metadata
license: apache-2.0
pipeline_tag: depth-estimation
Prompt-Depth-Anything-Vitl
Introduction
Prompt Depth Anything is a high-resolution and accurate metric depth estimation method, with the following highlights:
- using prompting to unleash the power of depth foundation models, inspired by success of prompting in VLM and LLM foundation models.
- The widely available iPhone LiDAR is taken as the prompt, guiding the model to produce up to 4K resolution accurate metric depth.
- A scalable data pipeline is introduced to train the method.
- Prompt Depth Anything benefits downstream applications, including 3D reconstruction and generalized robotic grasping.
Installation
git clone https://github.com/DepthAnything/PromptDA.git
cd PromptDA
pip install -r requirements.txt
pip install -e .
Usage
from promptda.promptda import PromptDA
from promptda.utils.io_wrapper import load_image, load_depth, save_depth
DEVICE = 'cuda'
image_path = "assets/example_images/image.jpg"
prompt_depth_path = "assets/example_images/arkit_depth.png"
image = load_image(image_path).to(DEVICE)
prompt_depth = load_depth(prompt_depth_path).to(DEVICE) # 192x256, ARKit LiDAR depth in meters
model = PromptDA.from_pretrained("depth-anything/prompt-depth-anything-vitl").to(DEVICE).eval()
depth = model.predict(image, prompt_depth) # HxW, depth in meters
save_depth(depth, prompt_depth=prompt_depth, image=image)
Citation
If you find this project useful, please consider citing:
@inproceedings{lin2024promptda,
title={Prompting Depth Anything for 4K Resolution Accurate Metric Depth Estimation},
author={Lin, Haotong and Peng, Sida and Chen, Jingxiao and Peng, Songyou and Sun, Jiaming and Liu, Minghuan and Bao, Hujun and Feng, Jiashi and Zhou, Xiaowei and Kang, Bingyi},
journal={arXiv},
year={2024}
}