contest
stringclasses 315
values | contest_url
stringclasses 1
value | url
stringlengths 53
65
| alphabet
stringclasses 20
values | name
stringlengths 9
17
| score
stringclasses 10
values | correct
int64 0
467
| total
int64 0
485
| editorials
listlengths 1
6
| task_content
stringlengths 28
1.49k
|
---|---|---|---|---|---|---|---|---|---|
OMCE012 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omce012/tasks/9853 | A | OMCE012(A) | 300 | 117 | 181 | [
{
"content": "ãçŽ æ° $p$ ã $a-b$ ããã³\r\n$$G = \\gcd \\left(\\displaystyle\\sum_{i=0}^{n} a^ib^{n-i}, (a-b)^{3} \\right)$$ \r\nãå²ãåããšããïŒ$a$ ãš $b$ ã¯äºãã«çŽ ãªã®ã§ã©ã¡ãã $p$ ã®åæ°ã§ã¯ãªãïŒãŸã\r\n$$ 0 \\equiv \\displaystyle\\sum_{i=0}^{n} a^ib^{n-i} \\equiv (n+1) a^n \\pmod{p} $$\r\nããïŒ$p$ 㯠$n+1$ ã®çŽ å æ°ïŒããªãã¡ $p \\in \\\\{ 3, 7, 11, 13, 37 \\\\}$ ã§ããïŒLTEã®è£é¡ããïŒ\r\n$$ v_p \\left( \\sum_{i=0}^{n} a^ib^{n-i} \\right) = v_p \\left( \\dfrac{a^{n+1}-b^{n+1}}{a-b} \\right) = v_p(a^{n+1}-b^{n+1})-v_p(a-b) = v_p(n+1) $$\r\nãšãªãã®ã§ïŒ\r\n$$v_p(G)= \\min \\left\\\\{v_p(n+1),3v_p(a-b)\\right\\\\}$$ \r\nãšãªãïŒ$n+1=3^{30}\\cdot7^{10}\\cdot11^{10}\\cdot13^{10}\\cdot37^{10}$ ããïŒ$p$ ãšããŠãããããã®ããããã«ã€ããŠïŒ$v_p(G)$ ãšããŠãããããã®ãèãããšïŒ \r\n- $p=7,11,13,37$ ã®ãšãïŒ$v_p(n+1)=10$ ãªã®ã§ïŒããããå€ã¯ $0,3,6,9,10$ ã® $5$ éã \r\n- $p=3$ ã®ãšãïŒ$v_p(n+1)=30$ ãªã®ã§ïŒããããå€ã¯ $30$ 以äžã® $3$ ã®åæ°ãªã®ã§ $11$ éã \r\n\r\nãçŽ å æ°ããšã«ç¬ç«ã㊠$a,b$ ãåãããšãã§ããïŒããšãã° $a=3^r7^s11^t13^u37^v+1,b=1$ ãšããïŒ ã®ã§ïŒæ±ããå€ã¯ $5^4 \\times 11 = \\mathbf{6875}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omce012/editorial/9853"
}
] | ã$n=999999^{10}-1$ ãšããŸãïŒäºãã«çŽ ãªæ£æŽæ° $a \gt b$ ãçšããŠïŒ
$$\gcd \left(\displaystyle\sum_{i=0}^{n} a^ib^{n-i}, (a-b)^{3} \right)$$
ãšè¡šãããšã®ã§ããæ£æŽæ°ã¯ããã€ãããŸããïŒ |
OMCE012 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omce012/tasks/11868 | B | OMCE012(B) | 400 | 60 | 137 | [
{
"content": "ã$O$ ãäžå¿ã«å転ãããšïŒåçé¢ $S_m$ 㯠$O$ ãå«ãŸãªãå¹³é¢ãžãšç§»ãïŒãããã®å¹³é¢ã«ãã£ãŠåããããåé åã«å«ãŸãã $P_i$ ãé«ã
$1$ ã€ãšãªãããã«ããããã«å¿
èŠãªå¹³é¢ã®åæ°ã®æå°å€ã $f(P_1, P_2, \\ldots, P_{10000})$ ã§ããïŒ \r\n- $f(P_1, P_2, \\ldots, P_{10000})$ ã®æå€§å€ \r\nãã©ã®ããã« $P_1, P_2, \\ldots, P_{10000}$ ãé
眮ãããŠããŠãïŒå¹³è¡ãª $9999$ åã®å¹³é¢ãããã°åé¢ã§ããïŒäžæ¹ã§ïŒ$P_1, P_2, \\ldots, P_{10000}$ ãããããããçŽç· $l$ äžã«ååšãããšãïŒ$l$ ãš $P_i$ ãå«ãŸãªãå¹³é¢ã®äº€ç¹ã¯é«ã
$1$ åãªã®ã§ïŒãã¹ãŠã®ç¹ãåé¢ããããã«ã¯ $9999$ åã®å¹³é¢ãå¿
èŠãªäŸãšãªãïŒãã£ãŠïŒæ倧å€ã¯ $9999$ ã§ããïŒ\r\n \r\n- $f(P_1, P_2, \\ldots, P_{10000})$ ã®æå°å€ \r\nã空éå
ã® $n$ åã®å¹³é¢ã«ãã£ãŠåå²ããã空éé åã®æ°ã®æ倧å€ã $a_n$ ãšãïŒå¹³é¢äžã® $n$ æ¬ã®çŽç·ã«ãã£ãŠåå²ãããé åã®æ°ã®æ倧å€ã $b_n$ ãšããïŒç©ºéäžã« $n+1$ åç®ã®å¹³é¢ãæ°ãã«è¿œå ãããšãã«æ倧㧠$b_n$ ååã®é åãå¢ããïŒãããã£ãŠ $a_{n+1} = a_n + b_n$ ãšãªãïŒ$b_n = \\dfrac{n(n+1)}{2}+1,a_1=2$ ã§ããããïŒ\r\n$$\r\na_n = \\sum_{k=1}^{n-1} \\bigg(\\frac{k(k+1)}{2}+1\\bigg)+2=\\dfrac{n^3+5n+6}{6}\r\n$$ \r\nãšãªãïŒ$a_{39} = 9920 \\lt 10000 \\lt 10701 = a_{40}$ ãªã®ã§ïŒå°ãªããšã $40$ åã®å¹³é¢ãå¿
èŠã§ããïŒãŸãïŒç¢ºãã«ãã®ãã㪠$P_1, P_2, \\ldots, P_{10000}$ ã®é
眮ã¯ååšããïŒ\r\n\r\nã以äžããïŒæ倧å€ãšæå°å€ã®å㯠$9999 + 40 = \\mathbf{10039}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omce012/editorial/11868"
}
] | ãç¹ $O$ ãå«ã空éå
ã« $10000$ åã®çžç°ãªã $O$ ã§ãªãç¹ $P_1,\ldots,P_{10000}$ ããšããšïŒ$O$ ãéã $n$ åã®çé¢ $S_1,\ldots,S_n$ ã以äžããšãã«æºãããŸããïŒ
- $n$ åã®ã©ã®çé¢äžã«ã $P_1, P_2, \ldots, P_{10000}$ ã¯ååšããªãïŒ
- ä»»æã® $1$ ä»¥äž $10000$ 以äžã®ç°ãªã $2$ æŽæ° $i,j$ ã«å¯ŸããŠïŒãã $1$ ä»¥äž $n$ 以äžã®æŽæ° $m$ ãååšãïŒ$P_i$ ãš $P_j$ ã®ãã¡ã¡ããã©äžæ¹ã $S_m$ ã®å
åŽïŒããäžæ¹ã $S_m$ ã®å€åŽã«ååšããïŒ
$P_1, P_2, \ldots, P_{10000}$ ã®é
眮ããšã« $n$ ã®æå°å€ãå®ãŸãã®ã§ïŒããã $f(P_1, P_2, \ldots, P_{10000})$ ãšãããŸãïŒ$P_1, P_2, \ldots, P_{10000}$ ã®é
眮ãåãããšãïŒ$f(P_1, P_2, \ldots, P_{10000})$ ã®æ倧å€ãšæå°å€ã®åãæ±ããŠãã ããïŒ |
OMCE012 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omce012/tasks/8688 | C | OMCE012(C) | 400 | 86 | 121 | [
{
"content": "ãäžè¬ã« $1111$ ãæŽæ° $n\\geq 2$ ã«ããããïŒ$S$ ã«ããããã®ã $S(n)$ ãšããïŒæ£æŽæ° $k \\le n$ ã«ã€ããŠïŒ\r\n$$ \\min_{1 \\le i \\le n-1} \\max_{} (p_i, p_{i+1}) \\ge k \\tag{â}$$\r\nãã¿ãã䞊ã¹æ¿ãã®åæ°ã $h(n, k)$ ãšãããšãïŒ\r\n$$S(n) = \\sum_{k=1}^n h(n, k)$$\r\nãšãªãïŒããã§æ¡ä»¶ (â) ã¯ïŒã$\\\\{ 1, 2, \\ldots, k-1 \\\\}$ ã®å
ã©ãããé£æ¥ããªãããšèšããããããã®ã§ïŒ$2k \\le n+3$ ã®ãšã\r\n$$ h(n, k) = \\binom{n-k+2}{k-1} \\cdot (k-1)! \\cdot (n-k+1)! = \\frac{(n-k+2)! \\cdot (n-k+1)!}{(n-2k+3)!} $$\r\nã§ããïŒ$2k \\ge n+4$ ã®ãšã $h(n, k) = 0$ ã§ããïŒãããã£ãŠïŒ\r\n$$ S(n) = \\sum_{k=1}^{\\lfloor \\frac{n+3}{2} \\rfloor} \\frac{(n-k+2)! \\cdot (n-k+1)!}{(n-2k+3)!} = \\sum_{l=0}^{\\lfloor \\frac{n+1}{2} \\rfloor} \\frac{(n-l+1)! \\cdot (n-l)!}{(n-2l+1)!} $$\r\nãšãããïŒããŠïŒ\r\n$$ S(1111) = \\sum_{l=0}^{556} \\frac{(1112-l)!}{(1112-2l)!} \\cdot (1111-l)! $$\r\nã®åé
ã«ã€ããŠïŒ$l \\le 555$ ã®å Žå㯠$557!$ ã§å²ãåãïŒ$l = 556$ ã®å Žå㯠$557!$ ã§å²ãåããã〠$556!$ ã§å²ãåããããšã確èªã§ããããïŒæ±ããå€ã¯ $\\mathbf{556}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omce012/editorial/8688"
}
] | ã$1111!$ åã® $(1, 2, \ldots, 1111)$ ã®äžŠã¹æ¿ã $(p_1, p_2, \ldots, p_{1111})$ ãã¹ãŠã«ã€ããŠïŒ
$$\displaystyle \min_{1 \le i \le 1110} \max\\{p_i, p_{i+1}\\}$$
ã足ãåããããã®ã $S$ ãšããŸãïŒãã®ãšãïŒ$k!$ ã $S$ ãå²ããããããªæ倧ã®æ£æŽæ° $k$ ãæ±ããŠãã ããïŒ\
ããã ãïŒå®æ° $a, b$ ã«ã€ã㊠$\max \\{ a, b \\}$ 㧠$a, b$ ã®æ倧å€ãè¡šãïŒå®æ° $a_1, a_2, \ldots, a_{1110}$ ã«ã€ã㊠$\displaystyle \min_{1 \le i \le 1110} a_i$ 㧠$a_1, a_2, \ldots, a_{1110}$ ã®æå°å€ãè¡šããŸãïŒ |
OMCE012 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omce012/tasks/12137 | D | OMCE012(D) | 600 | 33 | 74 | [
{
"content": "ã$2a-1$ ã¯å¥æ°ãªã®ã§ $d(ab(ab+4a+1))$ ãå¥æ°ïŒã€ãŸã $ab(ab+4a+1)$ ã¯å¹³æ¹æ°ã§ããïŒ\r\n$$(ab)^2\\lt ab(ab+4a+1)\\lt (ab+2a+1)^2$$\r\nããïŒ$0\\leq k\\leq 2a-1$ ãªãæŽæ° $k$ ãçšããŠ\r\n$$ab(ab+4a+1)=(ab+2a-k)^2$$\r\nãšè¡šããïŒããã $b$ ã«ã€ããŠæŽçãããš\r\n$$b=\\frac{(2a-k)^2}{(2k+1)a}$$\r\nãšãªã\r\n$$\\frac{(2a-k)^2}{a}=4a-4k+\\dfrac{k^2}{a}$$\r\nã¯æŽæ°ãªã®ã§ $\\dfrac{k^2}{a}$ ãæŽæ°ãšãªãïŒããã§ïŒ$d(a)=4$ ãã $a$ 㯠$p\\lt q$ ãªãçŽ æ° $p, q$ ãçšã㊠$a=p^3$ ãŸã㯠$a=pq$ ãšæžããïŒããããå ŽååãããŠèãããïŒ\r\n- $a=p^3$ ã®ãšãïŒ$\\dfrac{k^2}{a}$ ã¯æŽæ°ãªã®ã§ $0\\leq m\\leq 2p-1$ ãªãæŽæ° $m$ ãçšã㊠$k=mp^2$ ãšæžããïŒãããšïŒ\r\n$$b=\\frac{p(2p-m)^2}{2mp^2+1}$$\r\nã§ããïŒ$p$ ãš $2mp^2+1$ ã¯äºãã«çŽ ãªã®ã§ $\\dfrac{(2p-m)^2}{2mp^2+1}$ ã¯æŽæ°ãšãªãïŒ$m\\geq 2$ ã®ãšã\r\n$$0\\lt \\frac{(2p-m)^2}{2mp^2+1}\\leq \\frac{4p^2}{2mp^2+1}\\lt 1$$\r\nããäžé©ïŒ$m=1$ ã®ãšã\r\n$$\\frac{(2p-m)^2}{2mp^2+1}=2-\\frac{4p+1}{2p^2+1}$$\r\nãæŽæ°ãšãªãã $p\\geq 2$ ãã\r\n$$0\\lt \\frac{4p+1}{2p^2+1}=1-\\frac{2p(p-2)}{2p^2+1}\\leq 1$$\r\nãªã®ã§ $\\dfrac{4p+1}{2p^2+1}=1$ ã€ãŸã $p=2$ ãšãªãïŒåé¡ã®æ¡ä»¶ãã¿ããçµãšã㊠$(a, b) = (8, 2)$ ãåŸãïŒ$m=0$ ã®ãšã $(a, b)=(p^3, 4p^3)$ ã§ãããïŒ\r\n$$\\frac{2a-1}{d(ab(ab+4a+1))}=\\frac{2p^3-1}{21d(4p^6+4p^3+1)}$$\r\nãã $\\dfrac{2p^3-1}{7}$ ãæŽæ°ãšãªãïŒãã㯠$p^3\\equiv 0, 1, 6\\pmod 7$ ããççŸããïŒ \r\nã以äžããïŒ$a=p^3$ ã®ãšãé¡æãæºããã®ã¯ $(a, b)=(8, 2)$ ã®ã¿ã§ããïŒ \r\n\r\n- $a=pq$ $(p\\lt q)$ ã®ãšãïŒ$\\dfrac{k^2}{a}$ ã¯æŽæ°ãªã®ã§ $k$ 㯠$a$ ã®åæ°ã§ããïŒ$0\\leq k\\leq 2a-1$ ãã $k=0, a$ ã§ããïŒ$k=a$ ã®ãšãïŒ\r\n$$b=\\frac{a}{2a+1} \\lt 1$$\r\nããäžé©ã§ããïŒ$k=0$ ã®ãšã㯠$(a, b)=(pq, 4pq)$ ã§ããïŒ$2a$ ãš $2a+1$ ã¯äºãã«çŽ ã§ãããã\r\n$$d(ab(ab+4a+1))=d(4p^2q^2)d((2pq+1)^2)$$ \r\nãåŸãïŒä»¥äž $p$ ã®å€ã§å ŽååããããïŒ\r\n\r\n - $p=2$ ã®ãšã \r\n $$\\frac{2a-1}{d(ab(ab+4a+1))}=\\frac{4q-1}{15d((4q+1)^2)}$$\r\n ãã $q\\equiv 4\\pmod {15}$ ã§ããïŒãããš $q\\geq 3$ ãã $q\\equiv 19\\pmod {30}$ ã§ããïŒ$1500\\geq b=4a=8q$ ãã $q=19, 79, 109, 139$ ã®ããããã§ããïŒå®éã«èª¿ã¹äžãããš $p=2$ ã®ãšã $(a, b)=(158, 632)$ ã®ã¿ãæ¡ä»¶ãæºããããšããããïŒ \r\n\r\n - $p\\geq 3$ ã®ãšã \r\n $$\\frac{2a-1}{d(ab(ab+4a+1))}=\\frac{2pq-1}{27d((2pq+1)^2)}$$\r\n ãã $pq\\equiv 14\\pmod {27}$ ã§ããïŒãããš $p, q\\geq 3$ ãã $pq\\equiv 41\\pmod {54}$ ã§ããïŒ$1500\\geq 4pq$ ãã $pq=95, 203, 365$ ã®ããããã§ããïŒå®éã«èª¿ã¹äžãããš $p\\geq 3$ ã®ãšã $(a, b)=(365, 1460)$ ã®ã¿ãæ¡ä»¶ãæºããããšããããïŒ \r\n\r\nããããã£ãŠïŒé¡æãæºããã®ã¯ $(a, b)=(8, 2), (158, 632), (365, 1460)$ ã®ã¿ãªã®ã§ïŒè§£çãã¹ãå€ã¯\r\n$$(8+2)+(158+632)+(365+1460)=\\mathbf{2625}$$\r\nã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omce012/editorial/12137"
},
{
"content": "ãæ¡ä»¶ãã $d(ab(ab+4a+1))$ ã¯å¥æ°ã§ïŒ$ab(ab+4a+1)$ ã¯å¹³æ¹æ°ã§ããïŒ\\\r\nã$d(a)=4$ ãã $a=p^3,pq$ ã®ããããã®åœ¢ã§æžããïŒ$p,q$ ã¯çžç°ãªãçŽ æ°ïŒïŒä»¥äžïŒå ŽååãããŠãããïŒ\r\n\r\n---\r\n\r\n$(\\mathrm{i})$ã$a=p^3$ ã®ãšã\\\r\nã$a$ ãš $ab+4a+1$ ã¯äºãã«çŽ ãªã®ã§ïŒ$ab(ab+4a+1)$ ãå¹³æ¹æ°ã§ããããšãã $b=px$ ãšãªãæ£æŽæ° $x$ ãååšããããšãå¿
èŠæ¡ä»¶ã§ããïŒ\\\r\nããã®ãšã\r\n$$ab(ab+4a+1)=p^4x(p^4x+4p^3+1)=p^4(p^4x^2+4p^3x+x)$$\r\nãã§ããïŒ$p^4x^2+4p^3x+x$ ãå¹³æ¹æ°ã§ããïŒ\r\n\r\n- $(p^2x+2p+1)^2 \\gt p^4x^2+2(2p+1)p^2x \\gt p^4x^2+4p^3x+x$\r\n- $(p^2x+2p-2)^2=p^4x^2+4p^3x+4p^2(1-x)+4-8p \\lt p^4+4p^3x$\r\n\r\nããçšããã°ïŒ$p^4x^2+4p^3x+x$ 㯠$(p^2x+2p)^2$ ãŸã㯠$(p^2x+2p-1)^2$ ã®ããããã«ãããªãåŸãªãïŒ\\\r\nãåè
ã®å Žå $x=4p^2$ ãïŒåŸè
ã®å Žå $x=\\dfrac{(2p-1)^2}{2p^2+1}$ ãåŸãïŒ\\\r\nãåè
ã®å Žå $(a,b)=(p^3,4p^3)$ ã§ããïŒæ¡ä»¶ $b \\leq 1500$ ãã $p=2,3,5,7$ ãé 次åœãŠã¯ããŠããã°ïŒé©ãããã®ã¯ååšããªãïŒ\\\r\nã次ã«åŸè
ã®å Žå $x=2-\\dfrac{4p+1}{2p^2+1}$ ã§ããïŒ$x$ ã¯æ£æŽæ°ãªã®ã§ $x=1,p=2$ ã®ã¿é©ããïŒãã®ãšã $(a,b)=(8,2)$ ãšãªãïŒç¢ºãããã°æ¡ä»¶ãæºããïŒ\r\nã\r\n---\r\n\r\n$(\\mathrm{ii})$ã$a=pq$ ã®ãšã\\\r\nãå Žååã $(\\mathrm{i})$ ã®å Žåãšåæ§ã«èãããïŒ$ab(ab+4a+1)$ ãå¹³æ¹æ°ã§ããããã®å¿
èŠæ¡ä»¶ãšã㊠$b=pqx$ ãšãªãæ£æŽæ° $x$ ãååšããïŒ\\\r\nããã®ãšã\r\n$$ab(ab+4a+1)=p^2q^2x(p^2q^2x+4pq+1)=p^2q^2(p^2q^2x^2+4pqx+x)$$\r\nãã§ããïŒ$p^2q^2x^2+4pqx+x$ ãå¹³æ¹æ°ã§ããïŒããã $(pqx+2)^2$ ã«äžèŽãããšã $x=4$ ã§ããïŒãã以å€ã®å Žåã«äžèŽããªãããšã¯$(\\mathrm{i})$ ãšåæ§ã«äžçåŒè©äŸ¡ã§ç¢ºãããããïŒ\\\r\nãããã§æ¡ä»¶ããŸãšãããš\r\n\r\n- $pq \\leq 375$\r\n- $d(4p^2q^2(2pq+1)^2)$ ã $2pq-1$ ãå²ãåã\r\n\r\nã$q=2$ ãåŠãã§å Žååãããã®ã¯èªç¶ãªçºæ³ã ããïŒ\r\n\r\n$(\\mathrm{ii}-1)$ã$a=2p$ ã®ãšã\\\r\nã$d(16p^2(4p+1)^2)$ ã $4p-1$ ãå²ãåãã°ããïŒ\\\r\nã$d(16p^2(4p+1)^2)$ ã¯æããã« $15$ ã§å²ãåããã®ã§ïŒ$4p-1$ ã $15$ ã®åæ°ã§ããïŒ$p$ ãå¥æ°ã§ããããšãåãããã°ïŒ$p=30k+19$ ãšãªãçŽ æ°ã調ã¹ãã°ããïŒå®éã« $p=19,79, 109, 139$ ã«ã€ããŠç¢ºãã㊠$p=79$ ã§ã®ã¿é©ããããšãåããïŒãã®ãšã $(a,b)=(158,632)$ ã§ããïŒ\r\n\r\n$(\\mathrm{ii}-2)$ã$p,q$ ãšãã«å¥çŽ æ°ã§ãããšã \\\r\nã$d(4p^2q^2(2pq+1)^2)$ ã $2pq-1$ ãå²ãåãã°ããïŒ\\\r\nã$d(4p^2q^2(2pq+1)^2)$ ã¯æããã« $27$ ã§å²ãåããã®ã§ïŒ$2pq-1$ ã $27$ ã®åæ°ã§ããïŒ$p,q$ ãå¥æ°ã§ããããšãåãããã°ïŒ$pq=54k+41$ ãšãªãåçŽ æ°ã調ã¹ãã°ããïŒå®éã« $pq=95,203,365$ ã«ã€ããŠç¢ºãã㊠$p=365$ ã§ã®ã¿é©ããããšãåããïŒãã®ãšã $(a,b)=(365,1460)$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬ã® k ãçšããªãæ¹é",
"url": "https://onlinemathcontest.com/contests/omce012/editorial/12137/788"
}
] | ãæ£ã®æŽæ° $n$ ã®æ£ã®çŽæ°ã®åæ°ã $d(n)$ ã§è¡šããŸãïŒ$2$ ã€ã® $1500$ 以äžã®æ£ã®æŽæ°ã®çµ $(a, b)$ ã§ãã£ãŠïŒä»¥äžã®æ¡ä»¶ãæºãããã®ãã¹ãŠã«ã€ããŠïŒ$a+b$ ã®ç·åãçããŠãã ããïŒ
- $d(a)=4$
- $d(a^2b^2+4a^2b+ab)$ 㯠$2a-1$ ãå²ãåã |
OMCE012 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omce012/tasks/7410 | E | OMCE012(E) | 600 | 14 | 35 | [
{
"content": "ãäžè§åœ¢ $ABC$ ã®å€æ¥åãšäžè§åœ¢ $DEF$ ã®å€æ¥åïŒã€ãŸãäžè§åœ¢ $ABC$ ã®ä¹ç¹åãšã®æ ¹è»žã $l$ ãšãããš\r\n$$AP\\cdot BP=DP\\cdot EP, \\quad AQ\\cdot CQ=DQ\\cdot FQ$$\r\nãã $P,Q$ ã¯ã©ã¡ãã $l$ äžã«ããã®ã§ïŒ$l$ ã¯çŽç· $PQ$ ãšäžèŽããïŒãã£ãŠïŒäžè§åœ¢ $ABC$ ã®ä¹ç¹åã®äžå¿ã $N$ ãšãããš $N$ 㯠ç·å $OH$ ã®äžç¹ã§ããããšãã $PQ\\perp OH$ ãªã®ã§ïŒ$l \\parallel HM$ ãšããã㊠$\\angle OHM=90^\\circ$ ããããïŒ\\\r\nãæ£åŒŠå®çãã $\\sin \\angle BAC=\\dfrac{DE}{AH}=\\dfrac{4}{5}$ ãªã®ã§ïŒ$\\triangle AHE\\sim \\triangle BCE$ ãã \r\n$$BC = AH \\cdot \\tan \\angle BAC=\\dfrac{100}{3}$$\r\nããããïŒãããš $OM=\\dfrac{AH}{2}=\\dfrac{25}{2}$ ãã $OA=\\sqrt{OM^2+BM^2}=\\dfrac{125}{6}$ ãªã®ã§\r\n$$(\\overrightarrow{AO}-\\overrightarrow{AH})\\cdot (2\\overrightarrow{AO}-\\overrightarrow{AH})=0$$\r\nãã $OH=|\\overrightarrow{AO}-\\overrightarrow{AH}|=\\dfrac{25\\sqrt{33}}{18}$ ãšãªãïŒ$R$ 㯠$l$ äžã«ããã®ã§ïŒäžè§åœ¢ $ABC$ ã®å€æ¥åã«ã€ããŠã®æ¹ã¹ããšäžè§åœ¢ $ABC$ ã®ä¹ç¹åã«ã€ããŠã®æ¹ã¹ããçããïŒã€ãŸã\r\n$$OR^2-OA^2=ON^2-DN^2= \\left(OR-\\frac{OH}{2} \\right)^2- \\left(\\frac{OA}{2} \\right)^2$$\r\nãæãç«ã€ã®ã§ïŒãããã $OR^2 = \\dfrac{2175625}{1188}$ ãšæ±ãŸãïŒãããã£ãŠïŒè§£çãã¹ãå€ã¯ $\\mathbf{2176813}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omce012/editorial/7410"
},
{
"content": "ã解説 $1$ è¡ç®ã®ïŒå€æ¥åãšä¹ç¹åã®æ ¹è»žã¯å軞 (orthic axis) ãšåŒã°ããŸãïŒå軞ã¯åå¿ã®å€æ¥åã§ã®æ¥µç·ã§ãïŒ",
"text": "å軞",
"url": "https://onlinemathcontest.com/contests/omce012/editorial/7410/794"
}
] | ãã©ã® $2$ 蟺ã®é·ããçãããªãéè§äžè§åœ¢ $ABC$ ã®å€å¿ïŒåå¿ããããã $O, H$ ãšãïŒèŸº $BC$ ã®äžç¹ã $M$ ãšããŸãïŒ$A, B, C$ ãã察蟺ã«äžãããåç·ã®è¶³ããããã $D, E, F$ ãšãïŒçŽç· $DE$ ãšçŽç· $AB$ ã®äº€ç¹ã $P$ïŒçŽç· $DF$ ãšçŽç· $AC$ ã®äº€ç¹ã $Q$ ãšãããšïŒ
$$ EF = 20, \quad AH = 25, \quad PQ \parallel HM $$
ãæãç«ã¡ãŸããïŒçŽç· $PQ$ ãšçŽç· $OH$ ãšã®äº€ç¹ã $R$ ãããšãïŒç·å $OR$ ã®é·ãã® $2$ ä¹ã¯äºãã«çŽ ãªæ£æŽæ° $a,b$ ãçšã㊠$\dfrac{a}{b}$ ãšè¡šãããã®ã§ïŒ$a+b$ ã®å€ã解çããŠãã ããïŒ |
OMCE012 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omce012/tasks/11840 | F | OMCE012(F) | 700 | 11 | 38 | [
{
"content": "ã$N = 15012, ~ f(x)=x^4-5x^3-20x+16$ ãšããïŒ\r\n$$\r\n\\begin{aligned}\r\n\\sum_{k=1}^{4N} \\sum_{l=0}^{k-1} 2^{k+l}a_ka_l &= \\frac{1}{2}\\Bigg(\\bigg(\\sum_{k=0}^{4N} 2^ka_k\\bigg)^2-\\sum_{k=0}^{4N} (2^ka_k)^2\\Bigg)\\\\\\\\\r\n&= \\frac{1}{2}\\bigg(f(2)^{2N}-\\sum_{k=0}^{4N} 4^ka_k^2\\bigg)\\\\\\\\\r\n&= \\frac{1}{2}\\bigg((-48)^{2N}-\\sum_{k=0}^{4N} 4^ka_k^2\\bigg)\r\n\\end{aligned}\r\n$$\r\nãšãªãïŒããŸïŒ$f(x) = \\dfrac{x^4}{4^2} f\\bigg(\\dfrac{4}{x}\\bigg)$ ã§ããã®ã§ïŒ\r\n$$\r\n\\begin{aligned}\r\n\\sum_{k=0}^{4N}a_kx^k &= f(x)^{N} = \\frac{x^{4N}}{4^{2N}}f\\bigg(\\dfrac{4}{x}\\bigg)^{N}\\\\\\\\\r\n&= \\frac{x^{4N}}{4^{2N}} \\bigg(\\sum_{k=0}^{4N}4^k a_kx^{-k}\\bigg) \\\\\\\\\r\n&= \\sum_{k=0}^{4N}4^{k-2N}a_kx^{4N-k} \\\\\\\\\r\n&= \\sum_{k=0}^{4N}4^{2N-k}a_{4N-k}x^k\r\n\\end{aligned}\r\n$$\r\nãšãªãããïŒ$a_{k}=4^{2N-k}a_{4N-k}$ ãæç«ããïŒããã«ããïŒ\r\n$$\r\n\\sum_{k=0}^{4N} 4^ka_k^2 = 4^{2N}\\sum_{k=0}^{4N} a_ka_{4N-k}\r\n$$\r\nãåŸãããïŒ$g(x) = \\dfrac{f(x)}{x^2}$ ãšããïŒ$h(x)=(g(x))^N=\\displaystyle\\sum_{k=0}^{4N}a_kx^{k-2N}$ ãšããïŒ$h(x)^2$ ã®å®æ°é
ã«æ³šç®ãããšïŒãã㯠$\\displaystyle\\sum_{k=0}^{4N} a_ka_{4N-k}$ ãšäžèŽããïŒäžæ¹ã§ïŒ$h(x)$ ã®å®æ°é
ã $p=10007$ ã§å²ã£ãäœãã¯ïŒãã§ã«ããŒã®å°å®çãå€é
å®çãçšããŠä»¥äžã®ããã«èšç®ã§ããïŒ\r\n$$\r\n\\begin{aligned}\r\n[x^0]h(x)^2 &= [x^0]g(x)^{2N}\\\\\\\\\r\n&=[x^0]\\bigg(x^2+\\frac{16}{x^2}-\\bigg(5x+\\frac{20}{x}\\bigg)\\bigg)^{3p + 3}\\\\\\\\\r\n&\\equiv [x^0]\\bigg(x^{2p}+\\frac{16}{x^{2p}}-\\bigg(5x^p+\\frac{20}{x^p}\\bigg)\\bigg)^{3}\\bigg(x^2+\\frac{16}{x^2}-\\bigg(5x+\\frac{20}{x}\\bigg)\\bigg)^{3} \\\\\\\\\r\n&\\equiv g(x^p)^3 g(x)^3 \\pmod{p}\\\\\\\\\r\n\\end{aligned}\r\n$$\r\nããã§ïŒ$g(x^p)^3$ ãš $g(x)^3$ ã®å®æ°é
ã¯äžèŽãïŒ\r\n$$\r\n[x^0]g(x)^3 = [x^0]\\bigg(x^2+\\dfrac{16}{x^2}-\\bigg(5x+\\dfrac{20}{x}\\bigg)\\bigg)^{3} = 3\\cdot 16 \\cdot (-5)^2 + 3\\cdot 1 \\cdot (-20)^2 = 2400\r\n$$\r\nãšçããïŒãŸãïŒ$g(x^p)^3$ ã®å®æ°é
ã§ãªãéšåã®æ¬¡æ°ã¯ãã¹ãŠ $p$ ã®åæ°ãšãªãããïŒ$h(x)^2$ ã®å®æ°é
ã¯äž¡è
ã®å®æ°é
ãæãåããããã®ã§ããïŒ\r\n$$\r\n[x^0]h(x)^2 \\equiv 2400^2 \\equiv 5975 \\pmod{p}\r\n$$\r\nãåŸãïŒä»¥äžã代å
¥ããããšã§ïŒ\r\n$$\r\n\\begin{aligned}\r\n\\sum_{k=1}^{4N} \\sum_{l=0}^{k-1} 2^{k+l}a_ka_l &= \\frac{1}{2}\\bigg((-48)^{2N}-\\sum_{k=0}^{4N} 4^ka_k^2\\bigg)\\\\\\\\\r\n&\\equiv \\frac{1}{2}\\bigg((-48)^{2N}-4^{2N} \\cdot 5975\\bigg) \\\\\\\\\r\n&\\equiv 5004 \\cdot (48^6-4^6\\cdot 5975) \\\\\\\\\r\n&\\equiv \\mathbf{9286}\\pmod{p}\r\n\\end{aligned}\r\n$$\r\nãšãªãïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omce012/editorial/11840"
}
] | ã$0$ 以äžã®æŽæ° $n$ ã«ã€ããŠïŒ$(x^4-5x^3-20x+16)^{15012}$ ã® $x^n$ ã®ä¿æ°ã $a_n$ ãšããŸãïŒãã ã $a_0$ ã¯å®æ°é
ãšããŸãïŒïŒãã®ãšãïŒ
$$
\sum_{k=1}^{60048} \sum_{l=0}^{k-1} 2^{k+l}a_ka_l
$$
ãçŽ æ° $10007$ ã§å²ã£ãäœããæ±ããŠãã ããïŒ |
OMCB034 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omcb034/tasks/11848 | A | OMCB034(A) | 100 | 199 | 277 | [
{
"content": "ã$x=-a+b+c, ~ y=a-b+c, ~ z=a+b-c$ ãšãããš $x,y,z$ ã¯å¶å¥ãäžèŽãïŒäžåŒããç¹ã«å
šãŠæ£ã®å¶æ°ã§ããïŒéã« $xyz=2^{100}$ ãæºããæ£ã®å¶æ°ã®çµ $(x,y,z)$ ã«å¯ŸããŠ\r\n$$(a,b,c)=\\Big( \\frac{y+z}{2},\\frac{z+x}{2},\\frac{x+y}{2}\\Big)$$\r\nã¯äžåŒãæºããïŒãã£ãŠæ±ããçµã®åæ°ã¯ ${}\\_{99}\\mathrm{C}\\_{2}=\\mathbf{4851}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcb034/editorial/11848"
}
] | ã次ã®åŒãæºããæ£ã®æŽæ°ã®çµ $(a,b,c)$ ã¯ããã€ãããŸããïŒ
$$(-a+b+c)(a-b+c)(a+b-c)=2^{100}$$ |
OMCB034 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omcb034/tasks/10441 | B | OMCB034(B) | 200 | 255 | 284 | [
{
"content": "ã$1234_{(n)} \\lt 1331_{(n)}$ ããïŒ$n^3 \\lt 1234_{(n)} \\lt (n+1)^3$ ïŒ\\\r\nãåŸã£ãŠïŒ$n+1=3^7$ ã®ãšããæ±ããã¹ã $n$ ã§ããïŒãã£ãŠïŒ$n=3^7-1=\\mathbf{2186}$ïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcb034/editorial/10441"
}
] | ã$n$ ã $5$ 以äžã®æŽæ°ãšããŸãïŒæ¬¡ã®äžçåŒãã¿ããæ倧㮠$n$ ãæ±ããŠãã ãã
$$1234_{(n)} \lt 3^{21}$$
ãªãïŒ$1234_{(n)}$ 㯠$n$ é²æ³è¡šèšãæå³ãïŒå³èŸºã¯ $10$ é²æ³ã§æžãããŠããŸãïŒ |
OMCB034 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omcb034/tasks/10322 | C | OMCB034(C) | 200 | 204 | 241 | [
{
"content": "ã$AB \\parallel DC$ ãš $\\angle{ABE} = \\angle{EBC}$ ãã $\\angle{EBC} = \\angle{CEB}$ ããããïŒ$BC = CE = AE$ ãšãªãããïŒåè§åœ¢ $ABCE$ ã¯çèå°åœ¢ã§ããïŒ$A,B,C,E$ ã¯å
±åã§ããïŒ\\\r\nã$\\angle DAE = 4\\theta$ ãšãããšïŒ\r\n$$ 180^\\circ = \\angle BAE + \\angle BCD = 2 \\angle BCD - 4\\theta $$\r\nãã $\\angle BCD = 90^\\circ + 2\\theta$ ãåŸãïŒãããš $\\angle BAE = 90^\\circ - 2\\theta$ ãš $\\angle ABE = 45^\\circ - \\theta$ ããããããïŒ$\\angle BEA = 45^\\circ + 3\\theta$ ã§ããïŒåé¡ã®æ¡ä»¶ãããã㯠$4\\angle DAE = 16\\theta$ ã«çããã®ã§ïŒ$\\theta = \\left( \\dfrac{45}{13} \\right)^\\circ$ ãåŸãïŒãã£ãŠïŒ\r\n$$ \\angle ABC = 90^\\circ - 2\\theta = \\left( \\dfrac{1080}{13} \\right)^\\circ $$\r\nãªã®ã§ïŒè§£çãã¹ãå€ã¯ $\\mathbf{1093}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcb034/editorial/10322"
