Datasets documentation

Builder classes

You are viewing main version, which requires installation from source. If you'd like regular pip install, checkout the latest stable version (v3.2.0).
Hugging Face's logo
Join the Hugging Face community

and get access to the augmented documentation experience

to get started

Builder classes

Builders

🤗 Datasets relies on two main classes during the dataset building process: DatasetBuilder and BuilderConfig.

class datasets.DatasetBuilder

< >

( cache_dir: typing.Optional[str] = None dataset_name: typing.Optional[str] = None config_name: typing.Optional[str] = None hash: typing.Optional[str] = None base_path: typing.Optional[str] = None info: typing.Optional[datasets.info.DatasetInfo] = None features: typing.Optional[datasets.features.features.Features] = None token: typing.Union[bool, str, NoneType] = None repo_id: typing.Optional[str] = None data_files: typing.Union[str, list, dict, datasets.data_files.DataFilesDict, NoneType] = None data_dir: typing.Optional[str] = None storage_options: typing.Optional[dict] = None writer_batch_size: typing.Optional[int] = None **config_kwargs )

Parameters

  • cache_dir (str, optional) — Directory to cache data. Defaults to "~/.cache/huggingface/datasets".
  • dataset_name (str, optional) — Name of the dataset, if different from the builder name. Useful for packaged builders like csv, imagefolder, audiofolder, etc. to reflect the difference between datasets that use the same packaged builder.
  • config_name (str, optional) — Name of the dataset configuration. It affects the data generated on disk. Different configurations will have their own subdirectories and versions. If not provided, the default configuration is used (if it exists).

    Added in 2.3.0

    Parameter name was renamed to config_name.

  • hash (str, optional) — Hash specific to the dataset code. Used to update the caching directory when the dataset loading script code is updated (to avoid reusing old data). The typical caching directory (defined in self._relative_data_dir) is name/version/hash/.
  • base_path (str, optional) — Base path for relative paths that are used to download files. This can be a remote URL.
  • features (Features, optional) — Features types to use with this dataset. It can be used to change the Features types of a dataset, for example.
  • token (str or bool, optional) — String or boolean to use as Bearer token for remote files on the Datasets Hub. If True, will get token from "~/.huggingface".
  • repo_id (str, optional) — ID of the dataset repository. Used to distinguish builders with the same name but not coming from the same namespace, for example “squad” and “lhoestq/squad” repo IDs. In the latter, the builder name would be “lhoestq___squad”.
  • data_files (str or Sequence or Mapping, optional) — Path(s) to source data file(s). For builders like “csv” or “json” that need the user to specify data files. They can be either local or remote files. For convenience, you can use a DataFilesDict.
  • data_dir (str, optional) — Path to directory containing source data file(s). Use only if data_files is not passed, in which case it is equivalent to passing os.path.join(data_dir, "**") as data_files. For builders that require manual download, it must be the path to the local directory containing the manually downloaded data.
  • storage_options (dict, optional) — Key/value pairs to be passed on to the dataset file-system backend, if any.
  • writer_batch_size (int, optional) — Batch size used by the ArrowWriter. It defines the number of samples that are kept in memory before writing them and also the length of the arrow chunks. None means that the ArrowWriter will use its default value.
  • **config_kwargs (additional keyword arguments) — Keyword arguments to be passed to the corresponding builder configuration class, set on the class attribute DatasetBuilder.BUILDER_CONFIG_CLASS. The builder configuration class is BuilderConfig or a subclass of it.

Abstract base class for all datasets.

DatasetBuilder has 3 key methods:

Some DatasetBuilders expose multiple variants of the dataset by defining a BuilderConfig subclass and accepting a config object (or name) on construction. Configurable datasets expose a pre-defined set of configurations in DatasetBuilder.builder_configs().

as_dataset

< >

( split: typing.Optional[datasets.splits.Split] = None run_post_process = True verification_mode: typing.Union[datasets.utils.info_utils.VerificationMode, str, NoneType] = None in_memory = False )

Parameters

  • split (datasets.Split) — Which subset of the data to return.
  • run_post_process (bool, defaults to True) — Whether to run post-processing dataset transforms and/or add indexes.
  • verification_mode (VerificationMode or str, defaults to BASIC_CHECKS) — Verification mode determining the checks to run on the downloaded/processed dataset information (checksums/size/splits/…).

