leaderboard-pr-bot's picture
Adding Evaluation Results
67637a7 verified
|
raw
history blame
2.27 kB
---
license: apache-2.0
library_name: peft
tags:
- alignment-handbook
- generated_from_trainer
- trl
- sft
- generated_from_trainer
datasets:
- HuggingFaceH4/ultrachat_200k
base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
model-index:
- name: zephyr-tiny-sft-qlora-unquantized
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# zephyr-tiny-sft-qlora-unquantized
This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-Chat-v1.0](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0) on the HuggingFaceH4/ultrachat_200k dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1440
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 1.1365 | 1.0 | 18257 | 1.1440 |
### Framework versions
- PEFT 0.7.1
- Transformers 4.36.2
- Pytorch 2.1.2
- Datasets 2.14.6
- Tokenizers 0.15.2
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_dball__zephyr-tiny-sft-qlora-quantized-2)
| Metric |Value|
|---------------------------------|----:|
|Avg. |35.53|
|AI2 Reasoning Challenge (25-Shot)|33.19|
|HellaSwag (10-Shot) |58.58|
|MMLU (5-Shot) |25.21|
|TruthfulQA (0-shot) |35.82|
|Winogrande (5-shot) |58.80|
|GSM8k (5-shot) | 1.59|