},
{
"content": "ã$\\angle{DAE} = \\theta$ ãšããïŒãã®ãšã $\\angle{BEA} = 4\\theta$ ã§ããïŒ$AD \\lvert\\rvert BC$ ãã $\\angle{EBC} = 3\\theta$ ãåŸãïŒå
¬åŒè§£èª¬ãšåæ§ã«ããŠåè§åœ¢ $ABCE$ ãçèå°åœ¢ã§ããããšããããã®ã§ïŒç¹ã« $\\angle{ABC} = \\angle{BAE} = 6\\theta$ ã§ããïŒ$\\angle{BAD} = \\angle{BAE} + \\angle{DAE} = 7\\theta$ ã§ããïŒ\\\r\nã$\\angle{ABC} + \\angle{BAD} = 180^{\\circ}$ ã§ããããïŒ$\\theta = \\biggr(\\cfrac{180}{13}\\biggl)^{\\circ}$ ãåŸãïŒãã£ãŠïŒ$\\angle{ABC} = 6\\theta = \\biggr(\\cfrac{1080}{13}\\biggl)^{\\circ}$ ã§ããïŒ",
"text": "å¥è§£",
"url": "https://onlinemathcontest.com/contests/omcb034/editorial/10322/783"
}
] | ã$AB \gt BC$ ã〠$\angle{ABC} \lt 90^\circ$ ãªãå¹³è¡å蟺圢 $ABCD$ ã«ãããŠïŒ$\angle{ABC}$ ã®å
è§ã®äºçåç·ãšèŸº $CD$ ãç¹ $E$ ã§äº€ããïŒæ¬¡ãæç«ããŸããïŒ
$$AE = CEïŒ\angle{AEB} = 4\angle{DAE}$$
ãã®ãšãïŒ$\angle{ABC}$ ã®å€§ããã¯äºãã«çŽ ãªæ£æŽæ° $a,b$ ãçšã㊠$\Bigl(\dfrac{a}{b}\Bigr)^\circ$ ãšè¡šããã®ã§ïŒ$a + b$ ã®å€ã解çããŠãã ããïŒ |
OMCB034 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omcb034/tasks/11960 | D | OMCB034(D) | 300 | 74 | 139 | [
{
"content": "ãç®±ã $1$ ã€éžã㧠$A$ ãšããïŒåé¡ã®æ¡ä»¶ãæºããçã®å
¥ãæ¹ã®ãã¡ïŒ$A$ ã«èµ€çãå
¥ãããã®ã®ç·æ°ã $M^{\\prime}$ ãšãã. $M=3M^{\\prime}$ ã§ããïŒ\\\r\nãåæèšåãã«èŠãŠïŒè²ã®å€åã¯ãèµ€âéâçœâèµ€â $\\cdots$ ãã®é ã«ããèµ·ããåŸãªãïŒãããã£ãŠïŒé£ãããç®±ã®çµããããã«ã€ããŠè²ãå€åãããããªãããæå®ããã°ïŒãããæºããçã®å
¥ãæ¹ã¯é«ã
$1$ ã€ã«å®ãŸãïŒæå®ããå€åãããçã®å
¥ãæ¹ãååšããããã«ã¯ïŒ$A$ ããäžåšã㊠$A$ ã«æ»ã£ãŠãããšãã«èµ€è²ã§ããããšïŒããªãã¡å€åã®åæ°ã $3$ ã®åæ°ã§ããããšãå¿
èŠååã§ããïŒãããã£ãŠ $M^{\\prime}$ ã¯ïŒç°ãªã $2000$ åã®ãã®ãã $3$ ã®åæ°åã®ãã®ãéžã¶éžã³æ¹ã®ç·æ°ã«çããïŒããªãã¡\r\n$$M^{\\prime} = {}\\_{2000}\\mathrm{C}\\_{0} + {}\\_{2000}\\mathrm{C}\\_{3} + \\cdots + {}\\_{2000}\\mathrm{C}\\_{1998}$$\r\nã§ããïŒãã㧠\r\n$$f(x) = (1+x)^{2000} = {}\\_{2000}\\mathrm{C}\\_{0} + {}\\_{2000}\\mathrm{C}\\_{1} x + \\cdots +{}\\_{2000}\\mathrm{C}\\_{2000} x^{2000}$$\r\nãšããïŒ$M^{\\prime}$ ã¯ïŒ$f(x)$ ã«ããã次æ°ã $3$ ã®åæ°ã§ããé
ã®ä¿æ°ã®ç·åã«çããïŒãããã£ãŠïŒ$\\omega$ ã $1$ ã® $3$ ä¹æ ¹ã®ãã¡ $1$ ã§ãªããã®ã® $1$ ã€ãšãããšã\r\n$$M^{\\prime} = \\frac {f(1) + f(\\omega) + f(\\omega^2)}{3}$$\r\nãæãç«ã€ïŒ\r\n$f(1) = 2^{2000}$ ã§ããïŒ\r\n$$f(\\omega) = (1 + \\omega)^{2000} = (- \\omega^2)^{2000} = \\omega,$$\r\n$$f(\\omega^2) = (1 + \\omega^2)^{2000} = (- \\omega)^{2000} = \\omega^2$$\r\nã§ããïŒãã£ãŠ\r\n$$M^{\\prime} = \\frac {2^{2000} + \\omega + \\omega^2}3 = \\frac {2^{2000}-1}3$$\r\nã§ããïŒ$M = 3M^{\\prime} = 2^{2000}-1$ ã§ããïŒ\r\nãã§ã«ããŒã®å°å®çãã\r\n$$2^{2000}-1 \\equiv \\dfrac{1}{4}-1 =\\dfrac{2003+1}{4}-1 =500 \\ (\\mathrm{mod} \\ 2003)$$\r\nã§ããã®ã§ïŒæ±ããå€ã¯ $\\mathbf {500}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcb034/editorial/11960"
}
] | ã$2000$ åã®ç®±ãå圢ã«äžŠãã§ããŸãïŒ
åç®±ã«èµ€çïŒéçïŒçœçã®ãã¡ãããã $1$ ã€ãå
¥ããæ¹æ³ã§ãã£ãŠïŒåæèšåãã«èŠããšãã«
- èµ€çãå
¥ã£ãŠããç®±ã®æ¬¡ã®ç®±ã«ã¯èµ€çãéçãå
¥ã£ãŠãã
- éçãå
¥ã£ãŠããç®±ã®æ¬¡ã®ç®±ã«ã¯éçãçœçãå
¥ã£ãŠãã
- çœçãå
¥ã£ãŠããç®±ã®æ¬¡ã®ç®±ã«ã¯çœçãèµ€çãå
¥ã£ãŠãã
ãæºãããã®ã®ç·æ°ã $M$ ãšããŸãïŒãã ãïŒå転ïŒå転ããŠäžèŽããå
¥ãæ¹ãåºå¥ããŸãïŒ$M$ ãçŽ æ° $2003$ ã§å²ã£ãäœããæ±ããŠãã ããïŒ |
OMCB034 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omcb034/tasks/11929 | E | OMCB034(E) | 300 | 63 | 92 | [
{
"content": "ã$n \\geq 1$ ã«å¯ŸããŠïŒ\r\n\r\n$$a_{n+1} + 2b_{n+1} = {a_n}^2 + 4{b_n}^2 + 4a_n b_n = (a_n + 2b_n)^2$$\r\n\r\nåã³\r\n\r\n$$a_{n+1} - b_{n+1} = {a_n}^2 + {b_n}^2 - 2a_n b_n = (a_n - b_n)^2$$\r\n\r\nãåããïŒããããïŒ$a_1 + 2b_1 = 7, \\ a_1 - b_1 = 1$ ãšåãããŠïŒ$a_{100} + 2b_{100} = 7^{2^{99}}, \\ a_{100} - b_{100} = 1^{2^{99}} = 1$ ã§ããããïŒ$b_{100} = \\dfrac{7^{2^{99}} - 1}{3}$ ãåŸãïŒåŸã¯ïŒãããçŽ æ° $1021$ ã§å²ã£ãäœããæ±ããã°ããïŒãã§ã«ããŒã®å°å®çããïŒ$2^{99}$ ã $1020$ ã§å²ã£ãäœãã $A$ ãšãããšïŒæ±ããã¹ã㯠$\\dfrac{7^{A} - 1}{3}$ ã $1021$ ã§å²ã£ãäœããšãªãïŒããã§ïŒ$A$ ãæ±ããããšãèããïŒ\\\r\n$$2^{99} \\equiv 1024^{9} \\times 2^{9} \\equiv 4^{9} \\times 2^{9} \\equiv 1024^{2} \\times 2^{7} \\equiv 4^{2} \\times 2^{7} \\equiv 8 \\ (\\textrm{mod} \\ 1020)$$\r\nããïŒ$A = 8$ ãšåããïŒãã£ãŠïŒçã㯠$\\dfrac{7^{8} - 1}{3} = 1921600$ ã $1021$ ã§å²ã£ãäœãã§ããïŒãã㯠$\\mathbf{78}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcb034/editorial/11929"
},
{
"content": "ã解説ã®ãã㪠$b_n$ ã®æ±ãæ¹ã¯ãšãŠãçŸããã®ã§ããïŒç§ã«ã¯ã©ãããŠãæãã€ããªãå€åœ¢ã ã£ãã®ã§å¥ã®æ±ãæ¹ãèããŠã¿ãŸããïŒ\r\n\r\nãããããé£æ¥äºé
éã®æŒžååŒ $p_{n+1}=sp_n+t$ ã®äžè¬é
ãæ±ããåé¡ã¯ïŒ\r\n$$p_{n+1}-\\alpha=s(p_n-\\alpha)$$\r\nãªã $\\alpha$ ãèŠã€ããŠçæ¯æ°åãèããåé¡ã«åž°çãããŸãïŒãã® $\\alpha$ ãèŠã€ããæäœãç¹æ§æ¹çšåŒã解ããšããããšã§ããïŒïŒæ¬åãåããã㪠$\\alpha$ ãèŠã€ããããšãã§ããªãã§ããããïŒäž¡èŸºã®æ¬¡æ°ããããŠããã®ã§ïŒä»åã¯\r\n$$b_{n+1} -\\beta= 3 ( b_n - \\beta )^2$$\r\nãšãªã $\\beta$ ãååšããŠããããšå¬ãããªãšæããŸãïŒããã§ïŒäžã®åŒã解ããŠã¿ããš $\\beta = - \\dfrac{1}{3}$ ãéœåããèŠã€ãããŸãïŒãããèžãŸããŠè§£çãäœã£ãŠã¿ãŸãããïŒ\r\n \r\n___\r\nã$a_n=b_n+1$ ã§ããããããã挞ååŒã«ä»£å
¥ããããšã§\r\n$$b_{n+1}=3{b_n}^2+2b_n$$\r\nãåŸãïŒäž¡èŸºã« $\\dfrac{1}{3}$ ãå ããŠããå æ°å解ããããšã§ïŒ\r\n$$b_{n+1}+\\frac{1}{3}=3\\left( b_n+\\frac{1}{3}\\right)^2$$\r\nãæãç«ã€ããšããïŒä»¥äžã®ãããªèšç®ãå¯èœã§ããïŒ\r\n$$\r\n\\begin{aligned}\r\nb_{100}+\\frac{1}{3}\r\n&= 3\\left( b_{99}+\\frac{1}{3}\\right)^2\\\\\\\\\r\n&= 3 \\cdot \\left( 3\\left( b_{98}+\\frac{1}{3}\\right)^2 \\right)^2\\\\\\\\\r\n&= 3 \\cdot 3^2\\left( b_{98}+\\frac{1}{3}\\right)^{2^2}\\\\\\\\\r\n&=\\cdots\\\\\\\\\r\n&= 3 \\cdot 3^2 \\cdot \\ \\cdots \\ \\cdot 3^{2^{98}} \\left( b_{1}+\\frac{1}{3}\\right)^{2^{99}}\\\\\\\\\r\n&= 3^{2^{99}-1} \\left( 2+\\frac{1}{3}\\right)^{2^{99}}\\\\\\\\\r\n&=\\frac{7^{2^{99}}}{3}\r\n\\end{aligned}\r\n$$\r\nãã£ãŠïŒ\r\n$$b_{100}=\\frac{7^{2^{99}}-1}{3}$$\r\nã§ããïŒ",
"text": "b_nã®å¥ã®æ±ãæ¹",
"url": "https://onlinemathcontest.com/contests/omcb034/editorial/11929/785"
}
] | ãæŽæ°å $\lbrace a_n \rbrace, \ \lbrace b_n \rbrace$ ã以äžã®æŒžååŒãæºãããŠããŸãïŒ
- $a_1 = 3, \ b_1 = 2$
- $a_{n+1} = a_n^2 + 2b_n^2 \quad (n \geq 1)$
- $b_{n+1} = b_n^2 + 2a_n b_n \quad (n \geq 1)$
ã
ãã®ãšãïŒ$b_{100}$ ã®å€ãçŽ æ° $1021$ ã§å²ã£ãäœãã解çããŠãã ããïŒ |
OMCB034 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omcb034/tasks/7534 | F | OMCB034(F) | 400 | 33 | 64 | [
{
"content": "ã$\\gamma$ ãšèŸº $BC$ ã®æ¥ç¹ã $D$ ãšãïŒçŽç· $AD$ ãš $\\Omega$ ã®äº€ç¹ã®ãã¡ $A$ ã§ãªãæ¹ã $E$ ãšãããšæ¬¡ãæãç«ã€ïŒ\r\n$$BE=CE$$\r\n<details><summary> 蚌æ<\\/summary>\r\nã$\\gamma$ ãš $\\Omega$ ã¯ç¹ $A$ ãäžå¿ã«çžäŒŒãªã®ã§ $D$ ã«ããã $\\gamma$ ã®æ¥ç·ïŒããªãã¡çŽç· $BC$ ãš $E$ ã«ããã $\\Omega$ ã®æ¥ç·ã¯å¹³è¡ã§ããïŒãããã£ãŠ $BE=CE$ ãæãç«ã€ïŒ$\\square$\r\n<\\/details>\r\nç¹ã«ãã®é·ãã¯äžè§åœ¢ $ABC$ ã®å
å¿ $I$ ãš $E$ ã®è·é¢ $EI$ ã«çããïŒ\r\n<details><summary> 蚌æ<\\/summary>\r\nã$360^\\circ-\\angle BEC=180^\\circ+\\angle BAC=2\\angle BIC$ ãã $E$ ã¯äžè§åœ¢ $BIC$ ã®å€å¿ã§ããïŒãã£ãŠç€ºãããïŒ$\\square$\r\n<\\/details>\r\nååšè§ã®å®çãã $\\angle BAE=\\angle DBE$ ãããããã®ã§äžè§åœ¢ $BAE$ ãšäžè§åœ¢ $DBE$ ã¯çžäŒŒã§ããïŒãã£ãŠ\r\n$$EI^2=EB^2=ED\\times EA$$\r\nã§ããïŒããã§åé¡æã®æ¡ä»¶ãã $\\Omega$ ãš $\\gamma$ ã®çžäŒŒæ¯ã $121:21$ ã§ããã®ã§ïŒ$AD:AE=21:121$ ãæãç«ã€ïŒãã£ãŠå
ã»ã©ã®çåŒãšåãããŠïŒ\r\n$$ED:EA:EI=100:121:110$$\r\nã§ããïŒç¹ã« $DI:DE=1:10$ ã§ããïŒãã®æ¯ã¯äžè§åœ¢ $ABC$ ã®å
æ¥åã®ååŸãšïŒ$E$ ãšçŽç· $BC$ ã®è·é¢ã®æ¯ã«çããïŒãããã£ãŠäžè§åœ¢ $ABC$ ã®å
æ¥åã®ååŸã $r$ ãšãããš\r\n$$1:10=r:121\\times\\frac{3}{2}$$\r\nããã解ã㊠$r=\\dfrac{363}{20}$ ãåŸãã®ã§ïŒç¹ã«è§£çãã¹ãå€ã¯ $\\mathbf{383}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcb034/editorial/7534"
},
{
"content": "ãäžè§åœ¢ $ABC$ ã®é¢ç©ã $S$ïŒå
æ¥åã®ååŸã $r$ ãšãïŒ$BC=a, CA=b, AB=c$ ãšããïŒ\r\n\r\n---\r\n\r\næ¹é:\r\n\r\n- $\\displaystyle S= \\frac{r}{2} (a+b+c)$ ãçšã㊠$r$ ãæ±ãããïŒ\r\n\r\n- $a$ ã¯ããããã(äžèšåç
§)ã®ã§ïŒ$b+c$ ã $bc$ ãæ±ããã°è¯ãããïŒ\r\n\r\n- äœåŒŠå®çã«ãã£ãŠïŒ$b+c$ ãš $bc$ ã®é¢ä¿åŒã1ã€åŸãããïŒ\r\n\r\n- $\\displaystyle S=\\frac 12 bc \\sin 120^{\\circ}$ ããïŒäžè§åœ¢ $ABC$ ã®é¢ç©ãæ±ãŸãã° $bc$ ãæ±ãŸãïŒ\r\n\r\n- $BC$ ã¯åãã£ãŠããã®ã§ïŒ$BC$ ãåºèŸºãšãããšãã®é«ããæ±ãŸãã°è¯ãïŒããã¯çžäŒŒãçšããåççãªèå¯ã§åºæ¥ããã§ããïŒ\r\n\r\n---\r\n\r\nãå $\\Omega$ ã®äžå¿ã $O$ïŒå $\\gamma$ ã®äžå¿ã $O^\\prime$ ãšããïŒ\r\n$\\angle BAC = 120^{\\circ}$ ããïŒååšè§ã®å®çãã $\\angle BOC=120^{\\circ}$ ã§ããïŒ\r\nããã«äžè§åœ¢ $BOC$ ã $BO=CO=121$ ã®äºç蟺äžè§åœ¢ã§ããããšããïŒ\r\n\r\n$$BC = 2 \\cdot 121 \\cos 30^{\\circ} =121 \\sqrt 3$$\r\n\r\nãåŸãïŒãŸãïŒå $\\gamma$ ãå $\\Omega$ ã«å
æ¥ããŠããããšããïŒ3ç¹ $A,O,O^\\prime$ ã¯åäžçŽç·äžã«ããïŒ\r\n\r\n$$AO = 121, \\qquad AO^\\prime = 21, \\qquad OO^\\prime = 100$$\r\n\r\nã§ããïŒ\\\r\nã次ã«ïŒ3ç¹ $A,O,O^\\prime$ ããããããç·å $BC$ ã«åç·ãäžããïŒããããã®è¶³ã $D,H,H^\\prime$ ãšããïŒ\r\nããã«ç·å $AO$ ãšç·å $BC$ ã®äº€ç¹ã $E$ ãšããã°ïŒäžè§åœ¢ $ ADE$, äžè§åœ¢ $OHE$, äžè§åœ¢ $O^\\prime H^\\prime E$ ã¯çžäŒŒã§ããïŒ\r\näžè§åœ¢ $OHE$ ãš äžè§åœ¢ $O^\\prime H^\\prime E$ ã®çžäŒŒæ¯ã¯\r\n\r\n$$OH : O^\\prime H^\\prime = 121 \\sin 30^\\circ : 21 = 121 : 42$$\r\n\r\nã§ããïŒãã£ãŠ\r\n\r\n$$O^\\prime E = 100 \\cdot \\frac{42}{121 + 42} = \\frac{100 \\cdot 42}{163}$$\r\n\r\nãåŸãïŒããã«\r\n\r\n$$AO^\\prime : O^\\prime E = 21 : \\frac{100 \\cdot 42}{163} = 163 : 200$$\r\n\r\nã§ããã®ã§ïŒäžè§åœ¢ $ADE$ ãš äžè§åœ¢ $O^\\prime H^\\prime E$ ã®çžäŒŒæ¯ã¯\r\n\r\n$$O^\\prime E : AE = 200 : (163 + 200) = 200 : 363$$\r\n\r\nã§ããïŒãããã£ãŠ\r\n\r\n$$AD = 21 \\cdot \\frac{363}{200} = \\frac{3^2 \\cdot 7 \\cdot 11^2}{200}$$\r\n\r\nãåŸãïŒ\\\r\nãããã§ïŒäžè§åœ¢ $ABC$ ã«ãããŠïŒäœåŒŠå®çãã\r\n\r\n$$a^2 = b^2 + c^2 - 2 bc \\cos 120^{\\circ},$$\r\n\r\nããªãã¡\r\n\r\n$$b^2+c^2 + bc = 3 \\cdot 11^4$$\r\n\r\nãåŸãïŒäžæ¹ïŒäžè§åœ¢ $ABC$ ã®é¢ç©ã«çç®ããã°\r\n\r\n$$S = \\frac 12 bc \\sin 120^{\\circ} = \\frac 12 \\cdot BC \\cdot AD = \\frac 12 \\cdot 121 \\sqrt 3 \\cdot \\frac{3^2 \\cdot 7 \\cdot 11^2}{200} = \\frac{3^2 \\cdot 7 \\cdot 11^4 \\sqrt 3}{400}$$\r\n\r\nãšãªãïŒæŽçããã°\r\n\r\n$$bc = \\frac{3^2 \\cdot 7 \\cdot 11^4}{100}$$\r\n\r\nãåŸãïŒãããã£ãŠ\r\n\r\n$$(b+c)^2 = (b^2+c^2+bc) + bc = 3 \\cdot 11^4 + \\frac{3^2 \\cdot 7 \\cdot 11^4}{100} = \\frac{363 \\cdot 11^4}{100} = \\frac{3 \\cdot 11^6}{100}$$\r\n\r\nãã\r\n\r\n$$b+c = \\frac{11^3 \\sqrt 3}{10}$$\r\n\r\nãšãªãïŒ\\\r\nãæåŸã«ïŒå
¬åŒ $\\displaystyle S = \\frac 12 r (a+b+c)$ ãçšããã°ïŒ\r\n\r\n$$\\frac{3^2 \\cdot 7 \\cdot 11^4 \\sqrt 3}{400} = \\frac 12 r \\left( 121 \\sqrt 3 + \\frac{11^3 \\sqrt 3}{10} \\right)$$\r\n\r\nãã $\\displaystyle r = \\frac{363}{20}$ ãåŸãïŒ",
"text": "S=(r/2)(a+b+c) ãçšãã",
"url": "https://onlinemathcontest.com/contests/omcb034/editorial/7534/786"
},
{
"content": "ïŒåº§æšãçšããçºæ³ã«è³ããŸã§ïŒ\r\n\r\nããŠãŒã¶ãŒè§£èª¬åæ§ïŒäžè§åœ¢ã®é¢ç©ã®å
¬åŒ $S=\\dfrac{r}{2}(a+b+c)$ ãçšãããïŒ\\\r\nã$BC=121 \\sqrt{3}$ ã¯ããã«ãããã®ã§ïŒç¹ $A$ ãã蟺 $BC$ ã«äžããåç·ã®è¶³ã $H$ ãšãããšãïŒ$AH$ ãš $AB+AC$ ã®å€ããããã° $r$ ãæ±ãŸãïŒ\\\r\nãããã§ïŒå $\\Omega$ ã®ç¹ $A$ ãå«ãŸãªã匧 $BC$ ã®äžç¹ã $M$ ãšãããšïŒ$AB+AC=AM$ ã§ããïŒåè§åœ¢ $ABMC$ ã« Ptolemy ã®å®çãé©çšããã°ããïŒïŒãã£ãŠïŒ$AH$ ãš $AM$ ã®å€ããããã° $r$ ã®å€§ãããæ±ãŸãïŒ\\\r\nã以äžã®èå¯ããïŒå $\\Omega$ ã®äžå¿ãåç¹ãšãïŒçŽç· $OM$ ã $x$ 軞ãšãªãããã«çŽäº€åº§æšãèšå®ããã°åé¡ã解ããã ãããšèããããïŒ\r\n\r\n---\r\n\r\nãå $\\Omega$ ã®äžå¿ãåç¹ãšãïŒ\r\n$$B\\left(\\dfrac{121}{2},\\dfrac{121}{2}\\sqrt{3}\\right), C\\left(\\dfrac{121}{2},-\\dfrac{121}{2}\\sqrt{3}\\right),M(-121,0)$$\r\nãšãªãããã«åº§æšè»žãèšå®ããïŒ\\\r\nãå $\\gamma$ ã®äžå¿ã $P$ ãšãããšïŒ$P$ ã® $x$ 座æšã¯$\\dfrac{163}{2}$ ã§ããïŒ$OP=100$ ã§ããïŒäžå¹³æ¹ã®å®çãã $P\\left( \\dfrac{163}{2}, \\dfrac{11}{2}\\sqrt{111}\\right)$ ã§ããïŒ\\\r\nã次㫠$\\overrightarrow{OA}=\\dfrac{121}{100}\\overrightarrow{OP}$ ããïŒ$A\\left(\\dfrac{121 \\cdot 163}{200},\\dfrac{11^3}{200}\\sqrt{111}\\right)$ ã§ããïŒ\\\r\nãããšã¯èšç®ããé 匵ãã°ããïŒ$AH=\\dfrac{121 \\cdot 163}{200}-\\dfrac{121}{2}=\\dfrac{121 \\cdot 63}{200}$ïŒ$AM$ ã¯äžå¹³æ¹ã®å®çãçšããã° $\\dfrac{11^3 \\sqrt{3}}{10}$ ãšãªãïŒ\\\r\nãæåŸã«ïŒãããŸã§ã§åŸãå€ã $S=\\dfrac{r}{2}(a+b+c)$ ã«ä»£å
¥ããŠããã°ïŒ$r$ ã®å€§ãããæ±ãŸãïŒ",
"text": "é¢ç©ãçšããå¥è§£ãã®ïŒïŒåº§æšïŒ",
"url": "https://onlinemathcontest.com/contests/omcb034/editorial/7534/787"
}
] | ã$\Omega$ ãå€æ¥åã«æã€äžè§åœ¢ $ABC$ 㯠$\angle BAC=120^\circ$ ãæºãããŠããŸãïŒãŸãïŒå $\gamma$ 㯠$\Omega$ ã« $A$ ã§**å
æ¥**ãïŒããã«èŸº $BC$ ã«æ¥ããŠããŸãïŒ$\Omega$ ã®ååŸã $121$ïŒ$\gamma$ ã®ååŸã $21$ ã§ãããšãäžè§åœ¢ $ABC$ ã®å
æ¥åã®ååŸãæ±ããŠãã ããïŒãã ãïŒæ±ããå€ã¯äºãã«çŽ ãªæ£æŽæ° $a,b$ ãçšã㊠$\dfrac{a}{b}$ ãšè¡šãããã®ã§ïŒ$a+b$ ã®å€ã解çããŠãã ãã. |
OMC240 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc240/tasks/9497 | A | OMC240(A) | 200 | 234 | 280 | [
{
"content": "ã$k=\\sqrt{m+n}$ ãšããïŒ$n=k^2-m$ ãšããŠæ¡ä»¶ã $k,m$ ã«ãã£ãŠæžããããã°ïŒ\r\n$$ k+m^2 = k^2-m-40\\iff (k+m)(k-m-1)=40$$\r\nãšãªãïŒ$k\\pm m$ ã®å¶å¥ãäžèŽããããšã«æ³šæããŠæ¢çŽ¢ããã°ïŒ\r\n$$(k+m,k-m)=(8,6),(40,2) \\iff (m,n)=(1,48),(19,422)$$\r\nã解ãšããŠåŸãããïŒç¹ã«ïŒæ±ããå€ã¯ $48+8018=\\mathbf{8066}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc240/editorial/9497"
}
] | ã以äžãã¿ããæ£æŽæ°ã®çµ $(m,n)$ ãã¹ãŠã«ã€ããŠïŒ$mn$ ã®ç·åãæ±ããŠãã ããïŒ
$$
\sqrt{m+n}+m^2=n-40
$$ |
OMC240 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc240/tasks/11602 | B | OMC240(B) | 200 | 150 | 208 | [
{
"content": "ã 察称æ§ãã $BE=CE=2$ ã§ããïŒãŸã $\\angle BAE=\\angle CAE$ ããïŒè§ã®äºçåç·å®çãã\r\n $$\r\nAD:AC=DE:CE=9:2\r\n $$ \r\nã§ããã®ã§ïŒããæ£å®æ° $x$ ã«ãã $AB=AC=2x, ~ BD=7x$ ãšãããïŒæ¹ã¹ãã®å®çããïŒ\r\n $$\r\n11^2=DC^2 = DB \\cdot DA = 7x \\cdot 9x\r\n $$\r\nãªã®ã§ïŒ $x^2=\\dfrac{121}{63}$ ãšãªãïŒããã« Stewart ã®å®çããïŒè§ã®äºçåç·ã®é·ã $AE^2$ ã¯ä»¥äžã®ããã«ããŠæ±ããããïŒ\r\n $$\r\n\\begin{aligned}\r\nAE^2& =AD\\times AC-DE\\times CE\\\\\\\\\r\n& =18x^2-18\\\\\\\\\r\n& =\\dfrac{116}{7}\r\n\\end{aligned}\r\n $$\r\nãç¹ã«è§£çãã¹ãå€ã¯ $\\mathbf{123}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc240/editorial/11602"
},
{
"content": "ïŒ$AB, BD$ ã®é·ããæ±ãããšãããŸã§ã®å¥è§£ïŒ\\\r\nã$AE$ ãš $BC$ ã®äº€ç¹ã $M$ ãšããïŒç¹ $M$ ã¯ç·å $BC$ ã®äžç¹ã§ããïŒ\\\r\nãMenelaus ã®å®çããïŒ\r\n$$\\frac{DE}{EC} \\cdot \\frac{CM}{MB} \\cdot \\frac{BA}{AD}=1$$\r\nã§ããïŒãããã $AB:BD=2:7$ïŒ\\\r\nãããšã¯ïŒå
¬åŒè§£èª¬åæ§ã«æ¹ã¹ãã®å®çãçšããã°ïŒ$AB=AC=\\dfrac{22}{3 \\sqrt{7}}$ ãåŸãïŒ\r\n\r\n---\r\n\r\nïŒä»¥äžïŒStewart ã®å®çãçšããªãå¥è§£ïŒ\\\r\nãå床 Menelaus ã®å®çããïŒ\r\n$$\\frac{DB}{BA} \\cdot \\frac{AM}{ME} \\cdot \\frac{EC}{CD}=1$$\r\nããã£ãŠ $AM:ME=11:7$ ã§ããïŒãã㧠$AM=11t, ME=7t$ ãšãããšïŒäžå¹³æ¹ã®å®çãã\r\n$$BM^2=AB^2-(11t)^2=BE^2-(7t)^2$$\r\nããããã $t^2=\\dfrac{29}{567}$ ãåŸãïŒæ±ããã¹ããã®ã¯\r\n$$AE^2=(18t)^2=\\dfrac{116}{7}$$",
"text": "å¥è§£",
"url": "https://onlinemathcontest.com/contests/omc240/editorial/11602/778"
},
{
"content": "ãç¹ $B$ ãéã $AE$ ã«å¹³è¡ãªçŽç·ãš $CD$ ãšã®äº€ç¹ã $F$ ãšãããšïŒ$CE = EF = 2$ïŒ$FD = 7$ïŒäžè§åœ¢ $DCB$ ãšäžè§åœ¢ $DAC$ ã¯çžäŒŒã§ããããïŒ$DC:CB = DA:AC = DE:EC = 9:2$ ãã $BC = \\dfrac{22}{9}$ïŒäžå¹³æ¹ã®å®çãã $BF^2 = 4^2 - \\left ( \\dfrac{22}{9} \\right )^2 = \\dfrac{812}{81}$ïŒãã£ãŠ $AE^2 = \\left (\\dfrac{9}{7}BF \\right )^2 = \\dfrac{116}{7}$ ã§ããããïŒæ±ããã¹ãå€ã¯ $116 + 7 = \\bf{123}$ïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc240/editorial/11602/780"
}
] | ã $AB=AC$ ãªãéè§äºç蟺äžè§åœ¢ $ABC$ ã®å€æ¥åã« $C$ ã§æ¥ããæ¥ç·ãšçŽç· $AB$ ãšã®äº€ç¹ã $D$ ãšããŸãïŒ$A$ ãã蟺 $BC$ ã«äžãããåç·ãç·å $CD$ ãšç¹ $E$ ã§äº€ãã£ãŠããïŒ
$$
BE=2,\quad DE=9
$$
ãæãç«ã€ãšãïŒç·å $AE$ ã®é·ããæ±ããŠãã ããïŒãã ãïŒæ±ããå€ã¯äºãã«çŽ ãªæ£æŽæ° $a , b$ ãçšã㊠$\sqrt\dfrac{a}{b}$ ãšè¡šããã®ã§ïŒ $a+b$ ã®å€ã解çããŠãã ããïŒ |
OMC240 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc240/tasks/12342 | C | OMC240(C) | 300 | 121 | 149 | [
{
"content": "ãæ£æŽæ° $n$ ã«å¯ŸããŠïŒãã®æ£ã®çŽæ°ã®åæ°ã $d(n)$ ã§è¡šãïŒ\r\n$$x^2+n=(x+n)(x-n)+n(n+1)$$\r\n$$y^2-n=(y-n)(y+n)+n(n-1)$$\r\nããïŒ$f(n)$ 㯠$n$ ãã倧ãã $n(n+1)$ ã®æ£ã®çŽæ°ã®åæ°ã«çããïŒãã㯠$n$ 以äžã® $n(n+1)$ ã®æ£ã®çŽæ°ã®åæ°ã«çããã®ã§ïŒ$2f(n)=d(n(n+1))$ ãããããïŒãŸãïŒ$g(n)=d(n(n-1))$ ã§ããïŒãããã£ãŠäžåŒã¯æ¬¡ã®ããã«èšç®ãããïŒ\r\n$$\\begin{aligned}\r\n\\sum_{n=2}^{2024}\\Big(2f(n)-g(n)\\Big)&=\\sum_{n=2}^{2024}2f(n)-\\sum_{n=1}^{2023}g(n+1)\\\\\\\\\r\n&=\\sum_{n=2}^{2024}d(n(n+1))-\\sum_{n=1}^{2023}d(n(n+1))\\\\\\\\\r\n&=d(2024\\cdot 2025)-d(2)\\\\\\\\\r\n&=d(2^3\\cdot 3^4\\cdot 5^2\\cdot 11\\cdot 23)-d(2)\\\\\\\\\r\n&=\\mathbf{238}\r\n\\end{aligned}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc240/editorial/12342"
}
] | ã$2$ 以äžã®æŽæ° $n$ ã«å¯ŸããŠé¢æ° $f(n),g(n)$ ã次ã®ããã«å®ããŸãïŒ
- æ£æŽæ° $x$ ã§ãã£ãŠïŒ$x+n$ ã $x^2+n$ ãå²ãåããã®ã¯æéåã§ããã®ã§ïŒãã®åæ°ã $f(n)$ ãšããïŒ
- $n$ ãã倧ããæŽæ° $y$ ã§ãã£ãŠïŒ$y-n$ ã $y^2-n$ ãå²ãåããã®ã¯æéåã§ããã®ã§ïŒãã®åæ°ã $g(n)$ ãšããïŒ
ãã®ãšã次ã®å€ãæ±ããŠãã ããïŒ
$$\sum_{n=2}^{2024}\Big(2f(n)-g(n)\Big)$$ |
OMC240 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc240/tasks/10345 | D | OMC240(D) | 400 | 39 | 104 | [
{
"content": "ã$q_n=p_{p_n}$ ãšããïŒé ç¹ $1,2,âŠ,13$ ã«å¯ŸããŠïŒå $n$ ã«ã€ã㊠$n$ ãã $q_n$ ãžã®æå蟺ã匵ã£ãæåã°ã©ãã $G$ ãšããïŒ $G$ ã¯ããã€ãã®èªå·±ã«ãŒãã§ãªããµã€ã¯ã«ãããªãïŒä»¥äžã®äºå®ãæãç«ã€ïŒ\r\n\r\n- ä»»æã®ãµã€ã¯ã«ã«å¯ŸããŠïŒãã®ãµã€ã¯ã«äžã®é ç¹ãå°ããé ã«ãããã $a_1,a_2,âŠ,a_m$ ãšãããšïŒãããã¯ã©ã®é£ãåãäºæ°ãå·®ã $1$ ã§ããïŒ\r\n$$q_{a_1}=a_2, \\quad q_{a_2}=a_3, \\quad âŠ, \\quad q_{a_{m-1}}=a_m, \\quad q_{a_m}=a_1$$\r\n\r\n<details> <summary>\r\n蚌æ\r\n<\\/summary>\r\nã$q_n\\leq n-1$ ãªã $n$ ã $l$ åããïŒå°ããé ã« $b_1,b_2,âŠ,b_l=13$ ãšãããšïŒãã以å€ã® $n$ ã§ã¯ $q_n=n+1$ ã§ããããïŒ $q_{b_1},q_{b_2},âŠ,q_{b_l}$ 㯠$1,q_{b_1}+1,q_{b_2}+1,âŠ,q_{b_{l-1}}+1$ ã®ããããã®å€ãåãïŒ $q_{b_1}\\leq b_1-1$ ããïŒ $q_{b_1}=1$ ïŒåæ§ã«åž°çŽçã« $q_{b_i}=b_{i-1}+1\\quad(i\\geq2)$ ããããïŒãã®ãšãäžèšã®äºå®ãæãç«ã€ã¯æããïŒ\r\n<\\/details>\r\n\r\nã$q_{âŠq_n}$ $(q$ ã® $i$ ååæ$)$ ã $q^i(n)$ ã«ããè¡šãïŒä»»æã®é·ã $k$ ã®ãµã€ã¯ã« $A$ äžã®æå°ã®é ç¹ $a$ ã«ã€ããŠïŒäžèšã®ãããããæãç«ã€ãšãïŒãŸããã®ãšãã«éã $\\lbrace p_n \\rbrace$ ã¯åé¡æã®æ¡ä»¶ãæºããïŒ\r\n\r\n- ããå¥ã®é·ã $k$ ã®ãµã€ã¯ã« $B$ äžã®ããé ç¹ $b$ ã«å¯ŸããŠ\r\n$$p_{q^i(a)}=q^i(b), \\quad p_{q^i(b)}=q^{i+1}(a) \\quad (0\\leq i\\leq k-1)$$\r\nãšãªãïŒããªãã¡ $A$ ãš $B$ ã®ãµã€ã¯ã«ã亀äºã«çµã¿åããã£ã圢ã§ããïŒ\r\n\r\n- $k$ ãå¥æ°ãã€ïŒ\r\n$$p_{q^i(a)}=q^{i+\\frac{k+1}{2}}(a) \\quad (0\\leq i\\leq k-1)$$\r\nãšãªãïŒ\r\n\r\nã$G$ ã¯èªå·±ã«ãŒããæããïŒé·ããçããå¶æ°é·ã®ãµã€ã¯ã«ãå¥æ°åæã€ããšã¯ãªãããïŒ$G$ ã®ãµã€ã¯ã«ã®é·ãã®çµã¿åããã¯\r\n$$(13),(9,2,2),(7,3,3),(5,5,3),(5,4,4),(5,2,2,2,2),(3,3,3,2,2)$$ \r\nã®ããããã§ããïŒ\r\n\r\n- $(13)$ ã®ãšãïŒ $\\dfrac{1!}{1!}\\times 1=1$ ïŒåïŒïŒ\r\n- $(9,2,2)$ ã®ãšãïŒ $\\dfrac{3!}{1!\\times 2!}\\times 1 \\times 2=6$ ïŒåïŒïŒ\r\n- $(7,3,3)$ ã®ãšãïŒ $\\dfrac{3!}{1!\\times 2!}\\times 1 \\times (1+3)=12$ ïŒåïŒïŒ\r\n- $(5,5,3)$ ã®ãšãïŒ $\\dfrac{3!}{1!\\times 2!}\\times (1+5) \\times 1=18$ ïŒåïŒïŒ\r\n- $(5,4,4)$ ã®ãšãïŒ $\\dfrac{3!}{1!\\times 2!}\\times 1 \\times 4=12$ ïŒåïŒïŒ\r\n- $(5,2,2,2,2)$ ã®ãšãïŒ $\\dfrac{5!}{1!\\times 4!}\\times 1 \\times 12=60$ ïŒåïŒïŒ\r\n- $(3,3,3,2,2)$ ã®ãšãïŒ $\\dfrac{5!}{3!\\times 2!}\\times (1+9) \\times 2=200$ ïŒåïŒïŒ\r\n\r\nããã£ãŠïŒæ¡ä»¶ãæºãã $\\lbrace p_n\\rbrace$ ã®åæ°ã¯ $\\mathbf{309}$ åã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc240/editorial/10345"
