File size: 15,576 Bytes
e67c544
 
 
 
 
6e11005
e67c544
 
 
 
 
6e11005
e67c544
 
6e11005
e67c544
 
6e11005
e67c544
 
 
6e11005
e67c544
f1e9ce2
6e11005
e67c544
 
6e11005
e67c544
 
6e11005
e67c544
 
6e11005
e67c544
 
 
 
 
 
 
 
 
 
 
 
 
 
10bacc3
e67c544
 
 
 
 
 
 
 
 
 
6e11005
 
e67c544
 
 
 
 
 
 
 
 
 
 
cfa9095
e67c544
 
 
 
 
 
 
 
 
 
 
cfa9095
e67c544
 
 
 
 
161a2f2
e67c544
 
 
 
 
 
 
 
 
6e11005
e67c544
 
 
 
 
 
 
 
cfa9095
e67c544
 
c10690d
e67c544
 
 
c10690d
 
e67c544
 
 
 
 
 
 
 
6e11005
e67c544
 
 
 
 
 
 
 
 
cfa9095
 
 
e67c544
cfa9095
 
 
e67c544
cfa9095
e67c544
 
 
 
 
 
 
 
6e11005
e67c544
 
 
 
0d2b17b
e67c544
 
 
6e11005
e67c544
 
 
 
 
 
 
 
 
 
6e11005
e67c544
 
 
 
 
 
 
 
896a24c
e67c544
 
 
 
 
 
 
 
413b83f
 
e67c544
 
 
 
 
 
 
 
 
 
 
896a24c
e67c544
 
 
 
941577e
e67c544
 
 
413b83f
 
e67c544
 
 
 
 
 
 
 
 
 
 
 
941577e
 
 
e67c544
941577e
e67c544
 
 
 
 
 
 
941577e
e67c544
941577e
e67c544
 
 
 
 
 
 
 
 
 
896a24c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e67c544
 
 
 
 
88a14de
 
 
 
 
 
 
 
e67c544
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
<!-- markdownlint-disable first-line-h1 -->
<!-- markdownlint-disable html -->
<!-- markdownlint-disable no-duplicate-header -->

<div align="center">
  <img src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/logo.svg?raw=true" width="60%" alt="DeepSeek LLM" />
</div>
<hr>
<div align="center">

  <a href="https://www.deepseek.com/" target="_blank">
    <img alt="Homepage" src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/badge.svg?raw=true" style="display: inline-block; vertical-align: middle;"/>
  </a>
  <a href="https://chat.deepseek.com/" target="_blank">
    <img alt="Chat" src="https://img.shields.io/badge/🤖%20Chat-DeepSeek%20LLM-536af5?color=536af5&logoColor=white?raw=true" style="display: inline-block; vertical-align: middle;"/>
  </a>
  <a href="https://huggingface.co/deepseek-ai" target="_blank">
    <img alt="Hugging Face" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-DeepSeek%20AI-ffc107?color=ffc107&logoColor=white?raw=true" style="display: inline-block; vertical-align: middle;"/>
  </a>

  <a href="https://discord.gg/Tc7c45Zzu5" target="_blank">
    <img alt="Discord" src="https://img.shields.io/badge/Discord-DeepSeek%20AI-7289da?logo=discord&logoColor=white&color=7289da?raw=true" style="display: inline-block; vertical-align: middle;"/>
  </a>
  <a href="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/qr.jpeg" target="_blank">
    <img alt="Wechat" src="https://img.shields.io/badge/WeChat-DeepSeek%20AI-brightgreen?logo=wechat&logoColor=white?raw=true"style="display: inline-block; vertical-align: middle;" />
  </a>
  <a href="https://twitter.com/deepseek_ai" target="_blank">
    <img alt="Twitter Follow" src="https://img.shields.io/badge/Twitter-deepseek_ai-white?logo=x&logoColor=white?raw=true" style="display: inline-block; vertical-align: middle;"/>
  </a>
  <a href="LICENSE-CODE">
    <img alt="Code License" src="https://img.shields.io/badge/Code_License-MIT-f5de53?&color=f5de53?raw=true"style="display: inline-block; vertical-align: middle;">
  </a>
  <a href="LICENSE-MODEL">
    <img alt="Model License" src="https://img.shields.io/badge/Model_License-Model_Agreement-f5de53?&color=f5de53?raw=true"style="display: inline-block; vertical-align: middle;">
  </a>
</div>


