Datasets:
Tasks:
Image Classification
Formats:
parquet
Sub-tasks:
multi-class-image-classification
Languages:
English
Size:
1K - 10K
License:
metadata
annotations_creators:
- expert-generated
language_creators:
- expert-generated
language:
- en
license:
- mit
multilinguality:
- monolingual
size_categories:
- 1K<n<10K
source_datasets:
- extended
task_categories:
- image-classification
task_ids:
- multi-class-image-classification
pretty_name: Beans
dataset_info:
features:
- name: image_file_path
dtype: string
- name: image
dtype: image
- name: labels
dtype:
class_label:
names:
'0': angular_leaf_spot
'1': bean_rust
'2': healthy
- name: embedding_foundation
sequence: float32
- name: embedding_ft
sequence: float32
- name: outlier_score_ft
dtype: float64
- name: outlier_score_foundation
dtype: float64
- name: nn_image
dtype: image
splits:
- name: train
num_bytes: 293531811.754
num_examples: 1034
download_size: 0
dataset_size: 293531811.754
Dataset Card for "beans-outlier"
📚 This dataset is an enhancved version of the ibean project of the AIR lab.
The workflow is described in the medium article: Changes of Embeddings during Fine-Tuning of Transformers.
Explore the Dataset
The open source data curation tool Renumics Spotlight allows you to explorer this dataset. You can find a Hugging Face Space running Spotlight with this dataset here: https://huggingface.co/spaces/renumics/beans-outlier
Or you can explorer it locally:
!pip install renumics-spotlight datasets
from renumics import spotlight
import datasets
ds = datasets.load_dataset("renumics/beansoutlier", split="train")
df = ds.to_pandas()
df["label_str"] = df["labels"].apply(lambda x: ds.features["labels"].int2str(x))
dtypes = {
"nn_image": spotlight.Image,
"image": spotlight.Image,
"embedding_ft": spotlight.Embedding,
"embedding_foundation": spotlight.Embedding,
}
spotlight.show(
df,
dtype=dtypes,
layout="https://spotlight.renumics.com/resources/layout_pre_post_ft.json",
)