Dataset Preview
Full Screen Viewer
Full Screen
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed
Error code: DatasetGenerationError Exception: UnicodeDecodeError Message: 'utf-8' codec can't decode byte 0x89 in position 0: invalid start byte Traceback: Traceback (most recent call last): File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1997, in _prepare_split_single for _, table in generator: File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/packaged_modules/text/text.py", line 85, in _generate_tables batch = f.read(self.config.chunksize) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/utils/file_utils.py", line 1104, in read_with_retries out = read(*args, **kwargs) File "/usr/local/lib/python3.9/codecs.py", line 322, in decode (result, consumed) = self._buffer_decode(data, self.errors, final) UnicodeDecodeError: 'utf-8' codec can't decode byte 0x89 in position 0: invalid start byte The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1396, in compute_config_parquet_and_info_response parquet_operations = convert_to_parquet(builder) File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1045, in convert_to_parquet builder.download_and_prepare( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1029, in download_and_prepare self._download_and_prepare( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1124, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1884, in _prepare_split for job_id, done, content in self._prepare_split_single( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 2040, in _prepare_split_single raise DatasetGenerationError("An error occurred while generating the dataset") from e datasets.exceptions.DatasetGenerationError: An error occurred while generating the dataset
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
text
string |
---|
Pedestrian 0 0 -0.24805212020874023 733.77 168.24 791.59 284.86 0.6100000143051147 1.7200000286102295 0.7300000190734863 1.7560619115829468 1.1315209865570068 7.883908748626709 6.25 0.3400000035762787 |
Pedestrian 0 0 0.02304983139038086 731.04 168.59 789.75 283.53 0.5899999737739563 1.6799999475479126 0.8399999737739563 1.7413666248321533 1.1021308898925781 7.861866474151611 6.519999980926514 0.27000001072883606 |
Pedestrian 0 0 -0.19518041610717773 733.69 171.52 790.52 285.3 0.6200000047683716 1.690000057220459 0.7400000095367432 1.7634093761444092 1.1388684511184692 7.942689895629883 6.309999942779541 0.23999999463558197 |
Pedestrian 0 0 -0.18184709548950195 734.02 166.82 790.27 286.28 0.5899999737739563 1.7000000476837158 0.7099999785423279 1.6899338960647583 1.1021308898925781 7.6120500564575195 6.320000171661377 0.23000000417232513 |
Pedestrian 0 0 0.002185821533203125 732.52 167.1 789.66 281.34 0.5899999737739563 1.690000057220459 0.8299999833106995 1.7707569599151611 1.0947833061218262 7.979426860809326 6.5 0.20999999344348907 |
Pedestrian 0 0 -0.16233301162719727 735.03 166.21 790.22 284.33 0.6000000238418579 1.7000000476837158 0.7099999785423279 1.719323992729187 1.0947833061218262 7.707568168640137 6.340000152587891 0.20000000298023224 |
Pedestrian 0 0 -0.24811792373657227 733.62 168.21 791.46 284.87 0.6100000143051147 1.7200000286102295 0.7300000190734863 1.7560619115829468 1.1315209865570068 7.883908748626709 6.25 0.3400000035762787 |
