mask
imagewidth (px) 128
1.6k
| target_img_dataset
stringclasses 2
values | img_id
stringlengths 2
16
| ann_id
stringlengths 1
8
|
---|---|---|---|
COCO | 339734 | 200890 |
|
COCO | 537379 | 211233 |
|
COCO | 109730 | 1991912 |
|
OpenImages | bcabc07fb161267a | c87485db |
|
COCO | 502857 | 636870 |
|
COCO | 535467 | 1760742 |
|
COCO | 182424 | 336326 |
|
COCO | 32231 | 1635260 |
|
COCO | 536540 | 61533 |
|
COCO | 111492 | 148350 |
|
COCO | 496855 | 603217 |
|
OpenImages | 96a31c58ef46de06 | 41669b91 |
|
OpenImages | 24463de8dd7e6225 | 5f64f48d |
|
COCO | 349400 | 1981591 |
|
COCO | 472027 | 1271596 |
|
OpenImages | 12cdc64468db41f6 | 95618870 |
|
OpenImages | a44292c4919d3500 | 5155dec4 |
|
COCO | 53644 | 1081614 |
|
COCO | 527060 | 1744350 |
|
COCO | 404059 | 1184477 |
|
OpenImages | c50afd6612e78a70 | 3455b7b9 |
|
OpenImages | d461e61901e7587b | 179e57c1 |
|
OpenImages | cc407b181731b811 | 292af2c8 |
|
OpenImages | d9b79379f94a8c5a | 0556a89f |
|
OpenImages | 56ab651d77331e4c | ed8a7aa2 |
|
OpenImages | b18ce90fbf7a480c | ab0d8c95 |
|
OpenImages | 3dcfbea09f80f319 | 0bb97127 |
|
OpenImages | 5725caf6472131c9 | ae4712d0 |
|
OpenImages | 64735af0b6d1afdd | 5ec8a2de |
|
COCO | 287094 | 571671 |
|
OpenImages | 6a8cabf4c3c8d5f5 | 9a3656c3 |
|
OpenImages | a800cda6dc5133db | e38a4540 |
|
COCO | 243341 | 44638 |
|
OpenImages | 989681c5833c10c1 | 03946e16 |
|
OpenImages | f139ae1361d18bed | fc522af9 |
|
OpenImages | 9359678320dba397 | c4ea367d |
|
OpenImages | 406cbddea1e44ede | 94b15a63 |
|
OpenImages | 5f529edfac691407 | f915a871 |
|
COCO | 174386 | 1547411 |
|
OpenImages | 6901d42354ef51e8 | cfe5b610 |
|
OpenImages | 50e24f711b7f64fc | 4d32a564 |
|
OpenImages | 942f5ae587a8250c | 40869358 |
|
OpenImages | e426663f0fa2cc11 | 36228ed7 |
|
OpenImages | ebb02bca704c06c9 | 3313dddd |
|
OpenImages | 4bc1fb49d96743dc | 0b2048b2 |
|
OpenImages | afc0d6105bd67821 | 865680ef |
|
OpenImages | 81fe210bbd86221f | e307fb28 |
|
OpenImages | cf872bd538f56d08 | 751d2867 |
|
COCO | 74462 | 505390 |
|
OpenImages | f687c8326a19a0ae | c50c4fcf |
|
OpenImages | 78733aebec8862c5 | 634fcabd |
|
OpenImages | 190425ce5181e462 | 5150223b |
|
COCO | 20268 | 1668489 |
|
OpenImages | d96b4d0fe2dbcf9d | 2f13e781 |
|
COCO | 468443 | 248665 |
|
OpenImages | 5e9577ec77fb1986 | 48c0ea76 |
|
OpenImages | d38e19fcf06bd478 | 18143866 |
|
OpenImages | 6f1bb458eb81dd27 | d7c42f5b |
|
OpenImages | 93c56b102008673b | fd22de9b |
|
COCO | 33631 | 690176 |
|
OpenImages | a824f3326c0882e0 | 05fc1882 |
|
COCO | 303476 | 1151335 |
|
OpenImages | 8ff0734feb171936 | 703e1918 |
|
OpenImages | 10cd3b8a5a2e6453 | 3dc2af6b |
|
OpenImages | 32eba8346c7e3ea6 | ee90a08f |
|
OpenImages | 7b362c303ac4952e | cb36d595 |
|
COCO | 320246 | 1238482 |
|
OpenImages | c3d147bb51094f09 | 1c30c896 |
|
OpenImages | 0f750eff98361262 | b634978c |
|
COCO | 182902 | 1576916 |
|
OpenImages | 300274bf2a9cdda9 | d6ac2497 |
|
OpenImages | 902e72bac053a974 | d3ed1c8f |
|
OpenImages | 463179637f493c4b | 358540e1 |
|
COCO | 197036 | 1155245 |
|
OpenImages | 8eae2ef70aed5b00 | 3d148173 |
|
OpenImages | db1a715ff5386f1a | 6c0c097a |
|
OpenImages | 3dcd65fa72f5b1f8 | bb016d2a |
|
COCO | 556695 | 1236056 |
|
COCO | 418699 | 1159064 |
|
OpenImages | b1dae527887e680d | 706e3a1c |
|
OpenImages | ec02e6718e9cb470 | 4bbcae14 |
|
COCO | 233954 | 31608 |
|
OpenImages | 96077223ada88666 | e709700c |
|
OpenImages | b689aa91b2cdcc49 | 17a19de1 |
|
OpenImages | bad221bc6a40f4e3 | 92173762 |
|
COCO | 48685 | 455840 |
|
OpenImages | 66c62d782573ea4d | e641bfcf |
|
COCO | 305564 | 1116941 |
|
OpenImages | f03c1eb257788c94 | c3010665 |
|
OpenImages | 7bffe5e4bb8445ff | f1280283 |
|
OpenImages | 9902931244c9d83e | c1fc319e |
|
COCO | 264322 | 1352560 |
|
COCO | 225241 | 1298142 |
|
COCO | 297299 | 86104 |
|
OpenImages | eb745891cce328f9 | 6b9f8bcc |
|
OpenImages | d2fe2358980da9b2 | d80ce8f8 |
|
OpenImages | 9f4b0c2435246174 | 2a3e169b |
|
OpenImages | bba9fb0465b5b436 | 7a16611b |
|
OpenImages | ff2686ab2649e866 | 262f7e2a |
|
OpenImages | b90f485f9d27cd9d | b0976715 |
End of preview. Expand
in Dataset Viewer.
Dataset Card for PIPE Masks Dataset
Dataset Summary
The PIPE (Paint by InPaint Edit) dataset is designed to enhance the efficacy of mask-free, instruction-following image editing models by providing a large-scale collection of image pairs and diverse object addition instructions. Here, we provide the masks used for the inpainting process to generate the source image for the PIPE dataset for both the train and test sets. Further details can be found in our project page and paper.
Columns
mask
: The removed object mask used for creating the inpainted image.target_img_dataset
: The dataset to which the target image belongs.img_id
: The unique identifier of the GT image (the target image).ann_id
: The identifier of the object segmentation annotation of the object removed.
Loading the PIPE Masks Dataset
Here is an example of how to load and use this dataset with the datasets
library:
from datasets import load_dataset
data_files = {"train": "data/train-*", "test": "data/test-*"}
dataset_masks = load_dataset('paint-by-inpaint/PIPE_Masks',data_files=data_files)
# Display an example
example_train_mask = dataset_masks['train'][0]
print(example_train_mask)
example_test_mask = dataset_masks['test'][0]
print(example_test_mask)
- Downloads last month
- 345