File size: 6,525 Bytes
fba0c2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
---
license: mit
base_model: microsoft/MiniLM-L12-H384-uncased
tags:
- generated_from_trainer
metrics:
- f1
- accuracy
- precision
- recall
model-index:
- name: 017-microsoft-MiniLM-finetuned-yahoo-800_200
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# 017-microsoft-MiniLM-finetuned-yahoo-800_200

This model is a fine-tuned version of [microsoft/MiniLM-L12-H384-uncased](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4048
- F1: 0.6237
- Accuracy: 0.63
- Precision: 0.6273
- Recall: 0.63
- System Ram Used: 3.8778
- System Ram Total: 83.4807
- Gpu Ram Allocated: 0.3903
- Gpu Ram Cached: 12.8340
- Gpu Ram Total: 39.5640
- Gpu Utilization: 32
- Disk Space Used: 25.4337
- Disk Space Total: 78.1898

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 25

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1     | Accuracy | Precision | Recall | System Ram Used | System Ram Total | Gpu Ram Allocated | Gpu Ram Cached | Gpu Ram Total | Gpu Utilization | Disk Space Used | Disk Space Total |
|:-------------:|:-----:|:----:|:---------------:|:------:|:--------:|:---------:|:------:|:---------------:|:----------------:|:-----------------:|:--------------:|:-------------:|:---------------:|:---------------:|:----------------:|
| 2.3021        | 1.28  | 32   | 2.2975          | 0.0519 | 0.12     | 0.1102    | 0.12   | 3.8424          | 83.4807          | 0.3904            | 12.8340        | 39.5640       | 29              | 24.5606         | 78.1898          |
| 2.2615        | 2.56  | 64   | 2.1926          | 0.2339 | 0.31     | 0.4649    | 0.31   | 3.8514          | 83.4807          | 0.3904            | 12.8340        | 39.5640       | 30              | 24.5606         | 78.1898          |
| 2.0677        | 3.84  | 96   | 1.9658          | 0.4301 | 0.51     | 0.3950    | 0.51   | 3.8537          | 83.4807          | 0.3905            | 12.8340        | 39.5640       | 22              | 24.5606         | 78.1898          |
| 1.8562        | 5.12  | 128  | 1.8383          | 0.4655 | 0.545    | 0.4587    | 0.545  | 3.8574          | 83.4807          | 0.3904            | 12.8340        | 39.5640       | 41              | 24.5606         | 78.1898          |
| 1.6929        | 6.4   | 160  | 1.7403          | 0.4942 | 0.555    | 0.5261    | 0.555  | 3.8549          | 83.4807          | 0.3904            | 12.8340        | 39.5640       | 29              | 24.5607         | 78.1898          |
| 1.5569        | 7.68  | 192  | 1.6663          | 0.5467 | 0.585    | 0.6496    | 0.585  | 3.8549          | 83.4807          | 0.3904            | 12.8340        | 39.5640       | 37              | 24.5607         | 78.1898          |
| 1.4636        | 8.96  | 224  | 1.6123          | 0.5475 | 0.58     | 0.5539    | 0.58   | 3.8539          | 83.4807          | 0.3904            | 12.8340        | 39.5640       | 30              | 24.5607         | 78.1898          |
| 1.3683        | 10.24 | 256  | 1.5615          | 0.5829 | 0.595    | 0.6016    | 0.595  | 3.8527          | 83.4807          | 0.3904            | 12.8340        | 39.5640       | 41              | 24.5607         | 78.1898          |
| 1.2649        | 11.52 | 288  | 1.5261          | 0.5904 | 0.61     | 0.6243    | 0.61   | 3.8646          | 83.4807          | 0.3904            | 12.8340        | 39.5640       | 30              | 24.5607         | 78.1898          |
| 1.1968        | 12.8  | 320  | 1.4976          | 0.6012 | 0.615    | 0.6070    | 0.615  | 3.8766          | 83.4807          | 0.3904            | 12.8340        | 39.5640       | 45              | 24.5607         | 78.1898          |
| 1.1291        | 14.08 | 352  | 1.4756          | 0.5983 | 0.615    | 0.6164    | 0.615  | 3.8749          | 83.4807          | 0.3905            | 12.8340        | 39.5640       | 47              | 24.5607         | 78.1898          |
| 1.0673        | 15.36 | 384  | 1.4660          | 0.6064 | 0.62     | 0.6258    | 0.62   | 3.8752          | 83.4807          | 0.3907            | 12.8340        | 39.5640       | 35              | 24.5607         | 78.1898          |
| 0.9884        | 16.64 | 416  | 1.4410          | 0.6135 | 0.625    | 0.6204    | 0.625  | 3.8757          | 83.4807          | 0.3904            | 12.8340        | 39.5640       | 33              | 24.5608         | 78.1898          |
| 0.9743        | 17.92 | 448  | 1.4328          | 0.6233 | 0.635    | 0.6343    | 0.635  | 3.8747          | 83.4807          | 0.3905            | 12.8340        | 39.5640       | 44              | 24.5608         | 78.1898          |
| 0.926         | 19.2  | 480  | 1.4344          | 0.6088 | 0.615    | 0.6238    | 0.615  | 3.8742          | 83.4807          | 0.3904            | 12.8340        | 39.5640       | 31              | 24.5608         | 78.1898          |
| 0.8815        | 20.48 | 512  | 1.4282          | 0.6235 | 0.625    | 0.6350    | 0.625  | 4.0591          | 83.4807          | 0.3904            | 12.8340        | 39.5640       | 43              | 25.4337         | 78.1898          |
| 0.8613        | 21.76 | 544  | 1.4146          | 0.6329 | 0.635    | 0.6408    | 0.635  | 4.0655          | 83.4807          | 0.3904            | 12.8340        | 39.5640       | 26              | 25.4337         | 78.1898          |
| 0.8466        | 23.04 | 576  | 1.4086          | 0.6318 | 0.635    | 0.6415    | 0.635  | 4.0544          | 83.4807          | 0.3904            | 12.8340        | 39.5640       | 35              | 25.4337         | 78.1898          |
| 0.8282        | 24.32 | 608  | 1.4058          | 0.6243 | 0.63     | 0.6319    | 0.63   | 3.8886          | 83.4807          | 0.3904            | 12.8340        | 39.5640       | 27              | 25.4337         | 78.1898          |


### Framework versions

- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3