Pedestrian 0 0 0.024756431579589844 730.85 168.54 789.55 283.48 0.5899999737739563 1.6799999475479126 0.8399999737739563 1.7413666248321533 1.1021308898925781 7.861866474151611 6.53000020980835 0.27000001072883606 |
Pedestrian 0 0 -0.1952071189880371 733.47 171.4 790.31 285.2 0.6200000047683716 1.690000057220459 0.7400000095367432 1.7634093761444092 1.1388684511184692 7.935342311859131 6.309999942779541 0.23999999463558197 |
Pedestrian 0 0 -0.18215370178222656 734.04 166.68 790.3 286.15 0.5899999737739563 1.7000000476837158 0.7099999785423279 1.6899338960647583 1.1021308898925781 7.6120500564575195 6.320000171661377 0.23000000417232513 |
Pedestrian 0 0 0.003184795379638672 732.5 167.0 789.66 281.28 0.5899999737739563 1.690000057220459 0.8299999833106995 1.7707569599151611 1.0947833061218262 7.979426860809326 6.5 0.20999999344348907 |
Pedestrian 0 0 -0.16290855407714844 735.21 166.2 790.44 284.35 0.6000000238418579 1.7000000476837158 0.7099999785423279 1.719323992729187 1.0947833061218262 7.707568168640137 6.340000152587891 0.20000000298023224 |
Pedestrian 0 0 -0.24830389022827148 712.56 73.38 816.33 287.44 0.6100000143051147 1.7200000286102295 0.7300000190734863 1.340000033378601 0.8600000143051147 5.989999771118164 6.25 0.3400000035762787 |
Pedestrian 0 0 0.024805545806884766 706.71 74.45 814.19 286.63 0.5899999737739563 1.6799999475479126 0.8399999737739563 1.3200000524520874 0.8399999737739563 5.980000019073486 6.53000020980835 0.27000001072883606 |
Pedestrian 0 0 -0.19546747207641602 712.96 79.05 814.97 287.89 0.6200000047683716 1.690000057220459 0.7400000095367432 1.340000033378601 0.8700000047683716 6.03000020980835 6.309999942779541 0.23999999463558197 |
Pedestrian 0 0 -0.18210458755493164 713.51 69.62 814.48 288.91 0.5899999737739563 1.7000000476837158 0.7099999785423279 1.2899999618530273 0.8399999737739563 5.78000020980835 6.320000171661377 0.23000000417232513 |
Pedestrian 0 0 0.003154754638671875 709.28 73.51 813.94 284.26 0.5899999737739563 1.690000057220459 0.8299999833106995 1.340000033378601 0.8299999833106995 6.059999942779541 6.5 0.20999999344348907 |
Pedestrian 0 0 -0.1626124382019043 714.93 70.03 814.01 286.96 0.6000000238418579 1.7000000476837158 0.7099999785423279 1.309999942779541 0.8299999833106995 5.860000133514404 6.340000152587891 0.20000000298023224 |
Bus 0 0 -1.6105599403381348 603.57 161.23 626.52 184.12 2.7799999713897705 3.0299999713897705 10.739999771118164 0.49963265657424927 1.0947833061218262 74.1440200805664 4.679999828338623 0.1599999964237213 |
Bus 0 0 -1.610457420349121 603.49 161.09 626.42 183.97 2.7799999713897705 3.0299999713897705 10.739999771118164 0.4922851324081421 1.0800882577896118 74.16606140136719 4.679999828338623 0.1599999964237213 |
Bus 0 0 -1.6104674339294434 595.64 141.59 636.96 184.49 2.7799999713897705 3.0299999713897705 10.739999771118164 0.3700000047683716 0.8199999928474426 56.349998474121094 4.679999828338623 0.1599999964237213 |
Car 0 0 -1.552112102508545 667.47 195.47 693.74 219.15 1.9299999475479126 1.600000023841858 4.5 4.055841445922852 2.5128583908081055 40.9257926940918 4.829999923706055 0.2800000011920929 |
