File size: 16,704 Bytes
2c4b081 809ba53 2c4b081 809ba53 2c4b081 809ba53 2c4b081 809ba53 2c4b081 809ba53 2c4b081 47c5b65 2c4b081 47c5b65 2c4b081 47c5b65 2c4b081 47c5b65 2c4b081 47c5b65 2c4b081 809ba53 2c4b081 809ba53 2c4b081 809ba53 2c4b081 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 |
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""Reuters 21578"""
from __future__ import absolute_import, division, print_function
import os
from textwrap import dedent
import datasets
_CITATION = """\
@article{APTE94,
author = {Chidanand Apt{\'{e}} and Fred Damerau and Sholom M. Weiss},
title = {Automated Learning of Decision Rules for Text Categorization},
journal = {ACM Transactions on Information Systems},
year = {1994},
note = {To appear.}
}
@inproceedings{APTE94b,
author = {Chidanand Apt{\'{e}} and Fred Damerau and Sholom M. Weiss},
title = {Toward Language Independent Automated Learning of Text Categorization Models},
booktitle = {sigir94},
year = {1994},
note = {To appear.}
}
@inproceedings{HAYES8},
author = {Philip J. Hayes and Peggy M. Anderson and Irene B. Nirenburg and
Linda M. Schmandt},
title = {{TCS}: A Shell for Content-Based Text Categorization},
booktitle = {IEEE Conference on Artificial Intelligence Applications},
year = {1990}
}
@inproceedings{HAYES90b,
author = {Philip J. Hayes and Steven P. Weinstein},
title = {{CONSTRUE/TIS:} A System for Content-Based Indexing of a
Database of News Stories},
booktitle = {Second Annual Conference on Innovative Applications of
Artificial Intelligence},
year = {1990}
}
@incollection{HAYES92 ,
author = {Philip J. Hayes},
title = {Intelligent High-Volume Text Processing using Shallow,
Domain-Specific Techniques},
booktitle = {Text-Based Intelligent Systems},
publisher = {Lawrence Erlbaum},
address = {Hillsdale, NJ},
year = {1992},
editor = {Paul S. Jacobs}
}
@inproceedings{LEWIS91c ,
author = {David D. Lewis},
title = {Evaluating Text Categorization},
booktitle = {Proceedings of Speech and Natural Language Workshop},
year = {1991},
month = {feb},
organization = {Defense Advanced Research Projects Agency},
publisher = {Morgan Kaufmann},
pages = {312--318}
}
@phdthesis{LEWIS91d,
author = {David Dolan Lewis},
title = {Representation and Learning in Information Retrieval},
school = {Computer Science Dept.; Univ. of Massachusetts; Amherst, MA 01003},
year = 1992},
note = {Technical Report 91--93.}
}
@inproceedings{LEWIS91e,
author = {David D. Lewis},
title = {Data Extraction as Text Categorization: An Experiment with
the {MUC-3} Corpus},
booktitle = {Proceedings of the Third Message Understanding Evaluation
and Conference},
year = {1991},
month = {may},
organization = {Defense Advanced Research Projects Agency},
publisher = {Morgan Kaufmann},
address = {Los Altos, CA}
}
@inproceedings{LEWIS92b,
author = {David D. Lewis},
title = {An Evaluation of Phrasal and Clustered Representations on a Text
Categorization Task},
booktitle = {Fifteenth Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval},
year = {1992},
pages = {37--50}
}
@inproceedings{LEWIS92d ,
author = {David D. Lewis and Richard M. Tong},
title = {Text Filtering in {MUC-3} and {MUC-4}},
booktitle = {Proceedings of the Fourth Message Understanding Conference ({MUC-4})},
year = {1992},
month = {jun},
organization = {Defense Advanced Research Projects Agency},
publisher = {Morgan Kaufmann},
address = {Los Altos, CA}
}
@inproceedings{LEWIS92e,
author = {David D. Lewis},
title = {Feature Selection and Feature Extraction for Text Categorization},
booktitle = {Proceedings of Speech and Natural Language Workshop},
year = {1992},
month = {feb} ,
organization = {Defense Advanced Research Projects Agency},
publisher = {Morgan Kaufmann},
pages = {212--217}
}
@inproceedings{LEWIS94b,
author = {David D. Lewis and Marc Ringuette},
title = {A Comparison of Two Learning Algorithms for Text Categorization},
booktitle = {Symposium on Document Analysis and Information Retrieval},
year = {1994},
organization = {ISRI; Univ. of Nevada, Las Vegas},
address = {Las Vegas, NV},
month = {apr},
pages = {81--93}
}
@article{LEWIS94d,
author = {David D. Lewis and Philip J. Hayes},
title = {Guest Editorial},
journal = {ACM Transactions on Information Systems},
year = {1994},
volume = {12},
number = {3},
pages = {231},
month = {jul}
}
@article{SPARCKJONES76,
author = {K. {Sparck Jones} and C. J. {van Rijsbergen}},
title = {Information Retrieval Test Collections},
journal = {Journal of Documentation},
year = {1976},
volume = {32},
number = {1},
pages = {59--75}
}
@book{WEISS91,
author = {Sholom M. Weiss and Casimir A. Kulikowski},
title = {Computer Systems That Learn},
publisher = {Morgan Kaufmann},
year = {1991},
address = {San Mateo, CA}
}
"""
_DESCRIPTION = """\
The Reuters-21578 dataset is one of the most widely used data collections for text
categorization research. It is collected from the Reuters financial newswire service in 1987.
