34}<M$. Therefore $M-1=N$. Note that $\\alpha$ and $\\beta$ are the roots of $x^{2}=6 x-4$. Therefore $\\alpha^{n+2}=6 \\alpha^{n+1}-4 \\alpha^{n}$ and $\\beta^{n+2}=6 \\beta^{n+1}-4 \\beta^{n}$. Hence $\\alpha^{n+2}+\\beta^{n+2}=$ $6\\left(\\alpha^{n+1}+\\beta^{n+1}\\right)-4\\left(\\alpha^{n}+\\beta^{n}\\right)$. Thus the sequence of numbers $\\left\\{\\alpha^{n}+\\beta^{n}\\right\\}$ satisfies the recurrence relation $c_{n+2}=6 c_{n+1}-4 c_{n}$. All members of the sequence are determined by the initial values $c_{0}$ and $c_{1}$, which can be computed by substituting 0 and 1 for $n$ in the expression $\\alpha^{n}+\\beta^{n}$, yielding $c_{0}=(3+\\sqrt{5})^{0}+(3-\\sqrt{5})^{0}=2$, and $c_{1}=(3+\\sqrt{5})^{1}+(3-\\sqrt{5})^{1}=6$. Then\n\n$$\n\\begin{aligned}\n& c_{2}=(3+\\sqrt{5})^{2}+(3-\\sqrt{5})^{2}=6 c_{1}-4 c_{0}=36-8=28 \\\\\n& c_{3}=(3+\\sqrt{5})^{3}+(3-\\sqrt{5})^{3}=6 c_{2}-4 c_{1}=168-24=144\n\\end{aligned}\n$$\n\nand because the final result is only needed modulo 100, proceed using only remainders modulo 100.\n\n\n\n| $n$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |\n| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |\n| $c_{n} \\bmod 100$ | 6 | 28 | 44 | 52 | 36 | 8 | 4 | 92 | 36 | 48 | 44 | 72 | 56 | 48 | 64 | 92 | 96 |\n\n\n| $n$ | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 |\n| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |\n| $c_{n} \\bmod 100$ | 8 | 64 | 52 | 56 | 28 | 44 | 52 | 36 | 8 | 4 | 92 | 36 | 48 | 44 | 72 | 56 | 48 |\n\nThus $N$ leaves a remainder of $48-1=\\mathbf{4 7}$ when divided by 100 .", "As in the previous solution, let $\\alpha=3+\\sqrt{5}$ and $\\beta=3-\\sqrt{5}$, so that $N=\\alpha^{34}+\\beta^{34}-1$ as argued above.\n\nA straightforward way to compute powers of $\\alpha$ and $\\beta$ is by successive squaring. Paying attention to just the last two digits of the integer parts yields the following values:\n\n$$\n\\begin{aligned}\n\\alpha^{2} & =14+6 \\sqrt{5} \\\\\n\\alpha^{4} & =196+180+168 \\sqrt{5} \\equiv 76+68 \\sqrt{5} ; \\\\\n\\alpha^{8} & \\equiv 96+36 \\sqrt{5} \\\\\n\\alpha^{16} & \\equiv 96+12 \\sqrt{5} \\\\\n\\alpha^{32} & \\equiv 36+4 \\sqrt{5} \\\\\n\\alpha^{34}=\\alpha^{2} \\cdot \\alpha^{32} & \\equiv 24+72 \\sqrt{5} .\n\\end{aligned}\n$$\n\nSimilarly, replacing $\\sqrt{5}$ with $-\\sqrt{5}$ yields $\\beta^{34} \\equiv 24-72 \\sqrt{5}$. Thus\n\n$$\nN \\equiv(24+72 \\sqrt{5})+(24-72 \\sqrt{5})-1 \\equiv 47(\\bmod 100)\n$$", "As in the previous solutions, let $\\alpha=3+\\sqrt{5}$ and $\\beta=3-\\sqrt{5}$, so that $N=\\alpha^{34}+\\beta^{34}-1$ as argued above.\n\nNow consider the binomial expansions more carefully:\n\n$$\n\\begin{aligned}\n\\alpha^{34} & =3^{34}+\\left(\\begin{array}{c}\n34 \\\\\n1\n\\end{array}\\right) 3^{33} \\sqrt{5}+\\left(\\begin{array}{c}\n34 \\\\\n2\n\\end{array}\\right) 3^{32} \\cdot 5+\\left(\\begin{array}{c}\n34 \\\\\n3\n\\end{array}\\right) 3^{31} \\cdot 5 \\sqrt{5}+\\cdots+\\left(\\begin{array}{c}\n34 \\\\\n33\n\\end{array}\\right) 3 \\cdot 5^{16} \\sqrt{5}+5^{17} \\\\\n\\beta^{34} & =3^{34}-\\left(\\begin{array}{c}\n34 \\\\\n1\n\\end{array}\\right) 3^{33} \\sqrt{5}+\\left(\\begin{array}{c}\n34 \\\\\n2\n\\end{array}\\right) 3^{32} \\cdot 5-\\left(\\begin{array}{c}\n34 \\\\\n3\n\\end{array}\\right) 3^{31} \\cdot 5 \\sqrt{5}+\\cdots-\\left(\\begin{array}{c}\n34 \\\\\n33\n\\end{array}\\right) 3 \\cdot 5^{16} \\sqrt{5}+5^{17} \\\\\nN & =2\\left(3^{34}+\\left(\\begin{array}{c}\n34 \\\\\n2\n\\end{array}\\right) 3^{32} \\cdot 5+\\cdots+\\left(\\begin{array}{c}\n34 \\\\\n32\n\\end{array}\\right) 3^{2} \\cdot 5^{16}+5^{17}\\right)-1 .\n\\end{aligned}\n$$\n\nThe following argument shows that every term that is summarized by the ellipsis $(\\cdots)$ in the expression for $N$ is a multiple of 50 . First, each such term has the form $\\left(\\begin{array}{l}34 \\\\ 2 k\\end{array}\\right) 3^{34-2 k} 5^{k}$, where $2 \\leq k \\leq 15$.\n\nThus it is enough to show that the binomial coefficient is even. Because $\\left(\\begin{array}{l}34 \\\\ 2 k\\end{array}\\right)=\\left(\\begin{array}{c}34 \\\\ 34-2 k\\end{array}\\right)$, it is enough to check this for $2 \\leq k \\leq 8$. Keep track of powers of 2 : $\\left(\\begin{array}{c}34 \\\\ 2\\end{array}\\right)$ is an integer, so\n\n\n\n$\\left(\\begin{array}{c}34 \\\\ 4\\end{array}\\right)=\\left(\\begin{array}{c}34 \\\\ 2\\end{array}\\right) \\cdot \\frac{32 \\cdot 31}{3 \\cdot 4}$ is a multiple of $2^{3} ;\\left(\\begin{array}{c}34 \\\\ 6\\end{array}\\right)=\\left(\\begin{array}{c}34 \\\\ 4\\end{array}\\right) \\cdot \\frac{30 \\cdot 29}{5 \\cdot 6}$ is also a multiple of $2^{3} ;\\left(\\begin{array}{c}34 \\\\ 8\\end{array}\\right)=\\left(\\begin{array}{c}34 \\\\ 6\\end{array}\\right) \\cdot \\frac{28 \\cdot 27}{7 \\cdot 8}$ is a multiple of $2^{2}$; and so on.\n\nIt can also be shown that the sum of the last two terms is a multiple of 50. Again, there are plenty of factors of 5 , so it is enough to note that both terms are odd, because $\\left(\\begin{array}{l}34 \\\\ 32\\end{array}\\right)=\\frac{34 \\cdot 33}{1 \\cdot 2}=$ $17 \\cdot 33$.\n\nThanks to the initial factor of 2 in the expression for $N$ (outside the parentheses), the previous paragraphs show that $N \\equiv 2\\left(3^{34}+\\left(\\begin{array}{c}34 \\\\ 2\\end{array}\\right) 3^{32} \\cdot 5\\right)-1(\\bmod 100)$.\n\nNow consider the powers of 3 . Because $3^{4}=81$, we find that $3^{8}=80^{2}+2 \\cdot 80+1 \\equiv$ $61(\\bmod 100), 3^{12} \\equiv 41(\\bmod 100), 3^{16} \\equiv 21(\\bmod 100)$, and $3^{20} \\equiv 1(\\bmod 100)$. (Note: those familiar with Euler's generalization of Fermat's Little Theorem will recognize this as an example, because $\\phi(25)=25-5=20$.) Therefore $3^{32}=3^{20} \\cdot 3^{12} \\equiv 41(\\bmod 100)$ and $3^{34}=3^{2} \\cdot 3^{32} \\equiv 69(\\bmod 100)$.\n\nFinally, $N \\equiv 2(69+17 \\cdot 33 \\cdot 41 \\cdot 5)-1 \\equiv 2 \\cdot 69+10 \\cdot(17 \\cdot 33 \\cdot 41)-1 \\equiv 38+10-1 \\equiv \\mathbf{4 7}$ $(\\bmod 100)$." ]
false
null
Numerical
null
Let $N=\left\lfloor(3+\sqrt{5})^{34}\right\rfloor$. Compute the remainder when $N$ is divided by 100 .
