wav2vec2-xls-r-2b-faroese-100h-60-epochs_v20250105_2

This model is a fine-tuned version of facebook/wav2vec2-xls-r-2b on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1126
  • Wer: 18.2932
  • Cer: 3.9213

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 6000
  • num_epochs: 60
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
1.9282 0.4877 1000 0.4589 49.5572 14.5008
1.4639 0.9754 2000 0.2533 32.4360 8.4524
1.065 1.4628 3000 0.2168 30.5811 7.8859
0.7834 1.9505 4000 0.2123 30.1405 7.7542
0.6194 2.4379 5000 0.2405 31.5328 8.2552
0.6979 2.9256 6000 0.2070 29.9247 7.5964
0.6727 3.4131 7000 0.2236 31.0393 8.2149
0.6106 3.9008 8000 0.2121 29.8145 7.6989
0.5888 4.3882 9000 0.1929 28.8673 7.3328
0.5875 4.8759 10000 0.1903 28.4928 7.3076
0.5104 5.3633 11000 0.1922 28.6117 7.1624
0.4981 5.8510 12000 0.1713 27.4662 6.8713
0.4147 6.3385 13000 0.1799 27.0036 6.6835
0.4442 6.8261 14000 0.1768 27.6600 6.9904
0.3889 7.3136 15000 0.1729 26.5850 6.5620
0.3941 7.8013 16000 0.1670 26.7172 6.7435
0.3325 8.2887 17000 0.1763 26.5101 6.5991
0.3761 8.7764 18000 0.1591 25.9506 6.4555
0.2741 9.2638 19000 0.1674 25.4615 6.2219
0.2918 9.7515 20000 0.1638 25.8757 6.3600
0.2684 10.2390 21000 0.1621 25.0650 6.1217
0.2714 10.7267 22000 0.1443 24.8227 6.0239
0.2889 11.2141 23000 0.1512 24.6817 6.0176
0.2511 11.7018 24000 0.1506 24.1309 5.8125
0.2377 12.1892 25000 0.1513 23.9062 5.8054
0.2285 12.6769 26000 0.1560 24.1706 5.8701
0.2115 13.1644 27000 0.1557 23.9811 5.8330
0.228 13.6520 28000 0.1411 23.5978 5.6602
0.1855 14.1395 29000 0.1444 23.5097 5.5623
0.2058 14.6272 30000 0.1488 23.7388 5.6910
0.1894 15.1146 31000 0.1568 23.4084 5.6310
0.1882 15.6023 32000 0.1432 23.2321 5.5434
0.1794 16.0897 33000 0.1454 22.8576 5.4937
0.1535 16.5774 34000 0.1491 22.8753 5.3888
0.1688 17.0649 35000 0.1390 22.9634 5.4645
0.1705 17.5525 36000 0.1459 22.9281 5.3998
0.1401 18.0400 37000 0.1466 22.8709 5.4330
0.1476 18.5277 38000 0.1440 22.8841 5.3698
0.1426 19.0151 39000 0.1436 22.5933 5.2799
0.1375 19.5028 40000 0.1431 22.2584 5.2428
0.1491 19.9905 41000 0.1339 22.1307 5.1110
0.1564 20.4779 42000 0.1303 21.8619 5.0771
0.1427 20.9656 43000 0.1392 21.9809 5.1710
0.1145 21.4531 44000 0.1332 21.7518 5.0661
0.1453 21.9407 45000 0.1289 21.8839 5.0953
0.1184 22.4282 46000 0.1348 21.8707 5.0811
0.1349 22.9159 47000 0.1316 21.6240 4.9722
0.1196 23.4033 48000 0.1315 21.8575 5.0393
0.1199 23.8910 49000 0.1323 21.7430 5.0692
0.1177 24.3784 50000 0.1356 21.5579 4.9738
0.1101 24.8661 51000 0.1343 21.6108 5.0187
0.1173 25.3536 52000 0.1286 21.4125 4.9327
0.1256 25.8413 53000 0.1283 21.4257 4.8878
0.1157 26.3287 54000 0.1340 21.1570 4.8428
0.1044 26.8164 55000 0.1277 21.2143 4.8460
0.1019 27.3038 56000 0.1299 21.4346 4.9217
0.1116 27.7915 57000 0.1270 21.1217 4.8239
0.1055 28.2790 58000 0.1323 21.2231 4.8278
0.1047 28.7666 59000 0.1231 20.9191 4.7315
0.1129 29.2541 60000 0.1337 21.1394 4.8112
0.1174 29.7418 61000 0.1319 20.7560 4.7481
