|
import os
|
|
import datasets
|
|
from huggingface_hub import HfFileSystem
|
|
from typing import List, Tuple
|
|
|
|
|
|
logger = datasets.logging.get_logger(__name__)
|
|
fs = HfFileSystem()
|
|
|
|
|
|
_CITATION = """
|
|
|
|
"""
|
|
_DESCRIPTION = """
|
|
This dataset extracts the mouth region from short clips of Vietnamese speakers.
|
|
"""
|
|
_HOMEPAGE = "https://github.com/tanthinhdt/vietnamese-av-asr"
|
|
_MAIN_REPO_PATH = "datasets/phdkhanh2507/vietnamese-speaker-lip-clip-v1"
|
|
_REPO_URL = "https://huggingface.co/{}/resolve/main"
|
|
_URLS = {
|
|
"meta": f"{_REPO_URL}/metadata/".format(_MAIN_REPO_PATH) + "{channel}.parquet",
|
|
"visual": f"{_REPO_URL}/visual/".format(_MAIN_REPO_PATH) + "{channel}.zip",
|
|
}
|
|
_CONFIGS = ["all"]
|
|
if fs.exists(_MAIN_REPO_PATH + "/metadata"):
|
|
_CONFIGS.extend([
|
|
os.path.basename(file_name)[:-8]
|
|
for file_name in fs.listdir(_MAIN_REPO_PATH + "/metadata", detail=False)
|
|
if file_name.endswith(".parquet")
|
|
])
|
|
|
|
|
|
class VietnameseSpeakerLipClipConfig(datasets.BuilderConfig):
|
|
"""Vietnamese Speaker Clip configuration."""
|
|
|
|
def __init__(self, name, **kwargs):
|
|
"""
|
|
:param name: Name of subset.
|
|
:param kwargs: Arguments.
|
|
"""
|
|
super(VietnameseSpeakerLipClipConfig, self).__init__(
|
|
name=name,
|
|
version=datasets.Version("1.0.0"),
|
|
description=_DESCRIPTION,
|
|
**kwargs,
|
|
)
|
|
|
|
|
|
class VietnameseSpeakerLipClip(datasets.GeneratorBasedBuilder):
|
|
"""Vietnamese Speaker Clip dataset."""
|
|
|
|
BUILDER_CONFIGS = [VietnameseSpeakerLipClipConfig(name) for name in _CONFIGS]
|
|
DEFAULT_CONFIG_NAME = "all"
|
|
|
|
def _info(self) -> datasets.DatasetInfo:
|
|
features = datasets.Features({
|
|
"id": datasets.Value("string"),
|
|
"channel": datasets.Value("string"),
|
|
"visual": datasets.Value("string"),
|
|
"duration": datasets.Value("float64"),
|
|
"fps": datasets.Value("int8"),
|
|
"audio": datasets.Value("string"),
|
|
"sampling_rate": datasets.Value("int64"),
|
|
})
|
|
|
|
return datasets.DatasetInfo(
|
|
description=_DESCRIPTION,
|
|
features=features,
|
|
homepage=_HOMEPAGE,
|
|
citation=_CITATION,
|
|
)
|
|
|
|
def _split_generators(
|
|
self, dl_manager: datasets.DownloadManager
|
|
) -> List[datasets.SplitGenerator]:
|
|
"""
|
|
Get splits.
|
|
:param dl_manager: Download manager.
|
|
:return: Splits.
|
|
"""
|
|
config_names = _CONFIGS[1:] if self.config.name == "all" else [self.config.name]
|
|
|
|
metadata_paths = dl_manager.download(
|
|
[_URLS["meta"].format(channel=channel) for channel in config_names]
|
|
)
|
|
visual_dirs = dl_manager.download_and_extract(
|
|
[_URLS["visual"].format(channel=channel) for channel in config_names]
|
|
)
|
|
|
|
visual_dict = {
|
|
channel: visual_dir for channel, visual_dir in zip(config_names, visual_dirs)
|
|
}
|
|
|
|
return [
|
|
datasets.SplitGenerator(
|
|
name=datasets.Split.TRAIN,
|
|
gen_kwargs={
|
|
"metadata_paths": metadata_paths,
|
|
"visual_dict": visual_dict,
|
|
},
|
|
),
|
|
]
|
|
|
|
def _generate_examples(
|
|
self, metadata_paths: List[str],
|
|
visual_dict: dict,
|
|
audio_dict: dict,
|
|
) -> Tuple[int, dict]:
|
|
"""
|
|
Generate examples from metadata.
|
|
:param metadata_paths: Paths to metadata.
|
|
:param visual_dict: Paths to directory containing videos.
|
|
:param audio_dict: Paths to directory containing audios.
|
|
:yield: Example.
|
|
"""
|
|
dataset = datasets.load_dataset(
|
|
"parquet",
|
|
data_files=metadata_paths,
|
|
split="train",
|
|
)
|
|
for i, sample in enumerate(dataset):
|
|
channel = sample["channel"]
|
|
visual_path = os.path.join(
|
|
visual_dict[channel], channel, sample["id"] + ".mp4"
|
|
)
|
|
|
|
yield i, {
|
|
"id": sample["id"],
|
|
"channel": channel,
|
|
"visual": visual_path,
|
|
"duration": sample["duration"],
|
|
"fps": sample["fps"],
|
|
"sampling_rate": sample["sampling_rate"],
|
|
}
|
|
|