Datasets:
Tasks:
Image Classification
Modalities:
Image
Formats:
parquet
Sub-tasks:
multi-class-image-classification
Languages:
English
Size:
10K - 100K
License:
annotations_creators: | |
- expert-generated | |
language_creators: | |
- found | |
language: | |
- en | |
license: | |
- mit | |
multilinguality: | |
- monolingual | |
size_categories: | |
- 10K<n<100K | |
source_datasets: | |
- extended|other-nist | |
task_categories: | |
- image-classification | |
task_ids: | |
- multi-class-image-classification | |
paperswithcode_id: mnist | |
pretty_name: MNIST | |
dataset_info: | |
features: | |
- name: image | |
dtype: image | |
- name: label | |
dtype: | |
class_label: | |
names: | |
'0': '0' | |
'1': '1' | |
'2': '2' | |
'3': '3' | |
'4': '4' | |
'5': '5' | |
'6': '6' | |
'7': '7' | |
'8': '8' | |
'9': '9' | |
- name: embedding_foundation | |
sequence: float32 | |
- name: embedding_ft | |
sequence: float32 | |
- name: outlier_score_ft | |
dtype: float64 | |
- name: outlier_score_foundation | |
dtype: float64 | |
- name: nn_image | |
struct: | |
- name: bytes | |
dtype: binary | |
- name: path | |
dtype: 'null' | |
splits: | |
- name: train | |
num_bytes: 404136444.0 | |
num_examples: 60000 | |
download_size: 472581433 | |
dataset_size: 404136444.0 | |
# Dataset Card for "mnist-outlier" | |
📚 This dataset is an enriched version of the [MNIST Dataset](http://yann.lecun.com/exdb/mnist/). | |
The workflow is described in the medium article: [Changes of Embeddings during Fine-Tuning of Transformers](https://medium.com/@markus.stoll/changes-of-embeddings-during-fine-tuning-c22aa1615921). | |
## Explore the Dataset | |
The open source data curation tool [Renumics Spotlight](https://github.com/Renumics/spotlight) allows you to explorer this dataset. You can find a Hugging Face Space running Spotlight with this dataset here: <https://huggingface.co/spaces/renumics/mnist-outlier>. | |
![Analyze with Spotlight](https://spotlight.renumics.com/resources/hf-mnist-outlier.png) | |
Or you can explorer it locally: | |
```python | |
!pip install renumics-spotlight datasets | |
from renumics import spotlight | |
import datasets | |
ds = datasets.load_dataset("renumics/mnist-outlier", split="train") | |
df = ds.rename_columns({"label":"labels"}).to_pandas() | |
df["label_str"] = df["labels"].apply(lambda x: ds.features["label"].int2str(x)) | |
dtypes = { | |
"nn_image": spotlight.Image, | |
"image": spotlight.Image, | |
"embedding_ft": spotlight.Embedding, | |
"embedding_foundation": spotlight.Embedding, | |
} | |
spotlight.show( | |
df, | |
dtype=dtypes, | |
layout="https://spotlight.renumics.com/resources/layout_pre_post_ft.json", | |
) | |
``` |