    Added in 2.9.1

  • in_memory (bool, defaults to False) — Whether to copy the data in-memory.

Return a Dataset for the specified split.

Example:

>>> from datasets import load_dataset_builder
>>> builder = load_dataset_builder('rotten_tomatoes')
>>> builder.download_and_prepare()
>>> ds = builder.as_dataset(split='train')
>>> ds
Dataset({
    features: ['text', 'label'],
    num_rows: 8530
})

download_and_prepare

< >

( output_dir: typing.Optional[str] = None download_config: typing.Optional[datasets.download.download_config.DownloadConfig] = None download_mode: typing.Union[datasets.download.download_manager.DownloadMode, str, NoneType] = None verification_mode: typing.Union[datasets.utils.info_utils.VerificationMode, str, NoneType] = None dl_manager: typing.Optional[datasets.download.download_manager.DownloadManager] = None base_path: typing.Optional[str] = None file_format: str = 'arrow' max_shard_size: typing.Union[str, int, NoneType] = None num_proc: typing.Optional[int] = None storage_options: typing.Optional[dict] = None **download_and_prepare_kwargs )

Parameters

  • output_dir (str, optional) — Output directory for the dataset. Default to this builder’s cache_dir, which is inside ~/.cache/huggingface/datasets by default.

    Added in 2.5.0

  • download_config (DownloadConfig, optional) — Specific download configuration parameters.
  • download_mode (DownloadMode or str, optional) — Select the download/generate mode, default to REUSE_DATASET_IF_EXISTS.
  • verification_mode (VerificationMode or str, defaults to BASIC_CHECKS) — Verification mode determining the checks to run on the downloaded/processed dataset information (checksums/size/splits/…).

    Added in 2.9.1

  • dl_manager (DownloadManager, optional) — Specific DownloadManger to use.
  • base_path (str, optional) — Base path for relative paths that are used to download files. This can be a remote url. If not specified, the value of the base_path attribute (self.base_path) will be used instead.
  • file_format (str, optional) — Format of the data files in which the dataset will be written. Supported formats: “arrow”, “parquet”. Default to “arrow” format. If the format is “parquet”, then image and audio data are embedded into the Parquet files instead of pointing to local files.

    Added in 2.5.0

  • max_shard_size (Union[str, int], optional) — Maximum number of bytes written per shard, default is “500MB”. The size is based on uncompressed data size, so in practice your shard files may be smaller than max_shard_size thanks to Parquet compression for example.

    Added in 2.5.0

  • num_proc (int, optional, defaults to None) — Number of processes when downloading and generating the dataset locally. Multiprocessing is disabled by default.

    Added in 2.7.0

  • storage_options (dict, optional) — Key/value pairs to be passed on to the caching file-system backend, if any.

    Added in 2.5.0

  • **download_and_prepare_kwargs (additional keyword arguments) — Keyword arguments.

Downloads and prepares dataset for reading.

Example:

Download and prepare the dataset as Arrow files that can be loaded as a Dataset using builder.as_dataset():

>>> from datasets import load_dataset_builder
>>> builder = load_dataset_builder("rotten_tomatoes")
>>> builder.download_and_prepare()

Download and prepare the dataset as sharded Parquet files locally:

>>> from datasets import load_dataset_builder
>>> builder = load_dataset_builder("rotten_tomatoes")
>>> builder.download_and_prepare("./output_dir", file_format="parquet")

Download and prepare the dataset as sharded Parquet files in a cloud storage:

>>> from datasets import load_dataset_builder
>>> storage_options = {"key": aws_access_key_id, "secret": aws_secret_access_key}
>>> builder = load_dataset_builder("rotten_tomatoes")
>>> builder.download_and_prepare("s3://my-bucket/my_rotten_tomatoes", storage_options=storage_options, file_format="parquet")

get_all_exported_dataset_infos

< >

( )

Empty dict if doesn’t exist

Example:

>>> from datasets import load_dataset_builder
>>> ds_builder = load_dataset_builder('vivos')
>>> ds_builder.get_all_exported_dataset_infos()
{'default': DatasetInfo(description='', citation='', homepage='', license='', features={'speaker_id': Value(dtype='string', id=None), 'path': Value(dtype='string', id=None), 'audio': Audio(sampling_rate=16000, mono=True, decode=True, id=None), 'sentence': Value(dtype='string', id=None)}, post_processed=None, supervised_keys=None, builder_name=None, dataset_name=None, config_name='default', version=None, splits={'train': SplitInfo(name='train', num_bytes=1722002133, num_examples=11660, shard_lengths=None, dataset_name=None), 'test': SplitInfo(name='test', num_bytes=86120227, num_examples=760, shard_lengths=None, dataset_name=None)}, download_checksums=None, download_size=1475540500, post_processing_size=None, dataset_size=1808122360, size_in_bytes=None)}

get_exported_dataset_info

< >

( )

Empty DatasetInfo if doesn’t exist

Example:

>>> from datasets import load_dataset_builder
>>> ds_builder = load_dataset_builder('rotten_tomatoes')
>>> ds_builder.get_exported_dataset_info()
DatasetInfo(description='', citation='', homepage='', license='', features={'speaker_id': Value(dtype='string', id=None), 'path': Value(dtype='string', id=None), 'audio': Audio(sampling_rate=16000, mono=True, decode=True, id=None), 'sentence': Value(dtype='string', id=None)}, post_processed=None, supervised_keys=None, builder_name=None, dataset_name=None, config_name='default', version=None, splits={'train': SplitInfo(name='train', num_bytes=1722002133, num_examples=11660, shard_lengths=None, dataset_name=None), 'test': SplitInfo(name='test', num_bytes=86120227, num_examples=760, shard_lengths=None, dataset_name=None)}, download_checksums=None, download_size=1475540500, post_processing_size=None, dataset_size=1808122360, size_in_bytes=None)

get_imported_module_dir

< >

( )

Return the path of the module of this class or subclass.

class datasets.GeneratorBasedBuilder

< >

( cache_dir: typing.Optional[str] = None dataset_name: typing.Optional[str] = None config_name: typing.Optional[str] = None hash: typing.Optional[str] = None base_path: typing.Optional[str] = None info: typing.Optional[datasets.info.DatasetInfo] = None features: typing.Optional[datasets.features.features.Features] = None token: typing.Union[bool, str, NoneType] = None repo_id: typing.Optional[str] = None data_files: typing.Union[str, list, dict, datasets.data_files.DataFilesDict, NoneType] = None data_dir: typing.Optional[str] = None storage_options: typing.Optional[dict] = None writer_batch_size: typing.Optional[int] = None **config_kwargs )

Base class for datasets with data generation based on dict generators.

GeneratorBasedBuilder is a convenience class that abstracts away much of the data writing and reading of DatasetBuilder. It expects subclasses to implement generators of feature dictionaries across the dataset splits (_split_generators). See the method docstrings for details.

class datasets.ArrowBasedBuilder

< >

( cache_dir: typing.Optional[str] = None dataset_name: typing.Optional[str] = None config_name: typing.Optional[str] = None hash: typing.Optional[str] = None base_path: typing.Optional[str] = None info: typing.Optional[datasets.info.DatasetInfo] = None features: typing.Optional[datasets.features.features.Features] = None token: typing.Union[bool, str, NoneType] = None repo_id: typing.Optional[str] = None data_files: typing.Union[str, list, dict, datasets.data_files.DataFilesDict, NoneType] = None data_dir: typing.Optional[str] = None storage_options: typing.Optional[dict] = None writer_batch_size: typing.Optional[int] = None **config_kwargs )

Base class for datasets with data generation based on Arrow loading functions (CSV/JSON/Parquet).

class datasets.BuilderConfig

< >

( name: str = 'default' version: typing.Union[str, datasets.utils.version.Version, NoneType] = 0.0.0 data_dir: typing.Optional[str] = None data_files: typing.Union[datasets.data_files.DataFilesDict, datasets.data_files.DataFilesPatternsDict, NoneType] = None description: typing.Optional[str] = None )

Parameters

  • name (str, defaults to default) — The name of the configuration.
  • version (Version or str, defaults to 0.0.0) — The version of the configuration.
  • data_dir (str, optional) — Path to the directory containing the source data.
  • data_files (str or Sequence or Mapping, optional) — Path(s) to source data file(s).
  • description (str, optional) — A human description of the configuration.