Car 0 0 -1.5312614440917969 666.88 194.51 694.5 219.01 1.9199999570846558 1.649999976158142 4.5 4.011756420135498 2.4761204719543457 40.404117584228516 4.849999904632568 0.1899999976158142 |
Car 0 0 -1.5525717735290527 667.83 195.44 694.08 219.13 1.9299999475479126 1.600000023841858 4.5 4.077884197235107 2.5128583908081055 40.91844177246094 4.829999923706055 0.2800000011920929 |
Car 0 0 -1.5313997268676758 666.92 194.45 694.52 218.95 1.9199999570846558 1.649999976158142 4.5 4.011756420135498 2.4687728881835938 40.41146469116211 4.849999904632568 0.1899999976158142 |
Car 0 0 -1.5525259971618652 656.26 179.45 704.78 220.8 1.9299999475479126 1.600000023841858 4.5 3.0999999046325684 1.909999966621399 31.09000015258789 4.829999923706055 0.2800000011920929 |
Car 0 0 -1.5313982963562012 654.76 177.91 704.36 220.64 1.9199999570846558 1.649999976158142 4.5 3.049999952316284 1.8799999952316284 30.709999084472656 4.849999904632568 0.1899999976158142 |
Car 0 0 1.5478181838989258 622.38 196.25 710.12 278.38 1.8600000143051147 1.600000023841858 4.309999942779541 0.9625275731086731 1.6385011672973633 12.843497276306152 1.6200000047683716 0.6100000143051147 |
Car 0 0 1.5489115715026855 625.17 197.49 707.71 276.21 1.8300000429153442 1.600000023841858 4.329999923706055 1.013960361480713 1.6899338960647583 13.401910781860352 1.6200000047683716 0.23000000417232513 |
Car 0 0 1.5483198165893555 621.97 196.14 709.66 278.2 1.8600000143051147 1.600000023841858 4.309999942779541 0.9551800489425659 1.6385011672973633 12.843497276306152 1.6200000047683716 0.6100000143051147 |
Car 0 0 1.5493054389953613 625.02 197.45 707.53 276.14 1.8300000429153442 1.600000023841858 4.329999923706055 1.013960361480713 1.6899338960647583 13.409258842468262 1.6200000047683716 0.23000000417232513 |
Car 0 0 1.5475200414657593 580.86 139.59 757.79 292.08 1.8600000143051147 1.600000023841858 4.309999942779541 0.7400000095367432 1.25 9.75 1.6200000047683716 0.6100000143051147 |
Car 0 0 1.5492982864379883 586.05 144.24 751.47 288.79 1.8300000429153442 1.600000023841858 4.329999923706055 0.7699999809265137 1.2799999713897705 10.1899995803833 1.6200000047683716 0.23000000417232513 |
Motorcycle 0 0 -1.454369068145752 328.68 183.32 356.54 231.46 0.7200000286102295 1.6799999475479126 2.1600000858306885 -7.2740631103515625 1.5356355905532837 19.69875144958496 4.480000019073486 0.1599999964237213 |
Motorcycle 0 0 -1.4543843269348145 328.6 183.2 356.46 231.31 0.7200000286102295 1.6799999475479126 2.1600000858306885 -7.2740631103515625 1.5282880067825317 19.69875144958496 4.480000019073486 0.1599999964237213 |
Motorcycle 0 0 -1.4544100761413574 316.17 145.83 366.28 233.43 0.7200000286102295 1.6799999475479126 2.1600000858306885 -5.53000020980835 1.159999966621399 14.970000267028809 4.480000019073486 0.1599999964237213 |
Car 0 0 -0.10241937637329102 50.53 191.38 199.25 240.92 1.8799999952316284 1.690000057220459 4.590000152587891 -13.350478172302246 1.542983055114746 20.257164001464844 5.599999904632568 0.41999998688697815 |
Car 0 0 -0.010498523712158203 50.06 190.86 195.69 239.62 1.8799999952316284 1.690000057220459 4.559999942779541 -13.490081787109375 1.5282880067825317 20.43350601196289 5.690000057220459 0.41999998688697815 |
Car 0 0 -1.4390149116516113 520.04 176.97 561.58 206.41 1.9600000381469727 1.7200000286102295 4.590000152587891 -2.652461528778076 1.0653932094573975 32.5349006652832 4.760000228881836 0.3100000023841858 |
