Edit model card

Distil-Whisper: distil-large-v3 for Whisper cpp

This repository contains the model weights for distil-large-v3 converted to GGML format. GGML is the weight format expected by C/C++ packages such as Whisper.cpp, for which we provide an example below.

Compared to previous Distil-Whisper releases, distil-large-v3 is specifically designed to be compatible with the OpenAI Whisper long-form transcription algorithm. In our benchmark over 4 out-of-distribution datasets, distil-large-v3 outperformed distil-large-v2 by 5% WER average. Thus, you can expect significant performance gains by switching to this latest checkpoint.

Usage

Distil-Whisper can be run with the Whisper.cpp package with the original sequential long-form transcription algorithm. In a provisional benchmark on Mac M1, distil-large-v3 is over 5x faster than Whisper large-v3, while performing to within 0.8% WER over long-form audio.

Steps for getting started:

  1. Clone the Whisper.cpp repository:
git clone https://github.com/ggerganov/whisper.cpp.git
cd whisper.cpp
  1. Install the Hugging Face Hub Python package:
pip install --upgrade huggingface_hub

And download the GGML weights for distil-large-v3 using the following Python snippet:

from huggingface_hub import hf_hub_download

hf_hub_download(repo_id='distil-whisper/distil-large-v3-ggml', filename='ggml-distil-large-v3.bin', local_dir='./models')

Note that if you do not have a Python environment set-up, you can also download the weights directly with wget:

wget https://huggingface.co/distil-whisper/distil-large-v3-ggml/resolve/main/ggml-distil-large-v3.bin -P ./models
  1. Run inference using the provided sample audio:
make -j && ./main -m models/ggml-distil-large-v3.bin -f samples/jfk.wav

Model Details

For more information about the distil-large-v3 model, refer to the original model card.

License

Distil-Whisper inherits the MIT license from OpenAI's Whisper model.

Citation

If you use this model, please consider citing the Distil-Whisper paper:

@misc{gandhi2023distilwhisper,
      title={Distil-Whisper: Robust Knowledge Distillation via Large-Scale Pseudo Labelling}, 
      author={Sanchit Gandhi and Patrick von Platen and Alexander M. Rush},
      year={2023},
      eprint={2311.00430},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Examples
Unable to determine this model's library. Check the docs .

Collection including distil-whisper/distil-large-v3-ggml