Base class for DatasetBuilder data configuration.

DatasetBuilder subclasses with data configuration options should subclass BuilderConfig and add their own properties.

create_config_id

< >

( config_kwargs: dict custom_features: typing.Optional[datasets.features.features.Features] = None )

The config id is used to build the cache directory. By default it is equal to the config name. However the name of a config is not sufficient to have a unique identifier for the dataset being generated since it doesn’t take into account:

  • the config kwargs that can be used to overwrite attributes
  • the custom features used to write the dataset
  • the data_files for json/text/csv/pandas datasets

Therefore the config id is just the config name with an optional suffix based on these.

Download

class datasets.DownloadManager

< >

( dataset_name: typing.Optional[str] = None data_dir: typing.Optional[str] = None download_config: typing.Optional[datasets.download.download_config.DownloadConfig] = None base_path: typing.Optional[str] = None record_checksums = True )

download

< >

( url_or_urls ) str or list or dict

Parameters

  • url_or_urls (str or list or dict) — URL or list or dict of URLs to download. Each URL is a str.

Returns

str or list or dict

The downloaded paths matching the given input url_or_urls.

Download given URL(s).

By default, only one process is used for download. Pass customized download_config.num_proc to change this behavior.

Example:

>>> downloaded_files = dl_manager.download('https://storage.googleapis.com/seldon-datasets/sentence_polarity_v1/rt-polaritydata.tar.gz')

download_and_extract

< >

( url_or_urls ) extracted_path(s)

Parameters

  • url_or_urls (str or list or dict) — URL or list or dict of URLs to download and extract. Each URL is a str.

Returns

extracted_path(s)

str, extracted paths of given URL(s).

Download and extract given url_or_urls.

Is roughly equivalent to:

extracted_paths = dl_manager.extract(dl_manager.download(url_or_urls))

extract

< >

( path_or_paths ) extracted_path(s)

Parameters

  • path_or_paths (path or list or dict) — Path of file to extract. Each path is a str.

Returns

extracted_path(s)

str, The extracted paths matching the given input path_or_paths.

Extract given path(s).

Example:

>>> downloaded_files = dl_manager.download('https://storage.googleapis.com/seldon-datasets/sentence_polarity_v1/rt-polaritydata.tar.gz')
>>> extracted_files = dl_manager.extract(downloaded_files)

iter_archive

< >

( path_or_buf: typing.Union[str, _io.BufferedReader] ) tuple[str, io.BufferedReader]

Parameters

  • path_or_buf (str or io.BufferedReader) — Archive path or archive binary file object.

Yields

tuple[str, io.BufferedReader]

Iterate over files within an archive.

Example:

>>> archive = dl_manager.download('https://storage.googleapis.com/seldon-datasets/sentence_polarity_v1/rt-polaritydata.tar.gz')
>>> files = dl_manager.iter_archive(archive)

iter_files

< >

( paths: typing.Union[str, typing.List[str]] ) str

Parameters

  • paths (str or list of str) — Root paths.

Yields

str

Iterate over file paths.

Example:

>>> files = dl_manager.download_and_extract('https://huggingface.co/datasets/beans/resolve/main/data/train.zip')
>>> files = dl_manager.iter_files(files)

class datasets.StreamingDownloadManager

< >

( dataset_name: typing.Optional[str] = None data_dir: typing.Optional[str] = None download_config: typing.Optional[datasets.download.download_config.DownloadConfig] = None base_path: typing.Optional[str] = None )

Download manager that uses the ”::” separator to navigate through (possibly remote) compressed archives. Contrary to the regular DownloadManager, the download and extract methods don’t actually download nor extract data, but they rather return the path or url that could be opened using the xopen function which extends the built-in open function to stream data from remote files.

download

< >

( url_or_urls ) url(s)

Parameters

  • url_or_urls (str or list or dict) — URL(s) of files to stream data from. Each url is a str.