Car 0 0 -0.10314321517944336 47.0 190.0 200.05 240.3 1.8700000047683716 1.659999966621399 4.550000190734863 -12.909626007080078 1.4695078134536743 19.52975845336914 5.599999904632568 0.30000001192092896 |
Car 0 0 -1.476698398590088 523.05 177.14 561.3 205.48 1.9600000381469727 1.6799999475479126 4.599999904632568 -2.6377663612365723 1.0433504581451416 33.07862091064453 4.730000019073486 0.25999999046325684 |
Car 0 0 -0.039823055267333984 49.83 190.43 196.95 239.77 1.8300000429153442 1.649999976158142 4.460000038146973 -13.034533500671387 1.4768552780151367 19.72814178466797 5.659999847412109 0.23000000417232513 |
Car 0 0 -1.4590048789978027 523.12 176.86 561.78 205.03 1.9299999475479126 1.690000057220459 4.579999923706055 -2.652461528778076 1.0360029935836792 33.401912689208984 4.75 0.17000000178813934 |
Car 0 0 -0.07396078109741211 51.68 192.47 201.13 243.87 1.9199999570846558 1.7300000190734863 4.610000133514404 -13.174137115478516 1.6017634868621826 20.036739349365234 5.630000114440918 0.1599999964237213 |
Car 0 0 -1.4336943626403809 584.95 171.89 604.06 184.78 2.0 1.7200000286102295 4.679999828338623 -0.5731080174446106 0.32329171895980835 72.35856628417969 4.840000152587891 0.1599999964237213 |
Car 0 0 -0.10203409194946289 50.48 191.32 199.15 240.84 1.8799999952316284 1.690000057220459 4.590000152587891 -13.357826232910156 1.542983055114746 20.26451301574707 5.599999904632568 0.41999998688697815 |
Car 0 0 -0.010081291198730469 49.97 190.89 195.59 239.65 1.8799999952316284 1.690000057220459 4.559999942779541 -13.497429847717285 1.5282880067825317 20.43350601196289 5.690000057220459 0.41999998688697815 |
Car 0 0 -1.4391255378723145 520.18 177.0 561.71 206.43 1.9600000381469727 1.7200000286102295 4.590000152587891 -2.645113945007324 1.0653932094573975 32.5349006652832 4.760000228881836 0.3100000023841858 |
Car 0 0 -0.10284996032714844 46.91 190.04 199.97 240.35 1.8700000047683716 1.659999966621399 4.550000190734863 -12.909626007080078 1.4695078134536743 19.52975845336914 5.599999904632568 0.30000001192092896 |
Car 0 0 -1.4763078689575195 522.81 177.17 561.08 205.51 1.9600000381469727 1.6799999475479126 4.599999904632568 -2.645113945007324 1.0506980419158936 33.085968017578125 4.730000019073486 0.25999999046325684 |
Car 0 0 -0.03946542739868164 49.75 190.5 196.85 239.85 1.8300000429153442 1.649999976158142 4.460000038146973 -13.041881561279297 1.4842028617858887 19.735490798950195 5.659999847412109 0.23000000417232513 |
Car 0 0 -0.07363557815551758 51.58 192.47 201.04 243.88 1.9199999570846558 1.7300000190734863 4.610000133514404 -13.174137115478516 1.6017634868621826 20.036739349365234 5.630000114440918 0.1599999964237213 |
Car 0 0 -1.4338493347167969 584.77 171.86 603.87 184.75 2.0 1.7200000286102295 4.679999828338623 -0.5878031253814697 0.3159441649913788 72.37326049804688 4.840000152587891 0.1599999964237213 |
Car 0 0 -0.1020975112915039 -15.73 153.31 253.94 245.26 1.8799999952316284 1.690000057220459 4.590000152587891 -10.149999618530273 1.1699999570846558 15.390000343322754 5.599999904632568 0.41999998688697815 |
Car 0 0 -0.01014566421508789 -19.22 153.17 249.09 243.53 1.8799999952316284 1.690000057220459 4.559999942779541 -10.25 1.159999966621399 15.529999732971191 5.690000057220459 0.41999998688697815 |
