|
import os |
|
import json |
|
import glob |
|
from tqdm import tqdm |
|
from io import StringIO |
|
import pandas as pd |
|
|
|
""" |
|
Steps to convert the data into JSON format. |
|
|
|
Step-0: Use a python environment where pandas is installed. |
|
Step-1: Download the source file from here: https://figshare.com/articles/dataset/MACCROBAT2018/9764942 |
|
Step-2: Unzip the file in put that into a folder (say `data` folder). |
|
All unzipped files will be present here. |
|
* data/MACCROBAT2020/*.txt |
|
* data/MACCROBAT2020/*.ann |
|
Step-3: Use the correct paths and run this file. |
|
""" |
|
|
|
def remove_overlapped_ner_tags(ner_details: list[dict]): |
|
"""remove overlapping entities. |
|
|
|
Args: |
|
ner_details (List[dict]): a list of dictionary where each dictionary holds |
|
the information of a entity. |
|
|
|
NOTE: Priority is given to the entity that is labelled first after sorting all by start index in ascending order. |
|
(i.e. it's end-index is less than other start of other overlapping entity.) |
|
|
|
Returns: |
|
list[dict]: updated list (removed item if something was overlapping) |
|
""" |
|
|
|
new_ner_details = [] |
|
|
|
ner_details = sorted(ner_details, key=lambda x: x["start"]) |
|
for i, ner_detail in enumerate(ner_details): |
|
if i == 0: |
|
start = ner_detail["start"] |
|
end = ner_detail["end"] |
|
new_ner_details.append(ner_detail) |
|
continue |
|
|
|
current_start = ner_detail["start"] |
|
current_end = ner_detail["end"] |
|
if current_start < end: |
|
continue |
|
|
|
|
|
start = current_start |
|
end = current_end |
|
|
|
new_ner_details.append(ner_detail) |
|
return new_ner_details |
|
|
|
|
|
def get_ner_details(ann_file): |
|
with open(ann_file, "r") as f: |
|
lines = f.readlines() |
|
lines = [line.strip() for line in lines] |
|
csv_data = "\n".join(lines) |
|
csv_data = StringIO(csv_data) |
|
df = pd.read_csv(csv_data, sep="\t", header=None) |
|
|
|
df.columns = ["EntityID", "EntityDetails", "EntityText"] |
|
|
|
|
|
|
|
df = df[df["EntityID"].apply(lambda x: str(x).strip().startswith("T"))] |
|
|
|
|
|
df = df[df["EntityDetails"].apply(lambda x: ";" not in str(x))] |
|
|
|
|
|
df.dropna(axis=1, inplace=True) |
|
|
|
ner_info = [] |
|
for i, row in df.iterrows(): |
|
text = row["EntityText"] |
|
details = row["EntityDetails"] |
|
try: |
|
ner_tag, start, end = details.split(" ") |
|
except: |
|
print(ann_file) |
|
print(details) |
|
start = int(float(start)) |
|
end = int(float(end)) |
|
|
|
ner_info.append({"text": text, "label": ner_tag.upper(), "start": start, "end": end}) |
|
|
|
|
|
ner_info = remove_overlapped_ner_tags(ner_details=ner_info) |
|
|
|
|
|
return ner_info |
|
|
|
|
|
def main(input_path: str = "data/MACCROBAT2020", output_path: str = "data/MACCROBAT2020-V2.json"): |
|
txt_files = glob.glob(os.path.join(input_path, "*.txt")) |
|
txt_files.sort() |
|
|
|
ner_data = {"data": [], "verson": "MACCROBAT-V2 (https://figshare.com/articles/dataset/MACCROBAT2018/9764942)"} |
|
|
|
for txt_file in tqdm(txt_files, desc="Extracting data..."): |
|
with open(txt_file, "r") as f: |
|
full_text = f.read() |
|
a = txt_file.replace(".txt", ".ann") |
|
ner_info = get_ner_details(a) |
|
data = {"full_text": full_text, "ner_info": ner_info} |
|
ner_data["data"].append(data) |
|
|
|
ALL_NER_LABLES = set() |
|
for details in tqdm(ner_data["data"], desc="Splitting into tokens..."): |
|
text = details["full_text"] |
|
ner_details = details["ner_info"] |
|
|
|
tokens = [] |
|
ner_labels = [] |
|
start = 0 |
|
for ner_detail in ner_details: |
|
ner_start = ner_detail["start"] |
|
ner_end = ner_detail["end"] |
|
|
|
before_ner_token = text[start:ner_start] |
|
ner_token = text[ner_start:ner_end] |
|
|
|
tokens.append(before_ner_token) |
|
ner_labels.append("O") |
|
tokens.append(ner_token) |
|
ner_labels.append(f'B-{ner_detail["label"]}') |
|
ALL_NER_LABLES.add(f'B-{ner_detail["label"]}') |
|
ALL_NER_LABLES.add(f'I-{ner_detail["label"]}') |
|
start = ner_end |
|
if len(text) >= start: |
|
ner_labels.append("O") |
|
tokens.append(text[start:]) |
|
assert len(tokens) == len(ner_labels) |
|
|
|
details["tokens"] = tokens |
|
details["ner_labels"] = ner_labels |
|
|
|
ner_data["all_ner_labels"] = sorted(list(ALL_NER_LABLES), key=lambda x: x.split("-")[-1]) |
|
|
|
label_2_index = {k: i for i, k in enumerate(ner_data["all_ner_labels"])} |
|
index_2_label = {v: k for k, v in label_2_index.items()} |
|
ner_data["label_2_index"] = label_2_index |
|
ner_data["index_2_label"] = index_2_label |
|
|
|
for details in tqdm(ner_data["data"], desc="label2index..."): |
|
ner_labels = details["ner_labels"] |
|
ner_labels_ids = [] |
|
for ner in ner_labels: |
|
ner_labels_ids.append(label_2_index.get(ner)) |
|
details["ner_labels"] = ner_labels_ids |
|
with open(output_path, "w") as f: |
|
json.dump(ner_data, f, indent=4) |
|
|
|
|
|
if __name__ == "__main__": |
|
input_path: str = "data/MACCROBAT2020" |
|
output_path: str = "data/MACCROBAT2020-V2.json" |
|
main(input_path=input_path, output_path=output_path) |
|
|