Datasets:

Modalities:
Tabular
Text
Formats:
parquet
Languages:
Portuguese
Tags:
legal
DOI:
Libraries:
Datasets
Dask
License:
bidCorpus / README.md
vic35get's picture
Upload dataset
d9a8829 verified
|
raw
history blame
38.5 kB
---
language:
- pt
license: apache-2.0
size_categories:
- 10K<n<100K
task_categories:
- text-classification
- token-classification
- sentence-similarity
pretty_name: BidCorpus
dataset_info:
- config_name: bidCorpus_NER_keyphrase
features:
- name: tokens
sequence: string
- name: id
dtype: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-LOCAL
'2': I-LOCAL
'3': B-OBJETO
'4': I-OBJETO
splits:
- name: train
num_bytes: 3657983
num_examples: 1632
- name: test
num_bytes: 442382
num_examples: 204
- name: validation
num_bytes: 464585
num_examples: 204
download_size: 514441
dataset_size: 4564950
- config_name: bidCorpus_gold
features:
- name: text
dtype: string
- name: certidao_protesto
dtype: int64
- name: certificado_boas_praticas
dtype: int64
- name: comprovante_localizacao
dtype: int64
- name: idoneidade_financeira
dtype: int64
- name: integralizado
dtype: int64
- name: licenca_ambiental
dtype: int64
- name: n_min_max_limitacao_atestados
dtype: int64
splits:
- name: train
num_bytes: 10979027
num_examples: 1454
- name: test
num_bytes: 1499746
num_examples: 182
- name: validation
num_bytes: 1460916
num_examples: 182
download_size: 5647239
dataset_size: 13939689
- config_name: bidCorpus_object_similarity
features:
- name: objeto1
dtype: string
- name: nerObjeto1
dtype: string
- name: objeto2
dtype: string
- name: nerObjeto2
dtype: string
- name: humanScore
dtype: float64
- name: nerObjeto1_words
dtype: int64
- name: objeto1_words
dtype: int64
- name: percentual_words
dtype: float64
- name: nerObjeto2_words
dtype: int64
- name: objeto2_words
dtype: int64
- name: bertscore_ner
dtype: int64
- name: bertscore_objs
dtype: int64
splits:
- name: train
num_bytes: 2682850
num_examples: 1403
- name: test
num_bytes: 342301
num_examples: 176
- name: validation
num_bytes: 364743
num_examples: 175
download_size: 911048
dataset_size: 3389894
- config_name: bidCorpus_objects_correct_allowed
features:
- name: text
dtype: string
- name: corretude
dtype: int64
- name: permitido
dtype: int64
splits:
- name: train
num_bytes: 1737590
num_examples: 1089
- name: test
num_bytes: 278073
num_examples: 137
- name: validation
num_bytes: 326285
num_examples: 136
download_size: 1108156
dataset_size: 2341948
- config_name: bidCorpus_objects_type
features:
- name: text
dtype: string
- name: label
dtype: int64
splits:
- name: train
num_bytes: 1024977
num_examples: 1709
- name: test
num_bytes: 114336
num_examples: 214
- name: validation
num_bytes: 135216
num_examples: 214
download_size: 484599
dataset_size: 1274529
- config_name: bidCorpus_qual_model
features:
- name: text
dtype: string
- name: certidao_protesto
dtype: int64
- name: certificado_boas_praticas
dtype: int64
- name: comprovante_localizacao
dtype: int64
- name: idoneidade_financeira
dtype: int64
- name: integralizado
dtype: int64
- name: licenca_ambiental
dtype: int64
- name: n_min_max_limitacao_atestados
dtype: int64
splits:
- name: train
num_bytes: 1567039880
num_examples: 177133
- name: test
num_bytes: 195995975
num_examples: 22142
- name: validation
num_bytes: 195098396
num_examples: 22142
download_size: 767641718
dataset_size: 1958134251
- config_name: bidCorpus_qual_weak_sup
features:
- name: text
dtype: string
- name: certidao_protesto
dtype: int64
- name: certificado_boas_praticas
dtype: int64
- name: comprovante_localizacao
dtype: int64
- name: idoneidade_financeira
dtype: int64
- name: integralizado
dtype: int64
- name: licenca_ambiental
dtype: int64
- name: n_min_max_limitacao_atestados
dtype: int64
splits:
- name: train
num_bytes: 1566000515
num_examples: 177133
- name: test
num_bytes: 195502355
num_examples: 22142
- name: validation
num_bytes: 196631381
num_examples: 22142
download_size: 767927678
dataset_size: 1958134251
- config_name: bidCorpus_sections_type
features:
- name: text
dtype: string
- name: label
dtype: int64
splits:
- name: train
num_bytes: 3141390
num_examples: 1224
- name: test
num_bytes: 387562
num_examples: 153
- name: validation
num_bytes: 477489
num_examples: 153
download_size: 2010213
dataset_size: 4006441
- config_name: bidCorpus_sections_type_cleaned
features:
- name: text
dtype: string
- name: label
dtype: int64
splits:
- name: train
num_bytes: 4006441
num_examples: 1530
download_size: 1873797
dataset_size: 4006441
- config_name: bidCorpus_synthetic
features:
- name: text
dtype: string
- name: certidao_protesto
dtype: int64
- name: certificado_boas_praticas
dtype: int64
- name: comprovante_localizacao
dtype: int64
- name: idoneidade_financeira
dtype: int64
- name: integralizado
dtype: int64
- name: licenca_ambiental
dtype: int64
- name: n_min_max_limitacao_atestados
dtype: int64
splits:
- name: train
num_bytes: 11104985
num_examples: 1454
- name: test
num_bytes: 1400000
num_examples: 182
- name: validation
num_bytes: 1438114
num_examples: 182
download_size: 5673825
dataset_size: 13943099
- config_name: bid_corpus_raw
features:
- name: ID-LICITACAO
dtype: float64
- name: ID-ARQUIVO
dtype: float64
- name: OBJETO
dtype: string
- name: JULGAMENTO
dtype: string
- name: CONDICAO_PARTICIPACAO
dtype: string
- name: HABILITACAO
dtype: string
- name: CREDENCIAMENTO
dtype: string
splits:
- name: train
num_bytes: 4248532882
num_examples: 373650
download_size: 1787451169
dataset_size: 4248532882
configs:
- config_name: bidCorpus_NER_keyphrase
data_files:
- split: train
path: bidCorpus_NER_keyphrase/train-*
- split: test
path: bidCorpus_NER_keyphrase/test-*
- split: validation
path: bidCorpus_NER_keyphrase/validation-*
- config_name: bidCorpus_gold
data_files:
- split: train
path: bidCorpus_gold/train-*
- split: test
path: bidCorpus_gold/test-*
- split: validation
path: bidCorpus_gold/validation-*
- config_name: bidCorpus_object_similarity
data_files:
- split: train
path: bidCorpus_object_similarity/train-*
- split: test
path: bidCorpus_object_similarity/test-*
- split: validation
path: bidCorpus_object_similarity/validation-*
- config_name: bidCorpus_objects_correct_allowed
data_files:
- split: train
path: bidCorpus_objects_correct_allowed/train-*
- split: test
path: bidCorpus_objects_correct_allowed/test-*
- split: validation
path: bidCorpus_objects_correct_allowed/validation-*
- config_name: bidCorpus_objects_type
data_files:
- split: train
path: bidCorpus_objects_type/train-*
- split: test
path: bidCorpus_objects_type/test-*
- split: validation
path: bidCorpus_objects_type/validation-*
- config_name: bidCorpus_qual_model
data_files:
- split: train
path: bidCorpus_qual_model/train-*
- split: test
path: bidCorpus_qual_model/test-*
- split: validation
path: bidCorpus_qual_model/validation-*
- config_name: bidCorpus_qual_weak_sup
data_files:
- split: train
path: bidCorpus_qual_weak_sup/train-*
- split: test
path: bidCorpus_qual_weak_sup/test-*
- split: validation
path: bidCorpus_qual_weak_sup/validation-*
- config_name: bidCorpus_sections_type
data_files:
- split: train
path: bidCorpus_sections_type/train-*
- split: test
path: bidCorpus_sections_type/test-*
- split: validation
path: bidCorpus_sections_type/validation-*
- config_name: bidCorpus_sections_type_cleaned
data_files:
- split: train
path: bidCorpus_sections_type_cleaned/train-*
- config_name: bidCorpus_synthetic
data_files:
- split: train
path: bidCorpus_synthetic/train-*
- split: test
path: bidCorpus_synthetic/test-*
- split: validation
path: bidCorpus_synthetic/validation-*
- config_name: bid_corpus_raw
data_files:
- split: train
path: bid_corpus_raw/train-*
tags:
- legal
---
# Dataset Card for "BidCorpus"
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:**
- **Repository:**
- **Paper:**
- **Leaderboard:**
- **Point of Contact:**
### Dataset Summary
The BidCorpus dataset consists of various configurations related to bidding documents. It includes datasets for Named Entity Recognition, Multi-label Classification, Sentence Similarity, and more. Each configuration focuses on different aspects of bidding documents and is designed for specific tasks.
