Yugo-GPT
Collection
Yugo-GPT class of LLM (45, 55, 60)
β’
13 items
β’
Updated
Results obtained through the Serbian LLM evaluation, released by Aleksa GordiΔ: serbian-llm-eval
- Evaluation was conducted on a 4-bit version of the model due to hardware resource constraints.
MODEL | ARC-E | ARC-C | Hellaswag | BoolQ | Winogrande | OpenbookQA | PiQA |
---|---|---|---|---|---|---|---|
*Yugo55-GPT-v4-4bit | 51.41 | 36.00 | 57.51 | 80.92 | 65.75 | 34.70 | 70.54 |
Yugo55A-GPT | 51.52 | 37.78 | 57.52 | 84.40 | 65.43 | 35.60 | 69.43 |
This is a merge of pre-trained language models created using mergekit. This model was merged using the linear merge method.
The following models were included in the merge:
The following YAML configuration was used to produce this model:
models:
- model: datatab/Yugo55-GPT-v4
parameters:
weight: 1.0
- model: datatab/Yugo55-GPT-DPO-v1-chkp-300
parameters:
weight: 1.0
- model: mlabonne/AlphaMonarch-7B
parameters:
weight: 0.5
- model: NousResearch/Nous-Hermes-2-Mistral-7B-DPO
parameters:
weight: 0.5
merge_method: linear
dtype: float16
!pip -q install git+https://github.com/huggingface/transformers # need to install from github
!pip install -q datasets loralib sentencepiece
!pip -q install bitsandbytes accelerate
from IPython.display import HTML, display
def set_css():
display(HTML('''
<style>
pre {
white-space: pre-wrap;
}
</style>
'''))
get_ipython().events.register('pre_run_cell', set_css)
import torch
import transformers
from transformers import AutoTokenizer, AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained(
"datatab/Yugo55A-GPT", torch_dtype="auto"
)
tokenizer = AutoTokenizer.from_pretrained(
"datatab/Yugo55A-GPT", torch_dtype="auto"
)
from typing import Optional
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
def generate(
user_content: str, system_content: Optional[str] = ""
) -> str:
system_content = "Ispod je uputstvo koje opisuje zadatak, upareno sa unosom koji pruΕΎa dodatni kontekst. NapiΕ‘ite odgovor koji na odgovarajuΔi naΔin kompletira zahtev."
messages = [
{
"role": "system",
"content": system_content,
},
{"role": "user", "content": user_content},
]
tokenized_chat = tokenizer.apply_chat_template(
messages, tokenize=True, add_generation_prompt=True, return_tensors="pt"
).to("cuda")
text_streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
output = model.generate(
tokenized_chat,
streamer=text_streamer,
max_new_tokens=2048,
temperature=0.1,
repetition_penalty=1.11,
top_p=0.92,
top_k=1000,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
do_sample=True,
)
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
generate("Nabroj mi sve planete suncevog sistemai reci mi koja je najveca planeta")
generate("Koja je razlika izmeΔu lame, vikune i alpake?")
generate("NapiΕ‘ite kratku e-poruku Semu Altmanu dajucΜi razloge za GPT-4 otvorenog koda")