layoutlm-funsd

This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the funsd dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7043
  • Answer: {'precision': 0.7119021134593994, 'recall': 0.7911001236093943, 'f1': 0.7494145199063232, 'number': 809}
  • Header: {'precision': 0.37209302325581395, 'recall': 0.40336134453781514, 'f1': 0.3870967741935484, 'number': 119}
  • Question: {'precision': 0.7965796579657966, 'recall': 0.8309859154929577, 'f1': 0.8134191176470588, 'number': 1065}
  • Overall Precision: 0.7354
  • Overall Recall: 0.7893
  • Overall F1: 0.7614
  • Overall Accuracy: 0.8036

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
1.5459 1.0 38 1.0013 {'precision': 0.4444444444444444, 'recall': 0.5735475896168108, 'f1': 0.500809498111171, 'number': 809} {'precision': 0.05263157894736842, 'recall': 0.008403361344537815, 'f1': 0.014492753623188406, 'number': 119} {'precision': 0.5643024162120032, 'recall': 0.67981220657277, 'f1': 0.616695059625213, 'number': 1065} 0.5068 0.5966 0.5481 0.6648
0.8508 2.0 76 0.7119 {'precision': 0.6081081081081081, 'recall': 0.7787391841779975, 'f1': 0.6829268292682927, 'number': 809} {'precision': 0.16455696202531644, 'recall': 0.1092436974789916, 'f1': 0.1313131313131313, 'number': 119} {'precision': 0.6774703557312253, 'recall': 0.8046948356807512, 'f1': 0.7356223175965665, 'number': 1065} 0.6303 0.7526 0.6860 0.7691
0.6131 3.0 114 0.6432 {'precision': 0.6631689401888772, 'recall': 0.7812113720642769, 'f1': 0.717366628830874, 'number': 809} {'precision': 0.248, 'recall': 0.2605042016806723, 'f1': 0.2540983606557377, 'number': 119} {'precision': 0.7474048442906575, 'recall': 0.8112676056338028, 'f1': 0.7780279153534444, 'number': 1065} 0.6835 0.7662 0.7225 0.7837
0.4734 4.0 152 0.6196 {'precision': 0.6882845188284519, 'recall': 0.8133498145859085, 'f1': 0.7456090651558074, 'number': 809} {'precision': 0.2569444444444444, 'recall': 0.31092436974789917, 'f1': 0.28136882129277563, 'number': 119} {'precision': 0.763716814159292, 'recall': 0.8103286384976526, 'f1': 0.7863325740318907, 'number': 1065} 0.6987 0.7817 0.7379 0.8005
0.3721 5.0 190 0.6197 {'precision': 0.6894343649946638, 'recall': 0.7985166872682324, 'f1': 0.7399770904925544, 'number': 809} {'precision': 0.31007751937984496, 'recall': 0.33613445378151263, 'f1': 0.3225806451612903, 'number': 119} {'precision': 0.7683566433566433, 'recall': 0.8253521126760563, 'f1': 0.7958352195563604, 'number': 1065} 0.7081 0.7852 0.7447 0.8005
0.2989 6.0 228 0.6483 {'precision': 0.6992316136114161, 'recall': 0.7873918417799752, 'f1': 0.7406976744186047, 'number': 809} {'precision': 0.35766423357664234, 'recall': 0.4117647058823529, 'f1': 0.3828125, 'number': 119} {'precision': 0.7854578096947935, 'recall': 0.8215962441314554, 'f1': 0.8031206975676914, 'number': 1065} 0.7220 0.7832 0.7514 0.7987
0.2437 7.0 266 0.6707 {'precision': 0.7067415730337079, 'recall': 0.7775030902348579, 'f1': 0.7404355503237198, 'number': 809} {'precision': 0.34057971014492755, 'recall': 0.3949579831932773, 'f1': 0.36575875486381326, 'number': 119} {'precision': 0.7804232804232805, 'recall': 0.8309859154929577, 'f1': 0.8049113233287858, 'number': 1065} 0.7220 0.7832 0.7514 0.7993
0.2008 8.0 304 0.6904 {'precision': 0.7038251366120218, 'recall': 0.796044499381953, 'f1': 0.7470997679814385, 'number': 809} {'precision': 0.3356643356643357, 'recall': 0.40336134453781514, 'f1': 0.366412213740458, 'number': 119} {'precision': 0.7885304659498208, 'recall': 0.8262910798122066, 'f1': 0.8069692801467218, 'number': 1065} 0.7231 0.7888 0.7545 0.7990
0.1802 9.0 342 0.7072 {'precision': 0.7161862527716186, 'recall': 0.7985166872682324, 'f1': 0.7551139684395091, 'number': 809} {'precision': 0.34459459459459457, 'recall': 0.42857142857142855, 'f1': 0.38202247191011235, 'number': 119} {'precision': 0.7896174863387978, 'recall': 0.8140845070422535, 'f1': 0.8016643550624134, 'number': 1065} 0.7281 0.7847 0.7554 0.7989
0.1681 10.0 380 0.7043 {'precision': 0.7119021134593994, 'recall': 0.7911001236093943, 'f1': 0.7494145199063232, 'number': 809} {'precision': 0.37209302325581395, 'recall': 0.40336134453781514, 'f1': 0.3870967741935484, 'number': 119} {'precision': 0.7965796579657966, 'recall': 0.8309859154929577, 'f1': 0.8134191176470588, 'number': 1065} 0.7354 0.7893 0.7614 0.8036

Framework versions

  • Transformers 4.40.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
3
Safetensors
Model size
113M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for diah/layoutlm-funsd

Finetuned
(148)
this model