MiniLM-L12-H384-uncased for Extractive QA

Overview

Language model: microsoft/MiniLM-L12-H384-uncased
Language: English
Downstream-task: Extractive QA
Training data: SQuAD 2.0
Eval data: SQuAD 2.0
Code: See an example extractive QA pipeline built with Haystack Infrastructure: 1x Tesla v100

Hyperparameters

seed=42
batch_size = 12
n_epochs = 4
base_LM_model = "microsoft/MiniLM-L12-H384-uncased"
max_seq_len = 384
learning_rate = 4e-5
lr_schedule = LinearWarmup
warmup_proportion = 0.2
doc_stride=128
max_query_length=64
grad_acc_steps=4

Usage

In Haystack

Haystack is an AI orchestration framework to build customizable, production-ready LLM applications. You can use this model in Haystack to do extractive question answering on documents. To load and run the model with Haystack:

# After running pip install haystack-ai "transformers[torch,sentencepiece]"

from haystack import Document
from haystack.components.readers import ExtractiveReader

docs = [
    Document(content="Python is a popular programming language"),
    Document(content="python ist eine beliebte Programmiersprache"),
]

reader = ExtractiveReader(model="deepset/minilm-uncased-squad2")
reader.warm_up()

question = "What is a popular programming language?"
result = reader.run(query=question, documents=docs)
# {'answers': [ExtractedAnswer(query='What is a popular programming language?', score=0.5740374326705933, data='python', document=Document(id=..., content: '...'), context=None, document_offset=ExtractedAnswer.Span(start=0, end=6),...)]}

For a complete example with an extractive question answering pipeline that scales over many documents, check out the corresponding Haystack tutorial.

In Transformers

from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline

model_name = "deepset/minilm-uncased-squad2"

# a) Get predictions
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
QA_input = {
    'question': 'Why is model conversion important?',
    'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.'
}
res = nlp(QA_input)

# b) Load model & tokenizer
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)

Performance

Evaluated on the SQuAD 2.0 dev set with the official eval script.

"exact": 76.13071675229513,
"f1": 79.49786500219953,
"total": 11873,
"HasAns_exact": 78.35695006747639,
"HasAns_f1": 85.10090269418276,
"HasAns_total": 5928,
"NoAns_exact": 73.91084945332211,
"NoAns_f1": 73.91084945332211,
"NoAns_total": 5945

Authors

Vaishali Pal: [email protected]
Branden Chan: [email protected]
Timo Möller: [email protected]
Malte Pietsch: [email protected]
Tanay Soni: [email protected]

About us

deepset is the company behind the production-ready open-source AI framework Haystack.

Some of our other work:

Get in touch and join the Haystack community

For more info on Haystack, visit our GitHub repo and Documentation.

We also have a Discord community open to everyone!

Twitter | LinkedIn | Discord | GitHub Discussions | Website | YouTube

By the way: we're hiring!

Downloads last month
25,727
Safetensors
Model size
33.4M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for deepset/minilm-uncased-squad2

Finetunes
8 models

Dataset used to train deepset/minilm-uncased-squad2

Spaces using deepset/minilm-uncased-squad2 11

Evaluation results