File size: 6,997 Bytes
722bcc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1c0bc2
722bcc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1c0bc2
722bcc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1c0bc2
722bcc5
 
 
 
 
 
 
 
 
 
b1c0bc2
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
# coding=utf-8
# Copyright 2021 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Dataset class for Food-101 dataset."""

import datasets
from datasets.tasks import ImageClassification

import pandas as pd

from pathlib import Path
from datasets import load_dataset


_BASE_URL = "http://data.vision.ee.ethz.ch/cvl/food-101.tar.gz"

_METADATA_URLS = {
    "train": "https://s3.amazonaws.com/datasets.huggingface.co/food101/meta/train.txt",
    "test": "https://s3.amazonaws.com/datasets.huggingface.co/food101/meta/test.txt",
}

_HOMEPAGE = "https://data.vision.ee.ethz.ch/cvl/datasets_extra/food-101/"

_DESCRIPTION = (
    "This dataset consists of 101 food categories, with 101'000 images. For "
    "each class, 250 manually reviewed test images are provided as well as 750"
    " training images. On purpose, the training images were not cleaned, and "
    "thus still contain some amount of noise. This comes mostly in the form of"
    " intense colors and sometimes wrong labels. All images were rescaled to "
    "have a maximum side length of 512 pixels."
)

_CITATION = """\
 @inproceedings{bossard14,
  title = {Food-101 -- Mining Discriminative Components with Random Forests},
  author = {Bossard, Lukas and Guillaumin, Matthieu and Van Gool, Luc},
  booktitle = {European Conference on Computer Vision},
  year = {2014}
}
"""

_LICENSE = """\
LICENSE AGREEMENT
=================
 - The Food-101 data set consists of images from Foodspotting [1] which are not
   property of the Federal Institute of Technology Zurich (ETHZ). Any use beyond
   scientific fair use must be negociated with the respective picture owners
   according to the Foodspotting terms of use [2].

[1] http://www.foodspotting.com/
[2] http://www.foodspotting.com/terms/
"""

_NAMES = [
    "apple_pie",
    "baby_back_ribs",
    "baklava",
    "beef_carpaccio",
    "beef_tartare",
    "beet_salad",
    "beignets",
    "bibimbap",
    "bread_pudding",
    "breakfast_burrito",
    "bruschetta",
    "caesar_salad",
    "cannoli",
    "caprese_salad",
    "carrot_cake",
    "ceviche",
    "cheesecake",
    "cheese_plate",
    "chicken_curry",
    "chicken_quesadilla",
    "chicken_wings",
    "chocolate_cake",
    "chocolate_mousse",
    "churros",
    "clam_chowder",
    "club_sandwich",
    "crab_cakes",
    "creme_brulee",
    "croque_madame",
    "cup_cakes",
    "deviled_eggs",
    "donuts",
    "dumplings",
    "edamame",
    "eggs_benedict",
    "escargots",
    "falafel",
    "filet_mignon",
    "fish_and_chips",
    "foie_gras",
    "french_fries",
    "french_onion_soup",
    "french_toast",
    "fried_calamari",
    "fried_rice",
    "frozen_yogurt",
    "garlic_bread",
    "gnocchi",
    "greek_salad",
    "grilled_cheese_sandwich",
    "grilled_salmon",
    "guacamole",
    "gyoza",
    "hamburger",
    "hot_and_sour_soup",
    "hot_dog",
    "huevos_rancheros",
    "hummus",
    "ice_cream",
    "lasagna",
    "lobster_bisque",
    "lobster_roll_sandwich",
    "macaroni_and_cheese",
    "macarons",
    "miso_soup",
    "mussels",
    "nachos",
    "omelette",
    "onion_rings",
    "oysters",
    "pad_thai",
    "paella",
    "pancakes",
    "panna_cotta",
    "peking_duck",
    "pho",
    "pizza",
    "pork_chop",
    "poutine",
    "prime_rib",
    "pulled_pork_sandwich",
    "ramen",
    "ravioli",
    "red_velvet_cake",
    "risotto",
    "samosa",
    "sashimi",
    "scallops",
    "seaweed_salad",
    "shrimp_and_grits",
    "spaghetti_bolognese",
    "spaghetti_carbonara",
    "spring_rolls",
    "steak",
    "strawberry_shortcake",
    "sushi",
    "tacos",
    "takoyaki",
    "tiramisu",
    "tuna_tartare",
    "waffles",
]

_DATA_URLS = {
'raw': "data/food101_raw.tar.gz",
'metadata': 'data/food101-metadata.parquet.gzip'
}



class Food101Enriched(datasets.GeneratorBasedBuilder):
    """Food101Enriched Data Set"""

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name="enriched",
            version=datasets.Version("1.0.0", ""),
            description="Import of enriched Food 101 Data Set",
        )
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "image": datasets.Value("string"),                   
                    "label": datasets.features.ClassLabel(names=_NAMES),
                    "label_str": datasets.Value("string"),                   
                    "split": datasets.Value("string"),                    
                }
            ),
            supervised_keys=("image", "label"),
            homepage=_HOMEPAGE,
            citation=_CITATION,
            license=_LICENSE,
            task_templates=[ImageClassification(image_column="image", label_column="label")],
        )

    def _split_generators(self, dl_manager):
        
        archive_path = dl_manager.download_and_extract(_DATA_URLS['raw'])
        metadata = pd.read_parquet(dl_manager.download(_DATA_URLS['metadata']))        
    

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN, gen_kwargs={"archive_path": archive_path, 'metadata': metadata, "split": "train"}
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST, gen_kwargs={"archive_path": archive_path, 'metadata': metadata, "split": "test"}
            ),            
        ]

    def _generate_examples(self, archive_path, metadata, split):
        """This function returns the examples in the raw (text) form."""

        if split == "train":
            df = metadata[metadata['split']=='train']

        if split == "test":
            df = metadata[metadata['split']=='validation']

        if split == "all":
            df = metadata      

        

       
        for index, row in df.iterrows():
            img_path = archive_path + "/" + row['image']
            #img = {"path": img_path, "bytes": None}
            #print(str(len(row['probabilities'])))
            #print(str(index))
            result = {
                'image': img_path,                
                'label': row['label'],             
                'label_str': row['label'],               
                'split': split,            
            }
            yield index, result

       





#if __name__ == "__main__":
#    ds = load_dataset("food101-enriched.py", split="all")