[ "47" ]
2,828
Geometry
null
[ "Focus on $\\triangle P B C$. Either $P B=P C$ or $P B=B C$ or $P C=B C$.\n\nIf $P B=P C$, then $P$ lies on the perpendicular bisector $l$ of side $\\overline{B C}$. Considering now $\\triangle P A B$, if $P A=P B$, then $P A=P C$, and $P$ must be the circumcenter of $\\triangle A B C$; call this location $P_{1}$. If $P A=A B$, then $P A=A C$, and $P, B, C$ all lie on a circle with center $A$ and radius $A B$. There are two intersection points of that circle with $l$, one on each arc with endpoints $B$ and $C$; label the one on the major arc $P_{2}$ and on the minor $\\operatorname{arc} P_{3}$. Finally, if $P B=A B$, then $P B=A C$ by the transitive property and $P C=A C$ by the perpendicular bisector theorem, so $P B A C$ is a rhombus; $P$ is the reflection of $A$ across $\\overline{B C}$. Call this point $P_{4}$.\n\nIf $P B=B C$, then $P$ must lie on the circle centered at $B$ with radius $B C$. Considering $\\triangle P A B$, if $P A=A B$, then $P$ lies on the circle centered at $A$ with radius $A B$. Now $\\odot A$ and $\\odot B$ intersect at two points, but one of them is $C$, so the other intersection must be the location of $P$, which is $P_{5}$. The condition $P B=A B$ is impossible, because it implies that $A B=B C$, which is false because in $\\triangle A B C, \\mathrm{~m} \\angle C>\\mathrm{m} \\angle A=20^{\\circ}$, so $A B>B C$. The third possibility for $\\triangle P A B$ is that $P A=P B$, implying that the perpendicular bisector of $\\overline{A B}$ intersects $\\odot B$, which only occurs if $B C / A B \\geq 1 / 2$ (although if $B C / A B=1 / 2$, the triangle is degenerate). But $B C / A B=2 \\cos 80^{\\circ}$, and the given approximation $\\cos 80^{\\circ} \\approx 0.17$ implies that $B C / A B \\approx 0.34$. Hence the perpendicular bisector of $\\overline{A B}$ does not intersect $\\odot B$. Thus the assumption $P B=B C$ yields only one additional location for $P, P_{5}$. Similarly, $P C=B C$ yields exactly one more location, $P_{6}$, for a total of $\\mathbf{6}$ points. All six points, and their associated triangles, are pictured below.\n\n\n\n<img_3810>" ]
false
null
Numerical
null
Let $A B C$ be a triangle with $\mathrm{m} \angle B=\mathrm{m} \angle C=80^{\circ}$. Compute the number of points $P$ in the plane such that triangles $P A B, P B C$, and $P C A$ are all isosceles and non-degenerate. Note: the approximation $\cos 80^{\circ} \approx 0.17$ may be useful.
[ "6" ]
2,829
Algebra
null
[ "Let $f(x)=\\left\\lfloor\\frac{x}{3}\\right\\rfloor+\\lceil 3 x\\rceil$. Observe that $f(x+3)=f(x)+1+9=f(x)+10$. Let $g(x)=f(x)-\\frac{10}{3} x$. Then $g$ is periodic, because $g(x+3)=f(x)+10-\\frac{10 x}{3}-\\frac{10 \\cdot 3}{3}=g(x)$. The graph of $g$ is shown below:\n\n<img_3987>\n\nBecause $g(x)$ is the (vertical) distance between the graph of $y=f(x)$ and the line $y=\\frac{10}{3} x$, the fact that $g$ is periodic implies that $f$ always stays within some fixed distance $D$ of the line $y=\\frac{10}{3} x$. On the other hand, because $\\frac{10}{3}>\\sqrt{11}$, the graph of $y=\\frac{10}{3} x$ gets further and further away from the graph of $y=\\sqrt{11} x$ as $x$ increases. Because the graph of $y=f(x)$ remains near $y=\\frac{10}{3} x$, the graph of $y=f(x)$ drifts upward from the line $y=\\sqrt{11} x$.