metadata
language:
- en
multilinguality:
- monolingual
size_categories:
- 100K<n<1M
task_categories:
- feature-extraction
- sentence-similarity
pretty_name: Specter
tags:
- sentence-transformers
dataset_info:
- config_name: pair
features:
- name: anchor
dtype: string
- name: positive
dtype: string
splits:
- name: train
num_bytes: 55252049
num_examples: 380142
download_size: 24217449
dataset_size: 55252049
- config_name: triplet
features:
- name: anchor
dtype: string
- name: positive
dtype: string
- name: negative
dtype: string
splits:
- name: train
num_bytes: 152814049
num_examples: 684098
download_size: 62182004
dataset_size: 152814049
configs:
- config_name: pair
data_files:
- split: train
path: pair/train-*
- config_name: triplet
data_files:
- split: train
path: triplet/train-*
Dataset Card for Specter
This dataset is a collection of title-related-unrelated triplets from Scientific Publications on Specter. See Specter for additional information. This dataset can be used directly with Sentence Transformers to train embedding models.
Dataset Subsets
triplet
subset
- Columns: "anchor", "positive", "negative"
- Column types:
str
,str
,str
- Examples:
{ 'anchor': "Integrating children's contributions in the interaction design process", 'positive': 'Designing for or designing with? Informant design for interactive learning environments', 'negative': 'Power Operation in ISD: Technological Frames Perspectives.', }
- Collection strategy: Reading the Specter dataset from embedding-training-data, followed by deduplication.
- Deduplified: Yes
pair
subset
- Columns: "anchor", "positive"
- Column types:
str
,str
- Examples:
{ 'anchor': 'Time-dependent trajectory regression on road networks via multi-task learning', 'positive': 'Convex multi-task feature learning', }
- Collection strategy: Reading the Specter dataset from embedding-training-data, only taking the title and related title, and then performing deduplication.
- Deduplified: Yes