metadata
language:
- en
license: apache-2.0
multilinguality:
- monolingual
source_datasets:
- bartman081523/stable-diffusion-discord-prompts
- succinctly/midjourney-prompts
- Gustavosta/Stable-Diffusion-Prompts
pretty_name: multi text2image prompts a dataset collection
tags:
- text generation
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
- config_name: original
data_files:
- split: train
path: original/train-*
- split: test
path: original/test-*
dataset_info:
- config_name: default
features:
- name: text
dtype: string
- name: src_dataset
dtype: string
splits:
- name: train
num_bytes: 262736830
num_examples: 1677221
- name: test
num_bytes: 56294291
num_examples: 292876
download_size: 151054782
dataset_size: 319031121
- config_name: original
features:
- name: text
dtype: string
- name: src_dataset
dtype: string
splits:
- name: train
num_bytes: 741427383
num_examples: 3551734
- name: test
num_bytes: 83615440
num_examples: 399393
download_size: 402186258
dataset_size: 825042823
task_categories:
- text-generation
- feature-extraction
text2image multi-prompt(s): a dataset collection
- collection of several text2image prompt datasets
- data was cleaned/normalized with the goal of removing "model specific APIs" like the "--ar" for Midjourney and so on
- data de-duplicated on a basic level: exactly duplicate prompts were dropped (after cleaning and normalization)
updates
- Oct 2023: the
default
config has been updated with better deduplication. It was deduplicated with minhash (params: n-gram size set to 3, deduplication threshold at 0.6, hash function chosen as xxh3 with 32-bit hash bits, and 128 permutations with a batch size of 10,000.) which drops 2+ million rows.- original version is still available under
config_name="original"
- original version is still available under
contents
default:
DatasetDict({
train: Dataset({
features: ['text', 'src_dataset'],
num_rows: 1677221
})
test: Dataset({
features: ['text', 'src_dataset'],
num_rows: 292876
})
})
For original
config:
DatasetDict({
train: Dataset({
features: ['text', 'src_dataset'],
num_rows: 3551734
})
test: Dataset({
features: ['text', 'src_dataset'],
num_rows: 399393
})
})
NOTE: as the other two datasets did not have a validation
split, the validation split of succinctly/midjourney-prompts
was merged into train
.