\n\nFor each integer $n$, define the open interval $I_{n}=\\left(\\frac{n-1}{3}, \\frac{n}{3}\\right)$. In fact, $f$ is constant on $I_{n}$, as the following argument shows. For $x \\in I_{n}, \\frac{n}{9}-\\frac{1}{9}<\\frac{x}{3}<\\frac{n}{9}$. Because $n$ is an integer, there are no integers between $\\frac{n}{9}-\\frac{1}{9}$ and $\\frac{n}{9}$, so $\\left\\lfloor\\frac{x}{3}\\right\\rfloor$ is constant; similarly, $\\lceil 3 x\\rceil$ is constant on the same intervals. Let $l_{n}$ be the value of $f$ on the interval $I_{n}$, and let $L_{n}=f\\left(\\frac{n}{3}\\right)$, the value at the right end of the interval $I_{n}$. If $n$ is not a multiple of 9 , then $l_{n}=L_{n}$, because as $x$ increases from $n-\\varepsilon$ to $n$, the floor function does not increase. This means that $f$ is actually constant on the half-closed interval $\\left(\\frac{n-1}{3}, \\frac{n}{3}\\right]$. If neither $n$ nor $n+1$ are multiples of 9 , then $l_{n+1}=l_{n}+1$. However if $n$ is a multiple of 9 , then $L_{n}=l_{n}+1$ and $l_{n+1}=L_{n}+1$. (The value of $f(x)$ increases when $x$ increases from $n-\\varepsilon$ to $n$, as well as going from $n$ to $n+\\varepsilon$.)\n\nHence on each interval of the form $(3 n-3,3 n)$, the graph of $f$ looks like 9 steps of height 1 and width $\\frac{1}{3}$, all open on the left and closed on the right except for the last step, which is open on both ends. Between the intervals $(3 n-3,3 n)$ and $(3 n, 3 n+3), f(x)$ increases by 2 , with $f(3 n)$ halfway between steps. This graph is shown below:\n\n\n\n<img_3187>\n\nOn each interval $(3 n-3,3 n)$, the average rate of change is $3<\\sqrt{11}$, so the steps move down relative $y=\\sqrt{11} x$ within each interval. At the end of each interval, the graph of $f$ rises relative to $y=\\sqrt{11} x$. Thus the last intersection point between $f(x)$ and $\\sqrt{11} x$ will be on the ninth step of one of these intervals. Suppose this intersection point lies in the interval $(3 k-3,3 k)$. The ninth step is of height $10 k-1$. Set $x=3 k-r$, where $r<\\frac{1}{3}$. Then the solution is the largest $k$ for which\n\n$$\n\\begin{aligned}\n10 k-1 & =\\sqrt{11}(3 k-r) \\quad\\left(0<r<\\frac{1}{3}\\right) \\\\\nk(10-3 \\sqrt{11}) & =1-\\sqrt{11} r<1 \\\\\nk & <\\frac{1}{10-3 \\sqrt{11}}=10+3 \\sqrt{11}<20 .\n\\end{aligned}\n$$\n\nBecause $0<19(10-3 \\sqrt{11})<1, k=19$ implies a value of $r$ between 0 and $\\frac{1}{\\sqrt{11}}$. And because $\\frac{1}{\\sqrt{11}}<\\frac{1}{3}$\n\n$$\nx=3 k-r=\\frac{10 k-1}{\\sqrt{11}}=\\frac{\\mathbf{1 8 9} \\sqrt{\\mathbf{1 1}}}{\\mathbf{1 1}}\n$$\n\nis the largest solution to $f(x)=\\sqrt{11} x$.", "Let $x$ be the largest real number for which $\\left\\lfloor\\frac{x}{3}\\right\\rfloor+\\lceil 3 x\\rceil=\\sqrt{11} x$. Because the left-hand side of this equation is an integer, it is simpler to work with $n=\\sqrt{11} x$ instead of $x$. The equation becomes\n\n$$\n\\left\\lfloor\\frac{n}{3 \\sqrt{11}}\\right\\rfloor+\\left\\lceil\\frac{3 n}{\\sqrt{11}}\\right\\rceil=n\n$$\n\n\n\nA little bit of computation shows that $\\frac{1}{3 \\sqrt{11}}+\\frac{3}{\\sqrt{11}}>1$, so the equation cannot hold for large values of $n$. To make this explicit, write\n\n$$\n\\left\\lfloor\\frac{n}{3 \\sqrt{11}}\\right\\rfloor=\\frac{n}{3 \\sqrt{11}}-r \\quad \\text { and } \\quad\\left\\lceil\\frac{3 n}{\\sqrt{11}}\\right\\rceil=\\frac{3 n}{\\sqrt{11}}+s\n$$\n\nwhere $r$ and $s$ are real numbers between 0 and 1. (If $n \\neq 0$, then $r$ and $s$ are strictly between 0 and 1.) Then\n\n$$\n\\begin{aligned}\n1>r-s & =\\left(\\frac{n}{3 \\sqrt{11}}-\\left\\lfloor\\frac{n}{3 \\sqrt{11}}\\right\\rfloor\\right)-\\left(\\left\\lceil\\frac{3 n}{\\sqrt{11}}\\right\\rceil-\\frac{3 n}{\\sqrt{11}}\\right) \\\\\n& =\\left(\\frac{n}{3 \\sqrt{11}}+\\frac{3 n}{\\sqrt{11}}\\right)-\\left(\\left\\lfloor\\frac{n}{3 \\sqrt{11}}\\right\\rfloor+\\left\\lceil\\frac{3 n}{\\sqrt{11}}\\right\\rceil\\right) \\\\\n& =n\\left(\\frac{1}{3 \\sqrt{11}}+\\frac{3}{\\sqrt{11}}-1\\right),\n\\end{aligned}\n$$\n\nso $n<1 /\\left(\\frac{1}{3 \\sqrt{11}}+\\frac{3}{\\sqrt{11}}-1\\right)=99+30 \\sqrt{11}=198.45 \\ldots$\n\nUse trial and error with $n=198,197,196, \\ldots$, to find the value of $n$ that works. Computing the first row of the following table to three decimal digits, and computing both $\\frac{1}{3 \\sqrt{11}}$ and $\\frac{3}{\\sqrt{11}}$ to the same degree of accuracy, allows one to calculate the remaining rows with acceptable round-off errors.