|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- lextreme |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: distilbert-base-multilingual-cased-mapa_fine-ner |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: lextreme |
|
type: lextreme |
|
config: mapa_fine |
|
split: test |
|
args: mapa_fine |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.8763335204941044 |
|
- name: Recall |
|
type: recall |
|
value: 0.9115199299167762 |
|
- name: F1 |
|
type: f1 |
|
value: 0.8935804766335075 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9956876979901592 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# distilbert-base-multilingual-cased-mapa_fine-ner |
|
|
|
This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on the lextreme dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0282 |
|
- Precision: 0.8763 |
|
- Recall: 0.9115 |
|
- F1: 0.8936 |
|
- Accuracy: 0.9957 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.0244 | 1.0 | 1739 | 0.0202 | 0.8083 | 0.9314 | 0.8655 | 0.9941 | |
|
| 0.0154 | 2.0 | 3478 | 0.0173 | 0.8813 | 0.9006 | 0.8908 | 0.9954 | |
|
| 0.0118 | 3.0 | 5217 | 0.0161 | 0.8885 | 0.9131 | 0.9006 | 0.9960 | |
|
| 0.0084 | 4.0 | 6956 | 0.0194 | 0.8485 | 0.9295 | 0.8871 | 0.9953 | |
|
| 0.0069 | 5.0 | 8695 | 0.0219 | 0.8583 | 0.9198 | 0.8880 | 0.9953 | |
|
| 0.0054 | 6.0 | 10434 | 0.0229 | 0.8622 | 0.9160 | 0.8883 | 0.9954 | |
|
| 0.0032 | 7.0 | 12173 | 0.0248 | 0.8817 | 0.8979 | 0.8898 | 0.9956 | |
|
| 0.0023 | 8.0 | 13912 | 0.0265 | 0.8900 | 0.9023 | 0.8961 | 0.9958 | |
|
| 0.0018 | 9.0 | 15651 | 0.0275 | 0.8657 | 0.9137 | 0.8890 | 0.9954 | |
|
| 0.0016 | 10.0 | 17390 | 0.0282 | 0.8763 | 0.9115 | 0.8936 | 0.9957 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.26.0 |
|
- Pytorch 1.13.1+cu117 |
|
- Datasets 2.9.0 |
|
- Tokenizers 0.13.2 |
|
|