Car 0 0 -1.4391250610351562 501.2 152.43 576.0 207.59 1.9600000381469727 1.7200000286102295 4.590000152587891 -2.009999990463257 0.8100000023841858 24.719999313354492 4.760000228881836 0.3100000023841858 |
Car 0 0 -0.10291910171508789 -21.71 150.75 256.2 244.74 1.8700000047683716 1.659999966621399 4.550000190734863 -9.8100004196167 1.1200000047683716 14.84000015258789 5.599999904632568 0.30000001192092896 |
Car 0 0 -1.4763026237487793 505.32 153.56 574.25 206.58 1.9600000381469727 1.6799999475479126 4.599999904632568 -2.009999990463257 0.800000011920929 25.139999389648438 4.730000019073486 0.25999999046325684 |
Car 0 0 -0.03953409194946289 -19.83 152.1 251.16 243.83 1.8300000429153442 1.649999976158142 4.460000038146973 -9.899999618530273 1.1200000047683716 14.989999771118164 5.659999847412109 0.23000000417232513 |
Car 0 0 -0.07371664047241211 -18.47 153.26 256.49 248.43 1.9199999570846558 1.7300000190734863 4.610000133514404 -10.010000228881836 1.2200000286102295 15.220000267028809 5.630000114440918 0.1599999964237213 |
Car 0 0 -1.433924674987793 576.72 161.26 610.98 184.82 2.0 1.7200000286102295 4.679999828338623 -0.44999998807907104 0.23999999463558197 54.9900016784668 4.840000152587891 0.1599999964237213 |
Car 0 0 -1.5920352935791016 572.16 183.23 610.87 218.41 1.9199999570846558 1.6799999475479126 4.380000114440918 -0.7347539067268372 1.6531962156295776 27.876562118530273 4.659999847412109 0.3700000047683716 |
Car 0 0 -1.5813775062561035 572.56 182.94 609.9 218.17 1.8799999952316284 1.7100000381469727 4.380000114440918 -0.7347539067268372 1.675238847732544 28.32476234436035 4.679999828338623 0.3400000035762787 |
Car 0 0 -1.5860161781311035 571.43 183.5 610.67 218.65 1.9199999570846558 1.649999976158142 4.369999885559082 -0.7347539067268372 1.6458487510681152 27.54592514038086 4.670000076293945 0.27000001072883606 |
Car 0 0 -1.52606201171875 547.26 181.01 564.78 195.03 1.9900000095367432 1.659999966621399 4.599999904632568 -4.922851085662842 1.998530626296997 66.64952087402344 4.679999828338623 0.2199999988079071 |
Car 0 0 -1.512643814086914 483.67 183.98 506.62 201.57 1.9700000286102295 1.600000023841858 4.599999904632568 -8.251285552978516 2.005878210067749 52.2263069152832 4.610000133514404 0.20999999344348907 |
Car 0 0 -1.5002074241638184 483.26 184.94 506.56 202.21 1.9700000286102295 1.5800000429153442 4.559999942779541 -8.339456558227539 2.0720059871673584 52.67450714111328 4.630000114440918 0.20000000298023224 |
Car 0 0 -1.5128445625305176 482.74 183.97 505.93 201.79 1.9600000381469727 1.600000023841858 4.590000152587891 -8.20720100402832 1.998530626296997 51.5723762512207 4.610000133514404 0.1899999976158142 |
Car 0 0 -1.5918264389038086 571.95 183.17 610.66 218.34 1.9199999570846558 1.6799999475479126 4.380000114440918 -0.7421014308929443 1.6531962156295776 27.876562118530273 4.659999847412109 0.3700000047683716 |
Car 0 0 -1.5814471244812012 572.62 182.94 609.98 218.2 1.8799999952316284 1.7100000381469727 4.380000114440918 -0.7347539067268372 1.675238847732544 28.31006622314453 4.679999828338623 0.3400000035762787 |
