End of training
Browse files- README.md +76 -0
- preprocessor_config.json +25 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +80 -0
- vocab.txt +0 -0
README.md
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: microsoft/layoutlm-base-uncased
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- funsd
|
8 |
+
model-index:
|
9 |
+
- name: layoutlm-funsd
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# layoutlm-funsd
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.7043
|
21 |
+
- Answer: {'precision': 0.7119021134593994, 'recall': 0.7911001236093943, 'f1': 0.7494145199063232, 'number': 809}
|
22 |
+
- Header: {'precision': 0.37209302325581395, 'recall': 0.40336134453781514, 'f1': 0.3870967741935484, 'number': 119}
|
23 |
+
- Question: {'precision': 0.7965796579657966, 'recall': 0.8309859154929577, 'f1': 0.8134191176470588, 'number': 1065}
|
24 |
+
- Overall Precision: 0.7354
|
25 |
+
- Overall Recall: 0.7893
|
26 |
+
- Overall F1: 0.7614
|
27 |
+
- Overall Accuracy: 0.8036
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training and evaluation data
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training procedure
|
42 |
+
|
43 |
+
### Training hyperparameters
|
44 |
+
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 3e-05
|
47 |
+
- train_batch_size: 4
|
48 |
+
- eval_batch_size: 4
|
49 |
+
- seed: 42
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: linear
|
52 |
+
- num_epochs: 10
|
53 |
+
- mixed_precision_training: Native AMP
|
54 |
+
|
55 |
+
### Training results
|
56 |
+
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|
58 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
|
59 |
+
| 1.5459 | 1.0 | 38 | 1.0013 | {'precision': 0.4444444444444444, 'recall': 0.5735475896168108, 'f1': 0.500809498111171, 'number': 809} | {'precision': 0.05263157894736842, 'recall': 0.008403361344537815, 'f1': 0.014492753623188406, 'number': 119} | {'precision': 0.5643024162120032, 'recall': 0.67981220657277, 'f1': 0.616695059625213, 'number': 1065} | 0.5068 | 0.5966 | 0.5481 | 0.6648 |
|
60 |
+
| 0.8508 | 2.0 | 76 | 0.7119 | {'precision': 0.6081081081081081, 'recall': 0.7787391841779975, 'f1': 0.6829268292682927, 'number': 809} | {'precision': 0.16455696202531644, 'recall': 0.1092436974789916, 'f1': 0.1313131313131313, 'number': 119} | {'precision': 0.6774703557312253, 'recall': 0.8046948356807512, 'f1': 0.7356223175965665, 'number': 1065} | 0.6303 | 0.7526 | 0.6860 | 0.7691 |
|
61 |
+
| 0.6131 | 3.0 | 114 | 0.6432 | {'precision': 0.6631689401888772, 'recall': 0.7812113720642769, 'f1': 0.717366628830874, 'number': 809} | {'precision': 0.248, 'recall': 0.2605042016806723, 'f1': 0.2540983606557377, 'number': 119} | {'precision': 0.7474048442906575, 'recall': 0.8112676056338028, 'f1': 0.7780279153534444, 'number': 1065} | 0.6835 | 0.7662 | 0.7225 | 0.7837 |
|
62 |
+
| 0.4734 | 4.0 | 152 | 0.6196 | {'precision': 0.6882845188284519, 'recall': 0.8133498145859085, 'f1': 0.7456090651558074, 'number': 809} | {'precision': 0.2569444444444444, 'recall': 0.31092436974789917, 'f1': 0.28136882129277563, 'number': 119} | {'precision': 0.763716814159292, 'recall': 0.8103286384976526, 'f1': 0.7863325740318907, 'number': 1065} | 0.6987 | 0.7817 | 0.7379 | 0.8005 |
|
63 |
+
| 0.3721 | 5.0 | 190 | 0.6197 | {'precision': 0.6894343649946638, 'recall': 0.7985166872682324, 'f1': 0.7399770904925544, 'number': 809} | {'precision': 0.31007751937984496, 'recall': 0.33613445378151263, 'f1': 0.3225806451612903, 'number': 119} | {'precision': 0.7683566433566433, 'recall': 0.8253521126760563, 'f1': 0.7958352195563604, 'number': 1065} | 0.7081 | 0.7852 | 0.7447 | 0.8005 |
|
64 |
+