### Supported Tasks and Leaderboards
The supported tasks are the following:
<table>
<tr><td>Dataset</td><td>Source</td><td>Sub-domain</td><td>Task Type</td><td>Classes</td></tr>
<tr><td>bidCorpus_NER_keyphrase</td><td><a href="">-</a></td><td>Seção Objeto de Editais de Licitação</td><td>Named Entity Recognition</td><td>4</td></tr>
<tr><td>bidCorpus_gold</td><td><a href="">-</a></td><td>Seção de Habilitação de Editais de Licitação</td><td>Multi-label Classification</td><td>7</td></tr>
<tr><td>bidCorpus_object_similarity</td><td><a href="">-</a></td><td>Seção Objeto de Editais de Licitação</td><td>Sentence Similarity</td><td>2</td></tr>
<tr><td>bidCorpus_objects_correct_allowed</td><td><a href="">-</a></td><td>Seção Objeto de Editais de Licitação</td><td>Multi-class Classification</td><td>4</td></tr>
<tr><td>bidCorpus_objects_type</td><td><a href="">-</a></td><td>Seção Objeto de Editais de Licitação</td><td>Multi-class Classification</td><td>4</td></tr>
<tr><td>bidCorpus_qual_model</td><td><a href="">-</a></td><td>Seção de Habilitação de Editais de Licitação</td><td>Multi-label Classification</td><td>7</td></tr>
<tr><td>bidCorpus_qual_weak_sup</td><td><a href="">-</a></td><td>Seção de Habilitação de Editais de Licitação</td><td>Multi-label Classification</td><td>7</td></tr>
<tr><td>bidCorpus_sections_type</td><td><a href="">-</a></td><td>Seções de Editais de Licitação</td><td>Multi-label Classification</td><td>5</td></tr>
<tr><td>bid_corpus_raw</td><td><a href="">-</a></td><td>Seções de Editais de Licitação</td><td>n/a</td><td>n/a</td></tr>
</table>
#### bidCorpus_NER_keyphrase
This dataset is composed of texts from the "object" section of bidding notices. The dataset is labeled with two types of named entities, following the IOB (Inside-Outside-Beginning) format.
1. **Object of the bid**: Refers to the item to be acquired or the service to be contracted. The tags can be "B-OBJECT" (beginning of the entity) and "I-OBJECT" (continuation of the entity).
2. **Municipality of the managing unit**: Indicates the location of the entity responsible for the bid. The tags can be "B-MUNICIPALITY" (beginning of the entity) and "I-MUNICIPALITY" (continuation of the entity).
This dataset is intended for training named entity recognition (NER) models, which are used to automatically identify and classify these entities within the texts. The labeled structure of the dataset facilitates the task of teaching models to distinguish between different types of relevant information in the bidding notices. The dataset follows the IOB format for named entity recognition, with entities labeled as either part of the object of the bid or the municipality of the managing unit.
#### bidCorpus_gold
This dataset consists of texts from the qualification section of bidding notices. Annotated by experts in public procurement, the dataset is multilabel and contains seven labels that indicate possible signs of fraud in public contracts.
1. **Certidão de Protesto**: Verification of any protests in the company's name.
2. **Certificado de Boas Práticas**: Assessment of adherence to recommended practices in the sector.
3. **Comprovante de Localização**: Confirmation of the company's physical address.
4. **Idoneidade Financeira**: Analysis of the company's financial health.
5. **Integralização de Capital**: Verification of the company's capital stock integration.
6. **Licença Ambiental**: Evaluation of compliance with environmental regulations.
7. **Limitação de Atestados**: Verification of the minimum and maximum number of certificates required.
This dataset is used for training machine learning models to detect signs of fraud in public procurement processes. The multilabel structure allows the models to learn to identify multiple suspicious characteristics simultaneously, providing a valuable tool for the analysis and prevention of fraud in public contracts.
#### bidCorpus_object_similarity
This dataset is designed to assess text similarity in the "object" section of bidding notices by comparing pairs of distinct notices. Annotated by experts in public procurement, each entry consists of a pair of "object" sections labeled with:
- **1**: The sections are similar.
- **0**: The sections are not similar.
The dataset supports tasks such as document comparison, clustering, and retrieval. It provides a valuable resource for training and evaluating models on how effectively they can determine similarities between bidding notices.
The pairs are annotated with expert labels to ensure high-quality data, making this dataset ideal for developing and testing algorithms for text similarity analysis. It helps improve the efficiency and accuracy of managing and analyzing bidding documents.
