Multilingual XLM-RoBERTa base for Extractive QA on various languages
Overview
Language model: xlm-roberta-base
Language: Multilingual
Downstream-task: Extractive QA
Training data: SQuAD 2.0
Eval data: SQuAD 2.0 dev set - German MLQA - German XQuAD
Code: See an example extractive QA pipeline built with Haystack
Infrastructure: 4x Tesla v100
Hyperparameters
batch_size = 22*4
n_epochs = 2
max_seq_len=256,
doc_stride=128,
learning_rate=2e-5,
Corresponding experiment logs in mlflow: link
Usage
In Haystack
Haystack is an AI orchestration framework to build customizable, production-ready LLM applications. You can use this model in Haystack to do extractive question answering on documents. To load and run the model with Haystack:
# After running pip install haystack-ai "transformers[torch,sentencepiece]"
from haystack import Document
from haystack.components.readers import ExtractiveReader
docs = [
Document(content="Python is a popular programming language"),
Document(content="python ist eine beliebte Programmiersprache"),
]
reader = ExtractiveReader(model="deepset/xlm-roberta-base-squad2")
reader.warm_up()
question = "What is a popular programming language?"
result = reader.run(query=question, documents=docs)
# {'answers': [ExtractedAnswer(query='What is a popular programming language?', score=0.5740374326705933, data='python', document=Document(id=..., content: '...'), context=None, document_offset=ExtractedAnswer.Span(start=0, end=6),...)]}
For a complete example with an extractive question answering pipeline that scales over many documents, check out the corresponding Haystack tutorial.
In Transformers
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
model_name = "deepset/xlm-roberta-base-squad2"
# a) Get predictions
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
QA_input = {
'question': 'Why is model conversion important?',
'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.'
}
res = nlp(QA_input)
# b) Load model & tokenizer
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
Performance
Evaluated on the SQuAD 2.0 dev set with the official eval script.
"exact": 73.91560683904657
"f1": 77.14103746689592
Evaluated on German MLQA: test-context-de-question-de.json "exact": 33.67279167589108 "f1": 44.34437105434842 "total": 4517
Evaluated on German XQuAD: xquad.de.json "exact": 48.739495798319325 "f1": 62.552615701071495 "total": 1190
Authors
Branden Chan: branden.chan [at] deepset.ai
Timo Möller: timo.moeller [at] deepset.ai
Malte Pietsch: malte.pietsch [at] deepset.ai
Tanay Soni: tanay.soni [at] deepset.ai
About us
deepset is the company behind the production-ready open-source AI framework Haystack.
Some of our other work:
- Distilled roberta-base-squad2 (aka "tinyroberta-squad2")
- German BERT, GermanQuAD and GermanDPR, German embedding model
- deepset Cloud, deepset Studio
Get in touch and join the Haystack community
For more info on Haystack, visit our GitHub repo and Documentation.
We also have a Discord community open to everyone!
Twitter | LinkedIn | Discord | GitHub Discussions | Website | YouTube
By the way: we're hiring!
- Downloads last month
- 1,534
Model tree for deepset/xlm-roberta-base-squad2
Dataset used to train deepset/xlm-roberta-base-squad2
Spaces using deepset/xlm-roberta-base-squad2 70
Evaluation results
- Exact Match on squad_v2validation set verified74.035
- F1 on squad_v2validation set verified77.183