<p align="center">
  <a href="#2-model-downloads">Model Download</a> |
  <a href="#3-evaluation-results">Evaluation Results</a> |
  <a href="#4-model-architecture">Model Architecture</a> |
  <a href="#6-api-platform">API Platform</a> |
  <a href="#8-license">License</a> |
  <a href="#9-citation">Citation</a>
</p>

<p align="center">
  <a href="https://arxiv.org/abs/2405.04434"><b>Paper Link</b>👁️</a>
</p>

# DeepSeek-V2:  A Strong, Economical, and Efficient Mixture-of-Experts Language Model

## 1. Introduction
Today, we’re introducing DeepSeek-V2, a strong Mixture-of-Experts (MoE) language model characterized by economical training and efficient inference. It comprises 236B total parameters, of which 21B are activated for each token. Compared with DeepSeek 67B, DeepSeek-V2 achieves stronger performance, and meanwhile saves 42.5% of training costs, reduces the KV cache by 93.3%, and boosts the maximum generation throughput to 5.76 times. 

<p align="center">

<div style="display: flex; justify-content: center;">
    <img src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/activationparameters.png?raw=true" style="height:300px; width:auto; margin-right:10px">
    <img src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/trainingcost.png?raw=true" style="height:300px; width:auto; margin-left:10px">
</div>
</p>
We pretrained DeepSeek-V2 on a diverse and high-quality corpus comprising 8.1 trillion tokens. This comprehensive pretraining was followed by a process of Supervised Fine-Tuning (SFT) and Reinforcement Learning (RL) to fully unleash the model's capabilities. The evaluation results validate the effectiveness of our approach as DeepSeek-V2 achieves remarkable performance on both standard benchmarks and open-ended generation evaluation.

## 2. Model Downloads

<div align="center">

| **Model** | **Context Length** | **Download** |
| :------------: | :------------: | :------------: |
| DeepSeek-V2   | 128k   | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-V2)   |
| DeepSeek-V2-Chat (RL)   | 128k   | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-V2-Chat)   |

</div>

Due to the constraints of HuggingFace, the open-source code currently experiences slower performance than our internal codebase when running on GPUs with Huggingface. To facilitate the efficient execution of our model, we offer a dedicated vllm solution that optimizes performance for running our model effectively.

## 3. Evaluation Results
### Base Model
#### Standard Benchmark 

<div align="center">

| **Benchmark** | **Domain** | **LLaMA3 70B** | **Mixtral 8x22B** | **DeepSeek-V1 (Dense-67B)** | **DeepSeek-V2 (MoE-236B)** |
|:-----------:|:--------:|:------------:|:---------------:|:-------------------------:|:------------------------:|
| **MMLU** | English | 78.9 | 77.6 | 71.3 | 78.5 |
| **BBH** | English | 81.0 | 78.9 | 68.7 | 78.9 |
| **C-Eval** | Chinese | 67.5 | 58.6 | 66.1 | 81.7 |
| **CMMLU** | Chinese | 69.3 | 60.0 | 70.8 | 84.0 |
| **HumanEval** | Code | 48.2 | 53.1 | 45.1 | 48.8 |
| **MBPP** | Code | 68.6 | 64.2 | 57.4 | 66.6 |
| **GSM8K** | Math | 83.0 | 80.3 | 63.4 | 79.2 |
| **Math** | Math | 42.2 | 42.5 | 18.7 | 43.6 |

</div>
For more evaluation details, such as few-shot settings and prompts, please check our paper. 

#### Context Window
<p align="center">
  <img width="80%" src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/niah.png?raw=true">
</p>

Evaluation results on the ``Needle In A Haystack`` (NIAH) tests.  DeepSeek-V2 performs well across all context window lengths up to **128K**. 