Car 0 0 -1.5855975151062012 571.06 183.4 610.29 218.52 1.9199999570846558 1.649999976158142 4.369999885559082 -0.7421014308929443 1.6385011672973633 27.55327033996582 4.670000076293945 0.27000001072883606 |
Car 0 0 -1.5263328552246094 547.44 180.99 564.96 195.01 1.9900000095367432 1.659999966621399 4.599999904632568 -4.908155918121338 1.9911830425262451 66.63483428955078 4.679999828338623 0.2199999988079071 |
Car 0 0 -1.5130224227905273 483.9 183.93 506.85 201.52 1.9700000286102295 1.600000023841858 4.599999904632568 -8.236591339111328 2.005878210067749 52.21160888671875 4.610000133514404 0.20999999344348907 |
Car 0 0 -1.5004496574401855 483.43 184.86 506.72 202.12 1.9700000286102295 1.5800000429153442 4.559999942779541 -8.332109451293945 2.0646584033966064 52.67450714111328 4.630000114440918 0.20000000298023224 |
Car 0 0 -1.5127906799316406 482.65 183.94 505.85 201.76 1.9600000381469727 1.600000023841858 4.590000152587891 -8.21454906463623 1.998530626296997 51.5723762512207 4.610000133514404 0.1899999976158142 |
Car 0 0 -1.5918316841125488 555.63 156.87 628.49 220.71 1.9199999570846558 1.6799999475479126 4.380000114440918 -0.5600000023841858 1.2599999904632568 21.18000030517578 4.659999847412109 0.3700000047683716 |
Car 0 0 -1.581453800201416 556.53 156.47 626.79 220.51 1.8799999952316284 1.7100000381469727 4.380000114440918 -0.5600000023841858 1.2699999809265137 21.510000228881836 4.679999828338623 0.3400000035762787 |
Car 0 0 -1.5855998992919922 554.27 157.22 628.13 220.92 1.9199999570846558 1.649999976158142 4.369999885559082 -0.5699999928474426 1.25 20.940000534057617 4.670000076293945 0.27000001072883606 |
Car 0 0 -1.5263423919677734 539.99 170.62 571.41 195.48 1.9900000095367432 1.659999966621399 4.599999904632568 -3.7300000190734863 1.5099999904632568 50.630001068115234 4.679999828338623 0.2199999988079071 |
Car 0 0 -1.513031005859375 473.92 171.35 515.12 202.33 1.9700000286102295 1.600000023841858 4.599999904632568 -6.260000228881836 1.5199999809265137 39.66999816894531 4.610000133514404 0.20999999344348907 |
Car 0 0 -1.5004544258117676 473.32 172.67 515.13 202.93 1.9700000286102295 1.5800000429153442 4.559999942779541 -6.329999923706055 1.5700000524520874 40.02000045776367 4.630000114440918 0.20000000298023224 |
Car 0 0 -1.512789249420166 472.55 171.19 514.21 202.59 1.9600000381469727 1.600000023841858 4.590000152587891 -6.239999771118164 1.5199999809265137 39.189998626708984 4.610000133514404 0.1899999976158142 |
Car 0 0 -1.3212203979492188 610.53 188.34 706.91 247.15 1.8700000047683716 1.5299999713897705 4.789999961853027 1.2343864440917969 1.5209405422210693 16.66421890258789 5.039999961853027 0.4399999976158142 |
Car 0 0 -1.5244107246398926 748.86 175.9 779.28 199.88 1.9199999570846558 1.6200000047683716 4.579999923706055 8.170463562011719 1.3592946529388428 38.01616668701172 4.96999979019165 0.38999998569488525 |
Car 0 0 1.9790092706680298 387.82 205.13 586.16 329.35 1.7699999809265137 1.5199999809265137 4.070000171661377 -1.3445996046066284 1.5870684385299683 8.93460750579834 1.8300000429153442 0.3199999928474426 |
Car 0 0 -1.8639535903930664 962.82 220.54 1328.8 458.43 1.840000033378601 1.5099999904632568 4.369999885559082 3.8648056983947754 1.6091110706329346 5.797208309173584 5.010000228881836 0.27000001072883606 |