#### bidCorpus_objects_correct_allowed
This dataset focuses on two classifications related to the "object" section of bidding notices:
1. **Object Classification**: Determines whether a section is the "object" section of a bidding notice.
2. **Permissivity Classification**: Assesses whether the object requires permissivity, meaning whether the contract involves areas such as the purchase of medications, cleaning services, or fuels, which might necessitate a certificate of location and an environmental license from regulatory institutions overseeing these activities.
The dataset provides labels for these classifications to support the analysis of compliance and requirements in bidding documents.
#### bidCorpus_objects_type
This dataset focuses on classifying the type of procurement found in the "object" section of bidding notices. Specifically, it categorizes the type of product or service being bid on into one of the following categories:
- **Consumables**: Items that are used up or consumed during use, such as office supplies or food products.
- **Permanent Assets**: Items with a longer lifespan that are intended for repeated use, such as machinery or equipment.
- **Services**: Non-tangible activities provided to fulfill a need, such as consulting or maintenance services.
- **Engineering Works**: Projects related to construction, infrastructure, or other engineering tasks.
The dataset provides labels for these classifications to assist in the analysis and organization of bidding documents, facilitating a better understanding of procurement types and aiding in the efficient management of bidding processes.
#### bidCorpus_qual_model
This dataset consists of texts from the qualification section of bidding notices and is annotated using a model trained on the original fraud detection dataset. It follows a multilabel format similar to the bidCorpus_gold dataset, with labels indicating possible signs of fraud in public procurement processes.
1. **Certidão de Protesto**: Verification of any protests in the company's name.
2. **Certificado de Boas Práticas**: Assessment of adherence to recommended practices in the sector.
3. **Comprovante de Localização**: Confirmation of the company's physical address.
4. **Idoneidade Financeira**: Analysis of the company's financial health.
5. **Integralização de Capital**: Verification of the company's capital stock integration.
6. **Licença Ambiental**: Evaluation of compliance with environmental regulations.
7. **Limitação de Atestados**: Verification of the minimum and maximum number of certificates required.
Unlike the expert-annotated previous dataset, this dataset has been annotated by a model trained on that data. This automated process ensures consistency and scalability while utilizing insights from the original expert annotations.
The dataset is intended for training and evaluating machine learning models to detect fraud in public procurement. The automated annotation enhances research and development in fraud detection, aiming to improve the accuracy and efficiency of identifying suspicious activities in bidding notices. Its multilabel structure supports the identification and classification of multiple fraud indicators simultaneously, aiding in the ongoing analysis and prevention of fraudulent practices in public contracts.
#### bidCorpus_qual_weak_sup
This dataset consists of texts from the qualification section of bidding notices and is annotated using weak supervision techniques, specifically through regular expressions. It follows a multilabel format similar to the bidCorpus_gold dataset, with labels indicating possible signs of fraud in public procurement processes.
1. **Certidão de Protesto**: Verification of any protests in the company's name.
2. **Certificado de Boas Práticas**: Assessment of adherence to recommended practices in the sector.
3. **Comprovante de Localização**: Confirmation of the company's physical address.
4. **Idoneidade Financeira**: Analysis of the company's financial health.
5. **Integralização de Capital**: Verification of the company's capital stock integration.
6. **Licença Ambiental**: Evaluation of compliance with environmental regulations.
7. **Limitação de Atestados**: Verification of the minimum and maximum number of certificates required.
Unlike the previous expert-annotated dataset, this dataset has been annotated using weak supervision techniques, specifically regular expressions. This approach provides a scalable method for labeling data by applying patterns to identify potential fraud indicators, although it may lack the precision of expert annotations.
The dataset is designed for training and evaluating machine learning models to detect fraud in public procurement. The use of weak supervision through regular expressions facilitates the creation of large annotated datasets, supporting research and development in fraud detection. The multilabel structure allows models to classify multiple fraud indicators simultaneously, improving the efficiency of identifying and preventing fraudulent practices in public contracts.
#### bidCorpus_sections_type
This dataset classifies different types of sections in bidding notices. The sections are categorized into the following labels:
- **Habilitação**: Qualification section, where eligibility criteria and requirements are outlined.
- **Julgamento**: Evaluation section, detailing the criteria and process for assessing bids.
- **Objeto**: Object section, specifying the item or service being procured.
- **Outros**: Other sections that do not fall into the categories above.
- **Credenciamento**: Accreditation section, where the process for validating and registering vendors is described.
The dataset provides a systematic approach to categorize the various sections found in bidding notices, facilitating better organization and analysis of procurement documents.
#### bid_corpus_raw
This dataset consists of raw, unlabeled texts from sections of bidding notices. The sections included are:
- **Objeto**: Describes the item or service being procured.