\n\n| $n$ | $n /(3 \\sqrt{11})$ | $3 n / \\sqrt{11}$ |\n| :---: | :---: | :---: |\n| | | |\n| 198 | 19.900 | 179.098 |\n| 197 | 19.799 | 178.193 |\n| 196 | 19.699 | 177.289 |\n| 195 | 19.598 | 176.384 |\n| 194 | 19.498 | 175.480 |\n| 193 | 19.397 | 174.575 |\n| 192 | 19.297 | 173.671 |\n| 191 | 19.196 | 172.766 |\n| 190 | 19.096 | 171.861 |\n| 189 | 18.995 | 170.957 |\n\nBecause $n=189=18+171$, the final answer is $x=\\frac{\\mathbf{1 8 9} \\sqrt{\\mathbf{1 1}}}{\\mathbf{1 1}}$." ]
false
null
Numerical
null
If $\lceil u\rceil$ denotes the least integer greater than or equal to $u$, and $\lfloor u\rfloor$ denotes the greatest integer less than or equal to $u$, compute the largest solution $x$ to the equation $$ \left\lfloor\frac{x}{3}\right\rfloor+\lceil 3 x\rceil=\sqrt{11} \cdot x $$
[ "$\\frac{189 \\sqrt{11}}{11}$" ]
2,830
Algebra
null
[ "Note that $x$ and $z$ can each be minimized by making $y$ as large as possible, so set $y=$ $\\operatorname{lcm}(12,20)=4$. Then $x=5, z=3$, and $x+z=\\mathbf{8}$." ]
false
null
Numerical
null
If $x, y$, and $z$ are positive integers such that $x y=20$ and $y z=12$, compute the smallest possible value of $x+z$.
[ "8" ]
2,831
Geometry
null
[ "The midpoint of $\\overline{A B}$ is $\\left(\\frac{T}{2}, 11\\right)$, and the slope of $\\overleftrightarrow{A B}$ is $\\frac{12}{T-2}$. Thus the perpendicular bisector of $\\overline{A B}$ has slope $\\frac{2-T}{12}$ and passes through the point $\\left(\\frac{T}{2}, 11\\right)$. Thus the equation of the perpendicular bisector of $\\overline{A B}$ is $y=\\left(\\frac{2-T}{12}\\right) x+\\left(11-\\frac{2 T-T^{2}}{24}\\right)$. Plugging $y=3$ into this equation and solving for $x$ yields $x=\\frac{96}{T-2}+\\frac{T}{2}$. With $T=8$, it follows that $x=\\frac{96}{6}+\\frac{8}{2}=16+4=\\mathbf{2 0}$." ]
false
null
Numerical
null
Let $T=8$. Let $A=(1,5)$ and $B=(T-1,17)$. Compute the value of $x$ such that $(x, 3)$ lies on the perpendicular bisector of $\overline{A B}$.
[ "20" ]
2,832
Number Theory
null
[ "The sum of the digits of $N$ must be a multiple of 3 , and the alternating sum of the digits must be a multiple of 11 . Because the number of digits of $N$ is fixed, the minimum $N$ will have the alternating sum of its digits equal to 0 , and therefore the sum of the digits of $N$ will be even, so it must be 6 . Thus if $T$ is even, then $N=1 \\underbrace{0 \\ldots .02}_{T-30^{\\prime} \\mathrm{s}}$, and if $T$ is odd, then $N=1 \\underbrace{0 \\ldots 0}_{T-30^{\\prime} \\mathrm{s}} 32$. Either way, the product of the last two digits of $N$ is 6 (independent of $T$ )." ]
false
null
Numerical
null
Let T be a rational number. Let $N$ be the smallest positive $T$-digit number that is divisible by 33 . Compute the product of the last two digits of $N$.
[ "6" ]
2,834
Algebra
null
[ "Because $\\overline{\\bar{z}}=z$, it follows that $f_{n}(z)=z$ when $n$ is odd, and $f_{n}(z)=\\bar{z}$ when $n$ is even. Taking $z=a+b i$, where $a$ and $b$ are real, it follows that $\\sum_{k=1}^{5} k f_{k}(z)=15 a+3 b i$. Thus $a=\\frac{T}{15}, b=\\frac{T}{3}$, and $|z|=\\sqrt{a^{2}+b^{2}}=\\frac{|T| \\sqrt{26}}{15}$. With $T=15$, the answer is $\\sqrt{\\mathbf{2 6}}$." ]
false
null
Numerical
null
Let $T=15$. For complex $z$, define the function $f_{1}(z)=z$, and for $n>1, f_{n}(z)=$ $f_{n-1}(\bar{z})$. If $f_{1}(z)+2 f_{2}(z)+3 f_{3}(z)+4 f_{4}(z)+5 f_{5}(z)=T+T i$, compute $|z|$.