},
{
"content": "0. ãŠãŒã¶ãŒè§£èª¬ãæžããçç±ãªã©\r\n\r\nãå
¬åŒè§£èª¬ã¯éåžžã«ç«¯çã«ãŸãšããããŠããŠãšã¬ã¬ã³ããªã®ã§ããïŒæ¬åã解ããªã人ã解説ãèªã¿èŸŒãã®ã¯é£ããã®ã§ã¯ãªãããšæãïŒã§ããã ãå¹³æãªè¡šçŸã§æžããŠã¿ãŸããïŒ\\\r\nãããªãåºæ¬çãªãšãããã説æããŠããã€ãããªã®ã§ïŒãªããªã 400 ç¹ã«ã¯æããªããšãã人ã§ãèªãã§ã¿ãŠã»ããã§ãïŒ\\\r\nããªãïŒå
¬åŒè§£èª¬ãèªãã§æ®éã«ç解ã§ããæ¹ã¯ïŒèªãã§ãããŸãé¢çœããªããšæããŸãïŒ\r\n\r\n---\r\n\r\n1. $p_{p_n}$ ã®èª¬æ\r\n\r\nã$\\\\{ p_n \\\\}$ ã¯çŽ çŽã«èŠãã°æ°åã ãïŒé¢æ°ãšããŠèŠãããšãã§ããïŒ\\\r\nãããªãã¡ïŒéå $S=\\\\{1,2,3, \\cdots, 13\\\\}$ ãšããŠïŒ$S$ ã®å
ã« $S$ ã®å
ã察å¿ãããé¢æ°ã§ããïŒããæ£ç¢ºã«èšãã°ïŒå
šåå°ã®ååãšèšã£ãæ¹ãè¯ãïŒïŒ\\\r\nãã§ã¯ $p_{p_n}$ ãšã¯äœã ãããïŒ\\\r\nãæ° $n$ ã«å¯ŸããŠïŒäžåºŠé¢æ° $p$ ã§ç§»ããŠïŒå床é¢æ° $p$ ã§ç§»ãããã®ã§ããïŒïŒäžåŒïŒ\r\n$$n \\xrightarrow{p} p_n \\xrightarrow{p} p_{p_n}$$\r\nããªãïŒä»¥äžã®èª¬æã§ã¯ïŒé¢æ° $p$ ã $2$ åæœãããã®ãïŒ$p^2$ ã§è¡šããŠãããšãããããïŒããªãã¡\r\n$$n \\xrightarrow{p^2} p_{p_n}$$\r\nãã§ããïŒ\r\n\r\n---\r\n\r\n2. ãµã€ã¯ã«ãèããçç±\r\n\r\nãæ° $n$ ã«å¯ŸããŠïŒé¢æ° $p$ ãç¹°ãè¿ãããšãèããïŒããªãã¡ïŒæ¬¡ã®ãããªæ°åã§ããïŒ\r\n$$n \\xrightarrow{p} p_n \\xrightarrow{p} p_{p_n} \\xrightarrow{p} \\cdots$$\r\nã$p$ ã§ç§»ãããå€ã¯ïŒéå $S$ ã®èŠçŽ ã«ãªãïŒéå $S$ ã®èŠçŽ ã¯æéã§ããïŒãã£ãŠïŒãã®æ°åã¯ã©ããã§ïŒåãæ°ã $2$ åçŸããïŒãã®æ°ã $a$ ãšãããšïŒ\r\n$$a \\xrightarrow{p} p_a \\xrightarrow{p} \\cdots \\xrightarrow{p} a$$\r\nãšãªãããã§ããïŒèŠããã« $p$ ã«ãããµã€ã¯ã«ãååšããããšããããïŒ\r\n\r\n---\r\n\r\n3. ãµã€ã¯ã«ã®äŸãèãã\r\n\r\nããŸãã¯ïŒæãåºæ¬ã§ããé·ã $1$ ã®ãµã€ã¯ã«ãèãããïŒ\r\nã$$a \\xrightarrow{p} a$$\r\nãã§ããïŒãã®ãšã $p_{p_a}=a$ ãšãªãïŒåé¡æã®æ¡ä»¶ã«ççŸããïŒåæ§ã«ïŒé·ã $2$ ã®ãµã€ã¯ã«ãççŸããïŒç¢ºãããŠã¿ãïŒïŒ\\\r\nã次ã«ïŒé·ã $3$ ã®ãµã€ã¯ã«ã§ããïŒ\r\nã$$a \\xrightarrow{p} p_a \\xrightarrow{p} p_{p_a} \\xrightarrow{p} a$$\r\nãããã§ïŒ$p_{p_n} \\leq n-1$ ãå
šãŠã® $n$ ã§æãç«ãŠã°æããã«ççŸããïŒ$a \\gt p_{p_a} \\gt p_a \\gt a$ ã§ããïŒïŒãã£ãŠïŒå°ãªããšãäžã€ã¯ $p_{p_n} = n+1$ ãæºãããã®ãååšããïŒããã§æ¹ããŠ\r\nã$$a \\xrightarrow{p} p_a \\xrightarrow{p} a+1 \\xrightarrow{p} a$$\r\nããšãããïŒãã㧠$p_{p_n} \\leq n-1$ ã $2$ åæãç«ãŠã°ïŒããªãã¡ $a+1 \\gt p_a \\gt a$ïŒççŸã§ããïŒãã£ãŠïŒããäžåºŠ $p_{p_n} = n+1$ ãæºãããã®ãååšããïŒãã®ããšãã $p_a$ 㯠$a+2$ ã $a-1$ ã®ããããã§ããããšããããïŒããäžè¬åããè¡šçŸãããã°ïŒé·ã $3$ ã®ãµã€ã¯ã«ãããã°ïŒããã«å«ãŸããèŠçŽ ã¯é£ç¶ãã $3$ ã€ã®æŽæ°ã§ããããšããããïŒ\r\n\r\nãç¶ããŠïŒé·ã $4$ ã®ãµã€ã¯ã«ã§ããïŒç°¡åã®ããïŒ\r\nã$$a \\xrightarrow{p} b \\xrightarrow{p} c \\xrightarrow{p} d \\xrightarrow{p} a$$\r\nãšãããïŒãŸã $a$ ãš $c$ ã«ã€ããŠèŠããšïŒ\r\n\r\n- $c \\leq a-1$ or $c=a+1$\r\n- $a \\leq c-1$ or $a=c+1$\r\n\r\nã§ããïŒãã®ããšãã $a,c$ ã¯é£ç¶ãã $2$ ã€ã®æŽæ°ã§ãããšãããïŒ$b,d$ ãåæ§ã§ããïŒ\r\n\r\n---\r\n\r\n4. é·ã $k$ ã®ãµã€ã¯ã«\r\n\r\nãé·ããå¥æ°ã®ãµã€ã¯ã«ã§ããã°ïŒ\r\n$$n \\xrightarrow{p} * \\xrightarrow{p} * \\xrightarrow{p} \\cdots$$\r\nãã®ä»£ããã«\r\n$$n \\xrightarrow{p^2} * \\xrightarrow{p^2} * \\xrightarrow{p^2} \\cdots$$\r\nããèããŠãïŒåãé·ãã®ãµã€ã¯ã«ãšãªãïŒäžå¿ïŒ$2$ ãšå¥æ°ãäºãã«çŽ ã ããã§ããïŒïŒ\\\r\nãé·ã $3$ ã®ãµã€ã¯ã«ã®ãšããšåãããã«çºæ³ããã°ïŒãã®é·ã $k$ ã®ãµã€ã¯ã«ã®äžã«ã¯ $k$ åã®é£ç¶ããæŽæ°ãååšããïŒ\r\n\r\nãé·ããå¶æ°ã®ãµã€ã¯ã«ã§ããã°ïŒ\r\n$$n \\xrightarrow{p} * \\xrightarrow{p} * \\xrightarrow{p} \\cdots$$\r\nãã®ä»£ããã«\r\n$$n \\xrightarrow{p^2} * \\xrightarrow{p^2} * \\xrightarrow{p^2} \\cdots$$\r\nããèãããšïŒé·ããååã®ãµã€ã¯ã«ãåŸãïŒã€ãŸãïŒé·ã $k=2l$ ã®ãµã€ã¯ã«ã¯ïŒé·ã $l$ ã®ãµã€ã¯ã«äºã€ã«åé¢ãããïŒãããŠïŒãã®ã©ã¡ãã®ãµã€ã¯ã«ã $l$ åã®é£ç¶ããæŽæ°ãããªãïŒ\r\n\r\n---\r\n\r\n5. é·ã $k$ ã®ãµã€ã¯ã«ã«å¯Ÿããå Žåã®æ°\r\n\r\nãé·ããå¥æ° $k$ ã§ãããããªãµã€ã¯ã«ãããïŒããã§äœ¿ãããæ°ã¯ $1, 2, \\cdots , k$ ã§ãããšãããïŒãã®ãããªãµã€ã¯ã«ãæ§æãã $p$ ã¯äœéãååšããã ãããïŒæ£ç¢ºã«ã¯ ã$p$ ã®å®çŸ©åã $1, 2, \\cdots , k$ ã ãã«çããé¢æ°ããäœéãããèãããïŒïŒ\\\r\nããã®å Žå $p$ ã¯\r\n$$1 \\xrightarrow{p^2} 2 \\xrightarrow{p^2} 3 \\xrightarrow{p^2} \\cdots k \\xrightarrow{p^2} 1$$\r\nããæºããïŒãã®ãã㪠$p$ ã¯äžéãã«å®ãŸãïŒ\r\n\r\nã次ã«ïŒé·ããå¶æ° $k=2l$ ã§ãããããªãµã€ã¯ã«ãããïŒããã§äœ¿ãããæ°ã¯ $1, 2, \\cdots , l$ ãš $a+1, a+2, \\cdots a+l$ ã§ãããšãããïŒãã®ãããªãµã€ã¯ã«ãæ§æãã $p$ ã¯äœéãååšããã ãããïŒæ®å¿µãªããïŒå¥æ°ã®ãšãã®ããã« $1$ éãã§ã¯ãªãïŒ\\\r\n$$1 \\xrightarrow{p^2} 2 \\xrightarrow{p^2} \\cdots l \\xrightarrow{p^2} 1$$\r\n$$a+1 \\xrightarrow{p^2} a+2 \\xrightarrow{p^2} \\cdots a+l \\xrightarrow{p^2} a+1$$\r\nãã®éšåã¯ããããäžéãã§ãããïŒ$1$ ã®è¡ãå
㯠$a+1, \\cdots a+l$ ã®ãããã§ãããïŒã€ãŸãïŒäžåŒã«ããã $*$ ã®å€ã $l$ éãååšããïŒ\r\n$$1 \\xrightarrow{p} * \\xrightarrow{p} 2 \\cdots$$\r\nãäžåŒã® $ * $ ã決ããã° $p$ ã¯äžã€ã«å®ãŸãã®ã§ïŒé·ããå¶æ° $k=2l$ ã§ãããããªãµã€ã¯ã«ãæ§æãã $p$ 㯠$l$ éãã§ããããšãããã£ãïŒ\r\n\r\n---\r\n\r\n6. åé¡ã解ã\r\n\r\nã以äžã®è°è«ããïŒ$1,2,3, \\cdots ,13$ ã $3$ å以äžã®é£ç¶ããèŠçŽ ãããªãéåïŒãµã€ã¯ã«ãæ§æããèŠçŽ ïŒã«åãïŒããããã«å¯Ÿãã $p$ ã®åæ°ãæ±ããŠããã°ããïŒ\r\n\r\n- $(13)$ ã®ãšãïŒ $1$ éãã§ããïŒ\r\n- $(10,3)$ ã®ãšãïŒé·ã $10$ ã®ãµã€ã¯ã«ã®èŠçŽ ã¯ïŒå¿
ãããé£ç¶ãã $10$ åã§ãªããŠãè¯ãã£ãããšã«æ³šæããïŒå
·äœäŸãšã㊠$1,2,3,4,5,9,10,11,12,13$ ã§ãé·ã $10$ ã®ãµã€ã¯ã«ãäœããïŒïŒæ°ã®éžã³æ¹ã $3$ éãïŒããã« $p$ ã®äœãæ¹ã $5$ éããªã®ã§ïŒ$3Ã5=15$éãïŒ\r\n- $(9,4)$ ã®ãšãïŒæ°ã®éžã³æ¹ã $3$ éãïŒããã« $p$ ã®äœãæ¹ã $2$ éãã§ïŒ$3Ã2=6$ éãïŒ\r\n- $(8,5)$ ã®ãšãïŒ$3Ã4=12$ éãïŒ\r\n- $(7,6)$ ã®ãšãïŒ$3Ã3=9$ éãïŒ\r\n- $(7,3,3)$ ã®ãšãïŒæ°ã®éžã³æ¹ã $3$ éãïŒå
šãŠã®ãµã€ã¯ã«ã®é·ããå¥æ°ãªã®ã§ïŒãã以äžèããå¿
èŠã¯ãªãïŒ\r\n- $(6,4,3)$ ã®ãšãïŒæ°ã®éžã³æ¹ã $\\dfrac{5!}{2! \\ 2!}$ éãïŒããã« $p$ ã®äœãæ¹ã $3Ã2$ éãã§ïŒ$30Ã6=180$ éãïŒ\r\n- $(5,4,4)$ ã®ãšãïŒæ°ã®éžã³æ¹ã $\\dfrac{5!}{2! \\ 2! \\ 2!}$ éãïŒããã« $p$ ã®äœãæ¹ã $2Ã2$ éãã§ïŒ$15Ã4=60$ éãïŒ\r\n- $(5,5,3)$ ã®ãšãïŒæ°ã®éžã³æ¹ã $3$ éãïŒ\r\n- $(4,3,3,3)$ ã®ãšãïŒæ°ã®éžã³æ¹ã $\\dfrac{5!}{2! \\ 3!}$ éãïŒããã« $p$ ã®äœãæ¹ã $2$ éãã§ïŒ$10Ã2=20$ éãïŒ\r\n\r\nãå Žååããé·ãã£ããïŒä»¥äžã足ãåãããã°ããïŒ\r\n\r\n泚ïŒå
¬åŒè§£èª¬ãšå Žååããç°ãªãã®ã¯ïŒå
¬åŒè§£èª¬ã® $(7,3,3)$ ã®äžã«æ¬è§£èª¬ã® $(7,6)$ ãå«ããããŠããããã§ããïŒãŸãïŒå
¬åŒè§£èª¬ã® $(5,4,4)$ ã¯æ¬è§£èª¬ã§ãã $(8,5)$ ãè¡šããŠãããªã©ïŒåŸ®åŠã«ç°ãªãç¹ã«æ³šæããïŒ",
"text": "ããå¹³æãªè¡šçŸã«ãã解説",
"url": "https://onlinemathcontest.com/contests/omc240/editorial/10345/779"
},
{
"content": "æ¬è³ªçã«å
¬åŒè§£èª¬ãšç°ãªãããã§ã¯ãªãã®ã§ãå
¬åŒè§£èª¬ãããã£ãŠãªã人ã¯ãŸãå
¬åŒè§£èª¬ãèªãã§ãã ããã\r\n\r\nçŽæ¥$i \\rightarrow p_i$ã®ã°ã©ããèããŸããé©åœãªèå¯ã«ãããå¥æ°é·ã®ãµã€ã¯ã«ã¯ããé£ç¶ããæ°ãããªãããã®é£ç¶ããå¥æ°åã®æ°ãåºå®ãããšããµã€ã¯ã«ãšããŠ$1$éããããªãããšãããããŸãããŸããå¶æ°é·ã®æã¯ããã$2$ã€ã®é£ç¶ãã$k$åã®æ°ãããªãã$2$ã€ã亀äºã«äžŠã¹ããã®ã«ãªãããã$2$ã€ã®é£ç¶ããæ°ã決ãæã£ããšããµã€ã¯ã«ã¯$k$éãããããšãããããŸãããã£ãŠãé¡æã®æ¡ä»¶ãæºãã$p$ã®æ°ãäžãã«ã€ããŠããŸãé£ç¶ããæ°ã®ãããŸãã®åæ°ã決ãæã¡ã次ã«é£ç¶ãããããŸãããšã«å¥æ°é·ã®ãµã€ã¯ã«ãå¶æ°é·ã®ãµã€ã¯ã«ãå²ãåœãŠã決ããæåŸã«é£ç¶ãããããŸãããšã®é£ç¶ããé·ãã決ãæã€ãšãã決ãæ¹ãèãããšã以äžã®åŒãçããšçããããšãããããŸãã\r\n\r\nããã§ãé£ç¶ãããããŸãã®åæ°ã$k$ãšãããšãé£ç¶ãããããŸãã®é·ãã$2$以äžã§ããããšãã$k$åã®ãããŸãã®å¶å¥ãµã€ã¯ã«ã®å²ãåœãŠã®æ±ºå®ãªã©ãèžãŸãããšã$k$ã«ã€ããŠ$13â¡k \\pmod 2$ãã€$2k \\leq 13$ãå¿
èŠã§ããããšã«æ³šæããŠãã ããããŸããç«åŒã®éçšã§å
žåçãªæ°ãäžãåé¡ãå«ãŸããŠããŸãããããã§ã¯èª¬æã¯å²æãããã®çããçšããŠä»¥äžã«åŒã瀺ããŠããŸãã\r\n\r\n$$\\displaystyle\\sum_{k \\in \\\\{1,3,5 \\\\}} \\sum_{l=0}^{\\left\\lfloor \\frac{k}{2} \\right\\rfloor} \\frac{k!}{l!(k-2l)!2^l}\\sum_{m=0}^l (-1)^m 2^{l-m}\\binom{\\frac{13-3k+2l-2m}{2}}{k-1}$$\r\n\r\nãã®åŒãèšç®ããããšã«ããæ¬åé¡ã®çã$309$ãåŸãããšãã§ããŸãã",
"text": "å
¬åŒè§£èª¬ãããã人åãã®ãšã¬ã¬ã³ããªè§£æ³",
"url": "https://onlinemathcontest.com/contests/omc240/editorial/10345/781"
}
] | ã$1,2,âŠ,13$ ã®é å $p_1, p_2, \ldots, p_{13}$ ã§ãã£ãŠä»¥äžãæãç«ã€ãããªãã®ã¯ããã€ãããŸããïŒ
- $13$ 以äžã®ä»»æã®æ£æŽæ° $n$ ã«ã€ããŠïŒ$p_{p_n}$ 㯠$n-1$ 以äžã§ãããïŒãŸã㯠$n+1$ ã«çããïŒ |
OMC240 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc240/tasks/8773 | E | OMC240(E) | 500 | 8 | 25 | [
{
"content": "ãé ç¹ $A, B, C$ ãã察蟺ã«äžãããåç·ã®è¶³ããããã $X, Y, Z$ ãšããïŒ\\\r\nããã®ãšãïŒ$\\angle HXM = \\angle HPM = 90^\\circ$ ã§ãããã $4$ ç¹ $H, M, P, X$ ã¯åäžååšäžã«ããïŒãŸãïŒ$4$ ç¹ã®çµ $(B, H, X, Z)$, $(B, C, Y, Z)$ ãããããåäžååšäžã«ããã®ã§ïŒæ¹ã¹ãã®å®çãã\r\n$$AP\\cdot AM = AH\\cdot AX = AB\\cdot AZ = AC\\cdot AY$$\r\nãæãç«ã€ïŒãããšäžç·å®çããïŒ\r\n$$\\begin{aligned}\r\nAM\\cdot PM\r\n&= AM^2 - (AP\\cdot AM)\\\\\\\\\r\n&= \\frac{AB^2 + AC^2 - 2BM^2}{2} - \\frac{AB\\cdot AZ + AC\\cdot AY}{2}\\\\\\\\\r\n&= \\frac{AB^2 + AC^2 - 2BM^2 - (AB^2 - AB\\cdot BZ) - (AC^2\\cdot AC\\cdot CY)}{2}\\\\\\\\\r\n&= \\frac{ AB\\cdot BZ + AC\\cdot CY - 2BM^2}{2}\\\\\\\\\r\n&= \\frac{ BC\\cdot BX + BC\\cdot CX - 2BM^2}{2}\\\\\\\\\r\n&= \\frac{ BC^2 - 2BM^2}{2}\\\\\\\\\r\n&= BM^2\r\n\\end{aligned}$$\r\nã§ããïŒãããã£ãŠïŒ$AM : BM = BM : PM$ ã§ããããäžè§åœ¢ $ABM$ ãšäžè§åœ¢ $BPM$ ã¯çžäŒŒã§ããïŒåæ§ã«äžè§åœ¢ $ACM$ ãšäžè§åœ¢ $CPM$ ãçžäŒŒã§ããïŒãã£ãŠïŒ\r\n$$\\angle BPC = \\angle BPM + \\angle CPM = \\angle ABM + \\angle ACM = \\angle ABC + \\angle ACB$$\r\nã§ããããïŒçŽç· $BC$ ã«é¢ã㊠$P$ ãšå¯Ÿç§°ãªç¹ã $P^\\prime$ ãšãããšïŒ\r\n$$\\angle BAC + \\angle BP^\\prime C = \\angle BAC + \\angle BPC = \\angle BAC + \\angle ABC + \\angle ACB = 180^\\circ$$\r\nãšãªãïŒ$P^\\prime$ 㯠$A$ ãå«ãŸãªã匧 $BC$ äžã«ããïŒãŸãïŒ$BC\\perp PP^\\prime$ ãæãç«ã€ã®ã§ïŒ$P^\\prime = Q$ ã§ããïŒãã£ãŠïŒ\r\n$$\\angle DBE = \\angle CBP = \\angle QBC = \\angle QAC = \\angle DAE$$\r\nãšãªãïŒ$4$ ç¹ $A, B, D, E$ ã¯åäžååšäžã«ããïŒãããã£ãŠïŒ\r\n$$\\angle BEF = \\angle BED = \\angle BAD = \\angle BAQ = \\angle BCQ = \\angle BCF$$\r\nã§ããããïŒ$4$ ç¹ $B, C, E, F$ ãåäžååšäžã«ããïŒãã£ãŠïŒ\r\n$$\\angle BAE = \\angle BAC = \\angle BQF,\\quad \\angle AEB = \\angle CFB = \\angle QFB$$\r\nã§ããããïŒäžè§åœ¢ $ABE$ ãšäžè§åœ¢ $QBF$ ã¯çžäŒŒã§ããïŒ\\\r\nãããŸïŒäžè§åœ¢ $ABM$ ãšäžè§åœ¢ $BPM$ ã¯çžäŒŒã§ãã£ãããïŒ\r\n$$\\frac{AM}{PM}\r\n= \\frac{AM}{BM}\\cdot\\frac{BM}{PM}\r\n= \\bigg(\\frac{AM}{BM}\\bigg)^2\r\n= \\bigg(\\frac{AB}{BP}\\bigg)^2\r\n= \\bigg(\\frac{AB}{BQ}\\bigg)^2\r\n= \\frac{9}{4}$$\r\nã§ããïŒãã£ãŠïŒã¡ãã©ãŠã¹ã®å®çããïŒ\r\n$$\\frac{BE}{EP} = \\frac{AM}{PA}\\cdot \\frac{CB}{MC} = \\frac{18}{5}$$\r\nã§ããããïŒ\r\n$$BE = BP\\cdot\\frac{BE}{BP} = BQ\\cdot\\frac{BE}{BE - EP} = \\frac{108}{13}$$\r\nãåŸãïŒããã§ïŒäžè§åœ¢ $ABE$ ãšäžè§åœ¢ $QBF$ ã¯çžäŒŒã§ãã£ãããïŒ\r\n$$BF = BE\\cdot\\frac{BQ}{AB} = \\frac{72}{13}$$\r\nã§ããïŒãŸãïŒ\r\n$$\\angle FBP = \\angle FBQ + \\angle PBQ = \\angle ABE + \\angle EBQ = \\angle ABQ$$\r\nã§ããããïŒäœåŒŠå®çãã\r\n$$\\begin{aligned}FP^2\r\n&= {BF^2 + BP^2 - 2BF\\cdot BP\\cos\\angle FBP}\\\\\\\\\r\n&= {BF^2 + BQ^2 - 2BF\\cdot BQ\\cos\\angle ABQ}\\\\\\\\\r\n&= {BF^2 + BQ^2 - 2BF\\cdot BQ\\cdot\\frac{AB^2 + BQ^2 - AQ^2}{2AB\\cdot BQ}}\\\\\\\\\r\n&= \\frac{11684}{169}\r\n\\end{aligned}$$\r\nã§ããïŒç¹ã«è§£çãã¹ãå€ã¯ $\\bf11853$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc240/editorial/8773"
},
{
"content": "ãå
¬åŒè§£èª¬ãšåæ§ã®è°è«ããïŒçŽç· $AB$ ãšçŽç· $CP$ ãšã®äº€ç¹ã $R$ ãšãããš $R$ ãš $F$ ã¯çŽç· $BC$ ã«é¢ããŠå¯Ÿç§°ãªã®ã§ïŒ$FP=QR$ ã®é·ããæ±ããã°ããïŒ\r\n$$DE=\\frac{AB\\cdot CD}{AC}=\\frac{AC\\cdot BD}{AB}=DR,\\angle BDG=\\angle BAC=\\angle CDE$$\r\nãã $BC\\parallel ER$ ã§ããïŒ$\\omega$ ã® $B,C$ ã§ã® $2$ æ¥ç·ã®äº€ç¹ã $T$ ãšãããš $\\triangle DER\\sim \\triangle TCB$ ãã $\\dfrac{AR}{AB}=\\dfrac{AD}{AT}$ ãªã®ã§ïŒãããš $\\dfrac{AD}{DQ}=\\dfrac{AT}{TQ}=\\dfrac{AB^2}{AC^2}=\\dfrac{9}{4}$ ãã $BR=AB(1-\\dfrac{AR}{AB})=\\dfrac{72}{13}$ ãšãªãïŒãã£ãŠïŒäœåŒŠå®çãã $FP^2=QR^2=\\dfrac{11684}{169}$ ããããïŒ",
"text": "çžäŒŒãšèª¿åç¹å",
"url": "https://onlinemathcontest.com/contests/omc240/editorial/8773/782"
}
] | ãéè§äžè§åœ¢ $ABC$ ã®åå¿ã $H$, å€æ¥åã $\omega$ ãšããŸãïŒèŸº $BC$ ã®äžç¹ã $M$ ãšãïŒ $H$ ããçŽç· $AM$ ã«ããããåç·ã®è¶³ã $P$ ãšããŸãïŒ $\omega$ ã® $A$ ãå«ãŸãªã匧 $BC$ äžã«çŽç· $BC$ ãš $PQ$ ãçŽäº€ãããããªç¹ $Q$ ããšãïŒçŽç· $AQ$ ãš $BC$ ã®äº€ç¹ã $D$ïŒçŽç· $AC$ ãš $BP$ ã®äº€ç¹ã $E$ïŒçŽç· $CQ$ ãš $DE$ ã®äº€ç¹ã $F$ ãšãããšïŒ
$$AB=9,\quad BQ=6,\quad QA=11$$
ãæãç«ã¡ãŸããïŒãã®ãšãïŒç·å $FP$ ã®é·ãã® $2$ ä¹ã¯äºãã«çŽ ãªæ£ã®æŽæ° $a, b$ ãçšã㊠$\dfrac{a}{b}$ ãšè¡šãããã®ã§ïŒ $a+b$ ã®å€ãæ±ããŠãã ããïŒ |
OMC240 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc240/tasks/10992 | F | OMC240(F) | 600 | 1 | 14 | [
{
"content": "ãå³1ã®ããã«å
è§åœ¢ã®èŸºã®é·ããåæèšåãã« $p_1, p_2, p_3, p_4, p_5, p_6$ ãšãããšïŒæ¬¡ãæãç«ã€ïŒ\r\n$$p_1+p_3+p_5=p_2+p_4+p_6\\quad\\cdots(1)$$\r\n$$p_1p_3+p_3p_5+p_5p_1=p_2p_4+p_4p_6+p_6p_2\\quad\\cdots(2)$$\r\n\r\n***\r\n**蚌æïŒ**å
è§åœ¢ãå²ã $6$ ã€ã®äžè§åœ¢ã¯ãã¹ãŠçžäŒŒã§ããïŒ$2$ ã€ã®æ£äžè§åœ¢ã®åšé·ã¯ããå®æ° $k\\\\,(\\gt1)$ ãçšããŠ\r\n$$p_1+p_3+p_5+k(p_2+p_4+p_6),\\quad p_2+p_4+p_6+k(p_1+p_3+p_5)$$\r\nãšè¡šãïŒãããã¯çãããã (1) ãæãç«ã€ïŒãŸãïŒ$2$ ã€ã®æ£äžè§åœ¢ã®é¢ç©ã¯çããïŒå³1ã® $A, B$ ã®é¢ç©ã¯çããããïŒ\r\n$$p_1^2+p_3^2+p_5^2=p_2^2+p_4^2+p_6^2$$\r\nã§ããïŒ(1) ãšåãã㊠(2) ãæãç«ã€ïŒ\r\n\r\n![figure 1](\\/images\\/VqHwKdxdR7jiGi9Jd5YFeZW7q9IHJEbquabTUeSf)\r\n***\r\n\r\nã(1), (2) ã®å€ããããã $P, Q$ ãšããïŒäžæ¬¡é¢æ°ã®ã°ã©ã $y=x^3-Px^2+Qx\\\\,(x\\gt0)$ ãèããïŒãã®ã°ã©ããçŽç· $y=l_1$ ããã³ $y=l_2$ ãšããããïŒé解ãå«ãïŒ$3$ ã€ã®å
±æç¹ãæã€ãšãïŒ$(p_1, p_3, p_5), (p_2, p_4, p_6)$ ã¯ããããã®çŽç·ã«å¯Ÿããå
±æç¹ã® $x$ 座æšã®çµã«å¯Ÿå¿ããïŒ\\\r\nãæ¡ä»¶ããïŒ$x_1, x_2, x_3, x_4, x_5$ ã®é
眮ã¯ïŒã°ã©ããçšããããšã§ïŒå³2ã® (i), (ii) ã®ãããããšãããïŒå€ã¯ã¡ããã© $5$ ã€ã§ããããïŒã¡ããã© $1$ æ¬ã®çŽç·ã¯ã°ã©ãã®æ¥µå€ç¹ãéãïŒïŒäžè¬æ§ã倱ããã« $x_3=1$ ãšããŠããïŒ\r\n\r\n- (i) ã®ãšãïŒ$x_2$ ã¯æ¥µå€§ç¹ïŒ$x_3$ ã¯å€æ²ç¹ã® $x$ 座æšã§ããïŒ$|x_2-x_3|:|x_3-x_5|=1:2$ ããïŒ$x_5=\\dfrac{15}{7}$ ãšãããïŒãŸãïŒ$|x_1-x_3|:|x_2-x_3|=\\sqrt3:1$ ããïŒãããã« $x_1=1-\\dfrac{4\\sqrt3}{7}\\gt0$ ã§ããïŒ\r\n- (ii) ã®ãšãïŒ$x_4$ ã¯æ¥µå°ç¹ã® $x$ 座æšã§ããïŒ$|x_1-x_3|=|x_3-x_4|=t\\\\,(\\gt0)$ ãšããïŒãã®ãšãïŒ(1), (2) ã«ä»£å
¥ããŠé£ç«æ¹çšåŒã解ãããšã§ïŒ$t=\\dfrac{2(1+\\sqrt5)}{7},\\\\,x_5=\\dfrac{13+2\\sqrt5}{7}$ ãšãããïŒãŸãïŒãããã« $x_1=\\dfrac{5-2\\sqrt5}{7}\\gt0$ ã§ããïŒ\r\n\r\nã以äžããïŒæ±ããå€ã¯ $4+\\sqrt{\\dfrac{20}{49}}$ ã§ããïŒç¹ã«è§£çãã¹ãå€ã¯ $\\bm{73}$ ã§ããïŒ\r\n\r\n![figure 1](\\/images\\/oqTw2e3l5n79J9MoQNlU6i6pKxbWwdVFHc0J7H8e)\r\n\r\nããªãïŒæ¬¡ã®éãïŒ(i)(ii) ããããã«ã€ããŠïŒæ¡ä»¶ãæºããå³ãå®éã«ååšããïŒ\r\n\r\n![figure 1](\\/images\\/Sy6tQHy3SuT6JP1CUKn0YO9K8a7h0o3xNrvGnwIw)",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc240/editorial/10992"
}
] | ãå¹³é¢äžã« $2$ ã€ã®ååãªæ£äžè§åœ¢ãããïŒãã® $2$ ã€ã®æ£äžè§åœ¢ã®å
±ééšåãïŒãã¹ãŠã®èŸºã®é·ããæ£ã§ããïŒå
è§åœ¢ããªããŠããŸãïŒãã®å
è§åœ¢ã®èŸºã®é·ããšããŠçŸããå€ã¯ã¡ããã© $5$ ã€ã§ããïŒããããå°ããé ã« $x_1, x_2, x_3, x_4, x_5$ ãšãããšïŒ
$$\dfrac{x_1}{x_3}+\dfrac{x_4}{x_3}=2,\quad \dfrac{x_2}{x_3}=\dfrac{3}{7}$$
ãæãç«ã¡ãŸãïŒãã®ãšãïŒ$\dfrac{x_5}{x_3}$ ãšããŠããåŸãå€ãã¡ããã© $2$ ã€ååšããã®ã§ïŒãã®ç·åãæ±ããŠãã ããïŒãã ãïŒæ±ããå€ã¯æ£æŽæ° $a, b, c$ïŒ$b, c$ ã¯äºãã«çŽ ïŒãçšã㊠$a+\sqrt\dfrac{b}{c}$ ãšè¡šãããã®ã§ïŒ$a+b+c$ ã解çããŠãã ããïŒ |
OMCB033 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omcb033/tasks/12035 | A | OMCB033(A) | 100 | 167 | 342 | [
{
"content": "ã$x$ ãš $x^2$ ã®å°æ°éšåãçããããšã¯ $k=x^2-x$ ãæŽæ°ãšãªãããšãšåå€ã§ããïŒ$0 \\lt x \\leq 100$ ã®ãšã\r\n$$-\\frac{1}{4} \\leq x^2-x \\leq 100^2-100=9900$$\r\nããïŒ$k$ ãšããŠããããå€ã¯ $0, 1, \\dots , 9900$ ã® $9901$ åååšããïŒããããã® $k=0, 1, \\dots , 9900$ ã«å¯Ÿã㊠$x^2-x=k$ ã〠$0 \\lt x \\leq 100$ ãæºããå®æ° $x$ ã¯ãã $1$ ã€ååšããããïŒæ±ããåæ°ã¯ $\\mathbf{9901}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcb033/editorial/12035"
}
] | ã$100$ 以äžã®æ£ã®å®æ° $x$ ã§ãã£ãŠïŒ$x$ ã®å°æ°éšåãš $x^2$ ã®å°æ°éšåãçãããã®ã¯ããã€ãããŸããïŒãã ãå®æ° $y$ ã®å°æ°éšåãšã¯ïŒ$y$ 以äžã®æ倧ã®æŽæ°ã $y$ ããåŒããå€ã®ããšã§ãïŒ |
OMCB033 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omcb033/tasks/11893 | B | OMCB033(B) | 200 | 198 | 342 | [
{
"content": "ãæ£å
«è§åœ¢ã®é ç¹ã $2$ ã€éžã¶ãšïŒããããé ç¹ã«å«ãæ£æ¹åœ¢ã $3$ ã€ïŒé£æ¥ããé ç¹ãšããŠå«ãæ£æ¹åœ¢ã $2$ ã€ïŒå¯Ÿè§ç·ã®äž¡ç«¯ãšããŠå«ãæ£æ¹åœ¢ã $1$ ã€ïŒååšããã®ã§ïŒãã®ããã«ããŠæ£æ¹åœ¢ãäœãæ¹æ³ã¯ïŒ$\\_8\\mathrm C_2\\cdot3$ éãååšããïŒãããã®æ£æ¹åœ¢ã®ãã¡ïŒ$3$ ã€ä»¥äžã®é ç¹ãæ£å
«è§åœ¢äžã«ååšãããã®ã¯ïŒæ£å
«è§åœ¢ã®é£æ¥ããªã $4$ é ç¹ãé ç¹ãšããæ£æ¹åœ¢ïŒä»¥äžãããå
æ¥æ£æ¹åœ¢ãšãã¶ïŒã®ã¿ã§ããïŒå
æ¥æ£æ¹åœ¢ã¯ $2$ ã€ååšãïŒæ£å
«è§åœ¢ã® $2$ ã€ã®é ç¹ããããå
æ¥æ£æ¹åœ¢ãäœãæ¹æ³ã¯ïŒ$\\_4 \\mathrm C_2=6$ éãã§ããïŒãã£ãŠïŒéè€ãèæ
®ãããšïŒæ±ããåæ°ã¯ïŒ\r\n\r\n$$\\_8\\mathrm C_2\\cdot 3-2 \\cdot (6-1)=\\bold{74}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcb033/editorial/11893"
}
] | ãå¹³é¢äžã«æ£å
«è§åœ¢ããããŸãïŒåãå¹³é¢äžã®æ£æ¹åœ¢ã§ãã£ãŠïŒæ£å
«è§åœ¢ãšå°ãªããšã $2$ ã€é ç¹ãå
±æãããã®ã¯ããã€ãããŸããïŒ |
OMCB033 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omcb033/tasks/11876 | C | OMCB033(C) | 200 | 177 | 225 | [
{
"content": "ã$\\angle{APB}=\\alpha$, $\\angle{AQB}=\\beta$ ãšããïŒçŽç· $QA$ 㯠$A$ 㧠$\\omega_1$ ã«æ¥ããããïŒ$\\angle{APB}=\\angle{QAB}=\\alpha$ ã§ããïŒåæ§ã«ã㊠$\\angle{AQB}=\\angle{PAB}=\\beta$ ã§ããïŒäžè§åœ¢ã®å€è§ã®æ§è³ªãã $\\angle{ABP}=\\angle{ABQ}=\\alpha+\\beta$ ã§ããïŒ\r\n$$2(\\alpha+\\beta)=\\angle{ABP}+\\angle{ABQ}=180^\\circ$$\r\nãã $\\alpha+\\beta=90^\\circ$ ã§ããïŒãã£ãŠïŒ$\\angle{PAQ}=90^\\circ$ ããã³ïŒ$\\angle{ABP}=90^\\circ$ ãåããïŒããã§ïŒ$\\omega_1, \\omega_2$ ã®ååŸããããã $r_1, r_2$ ãšãããšïŒç·å $AP, AQ$ ã¯ãããã $\\omega_1, \\omega_2$ ã®çŽåŸã§ãããã $AP=2r_1, AQ=2r_2$ ã§ããïŒäžè§åœ¢ $APQ$ ã®é¢ç©ã $S$ ãšãããšïŒ\r\n$$4r_1r_2=AP\\cdot AQ=2S=PQ\\cdot AB=168$$\r\nãšãªãããïŒ$r_1r_2=\\mathbf{42}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcb033/editorial/11876"
}
