Dataset Viewer

The viewer is disabled because this dataset repo requires arbitrary Python code execution. Please consider removing the loading script and relying on automated data support (you can use convert_to_parquet from the datasets library). If this is not possible, please open a discussion for direct help.

Dataset Card for Describable Textures Dataset (DTD)

Dataset Details

Dataset Description

The Describable Textures Dataset (DTD) is a texture classification dataset consisting of 5,640 images categorized into 47 texture classes based on human perception. Each image is labeled with a primary texture category (key attribute) and may have additional joint attributes representing secondary textures. The dataset is divided into three equal splits (train, validation, test) with 40 images per class per split.

Dataset Sources

  • Homepage: https://www.robots.ox.ac.uk/~vgg/data/dtd/
  • Paper: Cimpoi, M., Maji, S., Kokkinos, I., Mohamed, S., & Vedaldi, A. (2014). Describing textures in the wild. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3606-3613).

Dataset Structure

Each sample in the dataset contains:

  • image: A variable-sized RGB image

  • label: A categorical label representing the texture class

Total images: 5,640

Classes: 47 (e.g., banded, blotchy, chequered, cracked, dotted, grid, lined, marbled, porous, striped, etc.)

Splits:

  • Train: 1,880 images (40 per class)

  • Validation: 1,880 images (40 per class)

  • Test: 1,880 images (40 per class)

Image specs: Variable sizes (300×300 to 640×640 pixels), RGB

Example Usage

Below is a quick example of how to load this dataset via the Hugging Face Datasets library.

from datasets import load_dataset  

# Load the dataset  
dataset = load_dataset("../../aidatasets/images/dtd.py", split="train", trust_remote_code=True)
# dataset = load_dataset("../../aidatasets/images/dtd.py", split="validation", trust_remote_code=True)
# dataset = load_dataset("../../aidatasets/images/dtd.py", split="test", trust_remote_code=True)  

# Access a sample from the dataset  
example = dataset[0]  
image = example["image"]  
label = example["label"]  

image.show()  # Display the image  
print(f"Label: {label}")

Citation

BibTeX:

@inproceedings{cimpoi2014describing, title={Describing textures in the wild}, author={Cimpoi, Mircea and Maji, Subhransu and Kokkinos, Iasonas and Mohamed, Sammy and Vedaldi, Andrea}, booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition}, pages={3606--3613}, year={2014} }

Downloads last month
9