- **Julgamento**: Outlines the criteria and process for evaluating bids.
- **Credenciamento**: Details the procedures for vendor registration and validation.
- **Condições de Participação**: Specifies the conditions required for participation in the bidding process.
- **Habilitação**: Provides information on the qualifications and eligibility criteria for bidders.
This dataset offers a collection of unprocessed text from various sections of bidding notices, suitable for tasks such as text analysis, feature extraction, and the development of classification models.
<!-- *Task-wise Test Results*
<table>
<tr><td><b>Dataset</b></td><td><b>ECtHR A</b></td><td><b>ECtHR B</b></td><td><b>SCOTUS</b></td><td><b>EUR-LEX</b></td><td><b>LEDGAR</b></td><td><b>UNFAIR-ToS</b></td><td><b>CaseHOLD</b></td></tr>
<tr><td><b>Model</b></td><td>μ-F1 / m-F1 </td><td>μ-F1 / m-F1 </td><td>μ-F1 / m-F1 </td><td>μ-F1 / m-F1 </td><td>μ-F1 / m-F1 </td><td>μ-F1 / m-F1</td><td>μ-F1 / m-F1 </td></tr>
<tr><td>TFIDF+SVM</td><td> 64.7 / 51.7 </td><td>74.6 / 65.1 </td><td> <b>78.2</b> / <b>69.5</b> </td><td>71.3 / 51.4 </td><td>87.2 / 82.4 </td><td>95.4 / 78.8</td><td>n/a </td></tr>
<tr><td colspan="8" style='text-align:center'><b>Medium-sized Models (L=12, H=768, A=12)</b></td></tr>
<td>BERT</td> <td> 71.2 / 63.6 </td> <td> 79.7 / 73.4 </td> <td> 68.3 / 58.3 </td> <td> 71.4 / 57.2 </td> <td> 87.6 / 81.8 </td> <td> 95.6 / 81.3 </td> <td> 70.8 </td> </tr>
<td>RoBERTa</td> <td> 69.2 / 59.0 </td> <td> 77.3 / 68.9 </td> <td> 71.6 / 62.0 </td> <td> 71.9 / <b>57.9</b> </td> <td> 87.9 / 82.3 </td> <td> 95.2 / 79.2 </td> <td> 71.4 </td> </tr>
<td>DeBERTa</td> <td> 70.0 / 60.8 </td> <td> 78.8 / 71.0 </td> <td> 71.1 / 62.7 </td> <td> <b>72.1</b> / 57.4 </td> <td> 88.2 / 83.1 </td> <td> 95.5 / 80.3 </td> <td> 72.6 </td> </tr>
<td>Longformer</td> <td> 69.9 / 64.7 </td> <td> 79.4 / 71.7 </td> <td> 72.9 / 64.0 </td> <td> 71.6 / 57.7 </td> <td> 88.2 / 83.0 </td> <td> 95.5 / 80.9 </td> <td> 71.9 </td> </tr>
<td>BigBird</td> <td> 70.0 / 62.9 </td> <td> 78.8 / 70.9 </td> <td> 72.8 / 62.0 </td> <td> 71.5 / 56.8 </td> <td> 87.8 / 82.6 </td> <td> 95.7 / 81.3 </td> <td> 70.8 </td> </tr>
<td>Legal-BERT</td> <td> 70.0 / 64.0 </td> <td> <b>80.4</b> / <b>74.7</b> </td> <td> 76.4 / 66.5 </td> <td> <b>72.1</b> / 57.4 </td> <td> 88.2 / 83.0 </td> <td> <b>96.0</b> / <b>83.0</b> </td> <td> 75.3 </td> </tr>
<td>CaseLaw-BERT</td> <td> 69.8 / 62.9 </td> <td> 78.8 / 70.3 </td> <td> 76.6 / 65.9 </td> <td> 70.7 / 56.6 </td> <td> 88.3 / 83.0 </td> <td> <b>96.0</b> / 82.3 </td> <td> <b>75.4</b> </td> </tr>
<tr><td colspan="8" style='text-align:center'><b>Large-sized Models (L=24, H=1024, A=18)</b></td></tr>
<tr><td>RoBERTa</td> <td> <b>73.8</b> / <b>67.6</b> </td> <td> 79.8 / 71.6 </td> <td> 75.5 / 66.3 </td> <td> 67.9 / 50.3 </td> <td> <b>88.6</b> / <b>83.6</b> </td> <td> 95.8 / 81.6 </td> <td> 74.4 </td> </tr>
</table>
*Averaged (Mean over Tasks) Test Results*
<table>
<tr><td><b>Averaging</b></td><td><b>Arithmetic</b></td><td><b>Harmonic</b></td><td><b>Geometric</b></td></tr>
<tr><td><b>Model</b></td><td>μ-F1 / m-F1 </td><td>μ-F1 / m-F1 </td><td>μ-F1 / m-F1 </td></tr>
<tr><td colspan="4" style='text-align:center'><b>Medium-sized Models (L=12, H=768, A=12)</b></td></tr>
<tr><td>BERT</td><td> 77.8 / 69.5 </td><td> 76.7 / 68.2 </td><td> 77.2 / 68.8 </td></tr>
