julien-c HF staff commited on
Commit
fc2657c
1 Parent(s): efdebc1

Migrate model card from transformers-repo

Browse files

Read announcement at https://discuss.huggingface.co/t/announcement-all-model-cards-will-be-migrated-to-hf-co-model-repos/2755
Original file history: https://github.com/huggingface/transformers/commits/master/model_cards/deepset/minilm-uncased-squad2/README.md

Files changed (1) hide show
  1. README.md +116 -0
README.md ADDED
@@ -0,0 +1,116 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ datasets:
3
+ - squad_v2
4
+ ---
5
+
6
+ # MiniLM-L12-H384-uncased for QA
7
+
8
+ ## Overview
9
+ **Language model:** microsoft/MiniLM-L12-H384-uncased
10
+ **Language:** English
11
+ **Downstream-task:** Extractive QA
12
+ **Training data:** SQuAD 2.0
13
+ **Eval data:** SQuAD 2.0
14
+ **Code:** See [example](https://github.com/deepset-ai/FARM/blob/master/examples/question_answering.py) in [FARM](https://github.com/deepset-ai/FARM/blob/master/examples/question_answering.py)
15
+ **Infrastructure**: 1x Tesla v100
16
+
17
+ ## Hyperparameters
18
+
19
+ ```
20
+ seed=42
21
+ batch_size = 12
22
+ n_epochs = 4
23
+ base_LM_model = "microsoft/MiniLM-L12-H384-uncased"
24
+ max_seq_len = 384
25
+ learning_rate = 4e-5
26
+ lr_schedule = LinearWarmup
27
+ warmup_proportion = 0.2
28
+ doc_stride=128
29
+ max_query_length=64
30
+ grad_acc_steps=4
31
+ ```
32
+
33
+ ## Performance
34
+ Evaluated on the SQuAD 2.0 dev set with the [official eval script](https://worksheets.codalab.org/rest/bundles/0x6b567e1cf2e041ec80d7098f031c5c9e/contents/blob/).
35
+ ```
36
+ "exact": 76.13071675229513,
37
+ "f1": 79.49786500219953,
38
+ "total": 11873,
39
+ "HasAns_exact": 78.35695006747639,
40
+ "HasAns_f1": 85.10090269418276,
41
+ "HasAns_total": 5928,
42
+ "NoAns_exact": 73.91084945332211,
43
+ "NoAns_f1": 73.91084945332211,
44
+ "NoAns_total": 5945
45
+ ```
46
+
47
+ ## Usage
48
+
49
+ ### In Transformers
50
+ ```python
51
+ from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
52
+
53
+ model_name = "deepset/minilm-uncased-squad2"
54
+
55
+ # a) Get predictions
56
+ nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
57
+ QA_input = {
58
+ 'question': 'Why is model conversion important?',
59
+ 'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.'
60
+ }
61
+ res = nlp(QA_input)
62
+
63
+ # b) Load model & tokenizer
64
+ model = AutoModelForQuestionAnswering.from_pretrained(model_name)
65
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
66
+ ```
67
+
68
+ ### In FARM
69
+
70
+ ```python
71
+ from farm.modeling.adaptive_model import AdaptiveModel
72
+ from farm.modeling.tokenization import Tokenizer
73
+ from farm.infer import Inferencer
74
+
75
+ model_name = "deepset/minilm-uncased-squad2"
76
+
77
+ # a) Get predictions
78
+ nlp = Inferencer.load(model_name, task_type="question_answering")
79
+ QA_input = [{"questions": ["Why is model conversion important?"],
80
+ "text": "The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks."}]
81
+ res = nlp.inference_from_dicts(dicts=QA_input)
82
+
83
+ # b) Load model & tokenizer
84
+ model = AdaptiveModel.convert_from_transformers(model_name, device="cpu", task_type="question_answering")
85
+ tokenizer = Tokenizer.load(model_name)
86
+ ```
87
+
88
+ ### In haystack
89
+ For doing QA at scale (i.e. many docs instead of single paragraph), you can load the model also in [haystack](https://github.com/deepset-ai/haystack/):
90
+ ```python
91
+ reader = FARMReader(model_name_or_path="deepset/minilm-uncased-squad2")
92
+ # or
93
+ reader = TransformersReader(model="deepset/minilm-uncased-squad2",tokenizer="deepset/minilm-uncased-squad2")
94
+ ```
95
+
96
+
97
+ ## Authors
98
+ Vaishali Pal `vaishali.pal [at] deepset.ai`
99
+ Branden Chan: `branden.chan [at] deepset.ai`
100
+ Timo M枚ller: `timo.moeller [at] deepset.ai`
101
+ Malte Pietsch: `malte.pietsch [at] deepset.ai`
102
+ Tanay Soni: `tanay.soni [at] deepset.ai`
103
+
104
+ ## About us
105
+ ![deepset logo](https://raw.githubusercontent.com/deepset-ai/FARM/master/docs/img/deepset_logo.png)
106
+
107
+ We bring NLP to the industry via open source!
108
+ Our focus: Industry specific language models & large scale QA systems.
109
+
110
+ Some of our work:
111
+ - [German BERT (aka "bert-base-german-cased")](https://deepset.ai/german-bert)
112
+ - [FARM](https://github.com/deepset-ai/FARM)
113
+ - [Haystack](https://github.com/deepset-ai/haystack/)
114
+
115
+ Get in touch:
116
+ [Twitter](https://twitter.com/deepset_ai) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Website](https://deepset.ai)