] | ã$2$ ã€ã®å $\omega_1$ ãš $\omega_2$ ãçžç°ãªã $2$ ç¹ $A$, $B$ ã§äº€ãã£ãŠããŸãïŒ$A$ ã«ããã $\omega_2$ ã®æ¥ç·ãš $\omega_1$ ã®äº€ç¹ã®ãã¡ $A$ ã§ãªãæ¹ã $P$ ãšãïŒ$A$ ã«ããã $\omega_1$ ã®æ¥ç·ãš $\omega_2$ ã®äº€ç¹ã®ãã¡ $A$ ã§ãªãæ¹ã $Q$ ãšãããšïŒ$3$ ç¹ $P, B, Q$ ã¯åäžçŽç·äžã«ãããŸããïŒ$AB=6, \ PQ=28$ ã§ãããšãïŒ$\omega_1$ ã®ååŸãš $\omega_2$ ã®ååŸã®ç©ãæ±ããŠãã ããïŒ |
OMCB033 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omcb033/tasks/11978 | D | OMCB033(D) | 200 | 226 | 278 | [
{
"content": "$$105000=2^3\\cdot 3\\cdot 5^4\\cdot 7$$\r\nã«æ³šæãããšïŒ$a$ ã $5$ ã®åæ°ã§ãªãïŒããªãã¡ $b$ ã $5^4$ ã®åæ°ã®ãšãïŒ\r\n$$5b\\geq 5^5\\gt 2^3\\cdot 3\\cdot 7\\geq a$$\r\nãåŸãïŒæ¡ä»¶ãæºãããªãïŒãããã£ãŠ $a$ ã $5$ ã®åæ°ã§ããå¿
èŠãããïŒæ±ããçµã®åæ°ã¯æ¬¡ãæºããæ£æŽæ°ã®çµ $(a^\\prime,b)$ ã®åæ°ã«çããïŒ\r\n$$a^\\prime b=2^3\\cdot 3\\cdot 5^3\\cdot 7,\\quad a^\\prime \\geq b$$\r\næ±ããå€ã¯æŽæ° $2^3\\cdot 3\\cdot 5^3\\cdot 7$ ã®æ£ã®çŽæ°ã®åæ°ã®ååïŒããªãã¡ $\\dfrac{4\\cdot 2 \\cdot 4 \\cdot 2}{2}=\\bf32$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcb033/editorial/11978"
}
] | ã$ab=105000$ ãæºããæ£æŽæ°ã®çµ $(a,b)$ ã§ãã£ãŠïŒ$a\geq 5b$ ãæºãããã®ã®åæ°ãæ±ããŠãã ããïŒ |
OMCB033 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omcb033/tasks/10711 | E | OMCB033(E) | 200 | 138 | 173 | [
{
"content": "ãé£ç«æ¹çšåŒã¯ä»¥äžã®ããã«æžãæããããïŒ\r\n$$\r\n\\begin{cases}\r\nx+2y+4z=12\\\\\\\\\r\nx\\cdot2y+2y\\cdot4z+4z\\cdot x=44\\\\\\\\\r\nx\\cdot2y\\cdot4z=48\r\n\\end{cases}\r\n$$\r\nãã£ãŠïŒ$x,2y,4z$ 㯠$t$ ã®æ¹çšåŒ \r\n$$t^3-12t^2+44t-48=0$$\r\nã® $3$ 解ã§ïŒããã解ã㊠$\\lbrace x,2y,4z\\rbrace=\\lbrace2,4,6\\rbrace$ ãåŸãïŒããã«ïŒãããã®äžŠã¹æ¿ããèããŠïŒæ±ããå€ã¯ \r\n$$2!\\cdot(2^3+4^3+6^3)\\cdot\\left(1+\\dfrac{1}{2^3}+\\dfrac{1}{4^3}\\right)=\\mathbf{657}$$ \r\nã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcb033/editorial/10711"
}
] | ã次ã®é£ç«æ¹çšåŒãæºããå®æ°ã®çµ $(x,y,z)$ ãã¹ãŠã«ã€ããŠïŒ$x^3+y^3+z^3$ ã®ç·åã解çããŠãã ããïŒ
$$
\begin{cases}
x+2y+4z=12\\\\
xy+4yz+2zx=22\\\\
xyz=6
\end{cases}
$$ |
OMCB033 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omcb033/tasks/11522 | F | OMCB033(F) | 300 | 114 | 181 | [
{
"content": "ãç·å¯Ÿç§°ã®æ¡ä»¶ãé€ããŠèãããšïŒ$(i,j)$ ã«ç³ããããªãã° $f(i)=j$ ãšãªãããã«å¯Ÿå¿ãããããšã§ïŒç³ã®é
眮㯠$\\\\{ 0, 1, \\ldots, 7\\\\}$ ãã $\\\\{ 0, 1, \\ldots, 7\\\\}$ ãžã®å
šåå° $f$ ãšäžå¯Ÿäžå¯Ÿå¿ããïŒç³ã®é
眮ãç·å¯Ÿç§°ã§ããããšããïŒ$i\\neq j$ ã®ãšã $(i,j)$ ã«ç³ããããªãã° $(j,i)$ ã«ãç³ãããããïŒ$f(i)\\neq i$ ãªãã° $f(f(i))=i$ ãšãªãïŒ$f(i)=i$ ã®ãšãã $f(f(i))=f(i)=i$ ã§ããããïŒ\r\n$$f(f(i))=i \\quad (i=0,\\ldots,7)$$\r\nãšãªããã㪠$f$ ã®ç·æ°ãæ±ããã°ããïŒ\\\r\nã$f(i)\\neq i$ ãšãªããããªçµ $(i, f(i))$ ãããã€ååšãããã§å ŽååããããïŒãã®ãããªçµã¯é«ã
$4$ çµã§ããïŒ\r\n- $0$ çµãšãªãã®ã¯ $1$ éãïŒ\r\n- $1$ çµãšãªãã®ã¯ ${}\\_{8}\\mathrm{C}\\_{2}=28$ éãïŒ\r\n- $2$ çµãšãªãã®ã¯ $\\cfrac{1}{2!} \\cdot {}\\_{8}\\mathrm{C}\\_{2}\\cdot {}\\_{6}\\mathrm{C}\\_{2}=210$ éãïŒ\r\n- $3$ çµãšãªãã®ã¯ $\\cfrac{1}{3!} \\cdot {}\\_{8}\\mathrm{C}\\_{2} \\cdot {}\\_{6}\\mathrm{C}\\_{2}\\cdot {}\\_{4}\\mathrm{C}\\_{2}=420$ éãïŒ\r\n- $4$ çµãšãªãã®ã¯ $\\cfrac{1}{4!} \\cdot {}\\_{8}\\mathrm{C}\\_{2}\\cdot {}\\_{6}\\mathrm{C}\\_{2}\\cdot {}\\_{4}\\mathrm{C}\\_{2}\\cdot {}\\_{2}\\mathrm{C}\\_{2}=105$ éãïŒ\r\n\r\n以äžããçãã¯\r\n$$1+28+210+420+105 = \\mathbf{764}$$\r\nã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcb033/editorial/11522"
},
{
"content": "ãäžè¬ã«ïŒ$0\\le x,y\\lt n$ ã«ããæ Œåç¹ã«æ¬åãšåæ§ã®æ¡ä»¶äžã§ $n$ åã®ç³ã眮ãæ¹æ³ã®ç·æ°ã $a_n$ ãšããïŒ$x=n-1$ äžã«çœ®ãããç³ã¯ã¡ããã© $1$ åãªã®ã§ïŒãã®çœ®ãæ¹ã§å ŽååããããšïŒ$(n-1,n-1)$ ã«çœ®ãå Žå㯠$n-1$ ã®å Žåãšç䟡ã§ããïŒãã以å€ã®çœ®ãæ¹ $n-1$ éãã«ã€ããŠã¯ïŒ$y=x$ ã«ã€ããŠå¯Ÿç§°ãªäœçœ®ã«ãç³ã眮ãããšã確å®ããã®ã§ $n-2$ ã®å Žåãšç䟡ã§ããïŒãã£ãŠïŒ$$a_1=1,a_2=2,a_n=a_{n-1}+(n-1)a_{n-2}(n\\ge3)$$ãšãããã®ã§ïŒé 次èšç®ã㊠$a_8=\\textbf{764}$",
"text": "挞ååŒãç«ãŠã",
"url": "https://onlinemathcontest.com/contests/omcb033/editorial/11522/774"
},
{
"content": "çµè«ããèšããš\r\n\r\n$$8![x^8]\\exp\\left(x+\\dfrac{x^2}{2}\\right)$$\r\n\r\nãçã\r\n\r\n以äžçç±\r\n\r\né·ã$n$ã®é åããµã€ã¯ã«å解ãããšãã«é·ã1ãš2ã®ãµã€ã¯ã«ããåºãŠããªãããšãšåå€\r\n\r\né·ã1ã®ãµã€ã¯ã«ã$a$åïŒé·ã2ã®ãµã€ã¯ã«ã$b$åãã£ãŠïŒ$a+2b=8$ãšãªããïŒ\r\n\r\nãã®ç¯å²å
ã§\r\n\r\n$$\\dfrac{8!}{1!^a \\cdot 2!^b}\\dfrac{1}{a!}\\cdot \\dfrac{1}{b!}$$\r\n\r\nã®ç·åãæ±ãã\r\n\r\n$$f(x)=\\sum_{a\\geq 0}\\sum_{b\\geq 0}{1^a \\cdot 2^b}\\dfrac{1}{a!}\\cdot \\dfrac{1}{b!}x^{a+2b}$$\r\n\r\n$$f(x)=\\sum_{a\\geq 0}\\dfrac{1}{1^a}\\dfrac{1}{a!}x^a\\cdot\\sum_{b\\geq 0} \\dfrac{1}{2^b}\\dfrac{1}{b!}x^{2b}=\\sum_{a\\geq 0}\\dfrac{1}{1^a}\\dfrac{1}{a!}x^a\\cdot\\sum_{b\\geq 0} \\dfrac{1}{2^b}\\dfrac{1}{b!}x^{2b}=\\exp(x)\\cdot \\exp\\left(\\dfrac{x^2}{2}\\right)$$\r\n\r\nãªã®ã§ïŒããã®$x^8$ã®ä¿æ°Ã8!ã§ããïŒ\r\n\r\näžæ¹ïŒ\r\n\r\n$$8![x^8]\\exp\\left(x+\\dfrac{x^2}{2}\\right)$$\r\n\r\nãæ±ããã«ã¯\r\n\r\n$$8![x^8]\\left(\\sum_{n=4}^{8}\\dfrac{1}{n!}\\left(x+\\dfrac{x^2}{2}\\right)^n\\right)$$\r\n\r\nãªã®ã§\r\n\r\n$$8!\\left(\\sum_{n=4}^{8}[x^{8-n}]\\dfrac{1}{n!}\\left(1+\\dfrac{x}{2}\\right)^n\\right)$$\r\n\r\n$$8!\\left(\\dfrac{1}{24}\\cdot \\dfrac{1}{16}+\\dfrac{1}{120}\\cdot\\dfrac{1}{8}\\cdot\\binom{5}{3}\\dfrac{1}{4}\\binom{6}{2}+\\dfrac{1}{5040}\\cdot\\dfrac{1}{2}\\binom{7}{1}+\\dfrac{1}{40320}\\binom{8}{0}\\right)$$",
"text": "formal power series",
"url": "https://onlinemathcontest.com/contests/omcb033/editorial/11522/776"
}
] | ã$x,y$ 座æšããšãã« $0$ ä»¥äž $8$ æªæºã§ãããã㪠$64$ åã®æ Œåç¹ããããŸãïŒä»¥äžã®ã«ãŒã«ã«åŸã£ãŠãããã®æ Œåç¹ã®äžã« $8$ åã®ç³ã眮ãæ¹æ³ã¯äœéããããŸããïŒ
- $x$ 座æšãåãç³ã®ãã¢ã¯ååšããªãïŒ
- $y$ 座æšãåãç³ã®ãã¢ã¯ååšããªãïŒ
- ç³ã®é
眮ã¯çŽç· $y=x$ ã«å¯ŸããŠç·å¯Ÿç§°ã§ããïŒ |
OMCB033 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omcb033/tasks/11894 | G | OMCB033(G) | 300 | 90 | 139 | [
{
"content": "ã$a,b,c\\in S$ ã $a^2+b^2=c^2$ ãæºãããšãïŒ$a,b$ ã**瞊暪æ°**ïŒ$c$ ã**ææ°**ãšåŒã¶ããšã«ããïŒãã®ãããªçµã§ $a\\leqq b\\leqq c$ ã§ãããã®ã¯\r\n$$\r\n(a,b,c)=(3,4,5), (6,8,10), (5,12,13)\r\n$$\r\nã§ããã®ã§ïŒæ¬¡ãåããïŒ\r\n- $3,4,5,6,8,12$ ã¯çžŠæšªæ°ã§ããïŒ\r\n- $5,10,13$ ã¯ææ°ã§ããïŒ\r\n- $5$ ã¯çžŠæšªæ°ã§ãã€ææ°ã§ããïŒ\r\n- $1,2,7,9,11$ ã¯çžŠæšªæ°ã§ãææ°ã§ããªãïŒ\r\n\r\nãæ¡ä»¶ããïŒé¢æ° $f$ ã¯çžŠæšªæ°ã瞊暪æ°ã«ïŒææ°ãææ°ã«ç§»ãïŒãã£ãŠ $f(5)=5$ ã§ããïŒ$f(3)^2 + f(4)^2 = 25$ ã〠$25 + f(12)^2 = f(13)^2$ ãªã®ã§\r\n$$\r\n(f(3),f(4))=(3,4), (4,3),\\qquad (f(12), f(13)) = (12,13)\r\n$$\r\nãšæ±ºãŸãïŒããã« $f(6)^2 + f(8)^2 = f(10)^2$ ãšãªããã㪠$(f(6),f(8),f(10))$ ã®æ±ºãæ¹ã¯ïŒ$f(10)$ ãææ° $3$ ã€ã®ããããã«å®ãïŒããã«å¯Ÿå¿ã㊠$f(6),f(8)$ ã®æ±ºãæ¹ã $2$ éã決ãŸãïŒ$1,2,7,9,11$ ã«ã€ããŠã¯ã©ã®ããã«ç§»ããŠãããã®ã§ $13^{5}$ éãã®æ±ºãæ¹ãããïŒä»¥äžããïŒæ±ãã $f$ ã®åæ°ã¯\r\n$$\r\n2\\times 3 \\times 2 \\times 13^5 = \\mathbf{4455516}\r\n$$\r\nã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcb033/editorial/11894"
}
] | ã$S=\\{1,2,3,\dots ,13\\}$ ãšãããŸãïŒ$S$ ã®èŠçŽ ã«å¯ŸããŠå®çŸ©ãã $S$ äžã«å€ãåãé¢æ° $f$ ã§ãã£ãŠïŒæ¬¡ã®æ¡ä»¶ãæºãããã®ã®åæ°ã解çããŠãã ããïŒ
- $a,b,c\in S$ ã«ã€ããŠïŒ$a^2+b^2=c^2$ ãªãã° $f(a)^2+f(b)^2=f(c)^2$ ã§ããïŒ |
OMCB033 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omcb033/tasks/11968 | H | OMCB033(H) | 300 | 59 | 94 | [
{
"content": "ã$BC,DE$ ã«ã€ã㊠$A$ ãšå¯Ÿç§°ãªç¹ããããã $X,Y$ ãšãããšïŒæ¡ä»¶ããïŒç·å $XY$ äžã«ç¹ $P,Q$ ãååšããïŒ$$AX=\\sqrt{3}, \\quad AY=2\\sqrt{3}, \\quad \\angle XAY=120^\\circ$$\r\nããäœåŒŠå®çãã $XY=\\sqrt{21}$ ããããïŒãããã£ãŠåã³äœåŒŠå®çããïŒ\r\n$$\\cos\\angle AXY=\\frac{2}{\\sqrt{7}}, \\quad \\cos\\angle AYX=\\frac{5}{2\\sqrt{7}}$$\r\nãåŸãããïŒ\r\n$$\\begin{aligned}\r\nAP&=XP=\\frac{AX}{2\\cos\\angle AXY}=\\frac{\\sqrt{21}}{4}, \\\\\\\\\r\nAQ&=YQ=\\frac{AY}{2\\cos\\angle AYX}=\\frac{2\\sqrt{21}}{5}\r\n\\end{aligned}$$\r\nã§ããïŒãŸãïŒ\r\n$$\\angle PAQ=120^\\circ-\\angle PAX-\\angle QAY=120^\\circ-\\angle AXY-\\angle AYX=60^\\circ$$\r\nã§ããã®ã§ïŒäžè§åœ¢ $APQ$ ã®é¢ç©ã¯ \r\n$$\\dfrac{\\sqrt{3}}{4}\\cdot \\dfrac{\\sqrt{21}}{4}\\cdot \\dfrac{2\\sqrt{21}}{5}=\\dfrac{21\\sqrt{3}}{40}$$ \r\nã§ããïŒç¹ã«è§£çãã¹ãå€ã¯ $\\bf2923$ ïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcb033/editorial/11968"
},
{
"content": "ãæ£å
è§åœ¢ã®èŸºã延é·ããŠæ£äžè§åœ¢ãäœã£ãŠã¿ããšããããçžäŒŒãèŠã€ãããŸãïŒ\r\n___\r\n\r\nãçŽç· $FA$ ãš $BC$ïŒçŽç· $BC$ ãš $DE$ïŒçŽç· $DE$ ãš $FA$ ã®äº€ç¹ããããã $S,T,U$ ãšããïŒãã®ãšãïŒäžè§åœ¢ $STU$ ã¯æ£äžè§åœ¢ã§ããïŒä»¥äžïŒç°¡åã®ãã $SP=x,UQ=y$ ãšããïŒ\r\n\r\nãç°¡åãªangle chaseã«ããïŒ$\\triangle ASP \\sim \\triangle QTP \\sim \\triangle QUA$ ãæç«ããããšããããïŒããã«ãã\r\n$$SP:SQ=TP:TQ=UA:UQ$$\r\nãæãç«ã€ã®ã§ïŒ\r\n$$x:1=(3-x):(3-y)=2:y$$\r\nãã $\\displaystyle{x=\\frac{5}{4},y=\\frac{8}{5}}$ ãåŸãïŒãããã£ãŠïŒ\r\n$$\\triangle PQR= \\triangle ABC -\\triangle ASP - \\triangle QTP - \\triangle QUA$$\r\nçãçšã㊠$\\displaystyle{\\triangle PQR=\\frac{21\\sqrt{3}}{40}}$ ãšèšç®ã§ããã®ã§ïŒè§£çãã¹ãå€ã¯ $\\bf2923$ ã§ããïŒ",
"text": "倧ããªæ£äžè§åœ¢ãäœããïŒ",
"url": "https://onlinemathcontest.com/contests/omcb033/editorial/11968/773"
},
{
"content": "ãè§åºŠã®æ¡ä»¶ã«ã€ããŠïŒæ¬¡ã®ããã«èšãæããããšãå¯èœã§ããïŒ\r\n\r\nããç¹ $A$ ããçºããå
ãïŒé¡é¢ $BC, DE$ ã§ïŒããããç¹ $P, Q$ ã§åå°ããŠïŒæçµçã«ç¹ $A$ ã«è¿ã£ãŠããïŒ\r\n\r\nããã®ããã«èãããšïŒåº§æšã䜿ãããšããçºæ³ãæµ®ãã¶ïŒ\r\n\r\n---\r\n\r\nã$A$ ãåç¹ïŒ$B \\left( \\dfrac{\\sqrt{3}}{2},\\ \\dfrac{1}{2} \\right)$ ãšãªãããã«åº§æšãåãïŒ\\\r\nãçŽç· $BC$ ã§é¡åãäœã£ãæ£å
è§åœ¢ã $A_1 BC D_1 E_1 F_1$ ãšããŠïŒãã®æ£å
è§åœ¢ãããã«çŽç· $D_1 E_1$ ã§é¡åããã«ããæ£å
è§åœ¢ã $A_2 B_2 C_2 D_1 E_1 F_2$ ãšããïŒãã®ãšãïŒ$A_2 \\left( 2 \\sqrt{3},\\ 3 \\right)$ ã§ããïŒçŽç· $AA_2$ 㯠$y=\\dfrac{\\sqrt{3}}{2}x$ ã§ããïŒãã£ãŠïŒç¹ $P \\left( \\dfrac{\\sqrt{3}}{2},\\ \\dfrac{3}{4} \\right)$ ãåŸãïŒ\\\r\nãäžæ¹ïŒçŽç· $DE$ ã§æåã®æ£å
è§åœ¢ã®é¡åãäœã£ããã®ã $A_3 B_3 C_3 D E F_3$ ãšããŠïŒãã®æ£å
è§åœ¢ãããã«çŽç· $B_3 C_3$ ã§é¡åããã«ããæ£å
è§åœ¢ã $A_4 B_3 C_3 D_4 E_4 F_4$ ãšããïŒãã®ãšãïŒ$A_4 \\left( -\\dfrac{\\sqrt{3}}{2},\\ \\dfrac{9}{2} \\right)$ ã§ããïŒçŽç· $AA_4$ 㯠$y=-3 \\sqrt{3}x$ ã§ããïŒçŽç· $DE$ 㯠$y=\\dfrac{\\sqrt{3}}{3}x+2$ ãªã®ã§ïŒç¹ $Q \\left( -\\dfrac{\\sqrt{3}}{5},\\ \\dfrac{9}{5} \\right)$ ãåŸãïŒ\\\r\nãããšã¯äžè§åœ¢ã®é¢ç©ãæ±ããã°ããïŒ\r\n$$\\dfrac{1}{2} \\left| \\dfrac{\\sqrt{3}}{2} \\cdot \\dfrac{9}{5} - \\left(-\\dfrac{\\sqrt{3}}{5} \\right) \\cdot \\dfrac{3}{4} \\right|=\\dfrac{21 \\sqrt{3}}{40}$$",
"text": "座æšã䜿ã",
"url": "https://onlinemathcontest.com/contests/omcb033/editorial/11968/777"
}
] | ãäžèŸºã®é·ãã $1$ ã®æ£å
è§åœ¢ $ABCDEF$ ããããŸãïŒèŸº $BC, DE$ äžã«ããããç¹ $P, Q$ ããšã£ããšããïŒ
$$\angle APB=\angle QPC, \quad \angle PQD=\angle AQE$$
ãæãç«ã¡ãŸããïŒãã®ãšãïŒäžè§åœ¢ $APQ$ ã®é¢ç©ã® $2$ ä¹ã¯äºãã«çŽ ãªæ£ã®æŽæ° $a,b$ ãçšã㊠$\dfrac{a}{b}$ ãšè¡šãããã®ã§ïŒ$a+b$ ã®å€ãçããŠãã ããïŒ |
OMCB032 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omcb032/tasks/12865 | A | OMCB032(A) | 100 | 286 | 294 | [
{
"content": "ãã©ã®ã¿ã€ãã³ã°ã§åã㊠$2$ 段é²ãããå®ããã° $2025$ 段ã®é²ã¿æ¹ã¯äžæã«å®ãŸãã®ã§ïŒå
šãŠ $1$ 段é²ãå ŽåãèããŠïŒé²ã¿æ¹ã¯ $\\mathbf{2025}$ éãã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcb032/editorial/12865"
}
] | ãé段ã $1$ æ©ã§ $1$ 段ã $2$ 段é²ãããšã®ã§ãã OMCB åã $2025$ 段ã®é段ã以äžã®æ¡ä»¶ãæºããããã«é²ã¿ãŸãïŒ
- æ®ãã®é段ã $2$ 段以äžã§ããïŒãã€çŽåã« $1$ æ©ã§ $2$ 段é²ãã ãšãïŒå¿
ã次㮠$1$ æ©ã§ã $2$ 段é²ãïŒ
- æ®ãã®é段ã $1$ 段ã§ãããšãã¯æåŸã® $1$ æ©ã¯ $1$ 段é²ãïŒ
ãã ãïŒã¯ããã«é²ã段æ°ã¯ $1$ 段ã§ã $2$ 段ã§ãæ§ããŸããïŒãã®ãšãïŒOMCB åã $0$ 段ç®ãã $2025$ 段ç®ãŸã§é段ãé²ãæ¹æ³ã¯äœéããããŸããïŒ |
OMCB032 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omcb032/tasks/12809 | B | OMCB032(B) | 100 | 297 | 297 | [
{
"content": "ãäžãããã $2$ åŒã®äž¡èŸºã®å·®ãåãããšã§ $x-y=-8$ ããããïŒããã第 $1$ åŒã«ä»£å
¥ã㊠$x = 1-(-8)^3 = \\mathbf{513}$ ãåŸãïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcb032/editorial/12809"
}
] | ã以äžãæºããå®æ°ã®çµ $(x,y)$ ã«ã€ããŠïŒ$x$ ã®å€ã¯ãã äžã€ã«å®ãŸãã®ã§ãã®å€ãæ±ããŠäžããïŒ
$$\begin{cases}
(x-y)^3 + x = 1 \\\\
(x-y)^3 + y = 9 \\\\
\end{cases}$$ |
OMCB032 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omcb032/tasks/11597 | C | OMCB032(C) | 100 | 281 | 289 | [
{
"content": "ã蟺 $BC$ ãäžèŸºãšããŠæã€æ£å
åè§åœ¢ã®äžå¿ã $O$ ãšãããšïŒ$\\angle{BOC} = 6^\\circ$ ã§ããïŒèŸº $BC$ ã®äžç¹ã $D$ ãšããã°ïŒ$\\angle{BOD} = 3^\\circ$ ãš $\\angle{BDO} = 90^\\circ$ ãã $\\triangle{ODB} \\sim \\triangle{ABC}$ ãæç«ãïŒçžäŒŒæ¯ã¯ $1 : 2$ ãšãªãïŒäžè§åœ¢ $ODB$ ã®é¢ç©ã¯ $3$ ã§ããããïŒäžè§åœ¢ $ABC$ ã®é¢ç©ã¯ $3 \\times 4 = \\mathbf{12}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcb032/editorial/11597"
}
] | ã$\angle{A} = 3^\circ, ~ \angle{B} = 90^\circ$ ãªãçŽè§äžè§åœ¢ $ABC$ ããããŸãïŒèŸº $BC$ ãäžèŸºãšããŠæã€æ£å
åè§åœ¢ã®é¢ç©ã $360$ ãšãªããšãïŒäžè§åœ¢ $ABC$ ã®é¢ç©ã¯ããã€ã§ããïŒ |
OMCB032 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omcb032/tasks/8048 | D | OMCB032(D) | 200 | 208 | 252 | [
{
"content": "ãä»»æã®éè² æŽæ° $n,k\\ (n\\geq 2)$ ã«å¯Ÿã㊠$n^k=(n-1+1)^k\\equiv 1\\pmod{n-1}$ ã§ããããšã«æ³šæããã°ïŒæ¡ä»¶ãã¿ããæ°ã $n-1$ ã§å²ã£ãããŸãã¯ïŒ$1+2+\\cdots+(n-1)=\\dfrac{n(n-1)}{2}$ ã $n-1$ ã§å²ã£ãããŸãã«çããïŒãã£ãŠ $\\dfrac{n(n-1)}{2}$ ã $n-1$ ã®åæ°ãšãªãã°ããïŒãã㯠$\\dfrac{n}{2}$ ãæŽæ°ïŒã€ãŸã $n$ ãå¶æ°ã§ããããšãšåå€ïŒåŸã£ãŠè§£çãã¹ãå€ã¯\r\n$$2+4+\\cdots+200={\\bf 10100}.$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcb032/editorial/8048"
}
] | ã$n$ 㯠$2$ ä»¥äž $200$ 以äžã®æŽæ°ãšããŸãïŒ$n$ é²æ³è¡šèšãããšãã«ã¡ããã© $n-1$ æ¡ã§ïŒåäœã $1,2,âŠn-1$ ã®äžŠã¹æ¿ãã§ãããããªæ°ã $n$ é²æ³ã®**è¯ãæ°**ãšåŒã³ãŸãïŒäŸãã° $1234_{(5)}$ ã $2431_{(5)}$ 㯠$5$ é²æ³ã®è¯ãæ°ã§ããïŒ$12340_{(5)}$ ã $3141_{(5)}$ 㯠$5$ é²æ³ã®è¯ãæ°ã§ã¯ãããŸããïŒ
ãã®ãšãïŒæ¬¡ã®**æ¡ä»¶**ãã¿ããæ£æŽæ° $n$ ã®ç·åã解çããŠãã ããïŒ
- **æ¡ä»¶**ïŒ$n$ é²æ³ã®è¯ãæ°å
šãŠãïŒ$n-1$ ã§å²ãåããïŒ |
OMCB032 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omcb032/tasks/10387 | E | OMCB032(E) | 200 | 202 | 225 | [
{
"content": "ã$x\\leq 2$ ã¯ïŒ$(3q+p^2)(3q-p^2)=x!$ ãšæžããããŠèª¿ã¹ããïŒãããã¯ä»¥äžã®ããã«ããŠäžé©ã§ããïŒ\r\n\r\n- $x=1$ ã®ãšãïŒ$p^4\\equiv 2 \\pmod{3}$ ãšãªãããªãã®ã§äžé©ïŒ\r\n- $x=2$ ã®ãšãïŒ$p,q$ ã¯ãšãã«å¥æ°ã§ãããïŒ$p^4,9q^2\\equiv 1\\pmod{4}$ ã§ããããäžé©ïŒ\r\n\r\nã$x\\geq 3$ ã®ãšãïŒ$p=3$ ãå¿
èŠïŒãã®ãšãïŒ$9\\mid x!$ ã«ãã $x\\geq 6$ ã§ãããïŒäžæ¹ã§ $q\\neq 3$ ã«ãã $27\\nmid x!$ ã§ãããã $x\\leq 8$ ã§ããïŒãããã調ã¹ãŠïŒ$(x,p,q)=(8,3,67)$ ã®ã¿ãé©ããïŒç¹ã«ïŒè§£çãã¹ãå€ã¯ $\\textbf{1608}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcb032/editorial/10387"
}
] | ãæ£æŽæ° $x$ ããã³çŽ æ° $p,q$ ã®çµ $(x,p,q)$ ã§ãã£ãŠïŒ
$$ x!+p^4=9q^2 $$
ãã¿ãããã®ãã¹ãŠã«ã€ããŠïŒ$xpq$ ã®ç·åãæ±ããŠãã ãã. |
OMCB032 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omcb032/tasks/11393 | F | OMCB032(F) | 200 | 105 | 177 | [
{
"content": "ãããããã®ç®±ã®ããŒã«ã®åæ°ãå¥æ°åããç¶æ
ã $X$ ãšãïŒãã¹ãŠã®ç®±ã®ããŒã«ã®åæ°ãå¶æ°åã®ç¶æ
ã $Y$ ãšããïŒç¶æ
$X$ ã®ãšãïŒããŒã«ãå¥æ°åã®ç®±ããã¹ãŠéžã³æäœãè¡ãããšã§ç¶æ
$Y$ ã«é·ç§»ã§ããïŒãŸãïŒç¶æ
$Y$ ããã¯ã©ã®ããã«ç®±ãéžãã ãšããŠãç¶æ
$X$ ã«é·ç§»ããïŒãããã£ãŠïŒç¶æ
$X$ ã¯å¿
åç€é¢ã§ããïŒããªãã¡ç¶æ
$Y$ ã¯å¿
æç€é¢ã§ããïŒïŒã²ãŒã éå§æç¹ã§ç¶æ
$X$ ãšãªãå Žåã®æ°ãæ±ããå€ã§ããïŒããã¯\r\n$$ 50^5 - 25^5 = \\mathbf{302734375} $$\r\nã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcb032/editorial/11393"
}
] | ãããŒã«ã $50$ åãŸã§å
¥ãéæ㪠$5$ ã€ã®ç®± $A, B, C, D, E$ ããããŸãïŒåç®±ã«ã¯æ¢ã« $0$ åä»¥äž $49$ å以äžã®ããŒã«ãå
¥ã£ãŠããŸãïŒãã® $5$ ç®±ã䜿ã£ãŠïŒæç°åãšäžæåã¯æ¬¡ã®æäœã亀äºã«è¡ãã²ãŒã ãããŸããïŒ
- $1$ 箱以äžéžã³ïŒéžãã ç®±ãã¹ãŠã« $1$ åãã€ããŒã«ãè¿œå ããïŒ
æç°åãå
æ»ã§ã²ãŒã ãéå§ãïŒå
ã«æäœãè¡ããªããªã£ã人ã®è² ããšããŸãïŒã²ãŒã éå§æç¹ã§ã®ããŒã«ã®åæ°ã®çµã¿åããã¯å
šéšã§ $50^5$ éããããŸããïŒãã®ãã¡äžæãããã©ã®ããã«æäœãããŠãæç°åãåã€ããšãå¯èœã§ãããããªçµã¿åããã¯äœéããããŸããïŒ |
OMCB032 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omcb032/tasks/9195 | G | OMCB032(G) | 300 | 96 | 149 | [
{
"content": "ã$r=9195$ ãšããïŒå
éšã«ååšãšå
±æéšåããã€ãã¹ã¯ïŒïŒ $r$ ãåå倧ããããšããïŒååšã«ãã£ãŠ $2$ ã€ã®é åã«åå²ãããïŒå
éšã«ååšãšå
±æéšåããã€ãã¹ã®åæ°ã¯ïŒååšããã¹ç®ããªãçŽç·ã暪åãåæ°ããååšããã¹ç®ã®é ç¹ãéãåæ°ãåŒãããã®ã«çããïŒçžŠã®çŽç·ãèãããšïŒååšãšäº€ãããã®ã¯é«ã
$2r$ æ¬ã§ããïŒäº€ç¹ã¯é«ã
$4r$ åã§ããïŒæšªã®çŽç·ãèããããšã§ïŒæ±ããæ倧å€ã¯ $8r$ 以äžã§ããïŒ\\\r\nãéã«ïŒãããã¹ã®äžå€®ãäžå¿ãšããŠååšãæããšïŒçå·ãæç«ããïŒå®éïŒäžè¬ã«æŽæ° $x,y$ ã«å¯ŸããŠ\r\n$$ \\biggl(x+\\dfrac{1}{2}\\biggr)^2+\\biggr(y+\\dfrac{1}{2}\\biggr)^2 = x^2+x+y^2+y+\\dfrac{1}{2} $$\r\nãæŽæ°ã§ãªãããšããïŒãã®ååšã¯æ Œåç¹ãéããïŒçžŠæšªã©ã¡ãã®çŽç·ãæ¥ããããšã¯ãªãïŒä»¥äžã«ããïŒæ±ããå€ã¯ $8r=\\textbf{73560}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcb032/editorial/9195"
}
] | ãç¡éã«åºããäžèŸºã $1$ ã®ãã¹ç®ã«ïŒååŸ $9195$ ã®ååšãæãããšãïŒå
éšã«ãã®ååšãšå
±æéšåããã€ãã¹ã®åæ°ã®æ倧å€ãæ±ããŠãã ããïŒãã ãïŒãã¹ã®å
éšãšã¯ïŒãã¹ãããã®é ç¹ãšå€åšãé€ããéšåããããã®ãšããŸãïŒ |
OMCB032 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omcb032/tasks/11725 | H | OMCB032(H) | 300 | 104 | 186 | [
{
"content": "ãæ£æŽæ° $k$ ã®åé²æ³è¡šèšã§ã®åäœã®åã $S(k)$ ãšè¡šãïŒ$10^{10}-1$ 以äžã®éè² æŽæ° $m$ ã§ãã£ãŠ\r\n$$S(m+1) = S(m+10^4)$$\r\nãæºãããã®ã®åæ°ãæ±ããã°ããïŒ\r\n\r\nãä»ïŒ$m$ ã® $10^{i}$ ã®äœã $9$ ã§ãªããããªæå°ã® $i \\geq 0$ ã $i_m$ ãšãããšïŒ$m+1$ ã«ã€ããŠ\r\n\r\n- $10^0,10^1,\\ldots,10^{i_m - 1}$ ã®äœã¯ $0$ïŒ $i_m$ ã«éãïŒããã¯èããªããŠããïŒïŒ\r\n- $10^{i_m}$ ã®äœã¯æ¬¡ã®äœã«ç¹°ãäžãããªãïŒ\r\n\r\nããããã®ã§ïŒ\r\n$$S(m+1)-S(m) = -9i_m+1$$\r\nãåããïŒåæ§ã«ïŒ$m$ ã® $10^{j+4}$ ã®äœã $9$ ã§ãªããããªæå°ã® $j \\geq 0$ ã $j_m$ ãšãããšïŒ\r\n$$S(m+10^4)-S(m) = -9j_m+1$$\r\nã§ããïŒåŸã£ãŠïŒäžã®æ¡ä»¶ã¯ $i_m=j_m$ ãšåå€ã§ããïŒãã®ãšã $i_m \\leq 3$ ã§ããããïŒ$i_m=j_m=0,1,2,3$ ã«åããŠèšç®ããã°ïŒæ±ããå€ã¯æ¬¡ã®ããã«èšç®ã§ããïŒ\r\n$$9^{2}Ã10^{8}+9^{2}Ã10^{6}+9^{2}Ã10^{4}+9^{2}Ã10^{2} = \\mathbf{8181818100}.$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcb032/editorial/11725"
}
] | ã$10^{10}$ 以äžã®æ£ã®æŽæ° $n$ ã§ãã£ãŠïŒ$n$ ãš $n+9999$ ããããã®åé²æ³è¡šèšã§ã®åäœã®åãçãããã®ã¯ããã€ãããŸããïŒ |
OMC239 (æ±äº¬åºçæ¯) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc239/tasks/3113 | A | OMC239(A) | 100 | 370 | 371 | [
{
"content": "ã$A,B,D,E$ ã¯ãããã $1$ ã§ãªãããšã«çæããïŒäŸãã°ïŒä»¥äžã®çµã¯æ¡ä»¶ãã¿ããïŒ\r\n$$(A,B,C,D,E,F)=(2,5,10,3,4,12)$$\r\nã$C,F$ ã®ãšãåŸãå€ã¯ $2$ 以äžã®çžç°ãªã $2$ ã€ã®æ£æŽæ°ã®ç©ãšããŠè¡šãããã®ã§ããããïŒ$12$ æªæºã§ã¯ $6,8,10$ ã§ããïŒãããïŒããããã $C,F$ ãéžã¶ãšã $\\\\{A,B\\\\},\\\\{D,E\\\\}$ ããšãã« $2$ ãå«ãå¿
èŠãããããäžé©ã§ããïŒ\\\r\nã以äžããïŒæ±ããæå°å€ã¯ $\\textbf{12}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc239/editorial/3113"
}
] | ã**çžç°ãªã**æ£ã®æŽæ° $A,B,C,D,E,F$ ã¯æ¬¡ã®æ¡ä»¶ããã¹ãŠæºãããŠããŸã.