"""
_DATA_URL = "https://kdd.ics.uci.edu/databases/reuters21578/reuters21578.tar.gz"
class Reuters21578Config(datasets.BuilderConfig):
"""BuilderConfig for reuters-21578."""
def __init__(self, **kwargs):
"""BuilderConfig for Reuters21578.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(Reuters21578Config, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs)
class Reuters21578(datasets.GeneratorBasedBuilder):
"""Reuters 21578"""
BUILDER_CONFIGS = [
Reuters21578Config(
name="ModHayes",
description=dedent(
"""Training Set (20856 docs): CGISPLIT="TRAINING-SET"
Test Set (722 docs): CGISPLIT="PUBLISHED-TESTSET"
Unused (0 docs)"""
),
),
Reuters21578Config(
name="ModLewis",
description=dedent(
"""Training Set (13,625 docs): LEWISSPLIT="TRAIN"; TOPICS="YES" or "NO"
Test Set (6,188 docs): LEWISSPLIT="TEST"; TOPICS="YES" or "NO"
Unused (1,765): LEWISSPLIT="NOT-USED" or TOPICS="BYPASS"""
),
),
Reuters21578Config(
name="ModApte",
description=dedent(
"""Training Set (9,603 docs): LEWISSPLIT="TRAIN"; TOPICS="YES"
Test Set (3,299 docs): LEWISSPLIT="TEST"; TOPICS="YES"
Unused (8,676 docs): LEWISSPLIT="NOT-USED"; TOPICS="YES" or TOPICS="NO" or TOPICS="BYPASS" """
),
),
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"text": datasets.Value("string"),
"text_type": datasets.Value("string"),
"topics": datasets.Sequence(datasets.Value("string")),
"lewis_split": datasets.Value("string"),
"cgis_split": datasets.Value("string"),
"old_id": datasets.Value("string"),
"new_id": datasets.Value("string"),
"places": datasets.Sequence(datasets.Value("string")),
"people": datasets.Sequence(datasets.Value("string")),
"orgs": datasets.Sequence(datasets.Value("string")),
"exchanges": datasets.Sequence(datasets.Value("string")),
"date": datasets.Value("string"),
"title": datasets.Value("string"),
}
),
# No default supervised_keys (as we have to pass both premise
# and hypothesis as input).
supervised_keys=None,
homepage="https://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
dl_dir = dl_manager.download_and_extract(_DATA_URL)
files = [os.path.join(dl_dir, "reut2-" + "%03d" % i + ".sgm") for i in range(22)]
if self.config.name == "ModHayes":
return [
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"filepath": files, "split": "PUBLISHED-TESTSET"},
),
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"filepath": files, "split": "TRAINING-SET"},
),
]
else:
return [
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": files, "split": "TEST"}),
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": files, "split": "TRAIN"}),
datasets.SplitGenerator(name="unused", gen_kwargs={"filepath": files, "split": "NOT-USED"}),
]
def _generate_examples(self, filepath, split):
"""This function returns the examples in the raw (text) form."""