### Chat Model
#### Standard Benchmark 
<div align="center">

| Benchmark | Domain         | QWen1.5 72B Chat | Mixtral 8x22B | LLaMA3 70B Instruct | DeepSeek-V1 Chat (SFT) | DeepSeek-V2 Chat (SFT) | DeepSeek-V2 Chat (RL) |
|:-----------:|:----------------:|:------------------:|:---------------:|:---------------------:|:-------------:|:-----------------------:|:----------------------:|
| **MMLU**      | English        | 76.2             | 77.8          | 80.3                | 71.1        | 78.4                 | 77.8                 |
| **BBH**       | English        | 65.9             | 78.4          | 80.1                | 71.7        | 81.3                 | 79.7                 |
| **C-Eval**    | Chinese        | 82.2             | 60.0          | 67.9                | 65.2        | 80.9                 | 78.0                 |
| **CMMLU**     | Chinese        | 82.9             | 61.0          | 70.7                | 67.8        | 82.4                 | 81.6                 |
| **HumanEval** | Code           | 68.9             | 75.0          | 76.2                | 73.8        | 76.8                 | 81.1                 |
| **MBPP**      | Code           | 52.2             | 64.4          | 69.8                | 61.4        | 70.4                 | 72.0                 |
|   **LiveCodeBench  (0901-0401)**     | Code           | 18.8             | 25.0          | 30.5                | 18.3        | 28.7                 | 32.5                 |
| **GSM8K**     | Math           | 81.9             | 87.9          | 93.2                | 84.1        | 90.8                 | 92.2                 |
| **Math**      | Math           | 40.6             | 49.8          | 48.5                | 32.6        | 52.7                 | 53.9                 |

</div>

#### English Open Ended Generation Evaluation
We evaluate our model on AlpacaEval 2.0 and MTBench, showing the competitive performance of DeepSeek-V2-Chat-RL on English conversation generation. 
<p align="center">
  <img width="50%" src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/mtbench.png?raw=true" />
</p>

#### Chinese Open Ended Generation Evaluation
**Alignbench** (https://arxiv.org/abs/2311.18743)
<div align="center">

| **模型** | **开源/闭源** | **总分** | **中文推理** | **中文语言** |
| :---: | :---: | :---: | :---: | :---: |
| gpt-4-1106-preview | 闭源 | 8.01 | 7.73 | 8.29 |
| DeepSeek-V2 Chat (RL) | 开源 | 7.91 | 7.45 | 8.35 |
| erniebot-4.0-202404 (文心一言) | 闭源 | 7.89 | 7.61 | 8.17 |
| DeepSeek-V2 Chat (SFT) | 开源 | 7.74 | 7.30 | 8.17 |
| gpt-4-0613 | 闭源 | 7.53 | 7.47 | 7.59 |
| erniebot-4.0-202312 (文心一言) | 闭源 | 7.36 | 6.84 | 7.88 |
| moonshot-v1-32k-202404 (月之暗面) | 闭源 | 7.22 | 6.42 | 8.02 |
| Qwen1.5-72B-Chat (通义千问) | 开源 | 7.19 | 6.45 | 7.93 |
| DeepSeek-67B-Chat | 开源 | 6.43 | 5.75 | 7.11 |
| Yi-34B-Chat (零一万物) | 开源 | 6.12 | 4.86 | 7.38 |
| gpt-3.5-turbo-0613 | 闭源 | 6.08 | 5.35 | 6.71 |

</div>

#### Coding Benchmarks
We evaluate our model on LiveCodeBench (0901-0401), a benchmark designed for live coding challenges. As illustrated, DeepSeek-V2 demonstrates considerable proficiency in LiveCodeBench, achieving a Pass@1 score that surpasses several other sophisticated models. This performance highlights the model's effectiveness in tackling live coding tasks.

<p align="center">
  <img width="50%" src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/code_benchmarks.png?raw=true">
</p>

## 4. Model Architecture
DeepSeek-V2 adopts innovative architectures to guarantee economical training and efficient inference: 
- For attention, we design MLA (Multi-head Latent Attention), which utilizes low-rank key-value union compression to eliminate the bottleneck of inference-time key-value cache, thus supporting efficient inference. 
- For Feed-Forward Networks (FFNs), we adopt DeepSeekMoE architecture, a high-performance MoE architecture that enables training stronger models at lower costs. 

<p align="center">
  <img width="90%" src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/architecture.png?raw=true" />
</p>

## 5. Chat Website
You can chat with the DeepSeek-V2 on DeepSeek's official website: [chat.deepseek.com](https://chat.deepseek.com/sign_in)

## 6. API Platform
We also provide OpenAI-Compatible API at DeepSeek Platform: [platform.deepseek.com](https://platform.deepseek.com/). Sign up for over millions of free tokens. And you can also pay-as-you-go at an unbeatable price.