Returns

url(s)

(str or list or dict), URL(s) to stream data from matching the given input url_or_urls.

Normalize URL(s) of files to stream data from. This is the lazy version of DownloadManager.download for streaming.

Example:

>>> downloaded_files = dl_manager.download('https://storage.googleapis.com/seldon-datasets/sentence_polarity_v1/rt-polaritydata.tar.gz')

download_and_extract

< >

( url_or_urls ) url(s)

Parameters

  • url_or_urls (str or list or dict) — URL(s) to stream from data from. Each url is a str.

Returns

url(s)

(str or list or dict), URL(s) to stream data from matching the given input url_or_urls.

Prepare given url_or_urls for streaming (add extraction protocol).

This is the lazy version of DownloadManager.download_and_extract for streaming.

Is equivalent to:

urls = dl_manager.extract(dl_manager.download(url_or_urls))

extract

< >

( url_or_urls ) url(s)

Parameters

  • url_or_urls (str or list or dict) — URL(s) of files to stream data from. Each url is a str.

Returns

url(s)

(str or list or dict), URL(s) to stream data from matching the given input url_or_urls.

Add extraction protocol for given url(s) for streaming.

This is the lazy version of DownloadManager.extract for streaming.

Example:

>>> downloaded_files = dl_manager.download('https://storage.googleapis.com/seldon-datasets/sentence_polarity_v1/rt-polaritydata.tar.gz')
>>> extracted_files = dl_manager.extract(downloaded_files)

iter_archive

< >

( urlpath_or_buf: typing.Union[str, _io.BufferedReader] ) tuple[str, io.BufferedReader]

Parameters

  • urlpath_or_buf (str or io.BufferedReader) — Archive path or archive binary file object.

Yields

tuple[str, io.BufferedReader]

Iterate over files within an archive.

Example:

>>> archive = dl_manager.download('https://storage.googleapis.com/seldon-datasets/sentence_polarity_v1/rt-polaritydata.tar.gz')
>>> files = dl_manager.iter_archive(archive)

iter_files

< >

( urlpaths: typing.Union[str, typing.List[str]] ) str

Parameters

  • urlpaths (str or list of str) — Root paths.

Yields

str

Iterate over files.

Example:

>>> files = dl_manager.download_and_extract('https://huggingface.co/datasets/beans/resolve/main/data/train.zip')
>>> files = dl_manager.iter_files(files)

class datasets.DownloadConfig

< >

( cache_dir: typing.Union[str, pathlib.Path, NoneType] = None force_download: bool = False resume_download: bool = False local_files_only: bool = False proxies: typing.Optional[typing.Dict] = None user_agent: typing.Optional[str] = None extract_compressed_file: bool = False force_extract: bool = False delete_extracted: bool = False extract_on_the_fly: bool = False use_etag: bool = True num_proc: typing.Optional[int] = None max_retries: int = 1 token: typing.Union[str, bool, NoneType] = None storage_options: typing.Dict[str, typing.Any] = <factory> download_desc: typing.Optional[str] = None disable_tqdm: bool = False )

Parameters

  • cache_dir (str or Path, optional) — Specify a cache directory to save the file to (overwrite the default cache dir).
  • force_download (bool, defaults to False) — If True, re-dowload the file even if it’s already cached in the cache dir.
  • resume_download (bool, defaults to False) — If True, resume the download if an incompletely received file is found.
  • proxies (dict, optional) —
  • user_agent (str, optional) — Optional string or dict that will be appended to the user-agent on remote requests.
  • extract_compressed_file (bool, defaults to False) — If True and the path point to a zip or tar file, extract the compressed file in a folder along the archive.
  • force_extract (bool, defaults to False) — If True when extract_compressed_file is True and the archive was already extracted, re-extract the archive and override the folder where it was extracted.
  • delete_extracted (bool, defaults to False) — Whether to delete (or keep) the extracted files.
  • extract_on_the_fly (bool, defaults to False) — If True, extract compressed files while they are being read.
  • use_etag (bool, defaults to True) — Whether to use the ETag HTTP response header to validate the cached files.
  • num_proc (int, optional) — The number of processes to launch to download the files in parallel.
  • max_retries (int, default to 1) — The number of times to retry an HTTP request if it fails.
  • token (str or bool, optional) — Optional string or boolean to use as Bearer token for remote files on the Datasets Hub. If True, or not specified, will get token from ~/.huggingface.
  • storage_options (dict, optional) — Key/value pairs to be passed on to the dataset file-system backend, if any.
  • download_desc (str, optional) — A description to be displayed alongside with the progress bar while downloading the files.
  • disable_tqdm (bool, defaults to False) — Whether to disable the individual files download progress bar