0.0992 30.2292 62000 0.1342 21.0777 4.8538
0.1128 30.7169 63000 0.1297 21.0292 4.7781
0.1103 31.2043 64000 0.1282 20.7428 4.6850
0.1076 31.6920 65000 0.1272 20.5710 4.6866
0.0998 32.1795 66000 0.1329 20.5974 4.6708
0.0863 32.6672 67000 0.1186 20.5005 4.5998
0.1026 33.1546 68000 0.1225 20.6635 4.6763
0.0782 33.6423 69000 0.1345 20.5622 4.6913
0.0837 34.1297 70000 0.1349 20.5137 4.6069
0.1144 34.6174 71000 0.1220 20.4873 4.6511
0.0969 35.1049 72000 0.1240 20.5886 4.6353
0.0848 35.5925 73000 0.1307 20.2934 4.5911
0.0748 36.0800 74000 0.1275 20.2229 4.5201
0.0929 36.5677 75000 0.1184 20.1745 4.4909
0.0877 37.0551 76000 0.1287 20.0687 4.5106
0.0932 37.5428 77000 0.1189 20.0599 4.5233
0.0923 38.0302 78000 0.1303 20.1877 4.5138
0.068 38.5179 79000 0.1274 19.8881 4.4412
0.1069 39.0054 80000 0.1219 20.0952 4.4956
0.0735 39.4931 81000 0.1225 19.8572 4.4420
0.0745 39.9807 82000 0.1246 19.7339 4.4065
0.0664 40.4682 83000 0.1262 19.8132 4.4104
0.0783 40.9559 84000 0.1285 19.8000 4.4664
0.0884 41.4433 85000 0.1123 19.5312 4.3181
0.0704 41.9310 86000 0.1226 19.5356 4.3434
0.0675 42.4184 87000 0.1330 19.7030 4.3536
0.093 42.9061 88000 0.1207 19.5841 4.3662
0.0809 43.3936 89000 0.1217 19.4872 4.3142
0.0668 43.8812 90000 0.1185 19.5180 4.2731
0.0968 44.3687 91000 0.1156 19.4079 4.2818
0.0568 44.8564 92000 0.1191 19.5180 4.2992
0.0731 45.3438 93000 0.1165 19.4695 4.2653
0.0562 45.8315 94000 0.1220 19.4431 4.2692
0.064 46.3189 95000 0.1213 19.3946 4.2589
0.0638 46.8066 96000 0.1202 19.0906 4.1682
0.0509 47.2941 97000 0.1232 19.2977 4.2290
0.0585 47.7818 98000 0.1147 19.2052 4.1935
0.0592 48.2692 99000 0.1199 19.1038 4.1556
0.0488 48.7569 100000 0.1159 19.0862 4.1580
0.0513 49.2443 101000 0.1168 19.0510 4.1185
0.076 49.7320 102000 0.1053 18.8351 4.0743
0.0466 50.2195 103000 0.1129 18.8836 4.1035
0.0472 50.7071 104000 0.1210 18.8836 4.1114
0.0433 51.1946 105000 0.1154 18.7822 4.0751
0.056 51.6823 106000 0.1161 18.7734 4.0854
0.0419 52.1697 107000 0.1125 18.6456 4.0365
0.0432 52.6574 108000 0.1113 18.6677 4.0167
0.0438 53.1448 109000 0.1139 18.5840 4.0136
0.0387 53.6325 110000 0.1119 18.6104 4.0207
0.0356 54.1200 111000 0.1114 18.5575 3.9757
0.0365 54.6077 112000 0.1187 18.5311 3.9844
0.0416 55.0951 113000 0.1136 18.5135 3.9986
0.0456 55.5828 114000 0.1179 18.4518 3.9749
0.0249 56.0702 115000 0.1123 18.3769 3.9370
0.0324 56.5579 116000 0.1148 18.3945 3.9410
0.0383 57.0454 117000 0.1127 18.3108 3.9307
0.0287 57.5330 118000 0.1100 18.4077 3.9370
0.026 58.0205 119000 0.1122 18.3460 3.9228
0.0284 58.5082 120000 0.1137 18.3372 3.9299
0.0287 58.9959 121000 0.1130 18.2755 3.9149
0.0283 59.4833 122000 0.1122 18.2844 3.9197
0.0286 59.9710 123000 0.1126 18.2932 3.9213

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
20
Safetensors
Model size
2.16B params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for davidilag/wav2vec2-xls-r-2b-faroese-100h-60-epochs_v20250105_2

Finetuned
(4)
this model