for file in filepath:
with open(
file, encoding="utf-8", errors="ignore"
) as f: # only the file reut2-017 has one line non UTF-8 encoded so we can ignore it
line = f.readline()
while line:
if line.startswith("<REUTERS"):
lewis_split = ""
cgis_split = ""
old_id = ""
new_id = ""
topics = []
places = []
people = []
orgs = []
exchanges = []
date = ""
title = ""
text = ""
text_type = ""
line = line.split()
lewis_split = line[2].split("=")[1]
cgis_split = line[3].split("=")[1]
old_id = line[4].split("=")[1]
new_id = line[5].split("=")[1][:-1]
has_topic = line[1].split("=")[1]
line = f.readline()
if (
(self.config.name == "ModHayes" and split not in cgis_split)
or (
self.config.name == "ModLewis"
and (
(split not in lewis_split)
or (split == "TRAIN" and has_topic not in ['"YES"', '"NO"'])
or (split == "TEST" and has_topic not in ['"YES"', '"NO"'])
or (split == "NOT-USED" and has_topic not in ['"YES"', '"NO"', '"BYPASS"'])
)
)
or (
self.config.name == "ModApte"
and (
split not in lewis_split
or (split == "TRAIN" and has_topic != '"YES"')
or (split == "TEST" and has_topic != '"YES"')
or (split == "NOT-USED" and has_topic not in ['"YES"', '"NO"', '"BYPASS"'])
)
)
): # skip example that are not in the current split
li = line
while li and not li.startswith("<REUTERS"):
li = f.readline()
if li:
line = li
elif line.startswith("<TOPICS>"):
if line.replace("\n", "") != "<TOPICS></TOPICS>":
line = line.split("<D>")
topics = [topic.replace("</D>", "") for topic in line[1:]]
topics = [topic.replace("</TOPICS>\n", "") for topic in topics]
line = f.readline()
elif line.startswith("<PLACES>"):
if line.replace("\n", "") != "<PLACES></PLACES>":
line = line.split("<D>")
places = [place.replace("</D>", "") for place in line[1:]]
places = [place.replace("</PLACES>\n", "") for place in places]
line = f.readline()
elif line.startswith("<PEOPLE>"):
if line.replace("\n", "") != "<PEOPLE></PEOPLE>":
line = line.split("<D>")
people = [p.replace("</D>", "") for p in line[1:]]
people = [p.replace("</PEOPLE>\n", "") for p in people]
line = f.readline()
elif line.startswith("<ORGS>"):
if line.replace("\n", "") != "<ORGS></ORGS>":
line = line.split("<D>")
orgs = [org.replace("</D>", "") for org in line[1:]]
orgs = [org.replace("</ORGS>\n", "") for org in orgs]
line = f.readline()
elif line.startswith("<EXCHANGES>"):
if line.replace("\n", "") != "<EXCHANGES></EXCHANGES>":
line = line.split("<D>")
exchanges = [ex.replace("</D>", "") for ex in line[1:]]
exchanges = [ex.replace("</EXCHANGES>\n", "") for ex in exchanges]
line = f.readline()
elif line.startswith("<DATE>"):
date = line.replace("\n", "")
date = line[6:-8]
line = f.readline()
elif line.startswith("<TITLE>"):
title = line[7:-9]
line = f.readline()
elif "*<TITLE>" in line:
# These lines start with a variable number of * chars
title = line.split("*<TITLE>")[1][:-1]
line = f.readline()
while "</TITLE>" not in line:
# Convert any \n in TYPE="BRIEF" text to spaces to match other titles
title += " " + line[:-1]
line = f.readline()
elif "<BODY>" in line:
text = line.split("<BODY>")[1]
line = f.readline()
while "</BODY>" not in line:
text += line
line = f.readline()
elif line.startswith('<TEXT TYPE="UNPROC">'):
text_type = '"UNPROC"'
text = line[20:]
line = f.readline()
while "</TEXT>" not in line:
text += line
line = f.readline()
elif line.startswith('<TEXT TYPE="BRIEF">'):
text_type = '"BRIEF"'
line = f.readline()
elif line.startswith("<TEXT>"):
text_type = '"NORM"'
line = f.readline()
elif line.startswith("</REUTERS>"):
yield new_id, {
"lewis_split": lewis_split,
"cgis_split": cgis_split,
"old_id": old_id,
"new_id": new_id,
"topics": topics,
"places": places,
"people": people,
"orgs": orgs,
"exchanges": exchanges,
"date": date,
"title": title,
"text": text,
"text_type": text_type,
}
line = f.readline()
else:
line = f.readline()
|