<tr><td>RoBERTa</td><td> 77.8 / 68.7 </td><td> 76.8 / 67.5 </td><td> 77.3 / 68.1 </td></tr>
<tr><td>DeBERTa</td><td> 78.3 / 69.7 </td><td> 77.4 / 68.5 </td><td> 77.8 / 69.1 </td></tr>
<tr><td>Longformer</td><td> 78.5 / 70.5 </td><td> 77.5 / 69.5 </td><td> 78.0 / 70.0 </td></tr>
<tr><td>BigBird</td><td> 78.2 / 69.6 </td><td> 77.2 / 68.5 </td><td> 77.7 / 69.0 </td></tr>
<tr><td>Legal-BERT</td><td> <b>79.8</b> / <b>72.0</b> </td><td> <b>78.9</b> / <b>70.8</b> </td><td> <b>79.3</b> / <b>71.4</b> </td></tr>
<tr><td>CaseLaw-BERT</td><td> 79.4 / 70.9 </td><td> 78.5 / 69.7 </td><td> 78.9 / 70.3 </td></tr>
<tr><td colspan="4" style='text-align:center'><b>Large-sized Models (L=24, H=1024, A=18)</b></td></tr>
<tr><td>RoBERTa</td><td> 79.4 / 70.8 </td><td> 78.4 / 69.1 </td><td> 78.9 / 70.0 </td></tr>
</table> -->
### Languages
We considered only datasets in Portuguese.
## Dataset Structure
### Data Instances
#### bidCorpus_NER_keyphrase
An example of 'train' looks as follows.
```json
{
"tokens": ["constitui", "objeto", "do", "presente", "edital", "a", "contratacao", "de", "empresa", "de", "engenharia", "para", "execucao", "da", "obra", "e", "/", "ou", "servico", "de", "elaboracao", "de", "plano", "diretor", "de", "arborizacao", "urbana", "de", "teresina", "-", "pi", ".", "a", "forma", "pela", "qual", "deverao", "ser", "executados", "os", "servicos", "licitados", "e", "as", "diversas", "obrigacoes", "dos", "licitantes", "e", "do", "adjudicatario", "do", "objeto", "desta", "licitacao", "estao", "registradas", "neste", "edital", ",", "no", "termo", "de", "referencia", "e", "minuta", "do", "contrato", "e", "demais", "anexos", "que", ",", "igualmente", ",", "integram", "as", "de", "informacoes", "sobre", "a", "licitacao", "."]
"ner_tags": [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 0, 1, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
}
```
#### bidCorpus_gold
An example of 'train' looks as follows.
```json
{
"text": ["para se habilitarem ao presente convite, os interessados deverao apresentar os documentos abaixo relacionados, nos termos dos artigos 27 a 31 e 32, paragrafo 1, da lei numero 666/93, atraves de seus representantes, no local, data e horario indicados no preambulo deste edital, em envelope inteiramente fechado, contendo em sua parte externa, alem da razao social e endereco da licitante, os seguintes dizeres: prefeitura municipal de angical ..."]
"labels": "certidao_protesto": 0, "certificado_boas_praticas": 0, "comprovante_localizacao": 0, "idoneidade_financeira": 0, "integralizado": 0, "licenca_ambiental": 0, "n_min_max_limitacao_atestados": 0
}
```
#### bidCorpus_object_similarity
An example of 'train' looks as follows.
```json
{
"nerObjeto1": ["execucao dos servicos de reforma e ampliacao da escola reunida francisco"],
"nerObjeto2": ["execucao dos servicos de reforma da escola municipal"],
"humanScore": 1.0,
"bertscore_ner": 1
}
```
#### bidCorpus_objects_correct_allowed
An example of 'train' looks as follows.
```json
{
"text": ["A presente licitação tem por objeto, selecionar empresas do ramo pertinente, Fornecimento de Lanches, marmitas para atender necessidade das Secretarias e Programa do Município com entrega parcelada ..."],
"corretude": 1,
"permitido": 0
}
```
#### bidCorpus_objects_type
An example of 'train' looks as follows.