Configuration for our cached path manager.

class datasets.DownloadMode

< >

( value names = None module = None qualname = None type = None start = 1 )

Enum for how to treat pre-existing downloads and data.

The default mode is REUSE_DATASET_IF_EXISTS, which will reuse both raw downloads and the prepared dataset if they exist.

The generations modes:

Downloads Dataset
REUSE_DATASET_IF_EXISTS (default) Reuse Reuse
REUSE_CACHE_IF_EXISTS Reuse Fresh
FORCE_REDOWNLOAD Fresh Fresh

Verification

class datasets.VerificationMode

< >

( value names = None module = None qualname = None type = None start = 1 )

Enum that specifies which verification checks to run.

The default mode is BASIC_CHECKS, which will perform only rudimentary checks to avoid slowdowns when generating/downloading a dataset for the first time.

The verification modes:

Verification checks
ALL_CHECKS Split checks, uniqueness of the keys yielded in case of the GeneratorBuilder
and the validity (number of files, checksums, etc.) of downloaded files
BASIC_CHECKS (default) Same as ALL_CHECKS but without checking downloaded files
NO_CHECKS None

Splits

class datasets.SplitGenerator

< >

( name: str gen_kwargs: typing.Dict = <factory> )

Parameters

  • name (str) — Name of the Split for which the generator will create the examples.
  • **gen_kwargs (additional keyword arguments) — Keyword arguments to forward to the DatasetBuilder._generate_examples method of the builder.

Defines the split information for the generator.

This should be used as returned value of GeneratorBasedBuilder._split_generators. See GeneratorBasedBuilder._split_generators for more info and example of usage.

Example:

>>> datasets.SplitGenerator(
...     name=datasets.Split.TRAIN,
...     gen_kwargs={"split_key": "train", "files": dl_manager.download_and_extract(url)},
... )

class datasets.Split

< >

( name )

Enum for dataset splits.

Datasets are typically split into different subsets to be used at various stages of training and evaluation.

  • TRAIN: the training data.
  • VALIDATION: the validation data. If present, this is typically used as evaluation data while iterating on a model (e.g. changing hyperparameters, model architecture, etc.).
  • TEST: the testing data. This is the data to report metrics on. Typically you do not want to use this during model iteration as you may overfit to it.
  • ALL: the union of all defined dataset splits.

All splits, including compositions inherit from datasets.SplitBase.

See the guide on splits for more information.

Example:

>>> datasets.SplitGenerator(
...     name=datasets.Split.TRAIN,
...     gen_kwargs={"split_key": "train", "files": dl_manager.download_and extract(url)},
... ),
... datasets.SplitGenerator(
...     name=datasets.Split.VALIDATION,
...     gen_kwargs={"split_key": "validation", "files": dl_manager.download_and extract(url)},
... ),
... datasets.SplitGenerator(
...     name=datasets.Split.TEST,
...     gen_kwargs={"split_key": "test", "files": dl_manager.download_and extract(url)},
... )

class datasets.NamedSplit

< >

( name )

Descriptor corresponding to a named split (train, test, …).

Example:

Each descriptor can be composed with other using addition or slice:

split = datasets.Split.TRAIN.subsplit(datasets.percent[0:25]) + datasets.Split.TEST

The resulting split will correspond to 25% of the train split merged with 100% of the test split.

