See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: katuni4ka/tiny-random-olmo-hf
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 437cafc7b90d8f2d_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/437cafc7b90d8f2d_train_data.json
type:
field_input: input
field_instruction: instruction
field_output: output
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_steps: null
eval_table_size: null
evals_per_epoch: null
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: true
hub_model_id: diaenra/d62080a2-d983-485f-afad-61ace279da2e
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_memory:
0: 70GB
micro_batch_size: 4
mlflow_experiment_name: /tmp/437cafc7b90d8f2d_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: null
saves_per_epoch: null
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: diaenra-tao-miner
wandb_mode: online
wandb_name: b612b32f-2e8a-4d95-ac6f-83bff6bbaa8a
wandb_project: tao
wandb_run: diaenra
wandb_runid: b612b32f-2e8a-4d95-ac6f-83bff6bbaa8a
warmup_steps: 10
weight_decay: 0.0
xformers_attention: true
d62080a2-d983-485f-afad-61ace279da2e
This model is a fine-tuned version of katuni4ka/tiny-random-olmo-hf on the None dataset. It achieves the following results on the evaluation set:
- Loss: 10.5764
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
10.6059 | 1.0000 | 26471 | 10.5837 |
10.1376 | 2.0000 | 52942 | 10.5764 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 8
Model tree for diaenra/d62080a2-d983-485f-afad-61ace279da2e
Base model
katuni4ka/tiny-random-olmo-hf