[ "$\\sqrt{26}$" ]
2,835
Number Theory
null
[ "If the prime factorization of $a b$ is $p_{1}^{e_{1}} p_{2}^{e_{2}} \\ldots p_{k}^{e_{k}}$, where the $p_{i}$ 's are distinct primes and the $e_{i}$ 's are positive integers, then in order for $\\operatorname{gcd}(a, b)$ to equal 1 , each $p_{i}$ must be a divisor of exactly one of $a$ or $b$. Thus the desired number of ordered pairs is $2^{k}$ because there are 2 choices for each prime divisor (i.e., $p_{i} \\mid a$ or $p_{i} \\mid b$ ). With $T=\\sqrt{26}$, it follows that $(\\sqrt{26})^{20} \\cdot 210^{12}=\\left(2^{10} \\cdot 13^{10}\\right) \\cdot 210^{12}=2^{22} \\cdot 3^{12} \\cdot 5^{12} \\cdot 7^{12} \\cdot 13^{10}$. Thus there are five distinct prime divisors, and the answer is $2^{5}=\\mathbf{3 2}$." ]
false
null
Numerical
null
Let $T=\sqrt{26}$. Compute the number of ordered pairs of positive integers $(a, b)$ with the property that $a b=T^{20} \cdot 210^{12}$, and the greatest common divisor of $a$ and $b$ is 1 .
[ "32" ]
2,836
Algebra
null
[ "Using $\\sin ^{2} \\theta+\\cos ^{2} \\theta=1$ gives $\\cos ^{2} \\theta=\\frac{64}{T^{2}}$, so to maximize the sum, take $\\cos \\theta=\\frac{8}{|T|}$. Using the formula for the sum of an infinite geometric series gives $\\frac{8 /|T|}{1-8 /|T|}=\\frac{8}{|T|-8}$. With $T=32$, the answer is $\\frac{8}{24}=\\frac{1}{3}$." ]
false
null
Numerical
null
Let $T=32$. Given that $\sin \theta=\frac{\sqrt{T^{2}-64}}{T}$, compute the largest possible value of the infinite series $\cos \theta+\cos ^{2} \theta+\cos ^{3} \theta+\ldots$.
[ "$\\frac{1}{3}$" ]
2,838
Geometry
null
[ "By the Pythagorean Theorem, half the diagonal of the square is $\\sqrt{n^{2}-(n-m)^{2}}=\\sqrt{2 m n-m^{2}}$. Thus the diagonal of the square is $2 \\sqrt{2 m n-m^{2}}$, and the square's area is $4 m n-2 m^{2}$. With $T=\\frac{9}{17}, m=9, n=17$, and the answer is 450 ." ]
false
null
Numerical
null
Let $T=\frac{9}{17}$. When $T$ is expressed as a reduced fraction, let $m$ and $n$ be the numerator and denominator, respectively. A square pyramid has base $A B C D$, the distance from vertex $P$ to the base is $n-m$, and $P A=P B=P C=P D=n$. Compute the area of square $A B C D$.
[ "450" ]
2,839
Combinatorics
null
[ "Note that there are 9 days in July in which a person could be a Leo (July 23-31). Let the woman (born before the $d^{\\text {th }}$ day of July) be called Carol, and let the man (born after the $d^{\\text {th }}$ day of July) be called John, and consider the possible values of $d$. If $d \\leq 21$, then Carol will not be a Leo, and the probability that John is a Leo is $\\frac{9}{31-d}$. If $d=22$ or 23 , then the probability is 1 . If $d \\geq 24$, then John will be a Leo, and Carol will not be a Leo with probability $1-\\frac{d-23}{d-1}$. With $T=-14$, the first case applies, and the desired probability is $\\frac{\\mathbf{9}}{\\mathbf{1 7}}$." ]
false
null
Numerical
null
Let $T=-14$, and let $d=|T|$. A person whose birthday falls between July 23 and August 22 inclusive is called a Leo. A person born in July is randomly selected, and it is given that her birthday is before the $d^{\text {th }}$ day of July. Another person who was also born in July is randomly selected, and it is given that his birthday is after the $d^{\text {th }}$ day of July. Compute the probability that exactly one of these people is a Leo.
[ "$\\frac{9}{17}$" ]
2,840
Algebra
null
[ "Note that $4^{8 !}=2^{2 \\cdot 8 !}$, thus $\\log _{2} 4^{8 !}=2 \\cdot 8$ !. Similarly, $\\log _{4} 2^{8 !}=\\frac{8 !}{2}$. Thus $2 \\cdot 8 !+\\frac{8 !}{2}=$ $6 !\\left(2 \\cdot 7 \\cdot 8+7 \\cdot \\frac{8}{2}\\right)=6 ! \\cdot 140$. Thus $140=T x$, and with $T=-10, x=\\mathbf{- 1 4}$." ]
false
null
Numerical
null
Let $T=-10$. Given that $\log _{2} 4^{8 !}+\log _{4} 2^{8 !}=6 ! \cdot T \cdot x$, compute $x$.