A split cannot be added twice, so the following will fail:

split = (
        datasets.Split.TRAIN.subsplit(datasets.percent[:25]) +
        datasets.Split.TRAIN.subsplit(datasets.percent[75:])
)  # Error
split = datasets.Split.TEST + datasets.Split.ALL  # Error

The slices can be applied only one time. So the following are valid:

split = (
        datasets.Split.TRAIN.subsplit(datasets.percent[:25]) +
        datasets.Split.TEST.subsplit(datasets.percent[:50])
)
split = (datasets.Split.TRAIN + datasets.Split.TEST).subsplit(datasets.percent[:50])

But this is not valid:

train = datasets.Split.TRAIN
test = datasets.Split.TEST
split = train.subsplit(datasets.percent[:25]).subsplit(datasets.percent[:25])
split = (train.subsplit(datasets.percent[:25]) + test).subsplit(datasets.percent[:50])

class datasets.NamedSplitAll

< >

( )

Split corresponding to the union of all defined dataset splits.

class datasets.ReadInstruction

< >

( split_name rounding = None from_ = None to = None unit = None )

Reading instruction for a dataset.

Examples:

# The following lines are equivalent:
ds = datasets.load_dataset('mnist', split='test[:33%]')
ds = datasets.load_dataset('mnist', split=datasets.ReadInstruction.from_spec('test[:33%]'))
ds = datasets.load_dataset('mnist', split=datasets.ReadInstruction('test', to=33, unit='%'))
ds = datasets.load_dataset('mnist', split=datasets.ReadInstruction(
'test', from_=0, to=33, unit='%'))

# The following lines are equivalent:
ds = datasets.load_dataset('mnist', split='test[:33%]+train[1:-1]')
ds = datasets.load_dataset('mnist', split=datasets.ReadInstruction.from_spec(
'test[:33%]+train[1:-1]'))
ds = datasets.load_dataset('mnist', split=(
datasets.ReadInstruction('test', to=33, unit='%') +
datasets.ReadInstruction('train', from_=1, to=-1, unit='abs')))

# The following lines are equivalent:
ds = datasets.load_dataset('mnist', split='test[:33%](pct1_dropremainder)')
ds = datasets.load_dataset('mnist', split=datasets.ReadInstruction.from_spec(
'test[:33%](pct1_dropremainder)'))
ds = datasets.load_dataset('mnist', split=datasets.ReadInstruction(
'test', from_=0, to=33, unit='%', rounding="pct1_dropremainder"))

# 10-fold validation:
tests = datasets.load_dataset(
'mnist',
[datasets.ReadInstruction('train', from_=k, to=k+10, unit='%')
for k in range(0, 100, 10)])
trains = datasets.load_dataset(
'mnist',
[datasets.ReadInstruction('train', to=k, unit='%') + datasets.ReadInstruction('train', from_=k+10, unit='%')
for k in range(0, 100, 10)])

from_spec

< >

( spec )

Parameters

  • spec (str) — Split(s) + optional slice(s) to read + optional rounding if percents are used as the slicing unit. A slice can be specified, using absolute numbers (int) or percentages (int).

Creates a ReadInstruction instance out of a string spec.

Examples:

test: test split.
test + validation: test split + validation split.
test[10:]: test split, minus its first 10 records.
test[:10%]: first 10% records of test split.
test[:20%](pct1_dropremainder): first 10% records, rounded with the pct1_dropremainder rounding.
test[:-5%]+train[40%:60%]: first 95% of test + middle 20% of train.

to_absolute

< >

( name2len )

Parameters

  • name2len (dict) — Associating split names to number of examples.

Translate instruction into a list of absolute instructions.

Those absolute instructions are then to be added together.

Version

class datasets.Version

< >

( version_str: str description: typing.Optional[str] = None major: typing.Union[str, int, NoneType] = None minor: typing.Union[str, int, NoneType] = None patch: typing.Union[str, int, NoneType] = None )

Parameters

  • version_str (str) — The dataset version.
  • description (str) — A description of what is new in this version.
  • major (str) —
  • minor (str) —
  • patch (str) —

Dataset version MAJOR.MINOR.PATCH.

Example:

>>> VERSION = datasets.Version("1.0.0")
< > Update on GitHub