Datasets:
The viewer is disabled because this dataset repo requires arbitrary Python code execution. Please consider
removing the
loading script
and relying on
automated data support
(you can use
convert_to_parquet
from the datasets
library). If this is not possible, please
open a discussion
for direct help.
Dataset Card for KdConv
Dataset Summary
KdConv is a Chinese multi-domain Knowledge-driven Conversionsation dataset, grounding the topics in multi-turn conversations to knowledge graphs. KdConv contains 4.5K conversations from three domains (film, music, and travel), and 86K utterances with an average turn number of 19.0. These conversations contain in-depth discussions on related topics and natural transition between multiple topics, while the corpus can also used for exploration of transfer learning and domain adaptation.
Supported Tasks and Leaderboards
This dataset can be leveraged for dialogue modelling tasks involving multi-turn and Knowledge base setup.
Languages
This dataset has only Chinese Language.
Dataset Structure
Data Instances
Each data instance is a multi-turn conversation between 2 people with annotated knowledge base data used while talking , e.g.:
{
"messages": [
{
"message": "对《我喜欢上你时的内心活动》这首歌有了解吗?"
},
{
"attrs": [
{
"attrname": "Information",
"attrvalue": "《我喜欢上你时的内心活动》是由韩寒填词,陈光荣作曲,陈绮贞演唱的歌曲,作为电影《喜欢你》的主题曲于2017年4月10日首发。2018年,该曲先后提名第37届香港电影金像奖最佳原创电影歌曲奖、第7届阿比鹿音乐奖流行单曲奖。",
"name": "我喜欢上你时的内心活动"
}
],
"message": "有些了解,是电影《喜欢你》的主题曲。"
},
...
{
"attrs": [
{
"attrname": "代表作品",
"attrvalue": "旅行的意义",
"name": "陈绮贞"
},
{
"attrname": "代表作品",
"attrvalue": "时间的歌",
"name": "陈绮贞"
}
],
"message": "我还知道《旅行的意义》与《时间的歌》,都算是她的代表作。"
},
{
"message": "好,有时间我找出来听听。"
}
],
"name": "我喜欢上你时的内心活动"
}
The corresponding entries in Knowledge base is a dictionary with list of knowledge base triplets (head entity , relationship, tail entity), e.g.:
"忽然之间": [
[
"忽然之间",
"Information",
"《忽然之间》是歌手 莫文蔚演唱的歌曲,由 周耀辉, 李卓雄填词, 林健华谱曲,收录在莫文蔚1999年发行专辑《 就是莫文蔚》里。"
],
[
"忽然之间",
"谱曲",
"林健华"
]
...
]
Data Fields
Conversation data fields:
name
: the starting topic (entity) of the conversationdomain
: the domain this sample belongs to. Categorical value among{travel, film, music}
messages
: list of all the turns in the dialogue. For each turn:message
: the utteranceattrs
: list of knowledge graph triplets referred by the utterance. For each triplet:name
: the head entityattrname
: the relationattrvalue
: the tail entity
Knowledge Base data fields:
head_entity
: the head entitykb_triplets
: list of corresponding tripletsdomain
: the domain this sample belongs to. Categorical value among{travel, film, music}
Data Splits
The conversation dataset is split into a train
, validation
, and test
split with the following sizes:
train | validation | test | |
---|---|---|---|
travel | 1200 | 1200 | 1200 |
film | 1200 | 150 | 150 |
music | 1200 | 150 | 150 |
all | 3600 | 450 | 450 |
The Knowledge base dataset is having only train split with following sizes:
train | |
---|---|
travel | 1154 |
film | 8090 |
music | 4441 |
all | 13685 |
Dataset Creation
Curation Rationale
[More Information Needed]
Source Data
Initial Data Collection and Normalization
[More Information Needed]
Who are the source language producers?
[More Information Needed]
Annotations
Annotation process
[More Information Needed]
Who are the annotators?
[More Information Needed]
Personal and Sensitive Information
[More Information Needed]
Considerations for Using the Data
Social Impact of Dataset
[More Information Needed]
Discussion of Biases
[More Information Needed]
Other Known Limitations
[More Information Needed]
Additional Information
Dataset Curators
[More Information Needed]
Licensing Information
Apache License 2.0
Citation Information
@inproceedings{zhou-etal-2020-kdconv,
title = "{K}d{C}onv: A {C}hinese Multi-domain Dialogue Dataset Towards Multi-turn Knowledge-driven Conversation",
author = "Zhou, Hao and
Zheng, Chujie and
Huang, Kaili and
Huang, Minlie and
Zhu, Xiaoyan",
booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2020.acl-main.635",
doi = "10.18653/v1/2020.acl-main.635",
pages = "7098--7108",
}
Contributions
Thanks to @pacman100 for adding this dataset.
- Downloads last month
- 434