deepdml's picture
Update metadata with huggingface_hub
408eba8 verified
metadata
language:
  - pt
license: apache-2.0
tags:
  - generated_from_trainer
base_model: openai/whisper-small
datasets:
  - mozilla-foundation/common_voice_17_0
metrics:
  - wer
model-index:
  - name: Whisper Small pt
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Common Voice 17.0
          type: mozilla-foundation/common_voice_17_0
          config: pt
          split: test
          args: pt
        metrics:
          - type: wer
            value: 11.034559928386457
            name: Wer
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: google/fleurs
          type: google/fleurs
          config: pt_br
          split: test
        metrics:
          - type: wer
            value: 10.68
            name: WER
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: facebook/multilingual_librispeech
          type: facebook/multilingual_librispeech
          config: portuguese
          split: test
        metrics:
          - type: wer
            value: 13.48
            name: WER

Whisper Small pt

This model is a fine-tuned version of openai/whisper-small on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3836
  • Wer: 11.0346

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 64
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000

Training results

Training Loss Epoch Step Validation Loss Wer
0.1139 2.0325 1000 0.2474 10.7516
0.024 4.0650 2000 0.2882 10.7692
0.0065 6.0976 3000 0.3367 11.0889
0.0028 8.1301 4000 0.3731 11.0362
0.0023 10.1626 5000 0.3836 11.0346

Framework versions

  • Transformers 4.42.0.dev0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1