Datasets:
Tasks:
Token Classification
Modalities:
Text
Sub-tasks:
named-entity-recognition
Languages:
English
Size:
1K - 10K
License:
metadata
language:
- en
license:
- other
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
task_categories:
- token-classification
task_ids:
- named-entity-recognition
pretty_name: MIT Restaurant
Dataset Card for "tner/mit_restaurant"
Dataset Description
- Repository: T-NER
- Paper: https://aclanthology.org/U15-1010.pdf
- Dataset: MIT restaurant
- Domain: Restaurant
- Number of Entity: 8
Dataset Summary
MIT Restaurant NER dataset formatted in a part of TNER project.
- Entity Types:
Rating
,Amenity
,Location
,Restaurant_Name
,Price
,Hours
,Dish
,Cuisine
.
Dataset Structure
Data Instances
An example of train
looks as follows.
{
"tags": [0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
"tokens": ["1", ".", "1", ".", "4", "Borrower", "engages", "in", "criminal", "conduct", "or", "is", "involved", "in", "criminal", "activities", ";"]
}
Label ID
The label2id dictionary can be found at here.
{
"O": 0,
"B-Rating": 1,
"I-Rating": 2,
"B-Amenity": 3,
"I-Amenity": 4,
"B-Location": 5,
"I-Location": 6,
"B-Restaurant_Name": 7,
"I-Restaurant_Name": 8,
"B-Price": 9,
"B-Hours": 10,
"I-Hours": 11,
"B-Dish": 12,
"I-Dish": 13,
"B-Cuisine": 14,
"I-Price": 15,
"I-Cuisine": 16
}
Data Splits
name | train | validation | test |
---|---|---|---|
mit_restaurant | 6899 | 759 | 1520 |