kazRush-ru-kk
kazRush-ru-kk is a translation model for translating from Russian to Kazakh. The model was trained with randomly initialized weights based on the T5 configuration on the available open-source parallel data.
Usage
Using the model requires sentencepiece
library to be installed.
After installing necessary dependencies the model can be run with the following code:
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
import torch
device = 'cuda'
model = AutoModelForSeq2SeqLM.from_pretrained('deepvk/kazRush-ru-kk').to(device)
tokenizer = AutoTokenizer.from_pretrained('deepvk/kazRush-ru-kk')
@torch.inference_mode
def generate(text, **kwargs):
inputs = tokenizer(text, return_tensors='pt').to(device)
hypotheses = model.generate(**inputs, num_beams=5, **kwargs)
return tokenizer.decode(hypotheses[0], skip_special_tokens=True)
print(generate("Как Кока-Кола может помочь автомобилисту?"))
You can also access the model via pipeline wrapper:
>>> from transformers import pipeline
>>> pipe = pipeline(model="deepvk/kazRush-ru-kk")
>>> pipe("Мама мыла раму")
[{'translation_text': 'Анам жақтауды сабындады'}]
Data and Training
This model was trained on the following data (Russian-Kazakh language pairs):
Dataset | Number of pairs |
---|---|
OPUS Corpora | 718K |
kazparc | 2,150K |
wmt19 dataset | 5,063K |
TIL dataset | 4,403K |
Preprocessing of the data included:
- deduplication
- removing trash symbols, special tags, multiple whitespaces etc. from texts
- removing texts that were not in Russian or Kazakh (language detection was made via facebook/fasttext-language-identification)
- removing pairs that had low alingment score (comparison was performed via sentence-transformers/LaBSE)
- filtering the data using opusfilter tools
Model was trained for 56 hours on 2 GPUs NVIDIA A100 80 Gb.
Evaluation
Current model was compared to another open-source translation model, NLLB. We compared our model to all version of NLLB, excluding nllb-moe-54b due to its size.
The metrics - BLEU, chrF and COMET - were calculated on devtest
part of FLORES+ evaluation benchmark, most recent evaluation benchmark for multilingual machine translation.
Calculation of BLEU and chrF follows the standart implementation from sacreBLEU, and COMET is calculated using default model described in COMET repository.
Model | Size | BLEU | chrF | COMET |
---|---|---|---|---|
nllb-200-distilled-600M | 600M | 13.8 | 48.2 | 86.8 |
nllb-200-1.3B | 1.3B | 14.8 | 50.1 | 88.1 |
nllb-200-distilled-1.3B | 1.3B | 15.2 | 50.2 | 88.4 |
nllb-200-3.3B | 3.3B | 15.6 | 50.7 | 88.9 |
This model | 197M | 16.2 | 51.8 | 88.3 |
Examples of usage:
>>> print(generate("Каждый охотник желает знать, где сидит фазан."))
Әрбір аңшы ғибадатхананың қайда отырғанын білгісі келеді.
>>> print(generate("Местным продуктом-специалитетом с защищённым географическим наименованием по происхождению считается люнебургский степной барашек."))
Шығу тегі бойынша қорғалған географиялық атауы бар жергілікті мамандандырылған өнім болып люнебургтік дала қошқар болып саналады.
>>> print(generate("Помогите мне удивить девушку"))
Қызды таң қалдыруға көмектесіңіз
Citations
@misc{deepvk2024kazRushrukk,
title={kazRush-ru-kk: translation model from Russian to Kazakh},
author={Lebedeva, Anna and Sokolov, Andrey},
url={https://huggingface.co/deepvk/kazRush-ru-kk},
publisher={Hugging Face},
year={2024},
}
- Downloads last month
- 159