Edit model card

llama-7b-SFT-qlora-eli5-wiki_DPO_ds_RM_top_2_1024_r_64_alpha_16

This model is a fine-tuned version of dhmeltzer/llama-7b-SFT_eli5_wiki65k_1024_r_64_alpha_16_merged on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6538
  • Rewards/chosen: 0.1408
  • Rewards/rejected: -0.0291
  • Rewards/accuracies: 0.6248
  • Rewards/margins: 0.1699
  • Logps/rejected: -199.6676
  • Logps/chosen: -203.9681
  • Logits/rejected: 0.8159
  • Logits/chosen: 0.8393

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.03
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.6828 0.2 37 0.6867 -0.3470 -0.4719 0.5792 0.1249 -201.8816 -206.4072 0.7977 0.8213
0.6666 0.41 74 0.6731 -0.1233 -0.2593 0.5855 0.1361 -200.8187 -205.2885 0.8159 0.8381
0.6713 0.61 111 0.6645 0.0492 -0.1110 0.6019 0.1602 -200.0772 -204.4260 0.8299 0.8526
0.6749 0.82 148 0.6593 0.2291 0.0917 0.5912 0.1374 -199.0636 -203.5266 0.8189 0.8414
0.6688 1.02 185 0.6538 0.1408 -0.0291 0.6248 0.1699 -199.6676 -203.9681 0.8159 0.8393
0.3721 1.23 222 0.6911 -0.3548 -0.6171 0.6007 0.2623 -202.6077 -206.4462 0.8193 0.8406
0.2845 1.43 259 0.6989 -0.3528 -0.5968 0.5984 0.2441 -202.5062 -206.4359 0.7886 0.8059
0.2646 1.64 296 0.6991 -0.4016 -0.6359 0.5880 0.2343 -202.7015 -206.6800 0.7696 0.7875
0.2263 1.84 333 0.7063 -0.4773 -0.7137 0.5925 0.2365 -203.0908 -207.0584 0.7653 0.7833

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.4
  • Tokenizers 0.13.3

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 44.03
ARC (25-shot) 54.1
HellaSwag (10-shot) 78.74
MMLU (5-shot) 45.44
TruthfulQA (0-shot) 43.4
Winogrande (5-shot) 73.64
GSM8K (5-shot) 4.55
DROP (3-shot) 8.35
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model's library. Check the docs .

Model tree for dhmeltzer/llama-7b-SFT-qlora-eli5-wiki_DPO_ds_RM_top_2_1024_r_64_alpha_16

Spaces using dhmeltzer/llama-7b-SFT-qlora-eli5-wiki_DPO_ds_RM_top_2_1024_r_64_alpha_16 21