| 0.2989 | 6.0 | 228 | 0.6483 | {'precision': 0.6992316136114161, 'recall': 0.7873918417799752, 'f1': 0.7406976744186047, 'number': 809} | {'precision': 0.35766423357664234, 'recall': 0.4117647058823529, 'f1': 0.3828125, 'number': 119} | {'precision': 0.7854578096947935, 'recall': 0.8215962441314554, 'f1': 0.8031206975676914, 'number': 1065} | 0.7220 | 0.7832 | 0.7514 | 0.7987 |
|
65 |
+
| 0.2437 | 7.0 | 266 | 0.6707 | {'precision': 0.7067415730337079, 'recall': 0.7775030902348579, 'f1': 0.7404355503237198, 'number': 809} | {'precision': 0.34057971014492755, 'recall': 0.3949579831932773, 'f1': 0.36575875486381326, 'number': 119} | {'precision': 0.7804232804232805, 'recall': 0.8309859154929577, 'f1': 0.8049113233287858, 'number': 1065} | 0.7220 | 0.7832 | 0.7514 | 0.7993 |
|
66 |
+
| 0.2008 | 8.0 | 304 | 0.6904 | {'precision': 0.7038251366120218, 'recall': 0.796044499381953, 'f1': 0.7470997679814385, 'number': 809} | {'precision': 0.3356643356643357, 'recall': 0.40336134453781514, 'f1': 0.366412213740458, 'number': 119} | {'precision': 0.7885304659498208, 'recall': 0.8262910798122066, 'f1': 0.8069692801467218, 'number': 1065} | 0.7231 | 0.7888 | 0.7545 | 0.7990 |
|
67 |
+
| 0.1802 | 9.0 | 342 | 0.7072 | {'precision': 0.7161862527716186, 'recall': 0.7985166872682324, 'f1': 0.7551139684395091, 'number': 809} | {'precision': 0.34459459459459457, 'recall': 0.42857142857142855, 'f1': 0.38202247191011235, 'number': 119} | {'precision': 0.7896174863387978, 'recall': 0.8140845070422535, 'f1': 0.8016643550624134, 'number': 1065} | 0.7281 | 0.7847 | 0.7554 | 0.7989 |
|
68 |
+
| 0.1681 | 10.0 | 380 | 0.7043 | {'precision': 0.7119021134593994, 'recall': 0.7911001236093943, 'f1': 0.7494145199063232, 'number': 809} | {'precision': 0.37209302325581395, 'recall': 0.40336134453781514, 'f1': 0.3870967741935484, 'number': 119} | {'precision': 0.7965796579657966, 'recall': 0.8309859154929577, 'f1': 0.8134191176470588, 'number': 1065} | 0.7354 | 0.7893 | 0.7614 | 0.8036 |
|
69 |
+
|
70 |
+
|
71 |
+
### Framework versions
|
72 |
+
|
73 |
+
- Transformers 4.40.2
|
74 |
+
- Pytorch 2.3.0+cu121
|
75 |
+
- Datasets 2.19.1
|
76 |
+
- Tokenizers 0.19.1
|
preprocessor_config.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_valid_processor_keys": [
|
3 |
+
"images",
|
4 |
+
"do_resize",
|
5 |
+
"size",
|
6 |
+
"resample",
|
7 |
+
"apply_ocr",
|
8 |
+
"ocr_lang",
|
9 |
+
"tesseract_config",
|
10 |
+
"return_tensors",
|
11 |
+
"data_format",
|
12 |
+
"input_data_format"
|
13 |
+
],
|
14 |
+
"apply_ocr": true,
|
15 |
+
"do_resize": true,
|
16 |
+
"image_processor_type": "LayoutLMv2ImageProcessor",
|
17 |
+
"ocr_lang": null,
|
18 |
+
"processor_class": "LayoutLMv2Processor",
|
19 |
+
"resample": 2,
|
20 |
+
"size": {
|
21 |
+
"height": 224,
|
22 |
+
"width": 224
|
23 |
+
},
|
24 |
+
"tesseract_config": ""
|
25 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"additional_special_tokens": [],
|
45 |
+
"apply_ocr": false,
|
46 |
+
"clean_up_tokenization_spaces": true,
|
47 |
+
"cls_token": "[CLS]",
|
48 |
+
"cls_token_box": [
|
49 |
+
0,
|
50 |
+
0,
|
51 |
+
0,
|
52 |
+
0
|
53 |
+
],
|
54 |
+
"do_basic_tokenize": true,
|
55 |
+
"do_lower_case": true,
|
56 |
+
"mask_token": "[MASK]",
|
57 |
+
"model_max_length": 512,
|
58 |
+
"never_split": null,
|
59 |
+
"only_label_first_subword": true,
|
60 |
+
"pad_token": "[PAD]",
|
61 |
+
"pad_token_box": [
|
62 |
+
0,
|
63 |
+
0,
|
64 |
+
0,
|
65 |
+
0
|
66 |
+
],
|
67 |
+
"pad_token_label": -100,
|
68 |
+
"processor_class": "LayoutLMv2Processor",
|
69 |
+
"sep_token": "[SEP]",
|
70 |
+
"sep_token_box": [
|
71 |
+
1000,
|
72 |
+
1000,
|
73 |
+
1000,
|
74 |
+
1000
|
75 |
+
],
|
76 |
+
"strip_accents": null,
|
77 |
+
"tokenize_chinese_chars": true,
|
78 |
+
"tokenizer_class": "LayoutLMv2Tokenizer",
|
79 |
+
"unk_token": "[UNK]"
|
80 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|