dataset_info: | |
features: | |
- name: Utterance | |
dtype: string | |
- name: politeness | |
dtype: float64 | |
- name: language | |
dtype: string | |
- name: __index_level_0__ | |
dtype: int64 | |
splits: | |
- name: train | |
num_bytes: 4954742 | |
num_examples: 18238 | |
- name: validation | |
num_bytes: 619659 | |
num_examples: 2280 | |
- name: test | |
num_bytes: 619627 | |
num_examples: 2280 | |
download_size: 3919716 | |
dataset_size: 6194028 | |
configs: | |
- config_name: default | |
data_files: | |
- split: train | |
path: data/train-* | |
- split: validation | |
path: data/validation-* | |
- split: test | |
path: data/test-* | |
# Dataset Card for "multilingual_politeness" | |
Please cite the following paper if you use our dataset :) | |
``` | |
@inproceedings{havaldar-etal-2023-comparing, | |
title = "Comparing Styles across Languages", | |
author = "Havaldar, Shreya and Pressimone, Matthew and Wong, Eric and Ungar, Lyle", | |
booktitle = "Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing", | |
year = "2023", | |
publisher = "Association for Computational Linguistics", | |
url = "https://aclanthology.org/2023.emnlp-main.419" | |
} | |
``` |