emotion_classification

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4174
  • Accuracy: 0.525

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.0777 1.0 10 2.0583 0.1812
2.0139 2.0 20 1.9850 0.2687
1.8654 3.0 30 1.8583 0.3063
1.7044 4.0 40 1.7314 0.3937
1.5957 5.0 50 1.6253 0.4125
1.5016 6.0 60 1.5818 0.3812
1.4279 7.0 70 1.5329 0.45
1.347 8.0 80 1.5491 0.425
1.3019 9.0 90 1.4662 0.5125
1.236 10.0 100 1.4375 0.5
1.1922 11.0 110 1.4149 0.5062
1.1551 12.0 120 1.4065 0.5125
1.1501 13.0 130 1.3861 0.5125
1.1258 14.0 140 1.3940 0.5312
1.1036 15.0 150 1.4022 0.5125

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.19.1
Downloads last month
221
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for diwa02/emotion_classification

Finetuned
(1868)
this model

Evaluation results