<p align="center">
  <img width="40%" src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/model_price.png?raw=true">
</p>


## 7. How to run locally
**To utilize DeepSeek-V2 in BF16 format for inference, 80GB*8 GPUs are required.**
### Inference with Huggingface's Transformers
You can directly employ [Huggingface's Transformers](https://github.com/huggingface/transformers) for model inference.

#### Text Completion
```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig

model_name = "deepseek-ai/DeepSeek-V2"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
# `max_memory` should be set based on your devices
max_memory = {i: "75GB" for i in range(8)}
# `device_map` cannot be set to `auto`
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True, device_map="sequential", torch_dtype=torch.bfloat16, max_memory=max_memory, attn_implementation="eager")
model.generation_config = GenerationConfig.from_pretrained(model_name)
model.generation_config.pad_token_id = model.generation_config.eos_token_id

text = "An attention function can be described as mapping a query and a set of key-value pairs to an output, where the query, keys, values, and output are all vectors. The output is"
inputs = tokenizer(text, return_tensors="pt")
outputs = model.generate(**inputs.to(model.device), max_new_tokens=100)

result = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(result)
```

#### Chat Completion
```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig

model_name = "deepseek-ai/DeepSeek-V2-Chat"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
# `max_memory` should be set based on your devices
max_memory = {i: "75GB" for i in range(8)}
# `device_map` cannot be set to `auto`
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True, device_map="sequential", torch_dtype=torch.bfloat16, max_memory=max_memory, attn_implementation="eager")
model.generation_config = GenerationConfig.from_pretrained(model_name)
model.generation_config.pad_token_id = model.generation_config.eos_token_id

messages = [
    {"role": "user", "content": "Write a piece of quicksort code in C++"}
]
input_tensor = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt")
outputs = model.generate(input_tensor.to(model.device), max_new_tokens=100)

result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=True)
print(result)
```

The complete chat template can be found within `tokenizer_config.json` located in the huggingface model repository.

An example of chat template is as belows:

```bash
<|begin▁of▁sentence|>User: {user_message_1}

Assistant: {assistant_message_1}<|end▁of▁sentence|>User: {user_message_2}

Assistant:
```

You can also add an optional system message:

```bash
<|begin▁of▁sentence|>{system_message}

User: {user_message_1}

Assistant: {assistant_message_1}<|end▁of▁sentence|>User: {user_message_2}

Assistant:
```

### Inference with vLLM (recommended)
To utilize [vLLM](https://github.com/vllm-project/vllm) for model inference, please merge this Pull Request into your vLLM codebase: https://github.com/vllm-project/vllm/pull/4650.

```python
from transformers import AutoTokenizer
from vllm import LLM, SamplingParams

max_model_len, tp_size = 8192, 8
model_name = "deepseek-ai/DeepSeek-V2-Chat"
tokenizer = AutoTokenizer.from_pretrained(model_name)
llm = LLM(model=model_name, tensor_parallel_size=tp_size, max_model_len=max_model_len, trust_remote_code=True, enforce_eager=True)
sampling_params = SamplingParams(temperature=0.3, max_tokens=256, stop_token_ids=[tokenizer.eos_token_id])

messages_list = [
    [{"role": "user", "content": "Who are you?"}],
    [{"role": "user", "content": "Translate the following content into Chinese directly: DeepSeek-V2 adopts innovative architectures to guarantee economical training and efficient inference."}],
    [{"role": "user", "content": "Write a piece of quicksort code in C++."}],
]

prompt_token_ids = [tokenizer.apply_chat_template(messages, add_generation_prompt=True) for messages in messages_list]

outputs = llm.generate(prompt_token_ids=prompt_token_ids, sampling_params=sampling_params)

generated_text = [output.outputs[0].text for output in outputs]
print(generated_text)
```

## 8. License
This code repository is licensed under [the MIT License](LICENSE-CODE). The use of DeepSeek-V2 Base/Chat models is subject to [the Model License](LICENSE-MODEL). DeepSeek-V2 series (including Base and Chat) supports commercial use.

## 9. Citation
```
@misc{deepseekv2,
      title={DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model}, 
      author={DeepSeek-AI},
      year={2024},
      eprint={2405.04434},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```

## 10. Contact
If you have any questions, please raise an issue or contact us at [[email protected]]([email protected]).