|
--- |
|
base_model: dianamihalache27/Twroberta-baseB_5epoch |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
model-index: |
|
- name: ceva |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# ceva |
|
|
|
This model is a fine-tuned version of [dianamihalache27/Twroberta-baseB_5epoch](https://huggingface.co/dianamihalache27/Twroberta-baseB_5epoch) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1932 |
|
- Accuracy: 0.7714 |
|
- F1: 0.2892 |
|
- Precision: 0.2435 |
|
- Recall: 0.3579 |
|
- Precision Sarcastic: 0.3372 |
|
- Recall Sarcastic: 0.4833 |
|
- F1 Sarcastic: 0.3973 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Precision Sarcastic | Recall Sarcastic | F1 Sarcastic | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:-------------------:|:----------------:|:------------:| |
|
| No log | 1.0 | 217 | 0.1618 | 0.7893 | 0.2947 | 0.2611 | 0.3395 | 0.3458 | 0.4611 | 0.3952 | |
|
| No log | 2.0 | 434 | 0.1815 | 0.7629 | 0.3104 | 0.2560 | 0.4059 | 0.3299 | 0.5278 | 0.4060 | |
|
| 0.0559 | 3.0 | 651 | 0.1762 | 0.8 | 0.2957 | 0.2991 | 0.3173 | 0.3721 | 0.4444 | 0.4051 | |
|
| 0.0559 | 4.0 | 868 | 0.1811 | 0.7636 | 0.2933 | 0.2418 | 0.3727 | 0.3297 | 0.5111 | 0.4009 | |
|
| 0.0245 | 5.0 | 1085 | 0.1932 | 0.7714 | 0.2892 | 0.2435 | 0.3579 | 0.3372 | 0.4833 | 0.3973 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.2 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.19.2 |
|
- Tokenizers 0.19.1 |
|
|