metadata
license: mit
dataset_info:
features:
- name: 'Unnamed: 0'
dtype: int64
- name: claim_input
dtype: string
- name: claim_idx
dtype: int64
- name: applicationNumber
dtype: int64
- name: applicationTypeCategory
dtype: string
- name: relatedDocumentData
dtype: float64
- name: patentClassification
dtype: string
- name: applicantCitedExaminerReferenceIndicatorCount
dtype: float64
- name: filingDate
dtype: string
- name: publicationDate
dtype: string
- name: claimNumberArrayDocument
dtype: float64
- name: abstract
dtype: string
- name: percentile
dtype: float64
- name: claim_label_101
dtype: int64
- name: claim_label_102
dtype: int64
- name: claim_label_103
dtype: int64
- name: claim_label_112
dtype: int64
- name: relatedApplicationNumber
dtype: string
- name: max_score_x
dtype: float64
- name: mean_score
dtype: float64
- name: max_citations
dtype: float64
- name: max_other_citations
dtype: float64
- name: max_article_citations
dtype: float64
- name: max_score_y
dtype: float64
- name: component
dtype: int64
- name: is_closed
dtype: int64
- name: is_open
dtype: int64
- name: is_half
dtype: int64
- name: similarity_product
dtype: float64
- name: transitional_phrase
dtype: string
- name: app_claim_id
dtype: string
- name: bert_scores_102
dtype: float64
- name: claim_label_combined
dtype: int64
- name: bert_scores_101
dtype: float64
- name: combined_pred_scores
dtype: float64
- name: claim_label_101_adjusted
dtype: int64
- name: bert_score_102_app_feats_no_hinge
dtype: float64
- name: bert_score_101_app_feats
dtype: float64
- name: bert_score_102_app_feats_w_hinge
dtype: float64
- name: bert_score_102_no_app_feats
dtype: float64
- name: dataset
dtype: string
- name: lexical_diversity
dtype: float64
- name: patent_class
dtype: float64
- name: foreignPriority
dtype: bool
splits:
- name: train
num_bytes: 2152439051
num_examples: 1485693
- name: validation
num_bytes: 402312853
num_examples: 278215
- name: test
num_bytes: 267789008
num_examples: 185477
download_size: 501745093
dataset_size: 2822540912
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
- split: test
path: data/test-*
PatentAP
A dataset for the task of Patent Approval Prediction, which is proposed in the paper "Beyond Scaling: Predicting Patent Approval with Domain-specific Fine-grained Claim Dependency Graph"
Dataset Details
Dataset Description
- Curated by: [More Information Needed]
- Funded by [optional]: [More Information Needed]
- Shared by [optional]: [More Information Needed]
- Language(s) (NLP): [More Information Needed]
- License: [More Information Needed]
Dataset Sources [optional]
- Repository: [More Information Needed]
- Paper [optional]: [More Information Needed]
- Demo [optional]: [More Information Needed]
Uses
Direct Use
[More Information Needed]
Out-of-Scope Use
[More Information Needed]
Dataset Structure
[More Information Needed]
Dataset Creation
Curation Rationale
[More Information Needed]
Source Data
Data Collection and Processing
[More Information Needed]
Who are the source data producers?
[More Information Needed]
Annotations [optional]
Annotation process
[More Information Needed]
Who are the annotators?
[More Information Needed]
Personal and Sensitive Information
[More Information Needed]
Bias, Risks, and Limitations
[More Information Needed]
Recommendations
Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.
Citation [optional]
BibTeX:
[More Information Needed]
APA:
[More Information Needed]
Glossary [optional]
[More Information Needed]
More Information [optional]
[More Information Needed]
Dataset Card Authors [optional]
[More Information Needed]
Dataset Card Contact
[More Information Needed]