```json
{
"text": ["destina - se a presente licitacao a prestacao de servicos de pavimentacao em paralelepipedo, conforme especificacoes e quantidades constantes do anexo <numero> sao ..."],
"label": 0
}
```
#### bidCorpus_qual_model
An example of 'train' looks as follows.
```json
{
"text": ["regras gerais. 1 os documentos de habilitacao deverao ser enviados concomitantemente com o envio da proposta, conforme item 9 deste edital 2 havendo a necessidade de envio de documentos de habilitacao complementares ..."],
"certidao_protesto": 0, "certificado_boas_praticas": 0, "comprovante_localizacao": 0, "idoneidade_financeira": 0, "integralizado": 0, "licenca_ambiental": 0, "n_min_max_limitacao_atestados": 0
}
```
#### bidCorpus_qual_weak_sup
An example of 'train' looks as follows.
```json
{
"text": ["os licitantes encaminharao, exclusivamente por meio do sistema, concomitantemente com os documentos de habilitacao. exigidos no edital, proposta com a descricao ..."],
"certidao_protesto": 0, "certificado_boas_praticas": 0, "comprovante_localizacao": 0, "idoneidade_financeira": 0, "integralizado": 0, "licenca_ambiental": 0, "n_min_max_limitacao_atestados": 0
}
```
#### bidCorpus_sections_type
An example of 'train' looks as follows.
```json
{
"text": ["IMPUGNAÇÃO DO ATO CONVOCATÓRIO 5.1 No prazo de até 03 (três) dias úteis, antes da data fixada para abertura da Sessão Pública, qualquer pessoa poderá solicitar esclarecimentos e providências sobre o ato convocatório deste pregão ..."],
"label": "outros"
}
```
#### bid_corpus_raw
An example of 'train' looks as follows.
```json
{
"ID-LICITACAO": 910809.0,
"ID-ARQUIVO": 745202022.0,
"OBJETO": "Artigo 20 Definição do Objeto\n1 – O objeto da licitação deve ser definido pela unidade ...",
"JULGAMENTO":"Artigo 46 Disposições gerais 1 – As licitações podem adotar os modos de disputa aberto, fechado ou combinado, que deve ...",
"CONDICAO_PARTICIPACAO": "5.1 - A participação no certame se dará por meio da digitação da senha pessoal e intransferível do representante ...",
"HABILITACAO": "6.1 - Os proponentes encaminharão, exclusivamente por meio do sistema eletrônico, os documentos de habilitação exigidos no edital, proposta ...",
"CREDENCIAMENTO": "4.1 - O credenciamento é o nível básico do registro cadastral no SICAF, que permite a participação dos interessados na modalidade licitatória ..."
}
```
### Data Fields
#### bidCorpus_NER_keyphrase
- `tokens`: a list of `string` features (list of tokens in a text).
- `ner_tags`: a list of classification labels (a list of named entity recognition tags).
<details>
<summary>List of NER tags</summary>
`O`, `B-LOCAL`, `I-LOCAL`, `B-OBJETO`, `I-OBJETO`
</details>
#### bidCorpus_gold
- `text`: a `string` feature (string of factual paragraphs from the case description).
- `certidao_protesto`: a 'int64` feature (indicates the presence or absence of a protest certificate).
- `certificado_boas_praticas`: a 'int64` feature (indicates the presence or absence of a good practices certificate).
- `comprovante_localizacao`: a 'int64` feature (indicates the presence or absence of a location proof).
- `idoneidade_financeira`: a 'int64` feature (indicates the presence or absence of financial soundness).
- `integralizado`: a 'int64` feature (indicates the presence or absence of full completion).
- `licenca_ambiental`: a 'int64` feature (indicates the presence or absence of an environmental license).
- `n_min_max_limitacao_atestados`: a 'int64` feature (indicates the presence or absence of limitation of certificates).
#### bidCorpus_object_similarity
- `objeto1`: a `string` feature (first object for comparison).
- `nerObjeto1`: a `string` feature (NER tags for the first object).
- `objeto2`: a `string` feature (second object for comparison).
- `nerObjeto2`: a `string` feature (NER tags for the second object).
- `humanScore`: a `float64` feature (human-provided similarity score).
- `nerObjeto1_words`: a `int64` feature (number of words in the first object with NER tags).
- `objeto1_words`: a `int64` feature (number of words in the first object).
- `percentual_words`: a `float64` feature (percentage of similar words).
- `nerObjeto2_words`: a 'int64` feature (number of words in the second object with NER tags).
- `objeto2_words`: a `int64` feature (number of words in the second object).
