Datasets:
Tasks:
Image Classification
Sub-tasks:
multi-class-image-classification
Languages:
English
Size:
100K<n<1M
License:
File size: 6,997 Bytes
722bcc5 b1c0bc2 722bcc5 b1c0bc2 722bcc5 b1c0bc2 722bcc5 b1c0bc2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
# coding=utf-8
# Copyright 2021 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Dataset class for Food-101 dataset."""
import datasets
from datasets.tasks import ImageClassification
import pandas as pd
from pathlib import Path
from datasets import load_dataset
_BASE_URL = "http://data.vision.ee.ethz.ch/cvl/food-101.tar.gz"
_METADATA_URLS = {
"train": "https://s3.amazonaws.com/datasets.huggingface.co/food101/meta/train.txt",
"test": "https://s3.amazonaws.com/datasets.huggingface.co/food101/meta/test.txt",
}
_HOMEPAGE = "https://data.vision.ee.ethz.ch/cvl/datasets_extra/food-101/"
_DESCRIPTION = (
"This dataset consists of 101 food categories, with 101'000 images. For "
"each class, 250 manually reviewed test images are provided as well as 750"
" training images. On purpose, the training images were not cleaned, and "
"thus still contain some amount of noise. This comes mostly in the form of"
" intense colors and sometimes wrong labels. All images were rescaled to "
"have a maximum side length of 512 pixels."
)
_CITATION = """\
@inproceedings{bossard14,
title = {Food-101 -- Mining Discriminative Components with Random Forests},
author = {Bossard, Lukas and Guillaumin, Matthieu and Van Gool, Luc},
booktitle = {European Conference on Computer Vision},
year = {2014}
}
"""
_LICENSE = """\
LICENSE AGREEMENT
=================
- The Food-101 data set consists of images from Foodspotting [1] which are not
property of the Federal Institute of Technology Zurich (ETHZ). Any use beyond
scientific fair use must be negociated with the respective picture owners
according to the Foodspotting terms of use [2].
[1] http://www.foodspotting.com/
[2] http://www.foodspotting.com/terms/
"""
_NAMES = [
"apple_pie",
"baby_back_ribs",
"baklava",
"beef_carpaccio",
"beef_tartare",
"beet_salad",
"beignets",
"bibimbap",
"bread_pudding",
"breakfast_burrito",
"bruschetta",
"caesar_salad",
"cannoli",
"caprese_salad",
"carrot_cake",
"ceviche",
"cheesecake",
"cheese_plate",
"chicken_curry",
"chicken_quesadilla",
"chicken_wings",
"chocolate_cake",
"chocolate_mousse",
"churros",
"clam_chowder",
"club_sandwich",
"crab_cakes",
"creme_brulee",
"croque_madame",
"cup_cakes",
"deviled_eggs",
"donuts",
"dumplings",
"edamame",
"eggs_benedict",
"escargots",
"falafel",
"filet_mignon",
"fish_and_chips",
"foie_gras",
"french_fries",
"french_onion_soup",
"french_toast",
"fried_calamari",
"fried_rice",
"frozen_yogurt",
"garlic_bread",
"gnocchi",
"greek_salad",
"grilled_cheese_sandwich",
"grilled_salmon",
"guacamole",
"gyoza",
"hamburger",
"hot_and_sour_soup",
"hot_dog",
"huevos_rancheros",
"hummus",
"ice_cream",
"lasagna",
"lobster_bisque",
"lobster_roll_sandwich",
"macaroni_and_cheese",
"macarons",
"miso_soup",
"mussels",
"nachos",
"omelette",
"onion_rings",
"oysters",
"pad_thai",
"paella",
"pancakes",
"panna_cotta",
"peking_duck",
"pho",
"pizza",
"pork_chop",
"poutine",
"prime_rib",
"pulled_pork_sandwich",
"ramen",
"ravioli",
"red_velvet_cake",
"risotto",
"samosa",
"sashimi",
"scallops",
"seaweed_salad",
"shrimp_and_grits",
"spaghetti_bolognese",
"spaghetti_carbonara",
"spring_rolls",
"steak",
"strawberry_shortcake",
"sushi",
"tacos",
"takoyaki",
"tiramisu",
"tuna_tartare",
"waffles",
]
_DATA_URLS = {
'raw': "data/food101_raw.tar.gz",
'metadata': 'data/food101-metadata.parquet.gzip'
}
class Food101Enriched(datasets.GeneratorBasedBuilder):
"""Food101Enriched Data Set"""
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="enriched",
version=datasets.Version("1.0.0", ""),
description="Import of enriched Food 101 Data Set",
)
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"image": datasets.Value("string"),
"label": datasets.features.ClassLabel(names=_NAMES),
"label_str": datasets.Value("string"),
"split": datasets.Value("string"),
}
),
supervised_keys=("image", "label"),
homepage=_HOMEPAGE,
citation=_CITATION,
license=_LICENSE,
task_templates=[ImageClassification(image_column="image", label_column="label")],
)
def _split_generators(self, dl_manager):
archive_path = dl_manager.download_and_extract(_DATA_URLS['raw'])
metadata = pd.read_parquet(dl_manager.download(_DATA_URLS['metadata']))
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN, gen_kwargs={"archive_path": archive_path, 'metadata': metadata, "split": "train"}
),
datasets.SplitGenerator(
name=datasets.Split.TEST, gen_kwargs={"archive_path": archive_path, 'metadata': metadata, "split": "test"}
),
]
def _generate_examples(self, archive_path, metadata, split):
"""This function returns the examples in the raw (text) form."""
if split == "train":
df = metadata[metadata['split']=='train']
if split == "test":
df = metadata[metadata['split']=='validation']
if split == "all":
df = metadata
for index, row in df.iterrows():
img_path = archive_path + "/" + row['image']
#img = {"path": img_path, "bytes": None}
#print(str(len(row['probabilities'])))
#print(str(index))
result = {
'image': img_path,
'label': row['label'],
'label_str': row['label'],
'split': split,
}
yield index, result
#if __name__ == "__main__":
# ds = load_dataset("food101-enriched.py", split="all")
|