See axolotl config
axolotl version: 0.4.1
# See:
# - https://github.com/karpathy/nanoGPT/blob/master/config/train_gpt2.py#L1
# - https://github.com/OpenAccess-AI-Collective/axolotl/blob/main/examples/tiny-llama/pretrain.yml#L14
# - https://github.com/karpathy/nanoGPT/blob/master/train.py#L35
base_model: diwank/cryptgpt-large
hub_model_id: diwank/cryptgpt-large
model_type: GPT2LMHeadModel
tokenizer_type: AutoTokenizer
trust_remote_code: true # required for CryptGPTTokenizer
resize_token_embeddings_to_32x: true
output_dir: ./outputs/model-out
datasets:
- path: diwank/encrypted-openwebtext
type: completion
dataset_prepared_path: ./cryptgpt-prepared-dataset
val_set_size: 0.04
shuffle_merged_datasets: false
sequence_len: 1024
pad_to_sequence_len: true
sample_packing: false
pretrain_multipack_attn: false
train_on_inputs: true
gradient_accumulation_steps: 1
micro_batch_size: 128
optimizer: adamw_bnb_8bit
adam_beta1: 0.9
adam_beta2: 0.95
seed: 42
lr_scheduler: cosine
learning_rate: 6e-4
cosine_min_lr_ratio: 0.1 # min: 6e-5
weight_decay: 0.15
bf16: auto
tf32: true
flash_attention: true
torch_compile: true
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: true
deepspeed: deepspeed_configs/zero2.json
epochs: 20 # overriden by max_steps
max_steps: 600000
eval_steps: 12000
save_steps: 12000
save_total_limit: 3
early_stopping_patience: 3
auto_resume_from_checkpoints: true
logging_steps: 1
eval_max_new_tokens: 128
eval_causal_lm_metrics:
- sacrebleu
wandb_project: cryptgpt-large-0.1
wandb_name: cryptgpt-large-run-04
cryptgpt-large
This model is a fine-tuned version of diwank/cryptgpt-large on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.8034
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0006
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 1024
- total_eval_batch_size: 1024
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 20456
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
15.7656 | 0.0000 | 1 | 15.4910 |
1.8545 | 0.5866 | 12000 | 1.8034 |
Framework versions
- Transformers 4.41.1
- Pytorch 2.1.2+cu118
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 26
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for diwank/cryptgpt-large
Unable to build the model tree, the base model loops to the model itself. Learn more.