- $A\times B=C$
- $D\times E=F$
- $C\lt F$
ãã®ãšã $F$ ã®å€ãšããŠããããæå°å€ãæ±ããŠãã ãã. |
OMC239 (æ±äº¬åºçæ¯) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc239/tasks/8793 | B | OMC239(B) | 200 | 349 | 361 | [
{
"content": "ã次ãã¿ããæŽæ° $M$ ã®ãã¡ïŒ$2023$ 以äžã§æå°ã®ãã®ãæ±ããã°ããïŒ\r\n$$ M \\equiv 2025 - 2 \\pmod 5 $$\r\n$$ M \\equiv 2025 - 1 \\pmod {11} $$\r\n$$ M \\equiv 2025 \\pmod {17} $$\r\n\r\n$5, 11, 17$ ãçå·®æ°åããªãããšã«æ³šæãããšïŒ$p = 5, 11, 17$ ã«ã€ããŠ\r\n$$ 6M \\equiv 6 \\cdot 2025 - 17 \\pmod p $$\r\n\r\nãåŸãïŒãããã£ãŠ\r\n$$ 6M \\equiv 6 \\cdot 2025 - 17 \\pmod {5 \\cdot 11 \\cdot 17} $$\r\n\r\nããïŒ$M$ ã®äžè¬è§£ã¯\r\n$$ M \\equiv \\frac{6 \\cdot 2025 - 17 + 5 \\cdot 11 \\cdot 17}{6} \\pmod {5 \\cdot 11 \\cdot 17} $$\r\n\r\nãšãªãã®ã§ïŒæ±ããå€ã¯ $\\displaystyle \\frac{6 \\cdot 2025 - 17 + 5 \\cdot 11 \\cdot 17}{6} = \\mathbf{2178}$ 幎ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc239/editorial/8793"
}
] | ã$3$ çš®é¡ã®ã»ã $X, Y, Z$ ãããïŒã»ã $X$ ã¯ã¡ããã© $5$ 幎ããšã«ïŒã»ã $Y$ ã¯ã¡ããã© $11$ 幎ããšã«ïŒã»ã $Z$ ã¯ã¡ããã© $17$ 幎ããšã«å€§éçºçããŸãïŒäžæšå¹Žã¯ã»ã $X$ïŒå»å¹Žã¯ã»ã $Y$ïŒä»å¹Žã¯ã»ã $Z$ ã倧éçºçããŸããïŒãã®ãšãïŒæ¬¡ã«ã»ã $X, Y, Z$ ã**åæã«**倧éçºçããã®ã¯äœå¹Žã§ããïŒ
ããã ãïŒä»å¹Žã¯ $2025$ 幎ã§ãããšããŸãïŒ |
OMC239 (æ±äº¬åºçæ¯) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc239/tasks/2451 | C | OMC239(C) | 300 | 117 | 202 | [
{
"content": "ã$\\angle A$ ãæ倧è§ã§ããããšããïŒç¹ã« $\\angle B,\\angle C$ ã¯éè§ã§ããããïŒ$H$ ã¯çŽç· $BC$ ã«å¯Ÿã $A$ ãšåãåŽã«ïŒ$D,E$ ã¯çŽç· $BC$ ã«å¯Ÿã $A$ ãšç°ãªãåŽã«ããïŒãŸãïŒäžè§åœ¢ $ BHC$ ãšäžè§åœ¢ $DHE$ ã¯çžäŒŒæ¯ $1:2$ ã§çžäŒŒã§ããïŒ\\\r\nããã㧠$P$ ãçŽç· $AH$ ãšçŽç· $DE$ ã®äº€ç¹ïŒ$Q$ ãç·å $DE$ ã®äžç¹ãšãããšïŒäžè§åœ¢ $ BHC,BPC,CQB$ ã¯ååã§ããïŒ\r\nãããš $\\angle BAC+\\angle BHC=180^{\\circ}$ ãã $2$ ç¹ $P,Q$ ã¯äžè§åœ¢ $ABC$ ã®å€æ¥åäžã«ããããšããããïŒ\\\r\nãäžè§åœ¢ $ABC$ ã®å€æ¥åãšç·å $DE$ ã®äº€ç¹ã¯é«ã
$2$ ç¹ã§ããããšïŒ$DX=XY\\lt XE$ ãã $X\\not=Q$ ã§ããããšãã $X=P,Y=Q$ ãåŸãããïŒãã®ãšã\r\n$$DH=2BH=2BX,\\quad EH=2CH=2BY$$\r\nãŸã $HX\\perp DE,DX=XY$ ãã $DH=HY$ ã§ããããïŒäžç·å®ç $DH^2+EH^2=2(HY^2+DY^2)$ ãæãç«ã€ããšãã\r\n$$BC^2=DY^2=(EH^2-DH^2)\\/2=2(BY^2-BX^2)=\\textbf{450}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc239/editorial/2451"
}
] | ã$\angle A$ ãæ倧è§ã§ããäžè§åœ¢ $ABC$ ãããïŒãã®åå¿ã $H$ ãšããŸãïŒç¹ $B,C$ ã«é¢ããŠç¹ $H$ ãšå¯Ÿç§°ãªç¹ããããã $D,E$ ãšãããšïŒäžè§åœ¢ $ABC$ ã®å€æ¥åãšç·å $DE$ ã¯çžç°ãªã $2$ ç¹ $X,Y$ ã§äº€ãããŸããïŒ
$$BX=20,\quad BY=25,\quad DX=XY$$
ãæãç«ã€ãšãïŒèŸº $BC$ ã®é·ãã® $2$ ä¹ãæ±ããŠãã ããïŒ |
OMC239 (æ±äº¬åºçæ¯) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc239/tasks/10025 | D | OMC239(D) | 400 | 82 | 129 | [
{
"content": "ãä»»æã® $1$ ä»¥äž $7$ 以äžã®æŽæ° $i$ ã«ã€ããŠïŒ$a_i=\\sqrt{x_1+\\cdots+x_i}$ ãšãããš\r\n$$S+T-1=a_1^2+\\frac{a_2^2}{a_1}+\\frac{a_3^2}{a_2}+\\cdots+\\frac{a_7^2}{a_6}+\\frac{1}{a_7}$$\r\nã§ããïŒããã§ïŒ$a_0=1$ ãšãããšïŒçžå çžä¹å¹³åã®äžçåŒãã\r\n$$\\begin{aligned}\r\nS+T-1&=\\sum_{k=0}^7 \\frac{a_{k+1}^2}{a_k}\\\\\\\\\r\n&=\\sum_{k=0}^7 2^k\\cdot \\frac{a_{k+1}^2}{2^k\\cdot a_k}\\\\\\\\\r\n&\\geq\\bigg(\\sum_{k=0}^7 2^k\\bigg)\r\n\\bigg(\\prod_{k=0}^7 \\Big(\\frac{a_{k+1}^2}{2^k\\cdot a_k}\\Big)^{2^k} \\bigg)^{(\\sum_{k=0}^7 2^k)^{-1}}\\\\\\\\\r\n&= (2^8-1)\\bigg(\\prod_{k=0}^7 \\frac{a_{k+1}^{2^{k+1}}}{2^{k\\cdot2^k}\\cdot a_k^{2^k}} \\bigg)^{(2^8-1)^{-1}}\\\\\\\\\r\n&=(2^8-1)\\Big(2^{-\\sum_{k=0}^7 k\\cdot 2^k}\\Big)^{(2^8-1)^{-1}}\\\\\\\\\r\n&=(2^8-1)\\cdot 2^{-\\frac{6\\cdot 2^8+2}{2^8-1}}\r\n\\end{aligned}$$\r\nãåŸãïŒãŸãïŒå®éã«çå·ãæç«ããã $x_1,x_2,\\ldots,x_8$ ã¯ååšããã®ã§ïŒ$m=(2^8-1)\\cdot 2^{-\\frac{6\\cdot 2^8+2}{2^8-1}},n=2^8-1$ ãåŸãïŒãã£ãŠ\r\n$$m^n=\\frac{(2^8-1)^{2^8-1}}{2^{6\\cdot 2^8+2}}$$\r\nã§ããïŒ $a+b=(6\\cdot 2^8+2) + (2^8-1)=\\mathbf{1793}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc239/editorial/10025"
}
] | ãå®æ° $x_1,x_2,...,x_8$ ã¯ãã®ç·åã $1$ ã§ããïŒä»»æã® $1$ ä»¥äž $7$ 以äžã®æŽæ° $i$ ã«ã€ããŠïŒ$x_1+x_2+\cdots +x_i\gt0$ ãæºãããŸãïŒããã§ïŒ$S,T$ ã次ã®ããã«å®ããŸãïŒ
$$S=\sqrt{x_1}+\sqrt{x_1+x_2}+\cdots+\sqrt{x_1+x_2+\cdots+x_7}+\sqrt{x_1+x_2+\cdots+x_8}$$
$$T=\frac{x_2}{\sqrt{x_1}}+\frac{x_3}{\sqrt{x_1+x_2}}+\cdots+\frac{x_8}{\sqrt{x_1+x_2+\cdots+x_7}}+\frac{x_1}{\sqrt{x_1+x_2+\cdots+x_8}}$$
$S+T-1$ ã®åãåŸãæå°å€ã $m$ ãšãããšïŒ$m^N$ ãæçæ°ãšãªããããªæ£ã®æŽæ° $N$ ãååšããŸãïŒãã®ãã㪠$N$ ã®æå°å€ã $n$ ãšãããšãïŒ$m^n$ ãæ¢çŽåæ°ã§è¡šããšåæ¯ã¯ $2$ 㧠$a$ åïŒåå㯠$3$ 㧠$b$ åå²ãåããŸãïŒ$a+b$ ã解çããŠãã ããïŒ |
OMC239 (æ±äº¬åºçæ¯) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc239/tasks/10644 | E | OMC239(E) | 500 | 56 | 182 | [
{
"content": "ã$p-1 = 2^6 \\cdot 3^2 \\cdot 5 \\cdot 7$ ã§ããïŒãŸãïŒè©²åœç¯å²ã§ $x$ ã $p$ ã®åæ°ã«ãªããã®ã¯ç¡èŠããŠããïŒããã§ïŒ$\\bmod~p$ ã§ã®åå§æ ¹ã®äžã€ã $r$ ãšããïŒ$p$ ä»¥äž $p^3$ æªæºã®æŽæ°ã®ãã¡ $p$ ãæ³ãšã㊠$r^k$ $(0\\leq k \\lt p-1)$ ãšçãããã®ã¯ïŒ$r^k$ ã $p$ ã§å²ã£ãäœãã $a_k$ ãšãããš $bp+a_k$ $(1\\leq b \\leq p^2-1)$ ãšè¡šããããšããïŒ$p^2-1$ åååšããïŒãã®éåã $S_k$ ãšããïŒ$x \\in S_k$ ã«ã€ã㊠$x^x$ ã® $p$ ã§ã®å°äœãèãããšïŒãã§ã«ããŒã®å°å®çããïŒ\r\n$$\r\nx^x = (bp+a_k)^{bp+a_k}\r\n\\equiv a_k^{bp+a_k} \r\n\\equiv r^{k(b+a_k)} \\pmod{p}\r\n$$\r\nãšãªãïŒäžèšã®å€ã $\\mathrm{mod} ~ p$ 㧠$1$ ãšãªãããšããïŒåå§æ ¹ã®æ§è³ªãã\r\n$$\r\nk(b+a_k) \\equiv 0 \\pmod{p-1}\r\n$$\r\nã§ããïŒ$1 \\leq b \\leq p^2-1$ ããïŒ$b+a_k$ ã $p-1$ ã§å²ã£ãäœã㯠$0, 1, \\ldots, p-2$ ãã¡ããã© $p+1$ åãã€ç»å ŽããïŒãããã£ãŠïŒ$0$ ä»¥äž $p-1$ æªæºã®æŽæ°ã®çµ $(s,t)$ ã§ãã£ãŠïŒ$st$ ã $p-1$ ã§å²ãåãããã®ã®åæ°ã $p+1$ åãããã®ãçããšãªãïŒä»¥äžã§ã¯ãããæ±ããïŒ\\\r\nã$s$ ãåºå®ãããšãã«ïŒ$g=\\gcd(s,p-1)$ ãšãããšïŒ$t$ 㯠$\\dfrac{p-1}{g}$ ã®åæ°ã§ããããïŒ$t$ ãšããŠããåŸããã®ã¯ $g$ åååšããïŒããã足ãåãããããšã§ïŒçµå±\r\n$$\r\n(p+1) \\sum_{s=1}^{p-1} \\gcd(s,p-1)\r\n$$\r\nãèšç®ããã°ããïŒ$f(n)=\\sum_{s=1}^{n} \\gcd(s,n)$ ãšããïŒ\r\n\r\n**è£é¡ïŒ** $x,y$ ãäºãã«çŽ ãªæ£æŽæ°ãšãããšïŒ$f(xy)=f(x)f(y)$ ãæãç«ã€ïŒ\r\n\r\n<details><summary>**蚌æ**<\\/summary>\r\nã$n$ ã®æ£ã®çŽæ° $d$ ãä»»æã«ãšãïŒ$\\phi$ ããªã€ã©ãŒã®ããŒã·ã§ã³ãé¢æ°ãšããïŒ$\\gcd(k,n)=d$ ãæºããæ£æŽæ° $k$ ã®åæ°ã¯ïŒ$\\gcd(k,n\\/d)=1$ ãæºãã $k$ ã®åæ°ïŒããªãã¡ $\\phi(\\frac{n}{d})$ åã§ããïŒãããã£ãŠïŒ\r\n$$\r\n\\begin{aligned}\r\nf(n) &= \\sum_{k=1}^n \\gcd(k,n)\\\\\\\\\r\n& = \\sum_{d|n} d\\phi \\bigg(\\frac{n}{d}\\bigg)\\\\\\\\\r\n& = n\\sum_{d|n} \\frac{\\phi (d)}{d}\r\n\\end{aligned}\r\n$$\r\nãšãªãïŒããã§ïŒäºãã«çŽ ãªäºã€ã®æ£æŽæ° $x,y$ ã«å¯ŸããŠ\r\n$$\r\n\\phi(xy)=\\phi(x)\\phi(y)\r\n$$\r\nã§ããããïŒ\r\n$$\r\n\\begin{aligned}\r\nf(xy) &= xy\\sum_{d|xy} \\frac{\\phi (d)}{d}\\\\\\\\\r\n&= xy\\sum_{d_1|x,d_2|y} \\frac{\\phi (d_1d_2)}{d_1d_2}\\\\\\\\\r\n&= xy\\bigg(\\sum_{d_1|x} \\frac{\\phi (d_1)}{d_1}\\bigg)\\bigg(\\sum_{d_2|y} \\frac{\\phi (d_2)}{d_2}\\bigg)\\\\\\\\\r\n&= f(x)f(y)\r\n\\end{aligned}\r\n$$\r\nãæç«ããïŒ\r\n<\\/details>\r\n\r\nè£é¡ã«ããïŒä»¥äžã®ããã«èšç®ã§ããïŒ\r\n$$\r\n\\begin{aligned}\r\nf(p-1) &= f(2^6)f(3^2)f(5)f(7)\\\\\\\\\r\n&=(1\\cdot 32 + 2 \\cdot 16 + 4\\cdot 8 + 8\\cdot 4 + 16 \\cdot 2 + 32\\cdot 1 + 64)(1\\cdot 6 + 3 \\cdot 2 + 9)(1\\cdot 4 + 5)(1\\cdot 6 + 7)\\\\\\\\\r\n&= 628992\r\n\\end{aligned}\r\n$$\r\nãã£ãŠïŒããã $p+1$ åãã $628992 \\cdot 20162 = \\mathbf{12681736704}$ åãçãã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc239/editorial/10644"
}
] | ã$p=20161$ ãšããŸãïŒ $p$ ä»¥äž $p^3$ æªæºã®æŽæ° $x$ ã§ãã£ãŠïŒ$x^x-1$ ã $p$ ã§å²ãåãããã®ã¯ããã€ãããŸããïŒãã ãïŒ$20161$ ã¯çŽ æ°ã§ãïŒ |
OMC239 (æ±äº¬åºçæ¯) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc239/tasks/10259 | F | OMC239(F) | 500 | 45 | 68 | [
{
"content": "ããã¹ãŠã®ã«ãŒãã«æžãããæŽæ°ãã $1$ ãã€åŒãïŒ$11$ æ¡ãšãªãããã«é©å®å
é ã« $0$ ãè£ã£ãŠ $3$ é²è¡šèšããïŒãŸãïŒä»»æã® $0$ ä»¥äž $3^{11}$ æªæºã®æŽæ° $k$ ã«ã€ããŠïŒ$b_k=a_{k+1}-1$ ãšããïŒããªãã¡ïŒ0-indexed ã§æ°ãããšãã®äžãã $k$ çªç®ã«æžãããã«ãŒãã®æ°ã $b_k$ ãšããïŒããã«ïŒ$11$ æ¡ã® $3$ é²è¡šèšãéããèªãé¢æ°ã $\\mathrm{Rev}$ ãšããïŒããšãã° \r\n$$\r\n\\mathrm{Rev}(11) = \\mathrm{Rev}(00000000102_{(3)})=20100000000_{(3)}=124659\r\n$$ \r\nã§ããïŒå ããŠïŒåæ¡ããšã«åã $3$ ã§å²ã£ãäœãã§èšç®ããïŒç¹°ãäžããã¯è¡ããªãïŒæŒç®ã $\\oplus$ ã§æžãããšã«ããïŒããšãã°ïŒ\r\n$$\r\n112_{(3)} \\oplus 10122_{(3)} = 10201_{(3)}\r\n$$\r\nã§ããïŒ\r\n\r\n----\r\n\r\n**è£é¡ïŒ** $b_k=0$ ã®ãšãïŒä»»æã® $0\\le n \\lt 3^{11}$ ãªãæŽæ° $n$ ã«å¯ŸããŠä»¥äžãæãç«ã€ïŒ\r\n$$\r\nb_n = \\mathrm{Rev}(n \\oplus k \\oplus k)\r\n$$\r\n\r\n**蚌æïŒ** ä»»æã®éè² æŽæ° $x,y$ ã«ã€ããŠïŒ$x$ ã $3$ é²è¡šèšãããšãã® $3^y$ ã®äœã $f_y(x)$ ãšè¡šãããšã«ããïŒãã®ãšãïŒä»»æã® $1$ ä»¥äž $11$ 以äžã®æŽæ° $t$ ã«ã€ããŠïŒ$t$ åç®ã®æäœã§ã¯ïŒæ°å $f_{11-t}(b_0), f_{11-t}(b_1), \\ldots, f_{11-t}(b_{3^{11} - 1})$ ã決ãŸãïŒå
·äœçã«ã¯ïŒ\r\n- $t$ åç®ã®æäœã $A$ ãªã $\\overbrace{0,\\ldots,0}^{3^{t-1}å},1,\\ldots,1,2,\\ldots,2$ ãç¹°ãè¿ãïŒ\r\n- $t$ åç®ã®æäœã $B$ ãªã $\\overbrace{1,\\ldots,1}^{3^{t-1}å},2,\\ldots,2,0,\\ldots,0$ ãç¹°ãè¿ãïŒ\r\n- $t$ åç®ã®æäœã $C$ ãªã $\\overbrace{2,\\ldots,2}^{3^{t-1}å},0,\\ldots,0,1,\\ldots,1$ ãç¹°ãè¿ãïŒ\r\n\r\n$t-1$ åç®ã®æäœãŸã§ã«ã§ããã«ãŒãæã¯å
šéšã§ $3^{12-t}$ åããïŒåã«ãŒãæå
ã§äžãã $12-t$ æ¡åã®æ°å€ã¯äžèŽããŠããïŒãããã£ãŠïŒ$11$ åã®æäœåãå·Šããé ã«äžŠã¹ãŠïŒ$A$ ã $0$ïŒ$B$ ã $2$ïŒ$C$ ã $1$ ãšã㊠$3$ é²æ°ã§è§£éãããã®ã $x$ ãšãããšïŒ$y$ ãæžãããã«ãŒã㯠$11$ åã®æäœãçµäºããåŸã«äžãã $\\mathrm{Rev}(y\\oplus x)$ çªç®ã«ç§»åããããšããããïŒãã£ãŠïŒ$k=\\mathrm{Rev}(0\\oplus x) = \\mathrm{Rev}(x)$ ã§ããïŒãã£ãŠïŒ$x = \\mathrm{Rev}(\\mathrm{Rev}(x))=\\mathrm{Rev}(k)$ ã§ããïŒ$n$ çªç®ã®ã«ãŒãã $b_n$ ã§ãã£ãããšããïŒ\r\n$$\r\n\\mathrm{Rev}(b_n \\oplus x)=n\r\n$$\r\nã§ããã®ã§ïŒ\r\n$$\r\n\\begin{aligned}\r\nb_n &= b_n \\oplus ( x \\oplus x\\oplus x)\\\\\\\\\r\n&= (b_n \\oplus x) \\oplus x \\oplus x \\\\\\\\\r\n&= \\mathrm{Rev}(n) \\oplus \\mathrm{Rev}(k) \\oplus \\mathrm{Rev}(k)\\\\\\\\\r\n&= \\mathrm{Rev}(n \\oplus k \\oplus k)\r\n\\end{aligned}\r\n$$\r\nãšãªãïŒç€ºãããïŒ\r\n----\r\n\r\nãè£é¡ã«ããïŒ\r\n$a_{k}=1$ ã®ãšãïŒ$a_m=k$ ãšããæ¡ä»¶ã¯ä»¥äžã®ããã«èšãæããããïŒ\r\n$$\r\nk=a_m=b_{m-1}+1=\\mathrm{Rev}((m-1) \\oplus (k-1) \\oplus (k-1))+1\r\n$$\r\n$\\mathrm{Rev}(\\mathrm{Rev}(n))=n$ ããã³ $n\\oplus (n \\oplus n)=0$ ã«æ³šæããŠïŒ\r\n$$\r\nm=(k-1) \\oplus \\mathrm{Rev}(k-1) + 1 \r\n$$\r\nãšãªãïŒãŸãïŒè£é¡ã§ã®è°è«ã«ããïŒ$k-1$ ã® $3$ é²è¡šèšã§ã® $3^5$ ã®äœã¯ $0$ ã§ããïŒæäœãç°ãªãã° $a_k=1$ ãšãªã $k$ ã¯ç°ãªãïŒãã£ãŠïŒ$0$ ä»¥äž $3^{11}$ æªæºã®æŽæ° $x$ ã§ãã£ãŠïŒ$3$ é²è¡šèšã§ã® $3^5$ ã®äœã $0$ ã§ãããããªãã®ã¯ $3^{10}$ åãããïŒãã®å
šãŠã«ã€ã㊠$x\\oplus \\mathrm{Rev}(x)+1$ã足ãåããããã®ãçã§ããïŒ\\\r\nãããã§ïŒ$x$ ã® $3$ é²è¡šèšã§ã® $3^i$ ã®äœã $x_i$ ãšããïŒãã®ãšãïŒå $i=0,1,\\ldots,4$ ã«ã€ããŠïŒ\r\n- $(x_i,x_{10-i})=(0,0),(1,2),(2,1)$ ã®ãšã \r\n ã$x\\oplus\\mathrm{Rev}(x)$ ã® $3$ é²è¡šèšã® $3^i$ ã®äœïŒ$3^{10-i}$ ã®äœã¯ãšãã« $0$ ãšãªãïŒ \r\n- $(x_i,x_{10-i})=(0,1),(1,0),(2,2)$ ã®ãšã \r\n ã$x\\oplus\\mathrm{Rev}(x)$ ã® $3$ é²è¡šèšã® $3^i$ ã®äœïŒ$3^{10-i}$ ã®äœã¯ãšãã« $1$ ãšãªãïŒ \r\n- $(x_i,x_{10-i})=(0,2),(1,1),(2,0)$ ã®ãšã \r\n ã$x\\oplus\\mathrm{Rev}(x)$ ã® $3$ é²è¡šèšã® $3^i$ ã®äœïŒ$3^{10-i}$ ã®äœã¯ãšãã« $2$ ãšãªãïŒ \r\n\r\n以äžã«ããïŒå $i = 0,1,\\ldots,4$ ã«ã€ããŠïŒ$3^i,3^{10-i}$ ã®äœã®ã¿åºå®ãããšïŒæ®ã£ã $8$ æ¡ãã©ã®ããã«å®ããŠãåã«åãæ°ã ãå¯äžããïŒãããã $x\\oplus \\mathrm{Rev}(x)$ ã®åã¯ä»¥äžã®ããã«èšç®ã§ããïŒ\r\n$$\r\n3^{10}\\times 11111011111_{(3)} = 3^{10}\\times\\bigg(\\frac{3^{11}-1}{2}-3^5\\bigg)=5215798170\r\n$$\r\nãã£ãŠïŒæ±ããå€ã¯ $3^{10} +5215798170 = \\mathbf{5215857219}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc239/editorial/10259"
}
] | ã$1$ ãã $3^{11}$ ãŸã§ã®æŽæ°ãæžãããã«ãŒãããããã $1$ æãã€ããïŒå·Šããå°ããé ã«æšªäžåã«äžŠãã§ããŸãïŒ$1$ æ以äžã®ã«ãŒããéãªã£ãç¶æ
ã**ã«ãŒãæ**ãšåŒã³ãŸãïŒ \
ã$3n$ åã®ã«ãŒãæã暪äžåã«äžŠãã§ãããšãïŒã«ãŒãæãå·Šããé ã« $X_1,\ldots,X_{3n}$ ãšãïŒä»¥äžã® $3$ çš®é¡ã®æäœã®ãã¡ $1$ ã€ãè¡ãããšãã§ããŸãïŒ
- æäœ $A$ïŒ$1$ ä»¥äž $n$ 以äžã®ä»»æã®æŽæ° $k$ ã«å¯ŸããŠïŒ$X_{n+k}$ ã $X_{2n+k}$ ã®äžã«éãïŒããã«ãã®äžã« $X_{k}$ ãéããããšã§ $n$ åã®ã«ãŒãæãåŸãïŒ
- æäœ $B$ïŒ$1$ ä»¥äž $n$ 以äžã®ä»»æã®æŽæ° $k$ ã«å¯ŸããŠïŒ$X_{2n+k}$ ã $X_{k}$ ã®äžã«éãïŒããã«ãã®äžã« $X_{n+k}$ ãéããããšã§ $n$ åã®ã«ãŒãæãåŸãïŒ
- æäœ $C$ïŒ$1$ ä»¥äž $n$ 以äžã®ä»»æã®æŽæ° $k$ ã«å¯ŸããŠïŒ$X_{k}$ ã $X_{n+k}$ ã®äžã«éãïŒããã«ãã®äžã« $X_{2n+k}$ ãéããããšã§ $n$ åã®ã«ãŒãæãåŸãïŒ
ããã®ãšãïŒæäœ $A,B,C$ ãåèš $11$ åè¡ãããšã§ã«ãŒãæãã¡ããã© $1$ ã€ã«ãªããŸãïŒãã¹ãŠã®æäœãçµäºããåŸã®ã«ãŒãæã®äžãã $k$ æç®ã«æžãããŠããæŽæ°ã $a_k$ ãšãããšãïŒ$a_{a_m}=1$ ãæºããæŽæ° $m$ ãã¡ããã© $1$ ã€ååšããããïŒãã® $m$ ããã®æäœã®**ã¹ã³ã¢**ãšããŸãïŒ\
ã$6$ åç®ã®æäœã§æäœ $A$ ãè¡ããããªïŒ$11$ åã®æäœã®å®è¡æ¹æ³ã¯ $3^{10}$ éããããŸããïŒããããã¹ãŠã«å¯Ÿããã¹ã³ã¢ã®ç·åãæ±ããŠãã ããïŒ
<details><summary>äŸ<\/summary>
ãäŸãã°ïŒ$1,2,3,4,5,6,7,8,9$ ãšãã $9$ æã®ã«ãŒã (æ) ã暪äžåã«äžŠãã§ãããšãã«ïŒæäœ $A$ ã®åŸã«æäœ $B$ ãè¡ããšïŒã«ãŒãæ㯠$1$ åã«ãªãïŒäžãã $2,5,8,3,6,9,1,4,7$ ã®é ã«äžŠã³ãŸãïŒ
<\/details> |
OMCE011 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omce011/tasks/9213 | A | OMCE011(A) | 300 | 174 | 220 | [
{
"content": "ãåçŽç· $HM, MH$ ãšå $ABC$ ã®äº€ç¹ããããã $D, E$ ãšãããšïŒ$D$ 㯠$H$ ã $M$ ã«ã€ããŠå¯Ÿç§°ç§»åãããç¹ã§ããïŒãŸã $AD$ ã¯å $ABC$ ã®çŽåŸããªãïŒããŸïŒ$AH$ ãš $BC$ ã®äº€ç¹ã $F$ ãšãããš $\\angle AEM=\\angle AFM=90^{\\circ}$ ãã $A, E, F, M$ ã¯å
±åã§ããïŒããã§\r\n$$3EM=EMÃHM=EMÃDM=\\left(\\dfrac{BC}{2}\\right)^2=16$$\r\nãã $EM=\\dfrac{16}{3}$ ãæãç«ã¡ïŒããã«\r\n$$\\displaystyle AF=AH+HF\\geq 2\\sqrt{AH\\cdot HF}=2\\sqrt{EHÃHM}=2\\sqrt{\\dfrac{7}{3}Ã3}=2\\sqrt 7$$\r\nã ããïŒ$$|ABC|=\\dfrac{AFÃBC}{2}=4AF\\geq 8\\sqrt 7$$\r\nãæãç«ã¡ïŒãŸã $|ABC|=8\\sqrt 7$ ãã€é¡æãæºããäžè§åœ¢ $ABC$ ã¯ç¢ºãã«ååšããããïŒè§£çãã¹ãå€ã¯ $\\textbf{448}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omce011/editorial/9213"
}
] | ãéè§äžè§åœ¢ $ABC$ ã®åå¿ã $H$ ãšãïŒèŸº $BC$ ã®äžç¹ã $M$ ãšãããšïŒ
$$ HM=3, \quad BC=8 $$
ãæç«ããŸããïŒãã®ãšãïŒäžè§åœ¢ $ABC$ ã®é¢ç©ã®æå°å€ã® $2$ ä¹ãæ±ããŠãã ããïŒ |
OMCE011 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omce011/tasks/3773 | B | OMCE011(B) | 400 | 54 | 116 | [
{
"content": "ã$\\\\{a_i\\\\}$ ã«å¯ŸããŠæ°å $\\\\{b_i\\\\}$ ã次ã®ããã«å®çŸ©ãã:\r\n - $n$ 以äžã®æ£æŽæ° $i$ ã§ãã£ãŠïŒ$(a_i,a_{i+1},a_{i+2})=(1,2,3)$ ãªããã®å
šãŠã«å¯ŸããŠïŒ$a_{i+1}$ ãåé€ããæ°åïŒ\r\n\r\nãã®ãšãïŒ$\\\\{b_i\\\\}$ ã®èŠçŽ æ°ã¯ $n-123$ ã§ããïŒ$b_{n-122}=b_1, ~ b_{n-121}=b_2$ ãšå®çŸ©ãããšïŒå
šãŠã® $n-123$ 以äžã®æ£æŽæ° $k$ 㧠$b_{k-1} \\neq b_k$ ãæãç«ã¡ïŒã〠$n-123$ 以äžã®æ£æŽæ° $i$ ã®ãã¡ïŒ\r\n - $(b_i,b_{i+1})=(1,3)$ ãšãªããã®ãã¡ããã© $255$ å $\\tag$\r\n - $(b_i,b_{i+1})=(2,1)$ ãšãªããã®ãã¡ããã© $213$ å\r\n - $(b_i,b_{i+1})=(3,2)$ ãšãªããã®ãã¡ããã© $321$ å\r\n - $(b_i,b_{i+1},b_{i+2})=(1,2,3)$ ãšãªããã®ãã¡ããã© $0$ å\r\n\r\nãã€ååšããïŒéã«ïŒæ£ã®æŽæ° $n$ ã«å¯ŸããŠãã®ãã㪠$\\\\{b_i\\\\}$ ãååšããã°ïŒæ¡ä»¶ãæºãã $\\\\{a_i\\\\}$ ãååšããïŒ\\\r\nãããŠïŒé ç¹ã $1,2,3$ ãšãïŒ$n-123$ æ¬ã®èŸº $e_1, e_2, \\ldots, e_{n-123}$ ããã€æåã°ã©ãã§ãã£ãŠïŒèŸº $e_i$ ã $b_i$ ãš $b_{i+1}$ ããã®é ã«çµãã§ãããããªãã®ãèããïŒãã®ãšã $b_{k-1} \\neq b_k$ ããèªå·±ã«ãŒãã¯ååšããïŒããã«\r\n - $1$ ãã $3$ ãžã®ã³ã蟺㯠$255$ æ¬\r\n - $2$ ãã $1$ ãžã®ã³ã蟺㯠$213$ æ¬\r\n - $3$ ãã $2$ ãžã®ã³ã蟺㯠$321$ æ¬\r\n\r\nãã€ååšããïŒ$1$ ãã $2$ ãžåãã蟺ã®æ¬æ°ã $m \\ge 0$ ãšãããšïŒé ç¹ $k$ ãå§ç¹ã»çµç¹ãšãã蟺ã®æ°ã¯ $k$ ã«ãããçããã®ã§ïŒ\r\n - $2$ ãã $3$ ãžã®ã³ã蟺㯠$m+108$ æ¬\r\n - $3$ ãã $1$ ãžã®ã³ã蟺㯠$m+42$ æ¬\r\n\r\nã ãååšããïŒãã㧠$m \\gt 213$ ã®ãšãïŒé³©ãå·£åçãã $e_i$ ã $1$ ãã $2$ ãžåããïŒ$e_{i+1}$ ã $2$ ãã $3$ ãžåãããã㪠$i$ ãååšãïŒé¡æã«åããªãïŒãããã£ãŠ $m \\le 213$ ã§ããïŒéã«ïŒ$m\\leq 213$ ã§ããéãïŒå¯Ÿå¿ãã $\\\\{b_i\\\\}$ ã§ãã£ãŠ $(b_i,b_{i+1},b_{i+2})=(1,2,3)$ ãšãªã $i$ ãååšããªããããªãã®ãæ§æããããšãã§ããããïŒ$m=0,\\ldots,213$ ã®å ŽåïŒãŸããã®å Žåã«éãïŒ$\\\\{b_i\\\\}$ ãæ§æã§ããïŒ\r\n\r\n<details><summary>å
·äœçãªæ§æ<\\/summary>\r\n\r\n- $1$ ãš $2$ ãåŸåŸ©ããããšã $m$ å\r\n- $2$ ãš $3$ ãåŸåŸ©ããããšã $m+108$ å\r\n- $3$ ãš $1$ ãåŸåŸ©ããããšã $m+42$ å\r\n- $1 \\to 3 \\to 2\\to 1$ ã®é ã«å·¡ãããšã $213-m$ å\r\n\r\nãïŒ$1 \\to 2 \\to 3$ ã®é çªã§å·¡ãããšã®ãªãããã«é©åãªé åºã§è¡ãã°ããïŒ\r\n<\\/details>\r\n\r\nãããŠïŒ$\\\\{b_i\\\\}$ ã®èŠçŽ æ°ã¯ã°ã©ãã®èŸºã®ç·æ¬æ° $3m+939$ ã«çããããïŒ$n=3m+1062$ ã§ããïŒæ±ããå€ã¯\r\n$$ \\sum_{m=0}^{213} (3m+1062)=\\mathbf{295641}$$\r\nã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omce011/editorial/3773"
},
{
"content": "ãåé¡æã®ç®æ¡æžãã®æ¡ä»¶ãïŒäžããé ã«æ¡ä»¶ 1ïŒæ¡ä»¶ 2ïŒæ¡ä»¶ 3ïŒæ¡ä»¶ 4 ãšåŒã¶ããšã«ããïŒ\\\r\nãæ°å $\\\\{ a_n \\\\}$ ã«å¯ŸããŠïŒ$a_i=1$ ãæºããé
æ°ã $x$ïŒ$a_i=2$ ãæºããé
æ°ã $y$ïŒ$a_i=3$ ãæºããé
æ°ã $z$ ã§ãããšãããïŒãã®ãšãæ¡ä»¶ 1 ãã $(a_i, a_{i+1})=(1,2)$ ãšãªããã®ã¯ $(x-132)$ åååšãïŒäžæ¹ã§æ¡ä»¶ 3 ãã $(x-132)+321=y$ ãªã®ã§ïŒ$y=x+189$ ãåŸãïŒåæ§ã«ã㊠$z=x+108$ ã§ããïŒ$n=3x+297$ ã§ããïŒ\\\r\nã次ã«ïŒæ®ãããæ¡ä»¶ 4 ãçšãããïŒå
