009-microsoft-deberta-v3-base-finetuned-yahoo-800_200
This model is a fine-tuned version of microsoft/deberta-v3-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.1599
- F1: 0.6588
- Accuracy: 0.66
- Precision: 0.6659
- Recall: 0.66
- System Ram Used: 5.0546
- System Ram Total: 83.4807
- Gpu Ram Allocated: 4.1727
- Gpu Ram Cached: 26.7715
- Gpu Ram Total: 39.5640
- Gpu Utilization: 56
- Disk Space Used: 40.6642
- Disk Space Total: 78.1898
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
Training results
Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy | Precision | Recall | System Ram Used | System Ram Total | Gpu Ram Allocated | Gpu Ram Cached | Gpu Ram Total | Gpu Utilization | Disk Space Used | Disk Space Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2.3022 | 0.76 | 19 | 2.3012 | 0.0182 | 0.1 | 0.01 | 0.1 | 4.4456 | 83.4807 | 4.1727 | 26.7598 | 39.5640 | 45 | 33.7570 | 78.1898 |
2.2979 | 1.52 | 38 | 2.2854 | 0.0635 | 0.155 | 0.0449 | 0.155 | 5.0347 | 83.4807 | 4.1727 | 26.7715 | 39.5640 | 43 | 38.5922 | 78.1898 |
2.2316 | 2.28 | 57 | 2.1098 | 0.2285 | 0.305 | 0.2806 | 0.305 | 5.1781 | 83.4807 | 4.1727 | 26.7715 | 39.5640 | 44 | 40.6639 | 78.1898 |
1.9915 | 3.04 | 76 | 1.8477 | 0.4148 | 0.43 | 0.5040 | 0.43 | 5.1741 | 83.4807 | 4.1727 | 26.7715 | 39.5640 | 50 | 40.6639 | 78.1898 |
1.684 | 3.8 | 95 | 1.6027 | 0.5272 | 0.55 | 0.5666 | 0.55 | 5.1766 | 83.4807 | 4.1728 | 26.7715 | 39.5640 | 47 | 40.6639 | 78.1898 |
1.3911 | 4.56 | 114 | 1.4365 | 0.6060 | 0.615 | 0.6199 | 0.615 | 5.1746 | 83.4807 | 4.1728 | 26.7715 | 39.5640 | 49 | 40.6640 | 78.1898 |
1.1477 | 5.32 | 133 | 1.2565 | 0.6215 | 0.615 | 0.6419 | 0.615 | 5.1586 | 83.4807 | 4.1728 | 26.7715 | 39.5640 | 52 | 40.6640 | 78.1898 |
0.9198 | 6.08 | 152 | 1.1759 | 0.6400 | 0.64 | 0.6532 | 0.64 | 5.1810 | 83.4807 | 4.1727 | 26.7715 | 39.5640 | 55 | 40.6640 | 78.1898 |
0.7605 | 6.84 | 171 | 1.1128 | 0.6418 | 0.645 | 0.6564 | 0.645 | 5.1415 | 83.4807 | 4.1727 | 26.7715 | 39.5640 | 45 | 40.6640 | 78.1898 |
0.6093 | 7.6 | 190 | 1.0767 | 0.6678 | 0.67 | 0.6758 | 0.67 | 5.1347 | 83.4807 | 4.1728 | 26.7715 | 39.5640 | 43 | 40.6640 | 78.1898 |
0.5111 | 8.36 | 209 | 1.1033 | 0.6552 | 0.655 | 0.6742 | 0.655 | 5.1206 | 83.4807 | 4.1728 | 26.7715 | 39.5640 | 52 | 40.6641 | 78.1898 |
0.3828 | 9.12 | 228 | 1.1063 | 0.6875 | 0.69 | 0.6927 | 0.69 | 5.1484 | 83.4807 | 4.1727 | 26.7715 | 39.5640 | 44 | 40.6641 | 78.1898 |
0.3082 | 9.88 | 247 | 1.1240 | 0.6573 | 0.665 | 0.6595 | 0.665 | 5.1437 | 83.4807 | 4.1728 | 26.7715 | 39.5640 | 45 | 40.6641 | 78.1898 |
0.2716 | 10.64 | 266 | 1.1572 | 0.6604 | 0.665 | 0.6665 | 0.665 | 5.0689 | 83.4807 | 4.1728 | 26.7715 | 39.5640 | 45 | 40.6641 | 78.1898 |
0.2442 | 11.4 | 285 | 1.1058 | 0.6765 | 0.675 | 0.6827 | 0.675 | 5.0316 | 83.4807 | 4.1728 | 26.7715 | 39.5640 | 42 | 40.6641 | 78.1898 |
0.1791 | 12.16 | 304 | 1.1455 | 0.6445 | 0.645 | 0.6515 | 0.645 | 5.0715 | 83.4807 | 4.1728 | 26.7715 | 39.5640 | 46 | 40.6641 | 78.1898 |
0.1604 | 12.92 | 323 | 1.1514 | 0.6578 | 0.66 | 0.6686 | 0.66 | 5.0728 | 83.4807 | 4.1728 | 26.7715 | 39.5640 | 57 | 40.6641 | 78.1898 |
0.1389 | 13.68 | 342 | 1.1600 | 0.6715 | 0.675 | 0.6808 | 0.675 | 5.0655 | 83.4807 | 4.1727 | 26.7715 | 39.5640 | 48 | 40.6642 | 78.1898 |
0.151 | 14.44 | 361 | 1.1573 | 0.6626 | 0.665 | 0.6687 | 0.665 | 5.0588 | 83.4807 | 4.1727 | 26.7715 | 39.5640 | 48 | 40.6642 | 78.1898 |
Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3
- Downloads last month
- 6
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for diogopaes10/009-microsoft-deberta-v3-base-finetuned-yahoo-800_200
Base model
microsoft/deberta-v3-base