[ "-14" ]
2,841
Algebra
null
[ "Divide each side of the second equation by 2 and equate coefficients to obtain $5 b-T-a=$ $\\frac{T}{2}+4 a-1$ and $T+1=-5 b$. Thus $b=\\frac{T+1}{-5}$, and plugging this value into the first equation yields $a=-\\frac{T}{2}$. With $T=20$, the answer is $\\mathbf{- 1 0}$." ]
false
null
Numerical
null
Let $T=20$. For some real constants $a$ and $b$, the solution sets of the equations $x^{2}+(5 b-T-a) x=T+1$ and $2 x^{2}+(T+8 a-2) x=-10 b$ are the same. Compute $a$.
[ "-10" ]
2,842
Algebra
null
[ "Because $T$ workers produce 9 widgets in 1 hour, 1 worker will produce $\\frac{9}{T}$ widgets in 1 hour. Thus 1 worker will produce $\\frac{36}{T}$ widgets in 4 hours. In order to produce $\\frac{720}{T}$ widgets in 4 hours, it will require $\\frac{720 / T}{36 / T}=\\mathbf{2 0}$ workers (independent of $T$ )." ]
false
null
Numerical
null
Let T be a rational number, and let $K=T-2$. If $K$ workers can produce 9 widgets in 1 hour, compute the number of workers needed to produce $\frac{720}{K}$ widgets in 4 hours.
[ "20" ]
2,843
Algebra
null
[ "Let $R$ be the remainder when $T$ is divided by 11 . Note that the alternating sum of the digits of the number must be divisible by 11 . This sum will be congruent $\\bmod 11$ to $B-A+A-R=$ $B-R$, thus $B=R$. Because $A$ 's value is irrelevant, to maximize $A+B$, set $A=9$ to yield $A+B=9+R$. For $T=2018, R=5$, and the answer is $9+5=\\mathbf{1 4}$." ]
false
null
Numerical
null
Let $T=2018$, and append the digits of $T$ to $\underline{A} \underline{A} \underline{B}$ (for example, if $T=17$, then the result would be $\underline{1} \underline{\underline{A}} \underline{A} \underline{B}$ ). If the resulting number is divisible by 11 , compute the largest possible value of $A+B$.
[ "14" ]
2,844
Algebra
null
[ "Note that $365=7 \\cdot 52+1$. Thus over the next few years after 2012 , the day of the week for April $1^{\\text {st }}$ will advance by one day in a non-leap year, and it will advance by two days in a leap year. Thus in six years, the day of the week will have rotated a complete cycle, and the answer is 2018 ." ]
false
null
Numerical
null
Given that April $1^{\text {st }}, 2012$ fell on a Sunday, what is the next year in which April $1^{\text {st }}$ will fall on a Sunday?
[ "2018" ]
2,845
Number Theory
null
[ "Let $x, 2 x$, and $4 x$ be the ages of the children $p$ years ago. Then $x+2 x+4 x=p$, so $7 x=p$. Since $p$ is prime, $x=1$. Thus the sum of the children's current ages is $(1+7)+(2+7)+(4+7)=\\mathbf{2 8}$." ]
false
null
Numerical
null
Let $p$ be a prime number. If $p$ years ago, the ages of three children formed a geometric sequence with a sum of $p$ and a common ratio of 2 , compute the sum of the children's current ages.
[ "28" ]
2,846
Number Theory
null
[ "Because $N<100,5 \\cdot N<500$. Since no primes end in 4, it follows that $5 \\cdot N<400$, hence $N \\leq 79$. The reverses of $5 \\cdot 79=395,4 \\cdot 79=316$, and 79 are 593,613 , and 97 , respectively. All three of these numbers are prime, thus 79 is the largest two-digit integer $N$ for which $N$, $4 \\cdot N$, and $5 \\cdot N$ are all reverse primes." ]
false
null
Numerical
null
Define a reverse prime to be a positive integer $N$ such that when the digits of $N$ are read in reverse order, the resulting number is a prime. For example, the numbers 5, 16, and 110 are all reverse primes. Compute the largest two-digit integer $N$ such that the numbers $N, 4 \cdot N$, and $5 \cdot N$ are all reverse primes.