ã»ã©ã®è°è«ããïŒ\r\n\r\n- $(a_i, a_{i+1})=(1, 2)$ ãšãªããã®ãã¡ããã© $(x-132)$ å\r\n- $(a_i, a_{i+1})=(2, 3)$ ãšãªããã®ãã¡ããã© $(x-24)$ å\r\n\r\nãã€ååšããããšãããã£ãŠããïŒ\\\r\nãæããã« $\\min(x-132, x-24)=x-132 \\geq 123 $ã§ããïŒãã£ãŠ $x \\geq 255$ ãåŸãïŒ\\\r\nã次㫠$x$ ã®æ倧å€ãèãããïŒ$(a_i, a_{i+1}, a_{i+2})=(1, 2, 1)$ ãšãªããã®ã®åæ°ã $t$ ãšçœ®ããšïŒ$x-132=t+123$ ã§ããïŒ$t \\leq 213$ ãªã®ã§ïŒ$x \\leq 468$ ã§ããïŒ\\\r\nãããšã¯ãã®ãããªæ°åã®æ§æãã§ããã°ãããïŒ$1 \\to 2 \\to 3 \\to 2 \\to 1$ ã®ã«ãŒãã $123$ åããŠïŒããšå¿
èŠãªåæ°ã ã $1 \\to 2 \\to 1$ ã®åŸåŸ©ïŒ$2 \\to 3 \\to 2$ ã®åŸåŸ©ïŒ$1 \\to 3 \\to 1$ ã®åŸåŸ©ïŒ$1 \\to 3 \\to 2 \\to 1$ ã®ã«ãŒãããããã°ïŒä»»æã® $255 \\leq x \\leq 468$ ãæºãã $x$ ã«å¯ŸããŠïŒæ°å $\\\\{ a_n \\\\}$ ãæ§æã§ããïŒ\\\r\nããã£ãŠæ±ããã¹ãå€ã¯\r\n$$\\sum_{x=255}^{468} (3x+297)=\\mathbf{295641}$$",
"text": "a_i=1,2,3ãæºããé
æ°ãèãã",
"url": "https://onlinemathcontest.com/contests/omce011/editorial/3773/757"
}
] | ã$a_1, a_2, \ldots, a_n$ 㯠$1$ ä»¥äž $3$ 以äžã®æŽæ°ãããªãæ°åã§ããïŒ$a_{n+1}=a_1, ~ a_{n+2}=a_2$ ãšå®çŸ©ãããšïŒå
šãŠã® $n$ 以äžã®æ£æŽæ° $k$ 㧠$a_{k+1}â a_k$ ãæãç«ã¡ïŒã〠$n$ 以äžã®æ£æŽæ° $i$ ã®ãã¡ïŒ
- $(a_i,a_{i+1})=(1,3)$ ãšãªããã®ãã¡ããã© $132$ å
- $(a_i,a_{i+1})=(2,1)$ ãšãªããã®ãã¡ããã© $213$ å
- $(a_i,a_{i+1})=(3,2)$ ãšãªããã®ãã¡ããã© $321$ å
- $(a_i,a_{i+1},a_{i+2})=(1,2,3)$ ãšãªããã®ãã¡ããã© $123$ å
ãã€ååšããŸãïŒãã®ãããªæ£ã®æŽæ° $n$ ãšããŠãããããã®ã¯æéåãªã®ã§ïŒããããã¹ãŠã®ç·åãæ±ããŠãã ããïŒ |
OMCE011 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omce011/tasks/7845 | C | OMCE011(C) | 400 | 114 | 153 | [
{
"content": "$$z = \\dfrac{(pq+1)(2^{p+r}-1)}{(2^p-1)q}$$\r\nãšããïŒ$z$ ãæŽæ°ãšãªãæ¡ä»¶ãèããïŒããã§ïŒ$p, q, r$ ãçžç°ãªãçŽ æ°ã§ããããšããïŒ\r\n$$ \\gcd (2^{p+r}-1, 2^p-1) = 2^{\\gcd(p+r, p)} - 1 = 1$$ \r\nããã³ $\\gcd(pq+1, q) = 1$ ãæãç«ã€ïŒããã«ããïŒ$z$ ãæŽæ°ãšãªãããšã¯\r\n$$ z_1 = \\frac{pq+1}{2^p-1}, \\quad z_2 = \\frac{2^{p+r}-1}{q} $$\r\nããšãã«æŽæ°ãšãªãããšãšåå€ã§ããïŒFermat ã®å°å®çããïŒ\r\n$$ z_1 \\equiv (pq+1) \\cdot (2^p-1)^{-1} \\equiv 1 \\cdot 1^{-1} \\equiv 1 \\pmod{p} $$\r\nãšãªãïŒãã㧠$q \\le 2^{p+1} - 1$ ããïŒ\r\n$$ z_1 = \\frac{pq+1}{2^p-1} \\le \\frac{p 2^{p+1}-p+1}{2^p-1} = 2p + \\frac{p+1}{2^p-1} \\lt 2p+1$$\r\nãšãªãããïŒ$z_1$ ãšããŠããããå€ã¯ $1, p+1$ ã«éãããïŒ\r\n\r\nã$z_1 = 1$ ã®ãšãïŒ$2^p=pq+2$ ãšãªããïŒå·ŠèŸºã¯å¶æ°ïŒå³èŸºã¯å¥æ°ã§ããããççŸããïŒ\r\n\r\nã$z_1=p+1$ ã®ãšãïŒ\r\n$$q=\\dfrac{(p+1)2^p-p-2}{p} = 2^p-1 + \\frac{2^p-2}{p}$$ \r\nãæãç«ã¡ïŒ$q$ ã $1000$ 以äžã®çŽ æ°ãšãªãã®ã¯ $(p, q) = (5, 37)$ ã®ãšãã«éãããïŒãã®ãšãïŒ$z_2$ ãæŽæ°ãšãªãããšãã $2^{r+5} \\equiv 1 \\pmod{37}$ ãæãç«ã€ïŒããã§ïŒ\r\n$$ 2^{18} \\equiv -1 \\not\\equiv 1, \\quad 2^{12} \\equiv -11 \\not\\equiv 1 \\pmod{37} $$\r\nã§ããããïŒ$2$ ã® $\\mathrm{mod} ~ 37$ ã§ã®äœæ°ã¯ $36$ ã§ããïŒãããã£ãŠ $36 \\mid r+5$ ãšãªããã㪠$r$ ã®ã¿ãé©ãïŒãã®ãã㪠$1000$ 以äžã® $r$ ã®ãã¡æ倧ã®ãã®ã¯ $967$ ã§ããïŒ\r\n\r\nã以äžããïŒ$pqr$ ãšããŠããããæ倧å€ã¯ $5 \\cdot 37 \\cdot 967 = \\textbf{178895}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omce011/editorial/7845"
}
] | ã$1000$ 以äžã®**çžç°ãªãå¥çŽ æ°**ã®çµ $(p, q, r)$ ã§ãã£ãŠïŒ$q\lt 2^{p+1}$ ãæºããïŒãã€
$$\dfrac{(pq+1)(2^{p+r}-1)}{(2^p-1)q}$$
ãæŽæ°ãšãªããããªãã®ã«ã€ããŠïŒ$pqr$ ãšããŠããããæ倧ã®å€ã解çããŠãã ããïŒ |
OMCE011 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omce011/tasks/13124 | D | OMCE011(D) | 500 | 36 | 78 | [
{
"content": "ãåè
ã®æ¡ä»¶ã¯ïŒããè€çŽ æ°ä¿æ°å€é
åŒ $Q$ ã«ãã£ãŠ\r\n$$ \\begin{aligned} \r\nP(x) &= Q(x)\\cdot\\prod_{n=1}^{3000} \\bigg( x- \\bigg(\\cos{\\frac{2n}{3001}\\pi}+i\\sin{\\frac{2n}{3001}\\pi} \\bigg) \\bigg) +3001 \\\\\\\\\r\n&=Q(x)(x^{3000}+x^{2999}+\\ldots+x+1)+3001\r\n\\end{aligned}$$\r\n\r\nãšè¡šããããšãšåå€ã§ããïŒåŸè
ã¯åæ§ã«ããè€çŽ æ°ä¿æ°å€é
åŒ $R$ ã«ãã£ãŠ\r\n$$P(x)=R(x)(x^{7000}+x^{6999}+\\ldots+x+1)+7001$$\r\nãšè¡šããããšãšåå€ã§ããïŒä»¥äžã§ã¯\r\n$$A(x)=x^{3000}+x^{2999}+\\cdots+1, \\quad B(x)=x^{7000}+x^{6999}+\\cdots+1$$ \r\nãšããïŒãã®ãšã $A$ ãš $B$ ãäºãã«çŽ ã§ããããšã«æ³šæããïŒ\\\r\nããŸãïŒãã®ãã㪠$Q, R$ ãã²ãšã€èŠã€ããïŒ$(m, n)=(1752,751)$ ãšãããšïŒãã㯠$3001m-7001n=1$ ãã¿ããïŒãããã£ãŠïŒ\r\n$$\\begin{aligned}\r\nQ_1(x) &= 4000(x^{3001(m-1)}+x^{3001(m-2)}+\\ldots+1),\\\\\\\\\r\nR_1(x) &= 4000x(x^{7001(n-1)}+x^{7001(n-2)}+\\ldots+1)\r\n\\end{aligned}$$\r\nãšããã°ïŒ$Q = Q_1, ~ R = R_1$ ã $Q(x)A(x)-R(x)B(x)=4000$ ãã¿ããäžã€ã®æ§æãšãªã£ãŠããïŒ$A, B$ ãäºãã«çŽ ã§ããããšããïŒäžè¬ã«ããæŽæ°ä¿æ°å€é
åŒ $S(x)$ ã«ãã£ãŠ \r\n$$ Q = Q_1 + BS, \\quad R = R_1 + AS $$\r\nãšè¡šãããïŒããããïŒ$R_1$ ã $A$ ã§å²ã£ãããŸãã $R_2$ ãšãããšïŒ$R$ ãšããŠãããããã®ã®ãã¡æ¬¡æ°ãæå°ãšãªãã®ã¯ $R_2$ ã§ããã®ã§ïŒæ±ããå€ã¯ $P_2 = R_2B+7001$ ãšãããšãã® $P_2(1)$ ã®å€ã§ããïŒ\\\r\nã$R_2(x)$ 㯠$R_1(x)$ ã $(x-1)A(x)=x^{3001}-1$ ã§å²ã£ãã®ã¡ã« $A(x)$ ã§å²ã£ãããŸãã«çããïŒ$R_1(x)$ ã $x^{3001}-1$ ã§å²ã£ãããŸãã¯ïŒéè² æŽæ° $j$ ã«å¯Ÿã㊠$7001j$ ã $3001$ ã§å²ã£ãããŸãã $r_j$ ãšããŠïŒ\r\n$$4000(x^{r_{n-1}}+x^{r_{n-2}}+\\ldots+x^{r_1}+1)$$\r\nã«çããïŒ$r_1, r_2, \\ldots,r_{n-1}$ ã®ãã¡ $3000$ ã«çãããã®ã¯ååšããªãããïŒ\r\n$$ R_2(x) = 4000(x^{r_{n-1}}+x^{r_{n-2}}+\\ldots+x^{r_1}+1) $$\r\nãæãç«ã€ïŒãããã£ãŠïŒè§£çãã¹ãå€ã¯\r\n$$ P_2(1) = R_2(1)B(1) + 7001 = 4000 \\cdot 752 \\cdot 7001 + 7001 = \\mathbf{21031011001} $$\r\nã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omce011/editorial/13124"
},
{
"content": "ãå
¬åŒè§£èª¬ãšåæ§ã«ïŒ\r\n$$\\begin{aligned}\r\nP(x) &= Q(x)(x^{3000}+x^{2999}+\\cdots +x+1)+3001\\\\\\\\\r\n& = R(x)(x^{7000}+x^{6999}+\\cdots +x+1)+7001\r\n\\end{aligned}$$\r\nãšããïŒãŸã㯠$P(x),Q(x),R(x)$ ã®æ¬¡æ°ãèãããïŒ\\\r\nã$R(x)$ ã $k$ 次åŒã ãšããã°ïŒ$Q(x)$ 㯠$(k+4000)$ 次åŒã§ããïŒãããã $(k+1), (k+4001)$ ã®ä¿æ°ïŒå®æ°é
å«ãïŒã®å€ãæªç¥æ°ãšãªãïŒäžæ¹ïŒ$P(x)$ ã¯$(k+7000)$ 次åŒãªã®ã§ïŒæåã®åŒãã $(k+7001)$ åã®æ¹çšåŒãã§ããïŒæ¹çšåŒã解ãæã€ããã«ã¯æªç¥æ°ä»¥äžã®æ¹çšåŒã®æ¬æ°ãå¿
èŠãªã®ã§ïŒ$k \\geq 2998$ ã§ããã°è§£ãæ±ããããïŒ\\\r\nã以äžïŒ\r\n$$R(x)=a_0+a_1 x+a_2 x^2+ \\cdots + a_{2997} x^{2997}+ a_{2998} x^{2998}$$\r\nãšãããŠïŒ$R(x)$ ã®ä¿æ°ãã¡ã決å®ããŠããïŒ\\\r\nãæåã®åŒã $(x-1)$ åãããšïŒ\r\n$$R(x)(x^{7001}-1)+4000(x-1)$$\r\n㯠$(x^{3001}-1)$ ãå æ°ã«æã€ïŒæ¬¡æ°ãèœãšããŠïŒ\r\n$$R(x)(x^{999}-1)+4000(x-1)$$\r\nã $(x^{3001}-1)$ ã§å²ãåããã°ããïŒãã㧠$R(x)=\\sum a_k x^k$ ã®åŒãçšããŠæŽçãããšäžã®åŒã¯æ¬¡ã®ããã«æžããïŒ\r\n$$\\begin{aligned}\r\n&a_{2998}x^{3997}+\\cdots+a_{2004}x^{3003}+a_{2003}x^{3002}+a_{2002}x^{3001}\\\\\\\\\r\n&+a_{2001}x^{3000}+a_{2000}x^{2999}+(a_{1999}-a_{2998})x^{2998}+\\cdots+(a_0-a_{999})x^{999}-a_{998}x^{998}-a_{997}x^{997}\\\\\\\\\r\n&-a_{996}x^{996}\\cdots-a_3x^3-a_2x^2-(a_1-4000)x-(a_0+4000)\r\n\\end{aligned}$$\r\n以äžã®åŒã $(x^{3001}-1)$ ã§å²ãåããããšããïŒä»¥äžã®ããšããããïŒ\r\n\r\n- $a_0+4000=a_{2002}, a_1-4000=a_{2003}$\r\n- $a_k=a_{k+2002}$ããã ã $2 \\leq k \\leq 996$\r\n- $a_{997}, a_{998}, a_{2000}, a_{2001}$ ã¯ãããã $0$\r\n- $a_k=a_{k+999}$ããã ã $0 \\leq k \\leq 1999$\r\n\r\nãäžããæ¡ä»¶ 1, 2, 3, 4 ãšåŒã¶ããšã«ããïŒ\\\r\nãæ¡ä»¶ 2 ãšæ¡ä»¶ 4 ããïŒ$2 \\leq k \\leq 996$ ã®ç¯å²ã§ $a_k=a_{k+4}$ ã§ããïŒãã®ããšãšãšæ¡ä»¶ 3ïŒæ¡ä»¶ 4 ãçšãããš $a_2, a_3, a_5$ ã¯ãããã $0$ ã§ããïŒïŒãªãïŒããã«æ¡ä»¶ 2ïŒæ¡ä»¶ 4 ãçšããã° $a_n=0$ ãæºãã $n$ ã¯ããããããïŒïŒ\\\r\nã$a_{2003}=0$ ãã $a_1=4000$ ãåŸïŒãããã\r\n$$a_1=a_4=\\cdots=a_{1000}=a_{1003}=\\cdots=a_{1999}=a_{2002}=\\cdots=a_{2998}=4000$$\r\nã§ããïŒæåŸã«ïŒ$a_0=0$ ãåŸãïŒ\r\n\r\nãæ±ããããã®ã¯ $P(1)$ ã ã£ãïŒ$R(1)=4000 Ã751=3004000$ ã§ããïŒ\r\n$$P(1)= 3004000\\cdot 7001 +7001=\\mathbf{21031011001}$$",
"text": "å°éã«èšç®ãã",
"url": "https://onlinemathcontest.com/contests/omce011/editorial/13124/759"
}
] | ãè€çŽ æ°ä¿æ°å€é
åŒ $P$ ã¯ïŒ
- $n=1,2,\ldots,3000$ ã«å¯ŸããŠïŒ$$P\bigg(\cos{\frac{2n}{3001}\pi}+i\sin{\frac{2n}{3001}\pi}\bigg)=3001$$
- $n=1,2,\ldots,7000$ ã«å¯ŸããŠïŒ$$P\bigg(\cos{\frac{2n}{7001}\pi}+i\sin{\frac{2n}{7001}\pi}\bigg)=7001$$
ãæºãããŠããŸãïŒãã®ãã㪠$P(x)$ ã®ãã¡æ¬¡æ°ãæå°ã§ãããã®ã«ã€ããŠïŒ$P(1)$ ã®å€ã解çããŠãã ããïŒ |
OMCE011 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omce011/tasks/8527 | E | OMCE011(E) | 800 | 7 | 20 | [
{
"content": "ããŸãã¯æ¬¡ã®è£é¡ã瀺ãïŒ\r\n\r\n----\r\n**è£é¡ïŒ** $4$ ç¹ $I,J,D,X$ ã¯åäžååšäžã«ããïŒ\r\n<details><summary> **蚌æ**<\\/summary>\r\nãç·å $DH,DE,DF$ ã®äžç¹ã $L,M,N$ ãšãããšäžç¹é£çµå®çããïŒãã® $3$ ç¹ã¯åäžçŽç·äžã«ããïŒæ¬¡ã®è§åºŠèšç®ã«ããïŒ$4$ ç¹ $I,L,K,J$ ãåäžååšäžã«ããããšããããïŒ\r\n$$\\angle JLI = \\angle JHG = 90^\\circ - \\angle JGK = \\angle JKI$$\r\nããã§ïŒ$\\omega$ ã«ããå転ãèãããšïŒçŽç· $MN$ ã¯äžè§åœ¢ $IBC$ ã®å€æ¥åã«ç§»ãïŒå $I,L,K,J$ ã¯çŽç· $JK$ ã«ç§»ãïŒãããšïŒ$X,Y$ ã®äœçœ®é¢ä¿ããïŒç¹ $L$ ã¯ç¹ $X$ ã«ç§»ãããšããããïŒãããã£ãŠ $3$ ç¹ $I,L,X$ã¯åäžçŽç·äžã«ããïŒæ¬¡ãæãç«ã€ïŒ\r\n$$IJ^2=ID^2=IL\\cdot IX$$\r\nãã£ãŠ $4$ ç¹ $I,J,D,X$ ã¯åäžååšäžã«ããïŒ$\\square$\r\n<\\/details>\r\n\r\n----\r\n\r\nãè£é¡ããïŒç°¡åãªè§åºŠèšç®ã«ããïŒäžè§åœ¢ $IBC,JFE$ ã¯çžäŒŒã§ããïŒãã€äžè§åœ¢ $IDX,JHK$ ãçžäŒŒã§ããïŒãã£ãŠåè§åœ¢ $IBXC,JFKE$ ã¯çžäŒŒã§ããïŒ\r\n$$IX:JK=BC:FE=3:1$$\r\nãããããïŒãŸãïŒæ¬¡ã®è§åºŠèšç®ã«ããïŒ$\\angle JIY=90^\\circ$ ã瀺ãããïŒ\r\n$$\\angle JYI+\\angle IJY=\\angle ICX +(90^\\circ -\\angle JEY)=90^\\circ$$\r\nãã£ãŠç·å $JK$ ã®äžç¹ã $P$ ãšããã°ïŒ$\\angle IPJ=90^\\circ$ ãã次ãæãç«ã€ïŒ\r\n$$JP\\cdot JY=JI^2$$\r\n以äžããïŒ$JK=2x, ~ IX=6x$ ãšããããšãã§ãïŒæ¬¡ãæãç«ã€ïŒ\r\n$$\\begin{aligned}\r\n(6x)^2&=XL\\cdot XI+IL\\cdot IX\\\\\\\\\r\n&=XK\\cdot XJ+IJ^2\\\\\\\\\r\n&=XK\\cdot XJ+JP\\cdot JY\\\\\\\\\r\n&=11(2x+11)+x(2x+2)\r\n\\end{aligned}$$\r\nãã® $x$ ã«ã€ããŠã® $2$ 次æ¹çšåŒã解ãããšã§ïŒ$IX=6x=\\dfrac{36+\\sqrt{38322}}{17}$ ãåŸãã®ã§ïŒç¹ã«è§£çãã¹ãå€ã¯ $\\mathbf{38375}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omce011/editorial/8527"
},
{
"content": "ãåè§åœ¢ $FBCE$ ã® Miquel ç¹ïŒäžè§åœ¢ $ABC$ ã® $\\angle A$ ã«é¢ãã sharky devil ç¹ïŒã $Q$ ãšããïŒããŸïŒè§åºŠèšç®ãã $[Q, F, H, E, J]$ ãš $[Q, B, D, C, I]$ ã¯çžäŒŒã§ããïŒããã§ïŒä»¥äžã®è£é¡ã瀺ãïŒ\r\n<details>\r\n<summary>\r\nãã®çžäŒŒã«ãã㊠$K$ ãš $X$ ã¯å¯Ÿå¿ããïŒ\r\n<\\/summary>\r\n$K$ ã«å¯Ÿå¿ããç¹ $Z$ ãåãïŒçžäŒŒã«ãã㊠$\\omega$ ãšå $IBC$ ã¯å¯Ÿå¿ããããïŒ$Z$ ã¯å $IBC$ äžã«ããïŒãŸãïŒ$\\angle QDH=\\angle QIJ$ ãå転çžäŒŒããåŸããïŒãã£ãŠ $Q, J, I, D$ ã¯å
±åïŒãããš $A, Q, F, I, E$ ã®å
±åããïŒ$QI, JD, FE$ ã¯å
±ç¹ïŒãã£ãŠ $$\\angle JQH=\\angle JDI=\\angle JKH$$ ããïŒ$Q, J, H, K$ ã¯å
±åïŒãããã£ãŠïŒ$\\angle QKJ=\\angle QHJ$ïŒããŸïŒäžè§åœ¢ $QKZ$ ãš $QHD$ ã¯çžäŒŒã ããïŒ$Z$ ã¯çŽç· $JK$ äžã«ããïŒäœçœ®é¢ä¿ãèã㊠$Z=X$ïŒ\r\n<\\/details>\r\n\r\nãããã£ãŠïŒ$\\angle QXK=\\angle QDJ$ ãã $X$ ã¯å $QJID$ äžã«ããããïŒä»¥äžå
¬åŒè§£èª¬åæ§ïŒ",
"text": "æåºæã®è§£æ³",
"url": "https://onlinemathcontest.com/contests/omce011/editorial/8527/764"
},
{
"content": "ãç·å $JK$ ã®äžç¹ã $P$ïŒå $ABC$ ã® $A$ ãå«ãŸãªã匧 $BC$ ã®äžç¹ã $R$ ãšãããšïŒå
¬åŒè§£èª¬ãšåæ§ã®è°è«ãã $\\triangle IJK\\sim \\triangle RIX$ ããããïŒ\r\n$$\\angle KIP=\\frac{1}{2}\\angle JIK=\\frac{1}{2}\\angle IRX=\\angle IYP$$\r\nãã $\\triangle IKP\\sim \\triangle YIP$ ãªã®ã§ïŒ$KP=x$ ãšãããš\r\n$$IX^2=(6x)^2=IP^2+PX^2=x(x+2)+(x+11)^2$$\r\nãããã解ãããšã§ $IX$ ã®é·ããæ±ãŸãïŒ",
"text": "å¥è§£",
"url": "https://onlinemathcontest.com/contests/omce011/editorial/8527/768"
}
] | ã$AB\lt AC$ ãªãäžè§åœ¢ $ABC$ ã«ã€ããŠå
å¿ã $I$ïŒå
æ¥åã $\omega$ ãšããŸãïŒ$\omega$ ãšèŸº $BC, CA, AB$ ã®æ¥ç¹ã $D, E, F$ ãšãïŒ$I$ ã«ã€ã㊠$D$ ãšå¯Ÿç§°ãªç¹ã $G$ ãšããŸãïŒ$D$ ããç·å $EF$ ã«äžãããåç·ãšç·å $EF,\omega$ ã®äº€ç¹ããããã $H, J ~ (\neq D)$ ãšããŠïŒçŽç· $GH$ ãš $\omega$ ã®äº€ç¹ã $K ~ (\neq G)$ ãšããŸãïŒãããšïŒçŽç· $JK$ ãäžè§åœ¢ $IBC$ ã®å€æ¥åãšçžç°ãªã $2$ ç¹ $X, Y$ ã§äº€ããïŒããã«ä»¥äžãæãç«ã¡ãŸããïŒ
- $4$ ç¹ $J, K, Y, X$ ã¯ãã®é ã«äžŠã³ïŒ$KY=2, ~ YX=9$ ãæãç«ã€ïŒ
- $EF:BC=1:3$ ãæãç«ã€ïŒ
- $Y$ ã¯äžè§åœ¢ $ABC$ ã®å
éšã«ããïŒ
ãã®ãšãïŒç·å $IX$ ã®é·ã㯠$a, c$ ãäºãã«çŽ ã§ãããããªæ£æŽæ° $a, b, c$ ãçšã㊠$\dfrac{a+\sqrt b}{c}$ ãšè¡šããã®ã§ïŒ$a+b+c$ ã®å€ã解çããŠãã ããïŒ |
OMCE011 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omce011/tasks/8764 | F | OMCE011(F) | 900 | 2 | 39 | [
{
"content": "ãæ£ã®æŽæ° $n$ ã«å¯ŸããŠïŒ$\\mathrm{mod} \\ n$ ã§åé¡æã®æ¡ä»¶ãæºãããããªç§»åã $n^2-1$ åãããšãã« $P$ ãããå¯èœæ§ã®ããç¹ã®åæ°ã $A_n$ ã§è¡šãïŒæ±ããã®ã¯ $A_{50}$ ã®å€ã§ããïŒ\\\r\nãäžèŸº $n$ ã®ãã¹ç®ã§æ£æ¹åœ¢ãäœãïŒãã®å¯ŸèŸºã©ãããã€ãªãã§ããŒã©ã¹ãäœãïŒãã®ãšãïŒåé¡ã®æ¡ä»¶ãæºããçµè·¯ãšã¯ããªãã¡ãã® $n^2$ åã®ãã¹ãã¡ããã© $1$ 床ãã€éããããªçµè·¯ã§ããïŒçµè·¯é·ã® $\\mathrm{mod} \\ n$ ãèããã°ïŒ$un+v$ å $(u$ ã¯éè² æŽæ°ïŒ$0\\leq v \\leq n-1)$ ã®æäœãçµããããããšã« $P$ ãããã¹ããã¹ã¯å³ïŒ$(n=7$ ã®å Žå$)$ ã®ããã«å¡ãåãããã¹ã®ãã¡ $v$ ãšæžã蟌ãŸããå Žæã®ã©ããã§ããïŒç¹ã«ãã¹ãŠã®ç§»åãçµãã£ãããšã«ããã¹ããã¹ã¯ $n-1$ ãæžããããã¹ã§ããïŒ\r\n\r\n![figure 1](\\/images\\/MYTgbChSIOQvuXTl8bTlxb59ZUSQjtwxtMpOYUPW)\r\n\r\nãããŠïŒä»¥äž $0$ ãæžããããã¹ $n$ åãç·ç§°ããŠ**ã¹ã¿ãŒããã¹**ïŒ$n-1$ ãæžããããã¹ $n$ åãç·ç§°ããŠ**ãŽãŒã«ãã¹**ãšåŒã¶ããšã«ããïŒãã®ãšãïŒ$P$ 㯠$n^2-1$ åã®ç§»åã®äžã§ $n$ åã¹ã¿ãŒããã¹ãããŽãŒã«ãã¹ãžã®ç§»å $($çµè·¯é· $n-1)$ ããïŒãŸã $n-1$ åãŽãŒã«ãã¹ããã¹ã¿ãŒããã¹ãžã®ç§»å $($çµè·¯é· $1)$ ãããããšã«ãªãïŒã¹ã¿ãŒããã¹ïŒãŽãŒã«ãã¹ãé€ãã $n(n-2)$ åã®ãã¹ç®ãåè
ã®ç§»åã§ãã¹ãŠç¶²çŸ
ããªããã°ãªããªãããšããïŒåè
ã®ç§»åã®ä»æ¹ã¯ $n$ åãã¹ãŠã«ãããŠååã§ãªããã°ãªããªãããšããããïŒããã¯çµè·¯äžã§ $P$ ãæ²ããéšåã«çç®ãããšç€ºãããšãã§ããïŒïŒ\\\r\nãããã§ïŒ$P$ ãæçµçã«ãããã¹ç®ã® $x$ 座æšã¯ããªãã¡ïŒ$P$ ãå³ã«åããåæ°ã§ããïŒãã®åããåæ°ã¯ïŒ$0$ ä»¥äž $n$ æªæºã®æŽæ° $k,l$ ãçšã㊠$kn+l$ ãšäžæçã«è¡šããããïŒä»¥äž $P$ ãå³ã«åããåæ°ã $(k,l)$ ã®åœ¢ã§è¡šãããšãšããïŒãã®ãšãïŒ$k$ ã®å€ã¯ã¹ã¿ãŒããã¹ãããŽãŒã«ãã¹ãžã®å移åã§å³ã«äœãã¹åãããã瀺ããã®ã§ããïŒ$l$ ã®å€ã¯ãŽãŒã«ãã¹ããã¹ã¿ãŒããã¹ãžã®èš $n-1$ åã®ç§»åã®ãã¡äœåå³ã«åãããã瀺ããã®ã§ããïŒ\\\r\nããã® $k,l$ ã®å€ãäžå®ãªãã°ïŒã¹ã¿ãŒããã¹ãããŽãŒã«ãã¹ãžã®ç§»åã®ä»æ¹ã¯ïŒå®éã«ãã®ãããªç§»åãå¯èœãã©ããã«åœ±é¿ããªãïŒããªãã¡ïŒã¹ã¿ãŒããã¹ãããŽãŒã«ãã¹ãžã®ç§»åã¯ïŒ$y$ 軞æ¹åã« $n-1-k$ ãã¹åãïŒãã®åŸ $x$ 軞æ¹åã« $k$ ãã¹åãå Žåã®ã¿ãèããã°ããïŒ\\\r\nããã®ãšãïŒå®éã«æçµç㪠$x$ 座æšã $(k,l)$ ãšããããšãã§ãããã©ããã¯ïŒå³2ïŒ $n=7ïŒk=2ïŒl=3$ ã®å ŽåïŒã®ããã«å®éã«çµè·¯ãæžãïŒãŽãŒã«ãžãã©ãçããŸã§ã«ãã¹ãŠã®çµè·¯ãéããããæ€èšŒããã°ããïŒããšãã°å³2ã§ã¯ïŒãŽãŒã«ãžãã©ãçããŸã§ãã¹ãŠã®çµè·¯ãéã£ãŠããªãã®ã§ïŒ$n=7$ ã«ãã㊠$(k,l)=(2,3)$ ãšããããšã¯ã§ããªãïŒããã§ïŒã©ã®é£æ¥ããã¹ã¿ãŒããã¹ãšãçŽæ¥é£çµãããŠããªããŽãŒã«ãã¹ã**è¡ãæ¢ãŸã**ãšãã¶ïŒ\r\n\r\n![figure 1](\\/images\\/6YNGvsVNNlR6K5fSH9JliACGidCCWRj4aNgi770b)\r\n\r\nãããŠïŒ$(k,l)$ ã®å€ã«ãã£ãŠå ŽååããããïŒ\r\n\r\n- $(1)$ $l=0$ ã®ãšã\\\r\nã$a$ åç®ã«ãã©ãçããŽãŒã«ãã¹ã® $x$ 座æšã¯ $ak$ ãš $\\mathrm{mod}\\ n$ ã§ååïŒè¡ãæ¢ãŸããšãªããŽãŒã«ãã¹ã¯ $x=0$ äžã®ãã®ã§ããããïŒ$ak\\ (a=1,\\ldots,n)$ ã $a=n$ ã§åã㊠$n$ ã®åæ°ãšãªãã°ããïŒã€ãŸã $k$ ãš $n$ ãäºãã«çŽ ã§ããããšãæ¡ä»¶ã§ããããïŒå Žåã®æ°ã¯ $\\varphi(n)$ ($\\varphi$ ã¯Euleré¢æ°)ïŒ\r\n\r\n- $(2)$ $k=l\\neq 0$ ã®ãšã\\\r\nãå§ãã«ãã©ãã€ããŽãŒã«ãã¹ãè¡ãæ¢ãŸããªã®ã§ïŒæããã«äžé©ïŒ\r\n\r\n- $(3)$ ãã以å€\\\r\nã $P$ ãæåã«ããã¹ã¿ãŒããã¹ãšåã $y$ 座æšã®ãã¹åã³æåã«çãããŽãŒã«ãã¹ãšåã $x$ 座æšã®ãã¹ãåé€ãïŒé¢ããéšåããã£ã€ããããã«ããŠæ°ãã«äžèŸº $n-1$ ã®æ£æ¹åœ¢ãäœã(å³3)ïŒ\r\n\r\n![figure 1](\\/images\\/i3Qd2qhaIeIFGAmyc0fZW3HMg0VCVWlhx6l7tBc8)\r\n\r\nãã®ãšãå Žååãããè¡ãæ¢ãŸãã®ãŽãŒã«ãã¹ã¯æ¶å»ãããïŒããšã®æ£æ¹åœ¢ã§ $P$ ã $n$ ãŸã㯠$n+1$ åç®ã®æäœã§å°çãããã¹ $A$ åã³è¡ãæ¢ãŸã以å€ã¯ãã¹ãŠã®åºå
¥ããé£çµãããïŒãŸãæ°ãã«ã«ãŒããçãŸããã»æ¶ããããšããªãããïŒãã®ãã¹ $A$ ãæ°ãã«ç¹ $P$ ã®åæäœçœ®ãšå®ãããšïŒäžèŸº $n-1$ ã®æ£æ¹åœ¢ã«ãããæ°ããªçµè·¯ãåŸãããšãã§ããïŒãã®å Žååãã«è©²åœãã $(k,l)$ ã®çµã¯ $(n-1)^2$ åã§ããïŒæäœã«ãã£ãŠæ¶å»ããã $x$ æ¹åã®ç§»åã®åæ°ã«çç®ããã°ïŒäžèŸº $n-1$ ã®æ£æ¹åœ¢ã®çµè·¯ã«ããã $x$ æ¹åã®ç§»åã®åæ°ã¯\r\n$$\\begin{cases}\r\nkn+l-2k & (l\\lt k) \\\\\\\\\r\nkn+l-(2k+1) & (l \\gt k)\r\n\\end{cases}$$\r\nã§ããïŒå Žååãã®æ¡ä»¶äžã«ãããŠãã㯠$0$ ä»¥äž $(n-1)^2$ æªæºã®ä»»æã®æŽæ°å€ãã¡ããã©äžåºŠãã€ãšãïŒãããã£ãŠïŒãã®å Žåã«åé¡ã®æ¡ä»¶ãæºãã $(k, l)$ ã®åæ°ã¯ $A_{n-1}$ ã«çããïŒ\r\n\r\nã以äžããïŒä»»æã® $2$ 以äžã®æŽæ° $n$ ã«ã€ã㊠$A_n=A_{n-1}+\\varphi(n)$ ãåŸãïŒããã« $A_1=1=\\varphi(1)$ ãªã®ã§ïŒ\r\n$$A_n=\\sum_{k=1}^{n}\\varphi(k)$$\r\nã§ããïŒãããèšç®ããã°ããïŒ$50$ 以äžã®æ£ã®æŽæ°ã®çµ $(k,l)$ ã§ãã£ãŠ $k$ ãš $l$ ãäºãã«çŽ ãšãªããããªãã®ã®åæ°ã¯ $2A_{50}-1$ ã«çããïŒäžæ¹ã§ãã㯠$k,l$ ããšãã« $2,3,5,\\ldots$ ã®åæ°ã§ããå Žåãããããèšç®ããããšã§ $1547$ ã«çããããšããããïŒãããã $A_{50}=\\mathbf{774}$ ããããïŒããã解çãã¹ãå€ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omce011/editorial/8764"
}
] | ãç¹ $P$ ã¯ã¯ãã $xy$ 座æšå¹³é¢äžã®ç¹ $(0,0)$ ã«ããŸãïŒ$P$ ã $x$ 軞ã®æ£æ¹åãš $y$ 軞ã®æ£æ¹åã®ããããã« $1$ ã ã移åãããæäœãã¡ããã© $2499$ åç¹°ãè¿ããšïŒ $P$ ã¯ç¹ $(a, b)$ ã«å°éãïŒããã«ä»¥äžã®æ¡ä»¶ãæºããããŠããŸããïŒ
- **æ¡ä»¶ïŒ** $0$ ä»¥äž $2499$ 以äžã®æŽæ° $k$ ã«å¯ŸããŠïŒ$x_k, y_k$ ããããã $P$ ã $k$ å移åããçŽåŸã® $x,y$ 座æšã $50$ ã§å²ã£ãäœããšãããšãïŒ$0\leq i\lt j\leq 2499$ ãã¿ããä»»æã®æŽæ°ã®çµ $(i,j)$ ã«å¯Ÿã㊠$(x_i, y_i) â (x_j, y_j)$ ãæãç«ã€.