- `bertscore_ner`: a 'int64` feature (BERT score for NER).
- `bertscore_objs`: a 'int64` feature (BERT score for objects).
#### bidCorpus_objects_correct_allowed
- `text`: a list of `string` features (list of factual paragraphs from the case description).
- `corretude`: a list of `int64` features (correctness score).
- `permitido`: a list of `int64` features (allowed score).
#### bidCorpus_objects_type
- `text`: a list of `string` features (list of factual paragraphs from the case description).
- `label`: a list of `int64` features (classification labels for object types).
#### bidCorpus_qual_model
- `text`: a list of `string` features (list of factual paragraphs from the case description).
- `certidao_protesto`: a list of `int64` features (presence or absence of protest certificate).
- `certificado_boas_praticas`: a list of `int64` features (presence or absence of good practices certificate).
- `comprovante_localizacao`: a list of `int64` features (presence or absence of location proof).
- `idoneidade_financeira`: a list of `int64` features (presence or absence of financial soundness).
- `integralizado`: a list of `int64` features (presence or absence of full completion).
- `licenca_ambiental`: a list of `int64` features (presence or absence of environmental license).
- `n_min_max_limitacao_atestados`: a list of `int64` features (presence or absence of limitation of certificates).
#### bidCorpus_qual_weak_sup
- `text`: a list of `string` features (list of factual paragraphs from the case description).
- `certidao_protesto`: a list of `int64` features (presence or absence of protest certificate).
- `certificado_boas_praticas`: a list of `int64` features (presence or absence of good practices certificate).
- `comprovante_localizacao`: a list of `int64` features (presence or absence of location proof).
- `idoneidade_financeira`: a list of `int64` features (presence or absence of financial soundness).
- `integralizado`: a list of `int64` features (presence or absence of full completion).
- `licenca_ambiental`: a list of `int64` features (presence or absence of environmental license).
- `n_min_max_limitacao_atestados`: a list of `int64` features (presence or absence of limitation of certificates).
#### bidCorpus_sections_type
- `text`: a list of `string` features (list of factual paragraphs from the case description).
- `label`: a list of `string` features (classification labels for sections types).
#### bid_corpus_raw
- `ID-LICITACAO`: a list of `float64` features (auction ID).
- `ID-ARQUIVO`: a list of `float64` features (file ID).
- `OBJETO`: a list of `string` features (object of the auction).
- `JULGAMENTO`: a list of `string` features (judgment details).
- `CONDICAO_PARTICIPACAO`: a list of `string` features (participation conditions).
- `HABILITACAO`: a list of `string` features (qualification details).
- `CREDENCIAMENTO`: a list of `string` features (accreditation details).
### Data Splits
<table>
<tr>
<td>Dataset</td>
<td>Training</td>
<td>Development</td>
<td>Test</td>
<td>Total</td>
</tr>
<tr>
<td>bidCorpus_NER_keyphrase</td>
<td>1,632</td>
<td>204</td>
<td>204</td>
<td>2,040</td>
</tr>
<tr>
<td>bidCorpus_gold</td>
<td>1,454</td>
<td>182</td>
<td>182</td>
<td>1,818</td>
</tr>
<tr>
<td>bidCorpus_object_similarity</td>
<td>1,403</td>
<td>175</td>
<td>176</td>
<td>1,754</td>
</tr>
<tr>
<td>bidCorpus_objects_correct_allowed</td>
<td>1,089</td>
<td>136</td>
<td>137</td>
<td>1,362</td>
</tr>
<tr>
<td>bidCorpus_objects_type</td>
<td>1,709</td>
<td>214</td>
<td>214</td>
<td>2,137</td>
</tr>
<tr>
<td>bidCorpus_qual_model</td>
<td>177,133</td>
<td>22,142</td>
<td>22,142</td>
<td>221,417</td>
</tr>
<tr>
<td>bidCorpus_qual_weak_sup</td>
<td>177,133</td>
<td>22,142</td>
<td>22,142</td>
<td>221,417</td>
</tr>
<tr>
<td>bidCorpus_sections_type</td>
<td>177,133</td>
<td>22,142</td>
<td>22,142</td>
<td>221,417</td>
</tr>
<tr>
<td>bid_corpus_raw</td>
<td>373,650</td>
<td>N/A</td>
<td>N/A</td>
<td>373,650</td>
</tr>
</table>
## Dataset Creation
### Curation Rationale
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the source language producers?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Annotations
#### Annotation process
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the annotators?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Personal and Sensitive Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Discussion of Biases
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Other Known Limitations
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Additional Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Dataset Curators
### Licensing Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Citation Information
### Contributions