ruBert-base-finetuned-pos

This model was finetuned from ai-forever/ruBert-base on the disk0dancer/ru_sentances_pos dataset. All docs and code can be found on Github.

It achieves the following results on the evaluation set:

  • eval_loss: 0.1544
  • eval_precision: 0.8561
  • eval_recall: 0.8723
  • eval_f1: 0.8642
  • eval_accuracy: 0.8822
  • eval_runtime: 0.2476
  • eval_samples_per_second: 80.775
  • eval_steps_per_second: 8.078
  • step: 0

Model description

Bert + Dence + Softmax + Dropout

image/png

Training and evaluation data

Model Trained for Token Classification

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Framework versions

  • Transformers 4.39.0
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2

Cite

@misc{churakov2024postagginghighlightskeletalstructure,
      title={POS-tagging to highlight the skeletal structure of sentences}, 
      author={Grigorii Churakov},
      year={2024},
      eprint={2411.14393},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2411.14393}, 
}
Downloads last month
32
Safetensors
Model size
178M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Dataset used to train disk0dancer/ruBert-base-finetuned-pos

Space using disk0dancer/ruBert-base-finetuned-pos 1

Collection including disk0dancer/ruBert-base-finetuned-pos