[ "79" ]
2,847
Combinatorics
null
[ "Let $r$ and $b$ be the number of students wearing red and blue jerseys, respectively. Then either we choose two blues and one red or one blue and two reds. Thus\n\n$$\n\\begin{aligned}\n& \\left(\\begin{array}{l}\nb \\\\\n2\n\\end{array}\\right)\\left(\\begin{array}{l}\nr \\\\\n1\n\\end{array}\\right)+\\left(\\begin{array}{l}\nb \\\\\n1\n\\end{array}\\right)\\left(\\begin{array}{l}\nr \\\\\n2\n\\end{array}\\right)=25 \\\\\n\\Rightarrow & \\frac{r b(b-1)}{2}+\\frac{b r(r-1)}{2}=25 \\\\\n\\Rightarrow & r b((r-1)+(b-1))=50 \\\\\n\\Rightarrow & r b(r+b-2)=50 .\n\\end{aligned}\n$$\n\nNow because $r, b$, and $r+b-2$ are positive integer divisors of 50 , and $r, b \\geq 2$, we have only a few possibilities to check. If $r=2$, then $b^{2}=25$, so $b=5$; the case $r=5$ is symmetric. If $r=10$, then $b(b+8)=5$, which is impossible. If $r=25$, then $b(b+23)=2$, which is also impossible. So $\\{r, b\\}=\\{2,5\\}$, and $r+b=7$." ]
false
null
Numerical
null
Some students in a gym class are wearing blue jerseys, and the rest are wearing red jerseys. There are exactly 25 ways to pick a team of three players that includes at least one player wearing each color. Compute the number of students in the class.
[ "7" ]
2,848
Geometry
null
[ "We observe that $\\frac{1}{B E}+\\frac{1}{B N}=\\frac{B E+B N}{B E \\cdot B N}$. The product in the denominator suggests that we compare areas. Let $[B E N]$ denote the area of $\\triangle B E N$. Then $[B E N]=\\frac{1}{2} B E \\cdot B N$, but because $P R=P S=60$, we can also write $[B E N]=[B E P]+[B N P]=\\frac{1}{2} \\cdot 60 \\cdot B E+\\frac{1}{2} \\cdot 60 \\cdot B N$. Therefore $B E \\cdot B N=60(B E+B N)$, so $\\frac{1}{B E}+\\frac{1}{B N}=\\frac{B E+B N}{B E \\cdot B N}=\\frac{1}{\\mathbf{6 0}}$. Note that this value does not depend on the length of the hypotenuse $\\overline{E N}$; for a given location of point $P, \\frac{1}{B E}+\\frac{1}{B N}$ is invariant.", "Using similar triangles, we have $\\frac{E R}{P R}=\\frac{P S}{S N}=\\frac{B E}{B N}$, so $\\frac{B E-60}{60}=$ $\\frac{60}{B N-60}=\\frac{B E}{B N}$ and $B E^{2}+B N^{2}=221^{2}$. Using algebra, we find that $B E=204, B N=85$, and $\\frac{1}{204}+\\frac{1}{85}=\\frac{1}{60}$." ]
false
null
Numerical
null
Point $P$ is on the hypotenuse $\overline{E N}$ of right triangle $B E N$ such that $\overline{B P}$ bisects $\angle E B N$. Perpendiculars $\overline{P R}$ and $\overline{P S}$ are drawn to sides $\overline{B E}$ and $\overline{B N}$, respectively. If $E N=221$ and $P R=60$, compute $\frac{1}{B E}+\frac{1}{B N}$.
[ "$\\frac{1}{60}$" ]
2,849
Algebra
null
[ "If $y=\\log _{a}\\left(\\log _{a} x\\right)$, then $a^{a^{y}}=x$. Let $y=\\log _{2}\\left(\\log _{2} x\\right)=\\log _{4}\\left(\\log _{4} x\\right)$. Then $2^{2^{y}}=4^{4^{y}}=$ $\\left(2^{2}\\right)^{\\left(2^{2}\\right)^{y}}=2^{2^{2 y+1}}$, so $2 y+1=y, y=-1$, and $x=\\sqrt{\\mathbf{2}}$. (This problem is based on one submitted by ARML alum James Albrecht, 1986-2007.)", "Raise 4 (or $2^{2}$ ) to the power of both sides to get $\\left(\\log _{2} x\\right)^{2}=\\log _{4} x$. By the change of base formula, $\\frac{(\\log x)^{2}}{(\\log 2)^{2}}=\\frac{\\log x}{2 \\log 2}$, so $\\log x=\\frac{\\log 2}{2}$, thus $x=2^{1 / 2}=\\sqrt{\\mathbf{2}}$.", "Let $x=4^{a}$. The equation then becomes $\\log _{2}(2 a)=\\log _{4} a$. Raising 4 to the power of each side, we get $4 a^{2}=a$. Since $a \\neq 0$, we get $4 a=1$, thus $a=\\frac{1}{4}$ and $x=\\sqrt{2}$." ]
false
null
Numerical
null
$\quad$ Compute all real values of $x$ such that $\log _{2}\left(\log _{2} x\right)=\log _{4}\left(\log _{4} x\right)$.
[ "$\\sqrt{2}$" ]