|
--- |
|
license: mit |
|
task_categories: |
|
- text-classification |
|
language: |
|
- en |
|
tags: |
|
- amazon |
|
- products |
|
- binary |
|
- text |
|
pretty_name: Amazon Scrape 4 llm |
|
size_categories: |
|
- n<1K |
|
configs: |
|
- config_name: phones |
|
data_files: |
|
- split: train |
|
path: data/phones.csv |
|
- config_name: laptops |
|
data_files: |
|
- split: train |
|
path: data/laptops.csv |
|
--- |
|
|
|
# Amazon Scrape 4 llm |
|
|
|
## Purpose? |
|
|
|
Feed an LLM raw html to identify products from an ecommerce platform.\ |
|
These datasets contain the extracted innerTexts of all HTML nodes from different ecommerce product pages.\ |
|
The cleaning process significantly reduces the token size from ex: 450k -> 6k |
|
|
|
## Quickstart |
|
|
|
```py |
|
from datasets import load_dataset |
|
|
|
data_train = load_dataset("timashan/amazon-scrape-4-llm", "phones") |
|
data_test = load_dataset("timashan/amazon-scrape-4-llm", "laptops") |
|
``` |
|
|
|
### JS snippet used for cleansing |
|
|
|
```js |
|
const allowedTags = sanitizeHtml.defaults.allowedTags; |
|
allowedTags.splice(allowedTags.indexOf("a"), 1); |
|
convert(sanitizeHtml(document.body.innerHTML, { allowedTags })); |
|
``` |
|
|