ãã®ãšãïŒéè² æŽæ°ã®çµ $(a, b)$ ãšããŠãããããã®ã¯ããã€ãããŸããïŒ |
OMCB031 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omcb031/tasks/11761 | A | OMCB031(A) | 100 | 280 | 312 | [
{
"content": "ã$TQ+QC=DC$ããïŒæ¬¡ã®ããã«èšç®ã§ããïŒ\r\n$$\\begin{aligned}\r\n\\square SQCR&=QC^2\\\\\\\\\r\n&=QC(DC-TQ)\\\\\\\\\r\n&=2\\triangle DCQ-2\\triangle TQC\\\\\\\\\r\n&=2(\\triangle DUC +\\triangle UQC)-2(\\triangle TUQ+\\triangle UQC)\\\\\\\\\r\n&=2(\\triangle DUC-\\triangle TUQ)\\\\\\\\\r\n&=2\\cdot 12\\\\\\\\\r\n&=\\bf24\r\n\\end{aligned}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcb031/editorial/11761"
}
] | ãæ£æ¹åœ¢ $ABCD$ ã®èŸº $AB$ äžã«ç¹ $P$ïŒèŸº $BC$ äžã«ç¹ $Q$ïŒèŸº $CD$ äžã«ç¹ $R$ ããããŸãïŒæ£æ¹åœ¢ $ABCD$ ã®å
éšã«ç¹ $S,T$ ããšããšåè§åœ¢ $PBQT,SQCR$ ã¯ããããæ£æ¹åœ¢ãšãªããŸããïŒãã®ãšãç·å $TC$ ãšç·å $QD$ ã¯äº€ç¹ãæã€ã®ã§ïŒãã®ç¹ã $U$ ãããšïŒæ¬¡ãæãç«ã¡ãŸããïŒ
- äžè§åœ¢ $DCU$ ã®é¢ç©ã¯äžè§åœ¢ $TQU$ ã®é¢ç©ããã $12$ 倧ããïŒ
æ£æ¹åœ¢ $SQCR$ ã®é¢ç©ãæ±ããŠãã ããïŒ |
OMCB031 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omcb031/tasks/9113 | B | OMCB031(B) | 200 | 277 | 335 | [
{
"content": "ãäžè¬ã« $n$ æ¡ã®æ£æŽæ° $\\overline{a_{n-1}a_{n-2}\\dots a_0}$ ã $11$ ã§å²ã£ãããŸãã¯\r\n$$\\overline{a_{n-1}a_{n-2}\\dots a_0}=\\sum_{k=0}^{n-1}10^ka_k\\equiv a_0-a_1+\\dots +(-1)^{n-1}a_{n-1}\\pmod{11}$$\r\nã $11$ ã§å²ã£ãäœãã«çããïŒãããã£ãŠåé¡æã®æ¡ä»¶ã¯ãäžããæ°ããŠå¥æ°æ¡ç®ã«å«ãŸãã $1$ ã®æ°ãšïŒå¶æ°æ¡ç®ã«å«ãŸãã $1$ ã®æ°ãçããããšèšããããããïŒãã£ãŠ $10^{10}$ ã®äœã $1$ ã§ããããšã«å ãïŒæ¬¡ã®æ¡ä»¶ãèããã°è¯ãïŒ\r\n- $11$ æ¡ç®ãé€ãå¥æ°æ¡ç®ã® $1$ ãšå¶æ°æ¡ç®ã® $0$ ã®åæ°ã®åã $4$ ã§ããïŒ\r\n\r\n以äžããæ¡ä»¶ãæºããæ£æŽæ°ã®åæ°ã¯ ${}_{10}\\text{C}_4=\\mathbf{210}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcb031/editorial/9113"
}
] | ã次ã®æ¡ä»¶ãæºããæ£æŽæ°ã¯ããã€ãããŸããïŒ
- ã¡ããã© $11$ æ¡ã§ããïŒ
- $11$ ã§å²ãåããïŒ
- åäœã®æ°ã $0$ ãš $1$ ã§æ§æãããŠããïŒ |
OMCB031 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omcb031/tasks/11373 | C | OMCB031(C) | 200 | 193 | 259 | [
{
"content": "ã$h(x) = f(x) - g(x)$ ãšãããšïŒ$f(x)$ ãš $g(x)$ ã® $x^3$ ã®ä¿æ°ããšãã« $1$ ã§ããããšããïŒ$h(x)$ 㯠$2$ 次å€é
åŒãšãªãïŒãŸãïŒåé¡æã®äž $2$ åŒããïŒ$x=-2,-6$ ã¯æ¹çšåŒ $h(x)+x^2$ ã® $2$ 解ã§ããã®ã§ïŒããå®æ° $a$ ãååšããŠæ¬¡ãæç«ããïŒ\r\n$$h(x)+x^2=a(x+2)(x+6)$$\r\nãã®åŒã« $x=2$ ã代å
¥ã㊠$h(2)=4$ ãçšãããšïŒ$8=32a$ ãã $a=\\dfrac{1}{4}$ ãåŸãïŒä»¥äžããïŒ\r\n$$f(x)-g(x)=\\frac{1}{4}(x+2)(x+6)-x^2$$\r\nãªã®ã§ïŒ$g(6)=f(6)-\\dfrac{1}{4}\\cdot 8\\cdot 12+6^2=\\mathbf{108}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcb031/editorial/11373"
}
] | ããšãã« $x^3$ ã®ä¿æ°ã $1$ ã§ããå®æ°ä¿æ° $3$ 次å€é
åŒ $f(x),g(x)$ ã以äžãæºãããŠããŸãïŒ
$$
\left\lbrace
\begin{aligned}
&f(-6) = g(-6) - 36 \\\\
&f(-2) = g(-2) - 4 \\\\
&f(2) = g (2) + 4 \\\\
&f(6) = 96
\end{aligned}
\right.
$$
ããã®ãšãïŒ$g(6)$ ãšããŠããåŸãå€ã®ç·åã解çããŠãã ããïŒ |
OMCB031 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omcb031/tasks/11126 | D | OMCB031(D) | 300 | 108 | 139 | [
{
"content": "ãç¹ $D$ ãç·å $CD$ ãäžè§åœ¢ $ABC$ ã®å€æ¥åã®çŽåŸãšãªãããã«ãšãïŒç°¡åãªè§åºŠèšç®ããïŒ$D$ ã¯çŽç· $CP$ äžã«ããïŒäžè§åœ¢ $ACP,DBP$ ã¯çžäŒŒãªã®ã§ïŒæ¬¡ãæãç«ã€ïŒ\r\n$$BD=BP\\cdot \\frac{CA}{CP}=\\frac{35}{8}$$\r\nãããš $\\angle DBC=90^\\circ$ ããïŒäžå¹³æ¹ã®å®çããïŒçŽåŸ $CD$ ã®é·ãã® $2$ ä¹ã¯\r\n$$BD^2+BC^2=\\frac{4361}{64}$$\r\nã§ããïŒç¹ã«è§£çãã¹ã㯠$\\bf4425$ïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcb031/editorial/11126"
},
{
"content": "ã$ \\angle ABC =\\theta, \\angle BAC= \\phi, \\angle BPC=\\alpha$ ãšãããŠïŒ$\\triangle APC, \\triangle BPC$ ã«æ£åŒŠå®çãé©çšããïŒ\r\n\r\n- $\\dfrac{7x}{\\sin \\alpha}=\\dfrac{8x}{\\sin \\phi}$\r\n- $\\dfrac{7}{\\sin \\alpha}=\\dfrac{8x}{\\sin \\theta}=\\dfrac{5}{\\cos \\phi}$\r\n\r\nã§ããïŒãããã$\\dfrac{8}{\\sin \\phi}=\\dfrac{5}{\\cos \\phi}$ ãåŸãã®ã§ïŒ$\\sin \\phi=\\dfrac{8}{\\sqrt{89}}$ ã§ããïŒããšã¯æ£åŒŠå®çãçšããã°ããïŒ",
"text": "äžè§æ¯",
"url": "https://onlinemathcontest.com/contests/omcb031/editorial/11126/761"
}
] | ã$BC=7$ ãªãäžè§åœ¢ $ABC$ ã«ãããŠïŒèŸº $AB$ äžã«ç¹ $P$ ããšããšïŒä»¥äžãæç«ããŸããïŒ
$$\angle ABC + \angle ACP=90^\circ,ãCA:CP=7:8,ãBP=5$$
ããã®ãšãïŒäžè§åœ¢ $ABC$ ã®å€æ¥åã®**çŽåŸ**ã®é·ãã¯äºãã«çŽ ãªæ£æŽæ° $a,b$ ãçšã㊠$\displaystyle\sqrt{\frac{a}{b}}$ ãšè¡šãããã®ã§ïŒ$a+b$ ã®å€ã解çããŠãã ããïŒ |
OMCB031 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omcb031/tasks/11082 | E | OMCB031(E) | 300 | 101 | 168 | [
{
"content": "ã$a \\leq b \\leq c$ ãªãéè² æŽæ° $a,b,c,d$ ã«ã€ããŠïŒæ¹çšåŒ $2^a+2^b+2^c=2^d$ ã®äžè¬è§£ãèããïŒ$2^c \\lt 2^d$ ããïŒ\r\n$$\\frac{1}{2^{d-a}} + \\frac{1}{2^{d-b}} + \\frac{1}{2^{d-c}} = 1$$\r\nãæãç«ã€ïŒ$1 \\leq d-c \\leq d-b \\leq d-a$ ããïŒ\r\n$$1 = \\frac{1}{2^{d-a}} + \\frac{1}{2^{d-b}} + \\frac{1}{2^{d-c}} \\leq \\frac{3}{2^{d-c}}$$\r\nãã $d-c = 1$ ãåŸããïŒæ®ããåæ§ã«ã㊠$d-b = d-a = 2$ ãšãªãïŒãããã£ãŠäžè¬è§£ã¯ $t$ ãéè² æŽæ°ãšããŠïŒ\r\n$$(a,b,c,d) = (t,t,t+1,t+2)$$\r\nã§äžããããïŒããŸïŒ$2^p + 2^{2q} + 2^{3r} = 2^{4s}$ ãã\r\n$$(p,2q,3r,4s) = (t,t,t+1,t+2),(t,t+1,t,t+2),(t+1,t,t,t+2)$$\r\nã® $3$ ã€ã®ã±ãŒã¹ã«åããããïŒ\r\n- $(p,2q,3r,4s) = (t,t,t+1,t+2)$ ã®ãšãïŒ$2 \\mid t, ~ 3 \\mid t+1, ~ 4 \\mid t+2$ ããïŒ$t \\equiv 2 \\pmod {12}$ïŒãã£ãŠïŒäžè¬è§£ã¯ $k$ ã $0$ ä»¥äž $29$ 以äžã®æŽæ°ãšããŠïŒ\r\n$$(p,q,r,s) = (12k+2,6k+1,4k+1,3k+1)$$ \r\nã§äžãããïŒãã®ãšã $p+q+r+s = 25k+5$ ãšãªãïŒ\r\n\r\n- $(p,2q,3r,4s) = (t,t+1,t,t+2)$ ã®ãšãïŒ$2 \\mid t+1, ~ 3 \\mid t, ~ 4 \\mid t+2$ ã§ãããïŒããããåæã«ã¿ãããããªéè² æŽæ° $t$ ã¯ååšããªãïŒ\r\n\r\n- $(p,2q,3r,4s) = (t+1,t,t,t+2)$ ã®ãšãïŒ$2 \\mid t, ~ 3 \\mid t, ~ 4 \\mid t+2$ ãã $t \\equiv 6 \\pmod {12}$ïŒãã£ãŠïŒäžè¬è§£ã¯ $k$ ã $0$ ä»¥äž $29$ 以äžã®æŽæ°ãšããŠ\r\n$$(p,q,r,s) = (12k+7,6k+3,4k+2,3k+2)$$ \r\nã§äžãããïŒãã®ãšã $p+q+r+s = 25k+14$ ãšãªãïŒ\r\n\r\nã以äžããïŒæ±ããå€ã¯ïŒ\r\n\r\n$$\\sum_{k=0}^{29} (50k+19) = 50 \\times \\frac{29 \\times 30}{2} + 19 \\times 30 = \\mathbf{22320}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcb031/editorial/11082"
}
] | ã以äžã®çåŒãæºãã $1$ ä»¥äž $360$ 以äžã®æŽæ°ã®çµ $(p,q,r,s)$ å
šãŠã«ã€ããŠïŒ$p+q+r+s$ ã®ç·åãæ±ããŠãã ããïŒ
$$2^p + 4^q + 8^r = 16^s$$ |
OMCB031 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omcb031/tasks/11430 | F | OMCB031(F) | 400 | 14 | 60 | [
{
"content": "ãè²ã®äºæ³ã¯çã®åãåºãæ¹ã«åœ±é¿ãåãŒããªãããïŒååæ®ããå€ãã»ãã®è²ãïŒæ®ããåãå Žåã¯é©åœã«äºæ³ããã°æåŸ
å€ãæ倧ã«ãªãïŒãã®ãããªäºæ³æ³ãæè¯ã®äºæ³æ³ãšåŒã¶ããšã«ããïŒ\\\r\nããšããã§ïŒæ®ããå€ãè²ã®æ®ã£ãŠããçã®æ°ïŒåãå Žåã¯ã©ã¡ããäžæ¹ã®æ°ïŒã $M$ ãšããïŒ$M$ ã®å€åã芳å¯ãããš\r\n\r\n- ã©ã¡ããã®è²ã®æ®ã£ãŠããçã®æ°ãããäžæ¹ã®è²ã®æ®ã£ãŠããçã®æ°ããçã«å€§ããïŒãããæ®ã£ãŠããçã®æ°ãå€ãè²ã®çãåãåºããããšãïŒãã€ãã®æã«éã$1$ ã ãæžå°ããïŒ\r\n\r\nã$M$ ã¯æå㯠$7$ ã§æåŸã¯ $0$ ãªã®ã§ïŒæè¯ã®äºæ³æ³ãè¡ã£ããšã㯠$2$ è²ã®æ®ã£ãŠããçã®æ°ãåãåãé€ããŠïŒã¡ããã© $7$ ç¹ç²åŸããïŒãããã£ãŠã²ãŒã äžã«çµäºæãé€ã㊠$2$ è²ã®æ®ã£ãŠããçã®æ°ãåãã«ãªãåæ°ã®æåŸ
å€ã $E$ ãšãããšïŒæ±ããæåŸ
å€ã¯ $7 + \\dfrac 1 2E$ ãšãªãïŒ\\\r\nã ${}\\_{14}\\mathrm{C}\\_{7}$ éãã®ãã¹ãŠã®çã®åãåºãæ¹ã¯ãã¹ãŠç確çã§çŸããã®ã§ïŒ$E$ ãæ±ããããã« $2$ è²ã®æ®ã£ãŠããçã®æ°ããšãã« $i$ $(i = 1, 2, \\ldots, 7)$ ãšãªãããšãããçã®åãåºãæ¹ãæ°ããããšã§ïŒ\r\n\r\n$$E = \\frac1{{}\\_{14}\\mathrm{C}\\_{7}}\\sum_{i=1}^7 {}\\_{2(7 - i)}\\mathrm{C}\\_{7 - i}\\times{}\\_{2i}\\mathrm{C}\\_{i} = \\frac{1619}{429} $$\r\n\r\nãšãªãïŒãã£ãŠïŒæ±ããæåŸ
å€ã¯ $\\dfrac{7625}{858}$ ã§ããïŒç¹ã«è§£çãã¹ãå€ã¯ $\\mathbf{8483}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcb031/editorial/11430"
},
{
"content": "ãçœçãæ¢ã« $x$ å, é»çãæ¢ã« $y$ ååãåºããç¶æ
ãæ Œåç¹ $(x,y)$ ã«å¯Ÿå¿ãããŸã.ãããš $\\{}_{14}\\mathrm{C}\\_{7}$ éãããçµè·¯ããç確çã« $1$ ã€çµè·¯ãéžã³[å³](https:\\/\\/pbs.twimg.com\\/media\\/Gfhi52xbAAAvDyh?format=jpg&name=medium)ã«ãããŠ, èµ€è²ã®é·ã $1$ ã®ç·åãéã£ãé $1$ ç¹, éè²ã®é·ã $1$ ã®ç·åãéã£ãé $1\\/2$ ç¹ãåŸãã²ãŒã ãšèŠãªãããšãã§ããŸã. ãã£ãŠ, å
šãŠã®çµè·¯ã«å¯ŸãåŸãããåŸç¹ã®åèšãèšç®ã, çµè·¯æ° $\\{}\\_{14}\\mathrm{C}\\_{7}$ ã§å²ãã°è¯ãã§ã.\r\n\r\nã$\\{}\\_{14}\\mathrm{C}\\_{7}$ éãå
šãŠã®çµè·¯ã«å¯Ÿã, ã©ã®çµè·¯ãèµ€ãç·åã¯ã¡ããã©é·ã $7$ ã®åéãããšã芳å¯ãããšããããŸã. 次ã«å
šãŠã®çµè·¯ã«å¯Ÿãéãç·åã®åŸç¹ã®åèšãæ±ããã°ãã, åéãç·åã«é¢ããŠãããéãçµè·¯æ°ãèšç®ããŸã. $(k,k)$ ãš $(k,k+1)$ ãçµã¶ç·åãéãçµè·¯æ°ã¯ ${}\\_{2k}\\mathrm{C}\\_k\\cdot {}\\_{2(6-k)+1}\\mathrm{C}\\_{6-k}$ ã§ãã, åæ§ã« $(k,k)$ ãš $(k+1,k)$ ãçµã¶ç·åãéãçµè·¯æ°ã ${}\\_{2k}\\mathrm{C}\\_k\\cdot {}\\_{2(6-k)+1}\\mathrm{C}\\_{6-k}$ ã§ãããŸã. ãã£ãŠæ±ããæåŸ
å€ã¯,\r\n$$\\frac{7\\times {}\\_{14}\\mathrm{C}\\_7\r\n+\\displaystyle\\frac{1}{2}\\Big(2\\sum\\_{k=0}^6{}\\_{2k}\\mathrm{C}\\_k\\cdot {}\\_{2(6-k)+1}\\mathrm{C}\\_{6-k}\\Big)}{{}\\_{14}\\mathrm{C}\\_7}$$\r\nãšãªããŸã.\r\n\r\n---\r\nè£è¶³.\r\n$\\sum\\_{k=0}^N{}\\_{2k}\\mathrm{C}\\_k\\cdot {}\\_{2(N-k)+1}\\mathrm{C}\\_{N-k}$ ã¯æ¯é¢æ°ãçšãããšä»¥äžã®ããã«ç¶ºéºãªåœ¢ã«ããããšãã§ããŸã. åç
§:[OMCE002-F解説](https:\\/\\/onlinemathcontest.com\\/contests\\/omce002\\/editorial\\/8694).\r\n$$\r\n\\begin{aligned}\r\n&\\sum\\_{k=0}^N{}\\_{2k}\\mathrm{C}\\_k\\cdot {}\\_{2(N-k)+1}\\mathrm{C}\\_{N-k}\\\\\\\\\r\n&=[x^N]\\Big(\\sum_{k=0}^{\\infty}{}\\_{2k}\\mathrm{C}\\_k x^k\\Big)\\Big(\\sum_{k=0}^{\\infty}{}\\_{2k+1}\\mathrm{C}\\_k x^k\\Big)\\\\\\\\\r\n&=[x^N]\\Big(\\frac{1}{\\sqrt{1-4x}}\\Big)\\Big(\\frac{1}{\\sqrt{1-4x}}\\Big(\\frac{1-\\sqrt{1-4x}}{2x}\\Big)\\Big)\\\\\\\\\r\n&=[x^N]\\frac{1}{2x}\\Big(\\frac{1}{1-4x}-\\frac{1}{\\sqrt{1-4x}}\\Big)\\\\\\\\\r\n&=[x^N]\\frac{1}{2x}\\Big(\\frac{1}{1-4x}-\\frac{1}{\\sqrt{1-4x}}\\Big)\\\\\\\\\r\n&=\\frac{1}{2}[x^{N+1}]\\Big(\\frac{1}{1-4x}-\\frac{1}{\\sqrt{1-4x}}\\Big)\\\\\\\\\r\n&=\\frac{1}{2}\\Big(4^{N+1}-{}\\_{2(N+1)}\\mathrm{C}\\_{N+1}\\Big)\\\\\\\\\r\n\\end{aligned}\r\n$$",
"text": "ã°ãªããã®çµè·¯ã«èšãæã",
"url": "https://onlinemathcontest.com/contests/omcb031/editorial/11430/766"
}
] | ãçœç $7$ åïŒé»ç $7$ åãå
¥ã£ãç®±ãããïŒãããçšããŠæ¬¡ã®æé ã§ç®±ã®äžã®çããªããªããŸã§ã²ãŒã ãè¡ããŸãïŒ
- çœãšé»ã®ã©ã¡ããã®è²ãæå®ããïŒ
- ç®±ã®äžããçã $1$ ã€åãåºãïŒãã®çã®è²ãæå®ããè²ãšåããªãã° $1$ ç¹ç²åŸãïŒããã§ãªããªãã° $0$ ç¹ãç²åŸããïŒ
- åãåºããçã¯æšãŠïŒå§ãã®æé ïŒè²ã®æå®ïŒã«æ»ãïŒ
ãã ãïŒç®±ã®äžã®çã¯ãã¹ãŠç確çã§åãåºããããšããŸãïŒç²åŸç¹æ°ã®æåŸ
å€ãæ倧ã«ãªãããã«è²ã®äºæ³ãè¡ããšïŒãã®ãšãã®æåŸ
å€ã¯äºãã«çŽ ãªæ£ã®æŽæ° $a, b$ ãçšã㊠$\dfrac{a}{b}$ ãšè¡šãããã®ã§ïŒ$a + b$ ã解çããŠãã ããïŒ |
OMC238 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc238/tasks/9652 | A | OMC238(A) | 100 | 341 | 349 | [
{
"content": "ã$P$ ãš $a,b,c,d$ ã®è·é¢ããããã $x_a, x_b, x_c, x_d$ ãšããïŒ\\\r\nã$a$ ãš $c$ ã¯å¹³è¡ã§ããããïŒ$P$ ã $a,c$ ã®éã«ããå Žåãšããã§ãªãå ŽåãããïŒããããã®å Žåã«ã€ã㊠$a$ ãš $c$ ã®è·é¢ã¯ $x_a+x_c,|x_a-x_c|$ ã§ããïŒ$b$ ãš $d$ ã®è·é¢ã«ã€ããŠãåæ§ã§ããããïŒããåŸã $4$ å€ã®ç·åã¯\r\n$$\\big ( (x_a+x_c)+|x_a-x_c|\\big) \\big ( (x_b+x_d)+|x_b-x_d|\\big)=\\bf251000$$\r\nã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc238/editorial/9652"
}
] | ãå¹³é¢äžã«çžç°ãªã $4$ çŽç· $a,b,c,d$ ãããïŒ
$$a \perp b,ãb \perp c,ãc \perp d$$
ãæºãããŸãïŒãŸãåãå¹³é¢äžã«ããç¹ $P$ ãããïŒ$P$ ãš $a,b,c,d$ ã®è·é¢ã¯ãããã $248,249,250,251$ ã§ããïŒ\
ããã®ãšãïŒ$a,b,c,d$ ã§å²ãŸããé·æ¹åœ¢ã®é¢ç©ãšããŠããåŸãå€ã¯ $4$ çš®é¡ããã®ã§ïŒãããã®ç·åãæ±ããŠäžããïŒ |
OMC238 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc238/tasks/11653 | B | OMC238(B) | 300 | 190 | 305 | [
{
"content": "ãéè² æŽæ°ã®çµ $(a_0, a_1\\ldots, a_{10})$ ã§ãã£ãŠïŒ\r\n$$ 0 \\le a_0 \\le a_1 \\le \\cdots \\le a_{10} \\le 10 $$\r\nãæºãããã®ãèãããšïŒãã㯠$x$ 軞ããã㯠$y$ 軞æ£æ¹åã« $1$ ã ã移åããããšãç¹°ãè¿ã㊠$(0, 0)$ ãã $(11, 10)$ ãŸã§ç§»åããæ¹æ³ãšäžå¯Ÿäžã«å¯Ÿå¿ããïŒçµ $(a_0, a_1, \\ldots, a_{10})$ ãšç·å $\\\\{ (x, a_n) \\mid n \\le x \\le n+1 \\\\}$ ãéããããªéé ã察å¿ã¥ããã°ããïŒïŒãã®ãããªæ¹æ³ã¯ ${}\\_{21} \\mathrm{C}\\_{10}$ éãããïŒãŸãïŒçµ $(a_0, a_1, \\ldots, a_{10})$ ãšçµ $(10-a_{10}, 10-a_9, \\ldots, 10-a_{0})$ ã察å¿ã¥ããããšã«ããïŒ$a_5 \\le 4$ ãã¿ããçµãš $a_5 \\ge 6$ ãã¿ããçµã®æ°ã¯çããïŒ$a_5 = 5$ ãã¿ããçµã¯ $({}\\_{10} \\mathrm{C}\\_{5})^2$ åããã®ã§ïŒæ±ããå€ã¯\r\n$$ \\frac{{}\\_{21} \\mathrm{C}\\_{10} + ({}\\_{10} \\mathrm{C}\\_{5})^2}{2} = \\mathbf{208110} $$\r\nã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc238/editorial/11653"
}
] | ãåºçŸ©å調å¢å ãªéè² æŽæ°å $a_0,a_1,...,a_{10}$ ã§ãã£ãŠïŒ$a_5 \le 5$ ã〠$a_{10} \le 10$ ãã¿ãããã®ã¯äœéããããŸããïŒ |
OMC238 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc238/tasks/11674 | C | OMC238(C) | 300 | 193 | 254 | [
{
"content": "$$f(n)=\\frac{\\sqrt{n^2+8n+2d(d(n))+12}}{d(n)}$$\r\nãšãããšïŒ$f(n)$ ãæŽæ°ã§ãããšã $n^2+8n+2d(d(n))+12$ ã¯å¹³æ¹æ°ã§ããïŒããã§ïŒä»»æã®æ£ã®æŽæ° $m$ ã«ã€ããŠïŒ$m$ ã®æ£ã®çŽæ°ã¯ $m$ å以äžã§ããã®ã§ïŒ$d(m)\\le m$ã§ããïŒãã£ãŠïŒ$d(d(n))\\le d(n) \\le n$ ã§ããã®ã§ïŒ\r\n$$(n+3)^2\\lt\r\nn^2+8n+2d(d(n))+12\\le\r\nn^2+8n+2n+12\\lt\r\n(n+5)^2\r\n$$\r\nãæãç«ã¡ïŒ$n^2+8n+2d(d(n))+12 = (n+4)^2$ïŒããªãã¡ $d(d(n)) =2$ ãåŸãïŒãããã£ãŠïŒçŽ æ° $p,q$ ãçšã㊠$d(n)=p,\\ n=q^{p-1}$ãšè¡šãã. ããã $f(n)$ ã®åŒã«ä»£å
¥ããããšã«ãã $f(n)=\\dfrac{q^{p-1}+4}{p}$ ãåŸãã®ã§ïŒãã®å€ãæŽæ°ãšãªãæ¡ä»¶ã調ã¹ãïŒ\r\n\r\n- $p=q$ ã®ãšãïŒ$f(n)=\\dfrac{p^{p-1}+4}{p}=p^{p-2}+\\dfrac{4}{p}$ ã§ããã®ã§ïŒ$f(n)$ ãæŽæ°ã§ãããšã $p=2$ ã§ããïŒãã£ãŠïŒ$n = 2$ ãåŸãïŒ\r\n- $p\\neq q$ ã®ãšãïŒ$f(n)=\\dfrac{q^{p-1}+4}{p}=\\dfrac{q^{p-1}-1}{p}+\\dfrac{5}{p}$ã§ããïŒFermatã®å°å®çã«ãã $\\dfrac{q^{p-1}-1}{p}$ ã¯æŽæ°ã§ããã®ã§ïŒ$f(n)$ ãæŽæ°ãšãªããšã $p=5$ ã§ããïŒãã®ãšã $q$ 㯠$5$ ã§ãªãä»»æã®çŽ æ°ã§ããïŒ\r\n\r\nã以äžããïŒ$f(n)$ ãæŽæ°ãšãªããã㪠$n$ ã¯å°ããã»ããã $2, 2^4, 3^4, 7^4, \\ldots$ ã§ããããïŒè§£çãã¹ãå€ã¯ \r\n$$2+2^4+3^4+7^4=\\mathbf{2500}$$ \r\nã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc238/editorial/11674"
}
] | ãæ£æŽæ° $x$ ã«å¯Ÿã㊠$d(x)$ 㧠$x$ ã®æ£ã®çŽæ°ã®åæ°ãè¡šããšãïŒ
$$\frac{\sqrt{n^2+8n+2d(d(n))+12}}{d(n)}$$
ãæŽæ°ãšãªããããªæ£æŽæ° $n$ ã®ãã¡ïŒå°ããã»ããã $4$ ã€ã®ç·åã解çããŠãã ããïŒ |
OMC238 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc238/tasks/11356 | D | OMC238(D) | 300 | 167 | 225 | [
{
"content": "ã$1$ ä»¥äž $50$ 以äžã®æŽæ°ã®éåãïŒæ倧ã®å¥æ°ã®çŽæ°ãåãã§ããéåïŒããªãã¡\r\n$$\\\\{1,2,4,...,32\\\\},\\\\{3,6,...,48\\\\},\\\\{5,10,20,40\\\\},\\cdots, \\\\{49\\\\}$$\r\nã«åå²ãïŒé ã« $U_1,U_3,...,U_{49}$ ãšããïŒ\\\r\nã$1$ ä»¥äž $49$ 以äžã®çžç°ãªãå¥æ° $i,j$ ãš $x\\in U_i$ ããã³ $y\\in U_j$ ã«å¯ŸããŠïŒ$x\\in A$ ãã©ãã㯠$y\\in A$ ãã©ããã«åœ±é¿ããªãã®ã§ïŒ$k=1,3,...,49$ ã«å¯ŸããŠïŒ$U_k\\cap A$ ãå®ããã°è¯ãïŒ$U_k\\cap A$ ã®å®ãæ¹ã $u_k$ ã ããããšããïŒ$U_k$ ã®èŠçŽ ãå°ããé ã«äžŠã¹ããšãïŒæ¡ä»¶ããé£ãåãèŠçŽ ãã©ã¡ãã $A$ ã®èŠçŽ ã«ãªãããšã¯ãªãã®ã§ïŒ$u_k$ ã¯æ¬¡ã®æ°ã«çããïŒ\r\n- ã³ã€ã³ãå·Šå³ã« $|U_k|$ å䞊ã¹ãæ¹æ³ã§ãã£ãŠïŒè£åãã®ã³ã€ã³ãé£ãåããªããããªäžŠã¹æ¹ã®æ°ïŒ\r\n\r\nã³ã€ã³ã $n$ åãããšãã®äžŠã¹æ¹ã $F_n$ ã ããããšãããšïŒäžçªå·Šã®ã³ã€ã³ã®è¡šè£ã§å Žååãããããšã§ïŒæ¬¡ã®æŒžååŒãåŸãïŒ\r\n$$F_{n+2}=F_{n+1}+F_n$$\r\nãããš $F_1=2,F_2=3$ ããïŒ$F_3=5,F_4=8,F_5=13,F_6=21$ ã§ããïŒ\\\r\nã$U_k$ ã®èŠçŽ ã®æ°ã調ã¹ããšïŒ\r\n$$\r\n|U_k|=\r\n\\left\\\\{ \r\n \\begin{aligned}\r\n & 6 \\\\ (k=1) \\\\\\\\\r\n & 5 \\\\ (k=3) \\\\\\\\\r\n & 4 \\\\ (k=5) \\\\\\\\\r\n & 3 \\\\ (k=7,9,11) \\\\\\\\\r\n & 2 \\\\ (k=13,15,...,25) \\\\\\\\\r\n & 1 \\\\ (k=27,29,...,49)\r\n \\end{aligned}\r\n\\right.\r\n$$\r\nã§ããã®ã§ïŒ$N$ ã®å€ã¯æ¬¡ã®ããã«èšç®ã§ããïŒ\r\n$$\\begin{aligned}\r\nN&=u_1\\times u_3\\times \\cdots \\times u_{49}\\\\\\\\\r\n&=F_{|U_1|}\\times F_{|U_3|}\\times \\cdots \\times F_{|U_{49}|}\\\\\\\\\r\n&=F_6\\times F_5 \\times F_4 \\times F_3^3 \\times F_2^7 \\times F_1^{12}\\\\\\\\\r\n&=21\\times 13 \\times 8 \\times 5^3 \\times 3^7 \\times 2^{12}\\\\\\\\\r\n&=2^{15}\\cdot 3^{8}\\cdot 5^{3}\\cdot 7\\cdot 13\r\n\\end{aligned}$$\r\nããã®æ£ã®çŽæ°ã®åæ°ã¯ $\\bf2304$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc238/editorial/11356"
}
] | ã次ãã¿ãããã㪠(空éåã§ããã) éå $A$ ã®åæ°ã $N$ ãšãããšãïŒ$N$ ã®æ£ã®çŽæ°ã®åæ°ã解çããŠãã ããïŒ
- $A$ 㯠$\\{1,2,\ldots, 50\\}$ ã®éšåéåã§ããïŒ
- ä»»æã® $A$ ã®èŠçŽ $x$ ã«ã€ããŠïŒ$2x$ 㯠$A$ ã®èŠçŽ ã§ãªãïŒ |
OMC238 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc238/tasks/11671 | E | OMC238(E) | 400 | 111 | 150 | [
{
"content": "ãæ±ããå€ã¯\r\n$$(a^3+abc)(b^3+abc)(c^3+abc)=abc(a^2+bc)(b^2+ca)(c^2+ab)$$\r\nã«çããïŒäžæ¹ã§ïŒäžããããçåŒã®ç¬¬äžåŒã®äž¡èŸºã« $abc$ ããããŠå€åœ¢ããããšã§ïŒ\r\n$$c(b^2+ca)=ab(c-a), \\hspace{1pc} a(c^2+ab)=bc(a-b), \\hspace{1pc} b(a^2+bc)=ca(b-c)$$\r\nãšãã $3$ ã€ã®çåŒãåŸãïŒ èŸºã
æãåãããŠ\r\n$$abc(a^2+bc)(b^2+ca)(c^2+ab) = (abc)^2(a-b)(b-c)(c-a)$$\r\nãæãç«ã€ããšããããã®ã§ïŒæ±ããå€ã¯ $3^2\\times 6 =\\textbf{54}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc238/editorial/11671"
},
{
"content": "ã$\\dfrac{b}{a}+\\dfrac{c}{b}+\\dfrac{a}{c}=1$ ãã $a^2b+b^2c+c^2a=abc=3$ ãåŸãïŒ\\\r\nããŸã $(a-b)(b-c)(c-a)=6$ ãã $ab^2+bc^2+ca^2=9$ ãåŸãïŒ\\\r\nããããã®çµè«ãæãåãããŠèšç®ããŠã¿ããš\r\n$$\\begin{aligned}\r\n(a^2b+b^2c+c^2a)(ab^2+bc^2+ca^2)&=27\\\\\\\\\r\na^3b^3+b^3c^3+c^3a^3+abc(a^3+b^3+c^3)+3a^2b^2c^2&=27 \\\\\\\\\r\na^3b^3+b^3c^3+c^3a^3+3(a^3+b^3+c^3)&=0\r\n\\end{aligned}$$\r\nåŸã£ãŠïŒ\r\n$$\\begin{aligned}\r\n(a^3+3)(b^3+3)(c^3+3)&=a^3b^3c^3+3(a^3b^3+b^3c^3+c^3a^3)+9(a^3+b^3+c^3)+27\\\\\\\\\r\n&=a^3b^3c^3+27\\\\\\\\\r\n&=\\mathbf{54}\r\n\\end{aligned}$$",
"text": "å¥è§£",
"url": "https://onlinemathcontest.com/contests/omc238/editorial/11671/754"
},
{
"content": "ã$$\\alpha=\\frac{b}{a},ã\\beta=\\frac{c}{b},ã\\gamma=\\frac{a}{c}$$\r\nãšãããšïŒ$\\alpha \\beta \\gamma=1$ ã§ããïŒæ¡ä»¶ãã\r\n$$\\alpha+\\beta+\\gamma=3,ã(\\alpha-1)(\\beta-1)(\\gamma-1)=2$$\r\nãªã®ã§ $\\alpha \\beta + \\beta \\gamma + \\gamma \\alpha=1$ ã«æ³šæããã°ïŒ$\\alpha,\\beta,\\gamma$ 㯠$3$ 次æ¹çšåŒ $x^3-3x+x-1=0$ ã® $3$ 解ã§ããïŒ\r\n\r\nãããã§ïŒ\r\n$$a^3+abc = abc \\Big( \\dfrac{a^2}{bc} +1 \\Big) = 3 \\Big( \\dfrac{\\gamma}{\\alpha} +1 \\Big)$$\r\nã§ïŒ$b^3+abc,c^3+abc$ ã«ã€ããŠãåæ§ãªã®ã§ïŒæ±ããå€ã¯\r\n$$27 \\Big( \\dfrac{\\alpha}{\\beta} +1 \\Big) \\Big( \\dfrac{\\beta}{\\gamma} +1 \\Big) \\Big( \\dfrac{\\gamma}{\\alpha} +1 \\Big) = 27à \\dfrac{(\\alpha+ \\beta)(\\beta + \\gamma)(\\gamma + \\alpha)}{\\alpha \\beta \\gamma}$$\r\nã«çããïŒå³èŸºã®ååã«ã€ããŠã¯\r\n$$(\\alpha+ \\beta)(\\beta + \\gamma)(\\gamma + \\alpha) = (3-\\alpha)(3-\\beta)(3-\\gamma)$$\r\nã§ããïŒãã㯠$3^3-3Ã3^2+3-1=2$ ã§ããïŒãã£ãŠïŒæ±ããçã¯\r\n$$27Ã\\dfrac{2}{1} = \\mathbf{54}.$$",
"text": "解ãšä¿æ°ã®é¢ä¿",
"url": "https://onlinemathcontest.com/contests/omc238/editorial/11671/760"
}
] | ã$0$ ã§ãªãè€çŽ æ° $a,b,c$ ã§ãã£ãŠïŒ
$$\frac{b}{a}+\frac{c}{b}+\frac{a}{c}=1, \hspace{1pc} (a-b)(b-c)(c-a)={6}, \hspace{1pc} abc={3}$$
ãåæã«æºãããã®ãååšããŸãïŒãã®ãã㪠$a,b,c$ ã«å¯ŸããŠïŒ
$$(a^3+3)(b^3+3)(c^3+3)$$
ã®å€ã¯äžæã«å®ãŸãã®ã§ïŒãã®å€ã解çããŠãã ããïŒ |
OMC238 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc238/tasks/4683 | F | OMC238(F) | 600 | 0 | 34 | [
{
"content": "ãçŽç· $MP$ ãšçŽç· $NQ$ ã®äº€ç¹ã $S$ ãšãããšïŒ$R$ ãååšããããšãã $S$ ã¯çŽç· $AC$ ã«ã€ã㊠$B$ ãšå察åŽãã€çŽç· $BD$ ã«ã€ã㊠$C$ ãšå察åŽã«ããïŒãŸãïŒ$SA=SB, SC=SD, AC=BD$ ãæç«ããããšãã, äžè§åœ¢ $SAC$ ãšäžè§åœ¢ $SBD$ ã¯ååã§ããïŒãã£ãŠïŒ$\\angle ASB=\\angle CSD$ ã§ããã®ã§ïŒäžè§åœ¢ $SAB$ ãšäžè§åœ¢ $SCD$ ã¯çžäŒŒã§ããïŒãŸãïŒ\r\n$$\\angle SAX=\\angle SAC=\\angle SBD=\\angle SBX$$\r\nã§ããã®ã§ïŒ$4$ ç¹ $A, B, S, X$ ã¯åäžååšäžã«ããïŒåæ§ã«ïŒ$4$ ç¹ $C, D, S, X$ ãåäžååšäžã«ããïŒä»¥äžããïŒ\r\n$$\\angle SXA=\\angle SBA=\\angle SAB=\\angle SXD$$\r\nã§ããã®ã§ïŒçŽç· $SX$ ã¯çŽç· $AC$ ãšçŽç· $BD$ ã®æãè§ã®äºçåç·ã§ããïŒ\\\r\nã$SM:SN=AB:CD=7:13$ ã§ããããšããïŒäžè¬æ§ã倱ãã $SM=7, SN=13$ ãšããïŒãŸãïŒ$MP:NQ=1:4$ ã§ããããšããïŒ$MP=x, NQ=4x$ ãšããïŒçŽç· $BS$ ãšçŽç· $AC$ ã®äº€ç¹ã $Y$ïŒçŽç· $CS$ ãšçŽç· $BD$ ã®äº€ç¹ã $Z$ ãšãããšïŒMenelausã®å®çãã以äžãæç«ããïŒ\r\n$$\\frac{PS}{PM}=\\frac{AB\\times SY}{AM\\times BY}=\\frac{ 2SY}{BY},\\quad\r\n\\frac{QS}{QN}=\\frac{CD\\times SZ}{DN\\times CZ}=\\frac{2SZ}{CZ}\r\n$$\r\nããã§ïŒçŽç· $SX$ ãšçŽç· $BC$ ã®äº€ç¹ã $T$ ãšãããšïŒè§ã®äºçåç·ã®æ§è³ªãã $BT:CT=BX : CX = 11:34$ ã§ããïŒãã£ãŠïŒCevaã®å®çãã\r\n$$\\frac{SP}{PM}\\times \\frac{BX}{XC}\\times \\frac{NQ}{QS}=\\frac{2SY}{YB}\\times \\frac{BT}{TC}\\times \\frac{CZ}{2ZS}=1$$\r\nãæç«ããã®ã§ïŒ\r\n$$\\frac{7-x}{x}\\times \\frac{11}{34}\\times \\frac{4x}{13-4x}=1$$\r\nããïŒ$x=\\dfrac{67}{46}$ ããããïŒãã£ãŠïŒ\r\n$$\\begin{aligned}\r\n\\frac{\\triangle PQR}{\\triangle MNR}\r\n&=\\frac{PR\\times QR}{MR\\times NR}\\\\\\\\\r\n&=\\frac{PS\\times NQ}{MP\\times NS}\\times\\frac{QS\\times MP}{NQ\\times MS}\\\\\\\\\r\n&=\\frac{(7-x)(13-4x)}{7\\times 13}\\\\\\\\\r\n&=\\frac{42075}{96278}\r\n\\end{aligned}$$\r\nã§ããïŒç¹ã«ïŒè§£çãã¹ãå€ã¯ $\\mathbf{138353}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc238/editorial/4683"
}
] | ãåžåè§åœ¢ $ABCD$ ã«ã€ããŠã®äºæ¬ã®å¯Ÿè§ç·ã®äº€ç¹ã $X$ ãšãïŒç·å $AB, CD$ ã®äžç¹ããããã $M, N$ ãšããŸãïŒèŸº $AB$ ã®åçŽäºçåç·ãšç·å $AC$ïŒèŸº $CD$ ã®åçŽäºçåç·ãšç·å $BD$ ããããã $P, Q$ ã§äº€ãã£ãŠããïŒä»¥äžãæç«ããŸãã.
