metadata
license: apache-2.0
tags:
- image-classification
- vision
- generated_from_trainer
metrics:
- f1
model-index:
- name: vit-base-patch32-224-in21-leicester_binary
results: []
vit-base-patch32-224-in21-leicester_binary
This model is a fine-tuned version of google/vit-base-patch32-224-in21k on the davanstrien/leicester_loaded_annotations_binary dataset. It achieves the following results on the evaluation set:
- Loss: 0.0949
- F1: 0.9747
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 128
- seed: 1337
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 40.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | F1 |
---|---|---|---|---|
No log | 1.0 | 7 | 0.4576 | 0.8608 |
0.5021 | 2.0 | 14 | 0.3953 | 0.8608 |
0.3595 | 3.0 | 21 | 0.3809 | 0.8608 |
0.3595 | 4.0 | 28 | 0.3286 | 0.8608 |
0.3009 | 5.0 | 35 | 0.2945 | 0.8608 |
0.2843 | 6.0 | 42 | 0.3528 | 0.8608 |
0.2843 | 7.0 | 49 | 0.2345 | 0.8608 |
0.266 | 8.0 | 56 | 0.2499 | 0.8608 |
0.222 | 9.0 | 63 | 0.2544 | 0.8608 |
0.2018 | 10.0 | 70 | 0.1954 | 0.8608 |
0.2018 | 11.0 | 77 | 0.2351 | 0.8608 |
0.1948 | 12.0 | 84 | 0.1705 | 0.8608 |
0.2053 | 13.0 | 91 | 0.1625 | 0.8734 |
0.2053 | 14.0 | 98 | 0.1719 | 0.9367 |
0.1729 | 15.0 | 105 | 0.1489 | 0.9367 |
0.1535 | 16.0 | 112 | 0.1450 | 0.9494 |
0.1535 | 17.0 | 119 | 0.1750 | 0.9494 |
0.1492 | 18.0 | 126 | 0.1514 | 0.9494 |
0.1349 | 19.0 | 133 | 0.1304 | 0.9620 |
0.1538 | 20.0 | 140 | 0.1291 | 0.9620 |
0.1538 | 21.0 | 147 | 0.1306 | 0.9620 |
0.1357 | 22.0 | 154 | 0.1283 | 0.9620 |
0.147 | 23.0 | 161 | 0.1289 | 0.9494 |
0.147 | 24.0 | 168 | 0.1339 | 0.9747 |
0.1388 | 25.0 | 175 | 0.1244 | 0.9494 |
0.1192 | 26.0 | 182 | 0.1117 | 0.9747 |
0.1192 | 27.0 | 189 | 0.1105 | 0.9873 |
0.112 | 28.0 | 196 | 0.1079 | 0.9747 |
0.1215 | 29.0 | 203 | 0.1151 | 0.9620 |
0.1139 | 30.0 | 210 | 0.1008 | 0.9873 |
0.1139 | 31.0 | 217 | 0.1033 | 0.9747 |
0.1164 | 32.0 | 224 | 0.0985 | 0.9873 |
0.1192 | 33.0 | 231 | 0.0955 | 0.9873 |
0.1192 | 34.0 | 238 | 0.1077 | 0.9620 |
0.1132 | 35.0 | 245 | 0.1107 | 0.9620 |
0.1021 | 36.0 | 252 | 0.0958 | 0.9873 |
0.1021 | 37.0 | 259 | 0.0957 | 0.9873 |
0.0945 | 38.0 | 266 | 0.0951 | 0.9747 |
0.1244 | 39.0 | 273 | 0.0949 | 0.9747 |
0.1012 | 40.0 | 280 | 0.0955 | 0.9873 |
Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.12.1+cu113
- Datasets 2.7.1
- Tokenizers 0.13.2