Train-Test Set: "intent-multilabel-v1-2.zip"
Model: "dbmdz/bert-base-turkish-cased"
Tokenizer Params
max_length=128
padding="max_length"
truncation=True
Training Params
evaluation_strategy = "epoch"
save_strategy = "epoch"
per_device_train_batch_size = 16
per_device_eval_batch_size = 16
num_train_epochs = 4
load_best_model_at_end = True
Train-Val Splitting Configuration
train_test_split(df_train,
test_size=0.1,
random_state=1111)
Class Loss Weights
- Alakasiz: 1.0
- Barinma: 1.5167249178108022
- Elektronik: 1.7547338578655642
- Giysi: 1.9610520059358458
- Kurtarma: 1.269341370129623
- Lojistik: 1.8684086209021484
- Saglik: 1.8019018017117145
- Su: 2.110648663094536
- Yagma: 3.081208739200435
- Yemek: 1.7994815143101963
Training Log (Class-Scaled)
Epoch Training Loss Validation Loss
1 No log 0.216295
2 0.260000 0.171498
3 0.142700 0.175608
4 0.142700 0.169851
Threshold Optimization
- Best Threshold: 0.15
- F1 @ Threshold: 0.7503
Eval Results
precision recall f1-score support
Alakasiz 0.91 0.87 0.89 734
Barinma 0.85 0.81 0.83 207
Elektronik 0.72 0.78 0.75 130
Giysi 0.73 0.67 0.70 94
Kurtarma 0.86 0.81 0.83 362
Lojistik 0.68 0.56 0.62 112
Saglik 0.72 0.81 0.76 108
Su 0.61 0.69 0.65 78
Yagma 0.67 0.65 0.66 31
Yemek 0.79 0.85 0.82 117
micro avg 0.82 0.81 0.81 1973
macro avg 0.75 0.75 0.75 1973
weighted avg 0.83 0.81 0.81 1973
samples avg 0.84 0.84 0.83 1973
- Downloads last month
- 16
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Evaluation results
- recall on deprem_private_dataset_v1_2self-reported0.750
- f1 on deprem_private_dataset_v1_2self-reported0.750