The dataset viewer is not available for this subset.
Cannot get the split names for the config 'default' of the dataset.
Exception:    SplitsNotFoundError
Message:      The split names could not be parsed from the dataset config.
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/inspect.py", line 298, in get_dataset_config_info
                  for split_generator in builder._split_generators(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/packaged_modules/folder_based_builder/folder_based_builder.py", line 175, in _split_generators
                  pa_metadata_table = self._read_metadata(downloaded_metadata_file, metadata_ext=metadata_ext)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/packaged_modules/folder_based_builder/folder_based_builder.py", line 244, in _read_metadata
                  return paj.read_json(f)
                File "pyarrow/_json.pyx", line 308, in pyarrow._json.read_json
                File "pyarrow/error.pxi", line 154, in pyarrow.lib.pyarrow_internal_check_status
                File "pyarrow/error.pxi", line 91, in pyarrow.lib.check_status
              pyarrow.lib.ArrowInvalid: JSON parse error: Invalid value. in row 0
              
              The above exception was the direct cause of the following exception:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/split_names.py", line 65, in compute_split_names_from_streaming_response
                  for split in get_dataset_split_names(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/inspect.py", line 352, in get_dataset_split_names
                  info = get_dataset_config_info(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/inspect.py", line 303, in get_dataset_config_info
                  raise SplitsNotFoundError("The split names could not be parsed from the dataset config.") from err
              datasets.inspect.SplitsNotFoundError: The split names could not be parsed from the dataset config.

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

简介

这是一个包含图片和对应Latex文本标签的数据集仓库,既有电子文档的图像,也有手写图像,该仓库的数据集全都是真实的数据集。图像中的文本内容复杂多样,适用于训练和测试数学公式识别模型。

下载地址(huggingface): https://huggingface.co/datasets/wzmmmm/Image2Latex/tree/main

下载地址(kaggle): https://www.kaggle.com/datasets/weizhiming/images2latex-dataset

目录结构:

Chinese_small_dataset0/
├── images/                   # 存放图像的文件夹
│   ├── image1.png
│   ├── image2.png
│   └── ...
├── labels/                   # 存放对应 LaTeX 标签的文件夹
│   ├── label1.txt
│   ├── label2.txt
│   └── ...
├── metadata.csv              # 数据集的元数据(如图片和标签的配对关系)
Chinese_small_dataset1/...

数据

Chinese_small_dataset系列:

这个系列的数据集主要是电子文档图片-Latex文本。示例:

图片: 示例图片/b28.jpg 标签:

10. 设随机变量$X,Y$相互独立,且均服从参数为$\lambda$的指数分布,令$Z = |X - Y|$,则下列随机变量与$Z$同分布的是( )
A. $X + Y$ B. $\frac{X + Y}{2}$
C. $2X$ D. $X$
【答案】D
【解析】令$Z = |X - Y|$,则$F_Z(z)=P\{Z\leq z\}=P\{|X - Y|\leq z\}$$z < 0$时,$F_Z(z)=0$;
当$z\geq0$时,

图片: 示例图片/b115.jpg

标签:

\frac{O_{1}D}{R_{1}}=\frac{O_{2}E}{R_{2}} \quad\frac{O_{1}D}{O_{1}P}=\frac{O_{2}E}{O_{2}P}.

这显然是成立的, 从而命题得证 (证明略)

(2)全部去分母法.

用各分母的最低公倍式乘以等式两端, 化为乘积和的形式证明之.

handwriteen_dataset系列:

这个系列的数据集主要是手写图片-Latex文本标签。示例:

图片: 示例图片/a40.jpg

标签:

特别的,若\(f(x_0 - 0)\)\(f(x_0 + 0)\)中有一个为\(\infty\)\(\rightarrow\)\(x_0\)\(f(x)\)

图片: 示例图片/a5976.jpg

标签:

$X=(X_1,X_2,\cdots,X_n)\in E$, 则对上述$\varepsilon>0,\ N$有,
\[
\begin{align*}
\left\|X_{\varepsilon}^{(n)}-X\right\|&=\max\left\{\left\|X_1^{(n)}-X_1\right\|,\left\|X_2^{(n)}-X_2\right\|,\cdots,\left\|X_n^{(n)}-X_n\right\|\right\}\\
&=\left\|X_i^{(n)}-X_i\right\|<\varepsilon.
\end{align*}
\]
$\Rightarrow E$按照范数(15)是Banach空间.

$\textcircled{3}\|X\| = (\sum_{k = 1}^{n}\|X_k\|^2)^{\frac{1}{2}}$.
其满足:(i) $\|X\|\geq0$, $\|X\| = 0\Leftrightarrow(\sum_{k = 1}^{n}\|X_k\|^2)^{\frac{1}{2}}=0$
\[
\begin{align*}
&\Leftrightarrow X_k = 0\ (k = 1,2,\cdots,n)\\
&\Leftrightarrow X = 0
\end{align*}
\]
(ii) $\|\alpha X\|=(\sum_{k = 1}^{n}\|\alpha X_k\|^2)^{\frac{1}{2}}=(\sum_{k = 1}^{n}|\alpha|^2\|X_k\|^2)^{\frac{1}{2}}=|\alpha|(\sum_{k = 1}^{n}\|X_k\|^2)^{\frac{1}{2}}$
(iii) $\|X + Y\|=(\sum_{k = 1}^{n}\|X_k+Y_k\|^2)^{\frac{1}{2}}\leq(\text{Hölder})(\sum_{k = 1}^{n}\|X_k\|^2)^{\frac{1}{2}}+(\sum_{k = 1}^{n}\|Y_k\|^2)^{\frac{1}{2}}=\|X\|+\|Y\|$
Downloads last month
75