$$AC=BD,\quad AB:CD=7:13,\quad BX:XC=11:34,\quad MP:NQ=1:4$$
ãã®ãšãïŒç·å $MQ$ ãšç·å $NP$ ã亀ãã£ãã®ã§ïŒãã®äº€ç¹ã $R$ ãšããŸãïŒäžè§åœ¢ $PQR$ ã®é¢ç©ãšäžè§åœ¢ $NMR$ ã®é¢ç©ã®æ¯ã¯ïŒäºãã«çŽ ãªæ£ã®æŽæ° $a, b$ ãçšã㊠$a:b$ ãšè¡šãããã®ã§ $a+b$ ã®å€ã解çããŠãã ãã. |
OMCB030 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omcb030/tasks/11737 | A | OMCB030(A) | 100 | 353 | 357 | [
{
"content": "ãä»»æã®æ£æŽæ° $k$ ã«ã€ããŠïŒ$k^5$ ãš $k$ ã®å¶å¥ã¯äžèŽããããïŒ$k^5-k$ ã¯å¿
ã $2$ ã®åæ°ã§ããïŒãŸãïŒFermat ã®å°å®çãã $k^5-k$ ã¯ã€ãã« $5$ ã®åæ°ã§ãããïŒãã£ãŠ $k^5-k$ 㯠$10$ ã®åæ°ã§ããïŒ$k^5,k$ ã®äž $1$ æ¡ã¯äžèŽããããïŒ$a_n$ ã®äž $1$ æ¡ã¯ $n$ ã®äž $1$ æ¡ãšäžèŽããïŒãã£ãŠæ±ããã¹ãå€ã¯æ¬¡ã®ããã«èšç®ã§ããïŒ\r\n$$(1+2+\\dots +8+9+0)Ã10=\\mathbf{450}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcb030/editorial/11737"
}
] | ãæ°å $\\{a_n\\}_{n=1,2\cdots}$ ã $a_1 = 1$ ããã³
$$a\_{n+1}=a_n^5+1 \quad (n = 1, 2, \ldots)$$
ã§å®ããŸãïŒãã®æ°åã®ç¬¬ $1$ é
ãã第 $100$ é
ãŸã§ã®äž $1$ æ¡ã®ç·åãæ±ããŠãã ããïŒ |
OMCB030 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omcb030/tasks/12547 | B | OMCB030(B) | 100 | 332 | 349 | [
{
"content": "ãåç¹ $(0,0)$ ã«ããç¹ $P$ ã«å¯ŸãïŒæäœ $A$ ã $a$ åïŒæäœ $B$ ã $b$ åè¡ããšïŒ$P$ 㯠$(2a-b,-3a+2b)$ ã«ç§»åããïŒãã£ãŠïŒé£ç«æ¹çšåŒ\r\n\r\n$$\\begin{cases}\r\n1=2a-b\\\\\\\\\r\n1=-3a+2b\r\n\\end{cases}$$\r\n\r\nã解ãããšã§ïŒç¹ $P$ ã $(0,0)$ ãã $(1,1)$ ã«ç§»åãããããã«ã¯ $A$ ã $3$ åïŒ$B$ ã $5$ åè¡ãã°ããããšãåããïŒæäœ $A,B$ ãè¡ãé åºã¯ä»»æã§ããããïŒæ±ããå Žåã®æ°ã¯ïŒ$$\\_{3+5}\\mathrm{C}_3=\\bold{56}$$ \r\néãã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcb030/editorial/12547"
}
] | ãã¯ãã座æšå¹³é¢äžã®ç¹ $P$ ã $(0, 0)$ ã«ããŸãïŒ$P$ ã«å¯Ÿããæäœ $A,B$ ã以äžã®ããã«å®ããŸãïŒ
- æäœ $A$ïŒç¹ $P$ ã $(x,y)$ ã«ãããšãïŒ$P$ ã $(x+2,y-3)$ ã«ç§»åãããïŒ
- æäœ $B$ïŒç¹ $P$ ã $(x,y)$ ã«ãããšãïŒ$P$ ã $(x-1,y+2)$ ã«ç§»åãããïŒ
ãæäœãäœåºŠãè¡ãïŒ$P$ ã $(1,1)$ ãžç§»åãããæ¹æ³ã¯äœéããããŸããïŒ |
OMCB030 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omcb030/tasks/4587 | C | OMCB030(C) | 200 | 280 | 322 | [
{
"content": "ã$m$ 㯠$\\mathrm{rad}(m)$ ã®åæ°ã§ããããšããïŒ$\\mathrm{rad}(m)$ 㯠$120$ ã®çŽæ°ã§ããïŒ$\\mathrm{rad}(m)$ ã¯åãçŽ æ°ã§é«ã
$1$ åããå²ãåããªãããšã«æ³šæãããšïŒ$\\mathrm{rad}(m)$ ã®å€ã®åè£ã¯ $2,3,5,6,10,15,30$ ã«çµãããïŒãããã $120$ ãå ãããã®ãæ€èšããã°ïŒ$m=125,135,150$ ãé©ããããšããããïŒæ±ããç·å㯠$\\mathbf{410}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcb030/editorial/4587"
}
] | ã$2$ 以äžã®æŽæ° $n$ ã«å¯ŸãïŒ$n$ ãæã€çžç°ãªãçŽ å æ°ã®ç·ç©ã $\mathrm{rad}(n)$ ã§è¡šããŸãïŒäŸãã°ïŒ$\mathrm{rad}(18)=2\times 3$ ã§ãïŒæ¬¡ã®çåŒãæºãã $2$ 以äžã®æŽæ° $m$ ã®ç·åãæ±ããŠãã ããïŒ
$$m=\mathrm{rad}(m)+120$$ |
OMCB030 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omcb030/tasks/12529 | D | OMCB030(D) | 200 | 240 | 258 | [
{
"content": "ãåé¡ã®äžæ¬¡æ¹çšåŒã®è§£ã $\\alpha,\\beta,\\gamma$ ãšãïŒ$s=\\dfrac{\\alpha+\\beta+\\gamma}{2}$ ãšããïŒè§£ãšä¿æ°ã®é¢ä¿ãã $s=\\dfrac{1}{2}\\cdot\\dfrac{2000}{1000}=1$ ã§ããïŒ\r\n\r\n$$(s-\\alpha)(s-\\beta)(s-\\gamma)=\\dfrac{1}{1000}(1000s^3-2000s^2+1300s-273)=\\dfrac{27}{1000}$$\r\n\r\nãšãªãïŒæ±ããäžè§åœ¢ã®é¢ç©ã¯ããã³ã®å
¬åŒããïŒ\r\n\r\n$$\\sqrt{s(s-\\alpha)(s-\\beta)(s-\\gamma)}=\\sqrt{\\dfrac{27}{1000}}$$\r\n\r\nã§ããããïŒè§£çãã¹ãå€ã¯ $\\bold{1027}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcb030/editorial/12529"
}
] | ãäžæ¬¡æ¹çšåŒ
$$1000x^3-2000x^2+1300x-273=0$$
㯠$3$ ã€ã®æ£ã®å®æ°è§£ããã¡ãŸãïŒ$3$ 蟺ã®é·ãããã® $3$ ã€ã®æ£ã®å®æ°ã«çããäžè§åœ¢ãååšããã®ã§ïŒãã®äžè§åœ¢ã®é¢ç©ãæ±ããŠãã ããïŒãã ãïŒçãã¯äºãã«çŽ ãªæ£ã®æŽæ° $a,b$ ãçšã㊠$\sqrt{\dfrac{a}{b}}$ ãšè¡šãããã®ã§ïŒ$a+b$ ã解çããŠãã ããïŒ |
OMCB030 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omcb030/tasks/9540 | E | OMCB030(E) | 200 | 107 | 153 | [
{
"content": "ãäžè§åœ¢ $BDH$ ãš äžè§åœ¢ $ADC$ ã¯çžäŒŒã§ããããïŒ\r\n$$3:HD=(4+HD):4$$\r\nãåŸãïŒ$HD=2$ ãåŸãïŒãããšïŒäžå¹³æ¹ã®å®çãã $BH=\\sqrt{13}$ïŒ$AB=3\\sqrt{5}$ã§ããïŒããã«ïŒäžè§åœ¢ $ABH$ ãš äžè§åœ¢ $EDH$ ã¯çžäŒŒã§ããããïŒ$DE=3\\sqrt{5}\\times\\displaystyle\\frac{2}{\\sqrt{13}}=\\displaystyle\\frac{6\\sqrt{65}}{13}$ ã§ããïŒç¹ã«è§£çãã¹ãå€ã¯ $\\mathbf{84}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcb030/editorial/9540"
},
{
"content": "ã$H$ ãåå¿ã§ããããšãã $AD$ ãš $BC$ ãçŽäº€ããŠããã®ã§ïŒ$D$ ãåç¹ã«äžèŽãããããã«åº§æšå¹³é¢ã«é
眮ããããªããŸãïŒä»¥äžïŒ$DH=2$ ãæ±ããåŸã®è§£çãšããŠèªãã§ãã ããïŒ\r\n\r\n___\r\n\r\nã$D(0,0),A(0,6),B(-3,0),C(4,0),H(0,2)$ ãšããŠããïŒçŽç· $BD,AC$ ã®æ¹çšåŒã¯ãããã\r\n$$y=\\frac{2}{3}x+2,\\ \\ \\ \\ y=-\\frac{3}{2}x+6$$\r\nã§ããããïŒãã®äº€ç¹ãèããããšã§ $E(24\\/13,42\\/13)$ ãåŸããïŒ\r\n$$DE=\\sqrt{\\left( \\frac{24}{13} \\right )^2 + \\left( \\frac{42}{13} \\right )^2} = \\frac{6\\sqrt{65}}{13}$$\r\nãã解çãã¹ãå€ã¯ $\\bf84$ ïŒ",
"text": "座æšã§è§£ã",
"url": "https://onlinemathcontest.com/contests/omcb030/editorial/9540/749"
}
] | ã$H$ ãåå¿ãšããéè§äžè§åœ¢ $ABC$ ãããïŒçŽç· $AH$ ãšç·å $BC$ ã®äº€ç¹ã $D$ïŒçŽç· $BH$ ãšç·å $CA$ ã®äº€ç¹ã $E$ ãšãããšïŒä»¥äžãæç«ããŸããïŒ
$$AH=4, \quad BD=3, \quad CD=4.$$
ãã®ãšãïŒç·å $DE$ ã®é·ããæ±ããŠãã ããïŒãã ãïŒæ±ããé·ãã¯äºãã«çŽ ãªæ£æŽæ° $a,c$ ãšå¹³æ¹å åããããªãæ£æŽæ° $b$ ãçšã㊠$\displaystyle\frac{a\sqrt{b}}{c}$ ãšè¡šããã®ã§ïŒ$a+b+c$ ã解çããŠãã ããïŒ |
OMCB030 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omcb030/tasks/11863 | F | OMCB030(F) | 300 | 58 | 142 | [
{
"content": "ã$2$ 人ã®ç§éã®å·®ã¯ç¡çæ°ãªã®ã§ïŒç«¯ã®çŽç·ã«åæã« $2$ 人ãããããšã¯ãªãããšã«æ°ãã€ãããšïŒ$2$ 人ãåãäœçœ®ã«ãªãã®ã¯æ¬¡ã® $2$ éãã§ããïŒ \r\n - 端ã®çŽç·ä»¥å€ã§å€ªéãããè±åãããåãæ¹åã«åãããªããè¿œãæããšã \r\nãããã¯äžåš $4$ ã¡ãŒãã«ã®ååšãåãå°ç¹ããåãæ¹åã«ã¹ã¿ãŒãããŠå€ªéãããè¿œãæãåæ°ãšèšãæããããïŒ$10000$ ç§ã§å€ªéãããè±åããã«å¯ŸããŠçžå¯Ÿçã« $10000(\\sqrt{3}-\\sqrt{2})$ ã¡ãŒãã«é²ãã®ã§ïŒãã®éã« $x$ åè¿œãæãããšãããšæ¬¡ãæãç«ã€ïŒ\r\n$$4x\\leq 10000(\\sqrt{3}-\\sqrt{2})\\lt 4(x+1)$$\r\nããã解ã㊠$x=794$ ãåŸãïŒ\r\n - 端ã®çŽç·ä»¥å€ã§å€ªéãããšè±åãããç°ãªãæ¹åã«åãããªããããéããšã \r\nãããã¯äžåš $4$ ã¡ãŒãã«ã®ååšãåã®äžå¿ãæãã§éåŽããç°ãªãæ¹åã«ã¹ã¿ãŒãããŠããéãåæ°ãšèšãæããããïŒ$10000$ ç§ã§å€ªéãããè±åããã«å¯ŸããŠçžå¯Ÿçã« $10000(\\sqrt{3}+\\sqrt{2})$ ã¡ãŒãã«é²ãã®ã§ïŒãã®éã« $y$ åããéã£ããšãããšïŒã¯ããã«äºäººãåã®äžå¿ãæãã§éåŽã«ããããšã«æ³šæããŠïŒæ¬¡ãæãç«ã€ïŒ\r\n$$4y-2\\leq 10000(\\sqrt{3}+\\sqrt{2})\\lt 4(y+1)-2$$\r\nããã解ã㊠$y=7866$ ãåŸãïŒ\r\n\r\n以äžããïŒæ±ããåæ°ã¯ $x+y=\\mathbf{8660}$ åã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcb030/editorial/11863"
}
] | ãè±åãããšå€ªéããã¯äžç·ã«äœè²é€šã§å埩暪跳ã³ãããããšã«ããŸããïŒäœè²é€šã«ã¯ $3$ æ¬ã®å¹³è¡ãªçŽç·ã $1$ ã¡ãŒãã«ééã§åŒããŠããïŒ$2$ 人ã¯ã¹ã¿ãŒãåã«äžå€®ã®çŽç·äžã®åãäœçœ®ã«ããŠïŒçŽç·ã«å¯ŸããŠåçŽãªåãæ¹åã«åæã«ã¹ã¿ãŒããïŒç«¯ã®çŽç·ã«å°çããã $180^\circ$ æãè¿ããŠïŒããäžæ¹ã®ç«¯ã«ããçŽç·ã«åããããšãç¹°ãè¿ããŸãïŒè±åãããšå€ªéããã¯åžžã«äžå®é床ã§ç§»åãïŒããããç§é $\sqrt{2}$ ã¡ãŒãã«ïŒç§é $\sqrt{3}$ ã¡ãŒãã«ã§ãïŒåæã«ã¹ã¿ãŒãã㊠$10000$ ç§çµéãããŸã§ã« $2$ 人ãåãäœçœ®ã«ããåæ°ãçããŠãã ããïŒãã ãïŒã¹ã¿ãŒãæã¯å«ãŸãïŒäœã®å€§ããã¯èããªããã®ãšããŸãïŒ |
OMCB030 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omcb030/tasks/8519 | G | OMCB030(G) | 300 | 65 | 84 | [
{
"content": "ã$\\angle{BAM}=\\angle{DAC}$ïŒ$\\angle{ABM}=\\angle{ADC}$ ã«ããäžè§åœ¢ $ABM$ ãšäžè§åœ¢ $ADC$ ã¯çžäŒŒã§ããããïŒ\r\n$$CM:CD=BM:CD=AM:AC$$\r\nãããš $\\angle{MCD}=\\angle{MAC}$ ã«ããäžè§åœ¢ $CMD$ ãšäžè§åœ¢ $AMC$ ã¯çžäŒŒã«ãªãïŒããã«ïŒ\r\n$$ \\angle{ADM}=\\angle{BAD}=\\angle{BCD}$$\r\nã§ããããïŒ\r\n$$ \\angle{ADC}=\\angle{ADM}+\\angle{MDC}=\\angle{BCD}+\\angle{ACM}=\\angle{ACD} $$\r\nãåŸãïŒ$AC=AD$ïŒããªãã¡ $AB=AM$ ãšãªãïŒãã£ãŠïŒäžç·å®çã«ãã $AC=\\textbf{129}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcb030/editorial/8519"
},
{
"content": "ã$DM$ ã®äœçœ®ãæµ®ããŠããã®ã§äŒžã°ããŠã¿ããããããè©ŠããŠã¿ããã§ãïŒ\r\n___\r\n\r\nã蟺 $AC$ ã®äžç¹ã $N$ ãšããïŒäžç¹é£çµå®çã«ãã $AB \\parallel NM$ ã§ããããïŒ$DM \\parallel AB$ ãšåãããŠïŒ$D,M,N$ ã¯åäžçŽç·äžã«ããïŒããã«ïŒ çŽç· $DM$ ãš $\\triangle ABC$ ã®å€æ¥åã®äº€ç¹ã®ãã¡ïŒ$D$ ã§ãªãæ¹ã $E$ ãšããïŒ\r\n\r\nãåé¡æã®æ¡ä»¶ïŒå¹³è¡ç·ã®é¯è§ïŒååšè§ã®å®çã«ããïŒ\r\n$$\\angle ECA=\\angle EDA = \\angle BAD = \\angle CAM$$\r\nãæãç«ã€ã®ã§ïŒé¯è§ãçããã®ã§ \r\n$$AM \\parallel EC \\tag{â}$$\r\n ã§ããïŒãŸãïŒ$\\triangle AMN \\equiv \\triangle CEN$ ïŒ$\\because\\angle ECN = \\angle MAN, \\ \\angle ENC = \\angle MNA,\\ AN=CN$ ããäžèŸºäž¡ç«¯è§çžçïŒã§ããããïŒ\r\n$$AM=EC \\tag{ââ}$$\r\nãæãç«ã€ã®ã§ïŒ(â)(ââ)ããåè§åœ¢ $AMCE$ ã¯å¹³è¡å蟺圢ã§ããïŒããããïŒ$AE \\parallel BC$ ã§ããïŒ ãããšïŒangle chase çã«ããåè§åœ¢ $ABCE$ ã¯çèå°åœ¢ã§ããããšããããã®ã§ïŒ$EC=AB=113$ ã§ããïŒãããš(ââ)ïŒäžç·å®çã«ãã $AC=\\bf129$ ãåŸãïŒ",
"text": "å¹³è¡å蟺圢ãšçèå°åœ¢ãèŠã€ãã",
"url": "https://onlinemathcontest.com/contests/omcb030/editorial/8519/750"
},
{
"content": "ãçŽç· $AM$ ãšå $ABC$ ã®äº€ç¹ã $E$ ãšãããšïŒ$\\angle BAD=\\angle EAC$ ã§ããïŒååšè§ã®å®çïŒãŸãã¯æ£åŒŠå®çïŒãã $BD=CE$ïŒ\\\r\nãç·å $BC$ ã®åçŽäºçåç·ã $\\ell$ ãšãããšïŒç¹ $D$ ãšç¹ $E$ 㯠$\\ell$ ã«ã€ããŠå¯Ÿç§°ãªäœçœ®ã«ååšãïŒ$â³MDE$ ã¯äºç蟺äžè§åœ¢ã§ããããšãïŒ$BC \\parallel DE$ ããããïŒ\\\r\n$AB \\parallel DM$ ãçšãããšïŒ$â³ ABM \\sim â³DME$ ã§ããïŒ$â³ABM$ ãäºç蟺äžè§åœ¢ã§ããããšããããïŒ",
"text": "AB=AMã®å¥èšŒæ",
"url": "https://onlinemathcontest.com/contests/omcb030/editorial/8519/751"
}
] | ã$AB \lt AC$ ãªãéè§äžè§åœ¢ $ABC$ ã«ãããŠïŒèŸº $BC$ ã®äžç¹ã $M$ ãšããŸãïŒäžè§åœ¢ $ABC$ ã®å€æ¥åäžã« $\angle{BAD}=\angle{CAM}$ ãªãç¹ $D ~ (\neq A)$ ããšã£ããšããïŒ$AB\parallel DM$ ãæãç«ã¡ãŸããïŒ$AB=113,~ BC=88$ ã§ãããšãïŒèŸº $CA$ ã®é·ããæ±ããŠãã ããïŒ |
OMCB030 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omcb030/tasks/10590 | H | OMCB030(H) | 400 | 47 | 88 | [
{
"content": "ã移ãå€ããã¢ãã¿ãŒã®æŽæ°ã«å
šãŠ $1$ ã足ãããšãèãããšïŒåé¡ã¯ $N$ ã $2N$ ãŸã㯠$N+1$ ã«ããããšã§ $1$ ã $M+1$ ã«ããããšãšåãã§ããïŒããããã®æäœã $A^\\prime ,B^\\prime $ ãšããïŒæ£æŽæ° $N$ ã«å¯Ÿã㊠$2$ é²æ°è¡šèšã§ã® $N$ ã®æ¡æ°ã $v(N)$ïŒæ¡åã $popcount(N)$ ãšè¡šããšïŒæ¬¡ãæãç«ã€ïŒ\r\n- æäœ $A^\\prime$ ã«ãã£ãŠ $v(N)$ 㯠$1$ å¢å ãïŒ$popcount(N)$ ã¯äžå€ã§ããïŒ\r\n- æäœ $B^\\prime$ ã«ãã£ãŠ $v(N),popcount(N)$ ã¯é«ã
$1$ å¢å ãïŒã©ã¡ããå¢å ããããšã¯ãªãïŒ\r\n\r\nãããã£ãŠæäœ $A^\\prime,B^\\prime$ ã¯åèšã§å°ãªããšã $v(M+1)+popcount(M+1)-2$ åè¡ããïŒå®éã«ãã®åæ°ã§ $1$ ã $M+1$ ã«ããããšã¯å¯èœã§ããïŒä»¥äžãã次ãåŸãïŒ\r\n$$f(M)=v(M+1)+popcount(M+1)-2$$\r\nããã§ïŒ\r\n$$\\begin{aligned}\r\n\\sum_{k=2^n-1}^{2^{n+1}-2}f(k)&=\\sum_{k=0}^{2^n-1}f(2^n-1+k)\\\\\\\\\r\n&=\\sum_{k=0}^{2^n-1}(v(2^n+k)+popcount(2^n+k)-2)\\\\\\\\\r\n&=\\sum_{k=0}^{2^n-1}(popcount(k)+n)\\\\\\\\\r\n&=n\\cdot 2^{n-1}+n\\cdot 2^n\\\\\\\\\r\n&=3n\\cdot 2^{n-1}\r\n\\end{aligned}$$\r\nãæãç«ã€ã®ã§ïŒæ±ããã¹ãå€ã¯æ¬¡ã®ããã«æ±ããããïŒ\r\n$$\\begin{aligned}\r\n&\\sum_{n=1}^{10}\\sum_{k=2^n-1}^{2^{n+1}-2}f(k)+f(2047)+f(2048)+f(2049)+f(2050)\\\\\\\\\r\n=&3\\sum_{n=1}^{10}n\\cdot 2^{n-1}+11+12+12+13\\\\\\\\\r\n=&\\bf27699\r\n\\end{aligned}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcb030/editorial/10590"
},
{
"content": "**è£é¡**ïŒ $f(2N+1)=f(N)+1$\r\n\r\nãè£é¡ãæãç«ããªããšä»®å®ãããšïŒ$f(2N+1)=f(2N-1)+2$ ãçµç±ããããšã«ãªãïŒãã®ããš $f(N-1)+3$ ãšå€åœ¢ãããšæå°æ§ã«ççŸããïŒ$f(N)+1 \\leq f(N-1)+2$ ã§ããïŒïŒ$f(2N+1)=f(2N-3)+4$ ãªã©ãšå€åœ¢ããŠãåæ§ã§ããïŒ\\\r\nããã®è£é¡ããïŒ$f(2N+2)=f(N)+2$ ããªãã¡ $f(2N)=f(N-1)+2$ ãçŽã¡ã«åŸãïŒ\r\n\r\n---\r\n\r\nã$$S_n=f(2^{n-1})+f(2^{n-1}+1)+\\cdots+f(2^n-1)$$\r\nãšãããšïŒ\r\n$$\\begin{aligned}\r\nS_{n+1} &= f(2^n)+\\cdots+f(2^{n+1}-1) \\\\\\\\\r\n&= \\\\{f(2^n)+f(2^n+2)+ \\cdots + f(2^{n+1}-2)\\\\}+\\\\{f(2^n+1)+f(2^n+3)+ \\cdots + f(2^{n+1}-1)\\\\}\\\\\\\\\r\n&= \\\\{f(2^{n-1}-1)+f(2^{n-1})+ \\cdots + f(2^n-2)+2 \\cdot 2^{n-1}\\\\}+\\\\{f(2^{n-1})+ \\cdots + f(2^n-1)+2^{n-1}\\\\} \\\\\\\\\r\n&= \\\\{f(2^{n}-1)-1+f(2^{n-1})+ \\cdots + f(2^n-2)+2 \\cdot 2^{n-1}\\\\}+\\\\{f(2^{n-1})+ \\cdots + f(2^n-1)+2^{n-1}\\\\}\\\\\\\\\r\n&= 2S_n+3 \\cdot 2^{n-1}-1\r\n\\end{aligned}$$\r\n\r\nã$S_1=1$ ãçšããŠæŒžååŒã解ãã° $S_n=3(n-1)2^{n-2}+1$ ãåŸãïŒ\\\r\nãæ±ãããå€ã¯ $S_1+\\cdots+S_{11}+f(2048)+f(2049)+f(2050)$ ã§ããïŒããšã¯èšç®ããã°ããïŒ",
"text": "å¥è§£",
"url": "https://onlinemathcontest.com/contests/omcb030/editorial/10590/752"
}
] | ã$1$ ã€ã®æŽæ°ãæ ãã¢ãã¿ãŒãšãã¿ã³ $A,B$ ããããŸãïŒã¢ãã¿ãŒã«æŽæ° $N$ ãæ ãããŠãããšãïŒãã¿ã³ $A,B$ ãæŒãããšã§ã¢ãã¿ãŒã®æŽæ°ã¯ãããã $2N+1,N+1$ ã«å€ãããŸãïŒäŸãã°ã¢ãã¿ãŒã« $3$ ãæ ãããŠãããšãïŒ$A,B,A$ ã®é ã«ãã¿ã³ãæŒãããšã§ã¢ãã¿ãŒã®æ°ã¯ $3\rightarrow 7\rightarrow 8\rightarrow 17$ ãšå€åããŸãïŒ\
ã$0$ ãæ ãããã¢ãã¿ãŒã«å¯ŸããŠïŒãã¿ã³ $A,B$ ãåèš $n$ åæŒããŠæŽæ° $M$ ãæ ã£ããšãïŒ$n$ ãšããŠèãããæå°å€ã $f(M)$ ãšããŸãïŒæ¬¡ã®å€ãæ±ããŠãã ããïŒ
$$f(1)+f(2)+\dots+f({2050})$$ |
OMC237 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc237/tasks/11909 | A | OMC237(A) | 100 | 307 | 322 | [
{
"content": "ãå³ã®å³ã«ã¯ $13$ åã®ãã¹ãããªãã®ã§ïŒLååã®ã¿ã€ã«ã $4$ ã€çœ®ããšã¡ããã©äžã€ã®ãã¹ç®ã«ã®ã¿Lååã®ã¿ã€ã«ã眮ãããŠããªãããšã«æ°ãã€ããŠïŒæ¬¡ã®ãããªå ŽååããããïŒ\r\n- äžå€®ã®ãã¹ã«Lååã®ã¿ã€ã«ã眮ãããªããšãïŒäžçªäžã®ãã¹ã«Lååã®ã¿ã€ã«ã眮ãæ¹æ³ $2$ éãã決ããã°æ®ãã® Lååã®ã¿ã€ã«ã®çœ®ãæ¹ã¯äžæã§ããïŒ\r\n- äžå€®ã®ãã¹ã«Lååã®ã¿ã€ã«ã眮ããããšãïŒLååã®ã¿ã€ã«ã眮ãããªããã¹ã¯äžå€®ã®ãã¹ãšèŸºãé ç¹ãå
±æããªã端ã®ãã¹ã§ããïŒäžçªäžã®ãã¹ã«Lååã®ã¿ã€ã«ã眮ãããªããšãããšïŒäžçªäžã®ãã¹ã«Lååã®ã¿ã€ã«ã眮ãæ¹æ³ $2$ éãã決ããã°æ®ãã®Lååã®ã¿ã€ã«ã®çœ®ãæ¹ã¯äžæã§ããïŒä» $3$ ãã¹ã«ã€ããŠãåæ§ã« $2$ éãã§ããïŒ\r\n\r\nã以äžããLååã®ã¿ã€ã«ã®çœ®ãæ¹ã¯ $2+2\\times 4=\\mathbf{10}$ éãã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc237/editorial/11909"
}
] | ãäžå³å·Šã®ãããªïŒ$3$ ã€ã®ãã¹ãLååã«äžŠã¹ãŠã§ããã¿ã€ã«ããããŸãïŒãã®ã¿ã€ã« $4$ ã€ãäžå³å³ã®å³åœ¢ã«ã¯ã¿åºãã»éãªãã®ãªãããã«çœ®ãæ¹æ³ã¯äœéããããŸããïŒ\
ããã ãïŒå転ãè£è¿ãã«ãã£ãŠäžèŽãã眮ãæ¹ãåºå¥ãããã®ãšããŸãïŒ
![figure 1](\/images\/4pBww4BPTqJYGSYrRuGAg3JsCFq1AtZ6Bz5Lah21) |
OMC237 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc237/tasks/11468 | B | OMC237(B) | 200 | 138 | 224 | [
{
"content": "ã$F(x)=f(x)-2x-1$ ãšãããšïŒ$F(1)=F(2)=F(3)=0$ ãªã®ã§ïŒããæŽæ°ä¿æ°å€é
åŒ $g(x)$ ã§ãã£ãŠïŒ\r\n$$\r\nf(x)=g(x)(x-1)(x-2)(x-3)+2x+1\r\n$$\r\nãæºãããã®ããšããïŒ$f(4)=567$ ã§ããããïŒ$g(4)=93$ ã§ããïŒãã£ãŠïŒããæŽæ°ä¿æ°å€é
åŒ $h(x)$ ã§ãã£ãŠïŒ\r\n$$\r\ng(x)=h(x)(x-4)+93\r\n$$\r\nãæºãããã®ããšããïŒä»¥äžããïŒ\r\n$$\r\nf(10)=504g(10)+21=504(6h(10)+93)+21 = 3024h(10)+46893\r\n$$\r\nãšãªãïŒ$h(10)$ ã¯æŽæ°ã§ããïŒéã«ä»»æã®æŽæ° $n$ ã«å¯ŸããŠïŒ$h(x)=x-10+n$ ãšããã°ïŒ$h(10)=n$ ãšãªãããïŒ$f(10)$ 㯠$3024n+46893$ ãšãã圢ã®æŽæ°ã®æŽæ°ã®ã¿åãããšãã§ããïŒ$46893 \\equiv 1533 \\pmod{3024}$ ãªã®ã§ïŒãã®åœ¢ã®æ£æŽæ°ã§å°ããæ¹ãã $5$ çªç®ã®å€ã¯ $3024 \\cdot 4 + 1533=\\mathbf{13629}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc237/editorial/11468"
}
] | ãæŽæ°ä¿æ°å€é
åŒ $f$ ã以äžãæºãããŸãïŒ
$$
f(1)=3, ~ f(2)=5, ~ f(3)=7, ~ f(4)=567
$$
$f(10)$ ããšã**æ£æŽæ°å€**ãšããŠãããããã®ã®ãã¡ïŒå°ããæ¹ãã $5$ çªç®ã®å€ãæ±ããŠãã ããïŒ |
OMC237 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc237/tasks/8454 | C | OMC237(C) | 300 | 130 | 186 | [
{
"content": "ã蟺$AB, BC, CD, DA$ ã®äžç¹ã $P, Q, R, S$ ãšããïŒäžç¹é£çµå®çãã\r\n$$PQ \\parallel AC \\parallel SR,\\quad QR \\parallel BD \\parallel PS$$\r\nãæãç«ã€ïŒããã«ïŒ$AC \\perp BD$ ã§ããããåè§åœ¢ $PQRS$ ã¯é·æ¹åœ¢ã§ããïŒç¹ã« $PQ=AC\\/2=BD\\/2=QR$ ã§ããããåè§åœ¢ $PQRS$ ã¯æ£æ¹åœ¢ã§ããïŒ\\\r\nãããã§å¯Ÿè§ç· $AC$ ãš $BD$ ã®äº€ç¹ã $M$ ãšãããšïŒ\r\n$$PM = PA = 2, \\quad RM = RD = \\frac52$$\r\nã§ããïŒ\r\n$$\\angle PMR = \\angle PMQ + \\angle QMR = \\angle PBQ + \\angle QCR = \\angle ABC + \\angle BCD = 120^{\\circ}$$\r\nãæãç«ã€ã®ã§ïŒäœåŒŠå®çãã次ããããïŒ\r\n$$PR^2 = PM^2+RM^2 - 2PM \\cdot RM \\cos\\angle PMR = \\frac{61}{4}$$\r\nããŠïŒæ£æ¹åœ¢ $PQRS$ ã®é¢ç©ã¯ $PR^2\\/2$ ã§ããïŒåè§åœ¢$ABCD$ã®é¢ç©ã¯æ£æ¹åœ¢ $PQRS$ ã®é¢ç©ã® $2$ åã§ããããïŒæ±ããé¢ç©ã¯ $PR^2$ ã«çããïŒç¹ã«è§£çãã¹ãå€ã¯ $\\bf65$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc237/editorial/8454"
},
{
"content": "ã察è§ç·ã®äº€ç¹ã $O$ ãšãïŒ$\\angle OBA=\\theta$ ãšããïŒãã®ãšã $\\angle OCD=30^{\\circ}-\\theta$ ã§ããïŒ$OA+OC=OB+OD$ ãã\r\nã$$4 \\sin \\theta+5 \\cos (30^{\\circ}-\\theta)=4 \\cos \\theta+5 \\sin (30^{\\circ}-\\theta)$$\r\nãå æ³å®çã䜿ã£ãŠããæŽçãããšïŒ\r\n$$\\tan \\theta =\\dfrac{13-5 \\sqrt{3}}{13+5 \\sqrt{3}}$$\r\nãåŸãïŒåŸã£ãŠïŒäžã€ã®éè§ã $\\theta$ ã§ãããããªçŽè§äžè§åœ¢ã®äžèŸºã®é·ãã®æ¯ã¯ $(13+5 \\sqrt{3}) : (13-5 \\sqrt{3}) : 2 \\sqrt{122}$ ã§ããããšããããïŒ\r\n$$\\sin \\theta =\\dfrac{13-5 \\sqrt{13}}{2 \\sqrt{122}}, \\cos \\theta =\\dfrac{13+5 \\sqrt{13}}{2 \\sqrt{122}}$$\r\nã§ããïŒãããçšã㊠$AC=BD$ ãèšç®ãããš $\\dfrac{\\sqrt{122}}{2}$ ãšãªãïŒåè§åœ¢ã®é¢ç©ã¯ïŒ$\\dfrac{1}{2}Ã\\left( \\dfrac{\\sqrt{122}}{2} \\right)^2=\\dfrac{61}{4}$",
"text": "äžè§æ¯",
"url": "https://onlinemathcontest.com/contests/omc237/editorial/8454/743"
},
{
"content": "ãæ±ããã¹ãé¢ç©ã¯ $\\dfrac{1}{2} à ACÃBD$ ã§ããïŒ$AC=BD$ ãæ±ãŸãã°ããïŒ\\\r\nãããã§ïŒ$\\overrightarrow{AC}=\\overrightarrow{BE}$ ãæºãããããªè£å©ç¹ $E$ ãåããïŒ$â³ BDE$ ã¯çŽè§äºç蟺äžè§åœ¢ãªã®ã§ïŒ$DE$ ã®é·ããæ±ãããïŒ\\\r\nãäžæ¹ $\\triangle CDE$ ã«ã€ããŠïŒ$CD=5$ïŒ$CE=AB=4$ïŒ$\\angle ECD=120^ \\{\\circ}$ ããïŒäœåŒŠå®çãçšããã° $DE=\\sqrt{61}$ ã§ããïŒ\\\r\nãããšã¯é©åœã«èšç®ããã°åè§åœ¢ã®é¢ç©ãæ±ãŸãïŒ",
"text": "å¥è§£",
"url": "https://onlinemathcontest.com/contests/omc237/editorial/8454/744"
},
{
"content": "ã($AC,BD$ ã¯é·ããçãããã€çŽäº€ããŠããïŒããã§ïŒ$AC$ ã $BD$ ã«ç§»ããšãã®å転ã®äžå¿ãèãããïŒå
·äœçã«ã¯âŠ ) \r\n\r\nã$AB,CD$ ã®åçŽäºçåç·ã®äº€ç¹ã $P$ ãšããïŒäžèŸºçžçããïŒ$\\triangle{PAC}\\equiv\\triangle{PBD}$ ã§ããïŒ$AC\\perp BD$ ããïŒ$\\triangle{PBD}$ 㯠$\\triangle{PAC}$ ã $P$ ãäžå¿ã« $90^{\\circ}$ å転ãããã®ãªã®ã§ïŒ$\\angle{APB}=\\angle{CPD}=90^{\\circ}$ ãšãªãïŒ$\\triangle{PAB},\\triangle{PCD}$ ã¯çŽè§äºç蟺äžè§åœ¢ãšãªãïŒ \r\nããã£ãŠïŒ$\\angle{B}+\\angle{C}=120^{\\circ}$ ããïŒè§ãè¿œããšïŒ$\\angle{BPC}=150^{\\circ},\\angle{APD}=30^{\\ciirc}$ ãšãªãã®ã§ïŒæ±ããé¢ç©ã¯ $$\\triangle{PAB}+\\triangle{PBC}+\\triangle{PCD}+\\triangle{PDA}=4+\\dfrac{5}{2}+\\dfrac{25}{4}+\\dfrac{5}{2}=\\dfrac{61}{4}$$",
"text": "å転ã®äžå¿ãèãã",
"url": "https://onlinemathcontest.com/contests/omc237/editorial/8454/758"
}
] | ãåžåè§åœ¢ $ABCD$ ã®äºæ¬ã®å¯Ÿè§ç·ã¯é·ããçããïŒåçŽã«äº€ãããŸãïŒ
$$AB=4, \quad CD=5, \quad \angle B + \angle C = 120^{\circ}$$
ãã¿ãããšãïŒåè§åœ¢ $ABCD$ ã®é¢ç©ã¯äºãã«çŽ ãªæ£ã®æŽæ° $a,b$ ãçšã㊠$\dfrac ab$ ãšè¡šããŸãïŒ$a+b$ ã解çããŠãã ããïŒ |
End of preview. Expand
in Dataset Viewer.
Data source: https://onlinemathcontest.com/
- Downloads last month
- 22