Car 0 0 -1.590588092803955 892.56 185.46 942.35 230.93 1.8700000047683716 1.75 4.590000152587891 9.853049278259277 1.719323992729187 23.19618034362793 5.090000152587891 0.27000001072883606 |
Car 0 0 2.044923782348633 365.92 200.09 599.98 338.65 1.7400000095367432 1.5 4.090000152587891 -1.2049963474273682 1.4695078134536743 8.008816719055176 1.899999976158142 0.25999999046325684 |
Car 0 0 -1.6207213401794434 896.1 187.25 945.54 229.4 1.8899999856948853 1.7300000190734863 4.460000038146973 10.609846115112305 1.8001470565795898 24.731815338134766 5.070000171661377 0.23000000417232513 |
Car 0 0 -1.324902057647705 610.94 187.51 707.92 247.5 1.8700000047683716 1.5399999618530273 4.730000019073486 1.2270389795303345 1.498897910118103 16.370317459106445 5.03000020980835 0.2199999988079071 |
Car 0 0 -1.840893268585205 977.97 221.84 1315.08 448.18 1.8300000429153442 1.5299999713897705 4.309999942779541 4.092579364776611 1.6458487510681152 6.032329559326172 5.039999961853027 0.20999999344348907 |
Car 0 0 -1.7991766929626465 967.87 215.63 1299.91 452.82 1.75 1.4800000190734863 4.289999961853027 3.695812225341797 1.5209405422210693 5.6208672523498535 5.070000171661377 0.18000000715255737 |
Car 0 0 -1.5848698616027832 892.59 185.01 943.48 231.16 1.8799999952316284 1.75 4.579999923706055 9.735488891601562 1.6972814798355103 22.85819435119629 5.099999904632568 0.18000000715255737 |
Car 0 0 -1.3777079582214355 616.46 189.11 698.55 247.79 1.850000023841858 1.6299999952316284 4.489999771118164 1.2417341470718384 1.6311537027359009 17.457752227783203 4.980000019073486 0.17000000178813934 |
Car 0 0 -1.5258440971374512 749.44 176.23 779.34 199.52 1.9199999570846558 1.600000023841858 4.599999904632568 8.324761390686035 1.3592946529388428 38.64805221557617 4.96999979019165 0.17000000178813934 |
Car 0 0 -1.5524563789367676 866.13 177.03 885.05 192.04 1.9900000095367432 1.6699999570846558 4.690000057220459 22.82880401611328 1.5944160223007202 61.866275787353516 5.079999923706055 0.15000000596046448 |
Car 0 0 -1.3212699890136719 610.58 188.37 706.97 247.2 1.8700000047683716 1.5299999713897705 4.789999961853027 1.2343864440917969 1.5209405422210693 16.656869888305664 5.039999961853027 0.4399999976158142 |
Car 0 0 -1.5238661766052246 748.41 175.87 778.86 199.84 1.9199999570846558 1.6200000047683716 4.579999923706055 8.148420333862305 1.3519471883773804 38.02351379394531 4.96999979019165 0.38999998569488525 |
Car 0 0 1.9790678024291992 387.82 205.13 586.16 329.35 1.7699999809265137 1.5199999809265137 4.070000171661377 -1.3445996046066284 1.5870684385299683 8.93460750579834 1.8300000429153442 0.3199999928474426 |
Car 0 0 -1.8632616996765137 962.91 220.54 1328.57 458.43 1.840000033378601 1.5099999904632568 4.369999885559082 3.8648056983947754 1.6091110706329346 5.797208309173584 5.010000228881836 0.27000001072883606 |
End of preview.
YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/datasets-cards)
Project Website | Paper | Talk
Yuliang Guo, Abhinav Kumar, Cheng Zhao, Ruoyu Wang, Xinyu Huang, Liu Ren
Bosch Research North America, Bosch Center for AI
in ECCV 2024
This dataset includes the additional instance masks computed from maskrcnn and 3D object detection results from FCOS3D on nuScenes, KITTI, and Waymo (front-vew) datasets.
license: mit
- Downloads last month
- 3